
 

 
 

 
 
 
 
 

Davidson, Matthew Alexander (2018) Analysis of potential driver genes in 
oral squamous cell carcinoma. PhD thesis. 
 

 

 

http://theses.gla.ac.uk/9018/  
 
 
 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, without prior 

permission or charge 

This work cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given 

 

 
 
 
 
 
 
 

Enlighten:Theses 

http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/9018/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk


Analysis of Potential Driver Genes 
in Oral Squamous Cell Carcinoma 

 

Matthew Alexander Davidson 
BSc (Hons) 

 

 

  

 

 
Submitted in fulfilment of the requirements of 

the Degree of Doctor of Philosophy 
 

Institute of Cancer Sciences 
College of Medical, Veterinary and Life Sciences 

University of Glasgow 
 
 

November 2017 
  



2 
 

Abstract 

The 5-year survival rate of head and neck squamous cell carcinoma (HNSCC) has 

remained at ~50% for over 50 years. HNSCC is categorised by multiple anatomical 

sites, but oral (oral SCC) and oropharyngeal squamous cell carcinoma (OPSCC) 

account for approximately 90% of all cases. At the time of writing, only one 

targeted agent, cetuximab (a monoclonal antibody targeting the epithelial 

growth factor receptor), has been approved for the treatment of 

recurrent/metastatic HNSCC. However, despite the high expression of EGFR in 

oral SCC tumour samples, the clinical benefit of cetuximab has been modest thus 

far. Using a phenotypic screening approach, I sought to identify putative 

therapeutic targets. 

A whole genome siRNA screen carried out using an aggressive patient-derived 

cell line (‘Liv7k’) in normoxic and hypoxic conditions provided the foundation for 

this project. In addition, a drug-repurposing screen tested the efficacy of 1,351 

compounds, approved for cancer and non-cancer indications. A number of 

approaches were used to identify potential targets, including a whole genome 

siRNA screen in normoxic and hypoxic conditions, a drug-repurposing screen, and 

a data multiplexing approach combining the two screens with pathway analysis 

and datasets from The Cancer Genome Atlas and the International Cancer 

Genome Consortium.  

Genomic characterisation of oral cancer cell lines confirmed the importance of a 

previously identified frequently amplified region of chromosome three, which 

contains a number of driver genes in HNSCC. In addition, a differential 

susceptibility of oral SCC cells in hypoxia formed the basis of a line of inquiry 

centred on triglyceride and ether lipid metabolism. Finally, compound screening 

identified a dependence of oral SCCs on cysteinyl leukotriene signalling, which is 

involved in inflammatory conditions such as asthma.  
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Chapter 1 Introduction 

Head and neck cancer is the sixth most common cancer in the world with more 

than 11,000 new cases in the UK in 2014[1, 2]. More than 90% of head and neck 

cancers are squamous cell carcinomas (head and neck squamous cell carcinoma; 

HNSCC)[3], and these are further categorised by biological subsite, HPV status 

and TNM stage. Current five-year survival rates have lingered at approximately 

50% for decades in patients where spread to regional lymph nodes has 

occurred[4]. Metastasis, abetted by late presentation and detection, is the 

major factor leading to the failure of treatment in head and neck patients[5, 6], 

and in contrast to other solid tumours, head and neck tumours spread almost 

exclusively lymphatically[7].  

The mainstay treatment for HNSCC remains (often disfiguring) surgery with 

adjuvant chemo/radiotherapy. At the time of writing, only one targeted therapy 

has been approved for the treatment of local recurrent/metastatic HNSCC. In 

2006, cetuximab (Erbitux; Bristol-Myers Squibb, NY, USA) a humanised 

monoclonal antibody targeting epithelial growth factor receptor (EGFR) was 

approved. However, given the strong evidence for the importance of EGFR in 

HNSCC progression, the overall improvement in patient survival upon cetuximab 

treatment has been modest. Overexpression of the protein occurs in more than 

90% of cases and is predictive of a poor prognosis[8], however combined 

cetuximab and radiotherapy led to only a 10% overall survival benefit versus 

radiotherapy alone[9-11].  

Pembrolizumab (Keytruda; Merck & Co. Inc, Kenilworth, NJ, USA), is an immune 

modifying therapy which has been approved for use in unresectable, metastatic 

melanoma (2014)[12], non-small cell lung cancer (2014)[13] and in HNSCC 

(2016)[14]. The humanised monoclonal antibody binds programmed cell death 

protein 1 (PD-1) receptor on the surface of T cells and prevents their binding to 

PD-L1 and PD-L2 on tumour cells, thus stimulating T-cell mediated tumour cell 

destruction[12]. Its approval in recurrent and/or metastatic HNSCC was 

accelerated based on early results of the phase 1b KEYNOTE-012 trial, which 

showed an overall response rate (ORR) of 18%[14]. A later phase II clinical trial 

(KEYNOTE-055) which sought to assess the efficacy of pembrolizumab in patients 
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who were refectory to cetuximab treatment showed an ORR of 16%[15]. More 

recently, its use has extended to cover any solid tumour with mismatch repair 

deficiency or high microsatellite instability. This is because tumours with high 

mutation rates have increased levels of abnormal antigens and are therefore 

more responsive to immune modulation[16]. Another immune checkpoint 

inhibitor, nivolumab (Opvido), was approved later in 2016 following on from the 

successful phase III CheckMate-141 trial[17]. Ongoing phase III trials are 

encouraging but further studies are required to understand the full potential of 

immunotherapy in HNSCC. 

1.1 Disease Characterisation 

1.1.1 Anatomic Definition 

The primary focus of this body of work is oral squamous cell carcinoma (oral 

SCC), which represents 38% of head and neck cancers in males and 50% in 

females[2]. The disease encompasses multiple anatomic sites, including the lip, 

buccal mucosa, anterior two thirds of the tongue, upper and lower gingiva, the 

floor of the mouth and the hard palate (ICD-10: C00-06)[18]. The base of the 

tongue, the squamous-lined tonsils (palatine and lingual), the side and back 

walls of throat and the soft palate are classified as oropharyngeal cancer (ICD-

10: C09-10) and were not investigated in this study. Individual subsites have 

varying degrees of access to local venous and lymphatic systems, and are 

therefore accompanied by different risk factors and treatment options. While 

these classifications serve as a useful guide, there is no internationally agreed 

anatomical definition of oral SCC in the wider literature and data from multiple 

sites are often combined. Where possible, it has been specified whether a 

referenced study focused specifically on squamous cell carcinomas of the oral 

cavity or HNSCCs in general. 

1.1.2 Epidemiology 

Although the highest prevalence of oral SCC is seen in the over 65 age bracket, 

there has been a dramatic rise in younger populations (<45 years) in recent 

years[19]. Socio-economic factors weigh heavily on these statistics, with alcohol 

and smoking cooperatively exacerbating risk[20]. However, the increased 
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incidence largely reflects an atypical younger population who have minimal 

exposure to the classic risk factors[21-24]. HPV has an established role in 

oropharyngeal cancer, with up to 70% of these patients testing positive for the 

virus[25, 26]. However, HPV is predominantly absent in oral SCC. Moreover, 

those patients presenting with HPV-positive tumours generally have a more 

favourable prognosis, even in recurrence[27-29], suggesting a distinct disease 

aetiology. Despite this, current evidence suggests that cetuximab and 

pembrolizumab benefit patients with either HPV status[30]. 

The complexity of HNSCC is further compounded by the intrinsic heterogeneity 

of the disease, as revealed by molecular analyses[31-34]. The last decade has 

seen the release of an unprecedented amount of genomic characterisation, 

thanks to projects such as The Cancer Genome Atlas (TCGA) and the 

International Cancer Genome Consortium (ICGC). This freely available data has 

vastly improved the understanding of disease processes and opened the door to a 

number of innovative personalised therapeutic strategies. To date, HNSCC has 

not truly benefitted from this wealth of information, when compared to the 

leaps made in the molecular subtyping of other cancer types[35, 36]. This 

project capitalises on large sequencing datasets in order to help identify novel 

molecular subtypes. 

1.1.3 TNM Staging 

Oral SCCs are defined clinically by the TNM (Tumour, Node and Metastasis) 

system, which allows for the successful management of disease prognosis. The 

three factors relate to: (1) the primary tumour, including size and location; (2) 

the extent of nodal involvement; and (3) the presence of distant metastasis. 

Tumour and nodal status are staged from 1-4, with sub-classifications a, b or c 

(Table 1.1). For example, T4aN2aM0 indicates a moderately advanced tumour 

with local invasion into tongue muscle or mandible and involving more than one 

lymph node. The oral cavity is one of the most common sites of SCC incidence, 

owing to its exposure to external carcinogens. Primary treatment for most 

tumours is surgery, often in combination with radiotherapy with postoperative 

chemotherapy to improve local disease control. Platinum-based therapies such 
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as 5-flurouracil and cisplatin have a modest impact on patient survival and 

decrease time to recurrence[37].  

Primary Tumour (T) 
Tx Primary tumour cannot be assessed 
T0 No evidence of primary tumour 
T1 Tumour <2cm in greatest dimension 
T2 Tumour 2-4cm in greatest dimension 
T3 Tumour >4cm in greatest dimension 

T4a Moderately advanced local disease, with invasion into cortical bone, 
deep extrinsic muscle of the tongue, maxillary sinus, or skin of face 

T4b Very advanced local disease, with invasion into masticator space, 
pterygoid plates, or skull base and/or encases internal carotid artery 

Regional Lymph Nodes (N) 
Nx Nodal involvement cannot be assessed 
N1 No regional lymph node involvement 
N2 Metastasis in a single ipsilateral lymph node, <3cm in greatest 

dimension 
N2a 

Metastasis in a single ipsilateral lymph node 3-6cm in greatest 
dimension; or in multiple ipsilateral nodes, none >6cm; or in bilateral 
or contralateral nodes, none >6cm 

N2b Metastasis in a single ipsilateral lymph node 3-6cm in greatest 
dimension 

N2c Metastasis in a multiple ipsilateral lymph nodes, none >6cm in 
greatest dimension 

N3 Metastasis in a bilateral/contralateral lymph nodes, none >6cm in 
greatest dimension 

Distant Metastasis (M) 
Mx Distant metastasis cannot be assessed 
M0 No evidence of distant metastasis 
M1 Distant metastasis 
Table 1.1 TNM Staging (American Joint Committee on Cancer, AJCC). 
 

Lymph node metastasis is estimated to occur in approximately 40% of oral cancer 

patients[38]. The proximity of the oral SCCs to regional lymph nodes has a major 

impact on rate of recurrence and distant metastasis of tumour cells, with one 

study finding cervical lymph node metastasis in ~62% of T3/T4 tumours[39]. 

Extracapsular spread (ECS) is another major prognostic factor in oral SCC. Its 

significance is widely recognised in the prognosis of oral cancer, with average 5-

year survival dropping to 24% in patients with ECS in cervical lymph nodes[40]. 

So far, ECS has not been shown to predict worse disease-free survival in HPV-

positive or negative oral SCCs[41]. There are approximately 300 lymph nodes in 
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the neck, which are classified by their location. These are the submental and 

submandibular group, the upper jugular group, the middle jugular group, the 

lower jugular group, the posterior triangle group and the anterior compartment 

[42](Figure 1.1). 

 

Figure 1.1 Cervical lymph nodes classified according to anatomic group. 
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1.2 Hallmarks of Head and Cancer 

Hanahan and Weinberg’s “Hallmarks of Cancer” (Figure 1.2) describe the eight 

defining features of all cancers, which are enabled by genome instability and 

inflammation[43]. These hallmarks underpin the development and progression of 

HNSCC, which remains a major therapeutic challenge. This introduction touches 

on many of these defining characteristics but focuses primarily on three key 

hallmarks: genomic instability, deregulated metabolism and inflammation. 

HNSCC is a highly heterogeneous cancer, characterised by mutations and somatic 

copy number alterations[44]. This is an underlying reason for treatment failure, 

and explains why so many targeted therapies fail to bring wide-reaching benefit, 

despite success in pre-clinical studies[45].  

Genomic instability is exaggerated by another defining feature of solid tumours 

such as HNSCC. Hypoxia, which occurs when tumour growth outpaces that of 

oxygen and nutrient supplying blood vessels, brings about a strong selective 

pressure on cells[46]. Hypoxia promotes a more aggressive phenotype that is 

associated with resistance to chemo/radiotherapy[47]. Lack of oxygen also 

perturbs cellular metabolism, which forms the second major theme of this 

thesis. These changes in energy utilisation are a direct result of successive 

genetic alterations and limited availability of nutrients and include a shift to a 

glycolytic phenotype and increased production of lipids[48]. Herein, a subset of 

genes involved in triglyceride metabolism was identified as part of an unbiased 

genomic screen. Maintaining a steady supply of lipids is essential to the survival 

of rapidly proliferating cells. Lipids exist in a wide variety of forms owing to 

different lengths of fatty acid chains and the position and number of double 

bonds. This multiplicity allows lipids to play a range of roles within the cell, 

including as cell membrane constituents, second messengers in signalling and 

storage of energy[49]. 

Finally, an FDA-approved compound screen led to the identification of a class of 

non-steroidal anti-inflammatory drugs (NSAIDs), which caused >90% growth 

inhibition in oral SCC cell lines. Tumour growth is dependent on the surrounding 

extracellular matrix and the ancillary processes that occur within it[50]. 

Infiltrating immune cells can facilitate tumour development through the release 
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of cytokines and growth factors that promote tumour growth and promote 

invasion[51]. Moreover, it has been shown that NSAIDs can impair the growth and 

development of HNSCCs[52]. This introduction reviews the known roles of 

inflammation in HNSCC and presents novel findings from in vivo work targeting a 

major inflammatory pathway. 

  

Figure 1.2 Hallmarks of cancer, and the influence of hypoxia in HNSCC. Adapted from [43]. 
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1.3 Molecular Landscape 

Head and neck cancer is a highly heterogeneous disease, with genetic variation 

between patient tumour samples and within the tumour itself, and accounts for 

approximately 550,000 cases and 380,000 deaths every year[53]. However, at 

present, complete and standardised genomic profiles exist for just 522 patients 

in TCGA dataset – a snapshot of the overall situation. Like most solid tumours, 

HNSCC occurs through a series of genetic alterations, which occur over an 

individual’s lifetime. Epigenetic mechanisms also play a key role (although have 

not been investigated further here). There are two functional classes of genetic 

alteration: somatic mutation and structural variation. 

1.3.1 Somatic Mutation 

Several key alterations in HNSCC had been discovered before the widespread 

implementation of high throughput platforms for gene expression analysis, with 

the most frequent being those found in TP53 (17p13), a tumour suppressor gene 

in which activating mutations are known to play an important role in the 

pathogenesis of HPV-negative HNSCC[44]. Loss-of-function mutations in TP53 are 

almost universal and are recognised as one of the earliest genetic alterations in 

HNSCC[54].  

Also common are inactivating deletions or mutations in CDKN2A (9p21), which 

occur in >50% of HNSCC tumours, and amplification of CCND1 (11q13), found in 

approximately one third of HPV-negative HNSCCs[55, 56]. In addition, up to one 

third of HNSCCs harbour activating mutations in the oncogenic PI3K pathway, 

with the largest percentage occurring in the PIK3CA gene (3q26)[57]. PTEN, a 

negative regulator of the PI3K pathway and tumour suppressor gene is also 

frequently lost or downregulated in aggressive HNSCC[54, 58, 59].  

As a result of sequencing data, inactivating mutations in NOTCH1 have been 

confirmed in 10-15% of HNSCCs[44, 60, 61], suggesting a tumour suppressor role, 

a function validated in several studies[62-64]. However, NOTCH1 dysregulation is 

more complicated than mere loss-of-function. Increased NOTCH pathway 

signalling occurs in approximately one third of HNSCCs, and is accompanied by 

an oncogenic phenotype[65-67].  
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The NOTCH1 gene encodes a transmembrane receptor which belongs to a family 

of interrelated signalling molecules which can regulate many aspects of cell 

biology, including stem cell renewal[68], proliferation and cell survival[69]. In 

oral SCC tumours, NOTCH1 is localised at the invasive edge where its expression 

is positively correlated with lymph node metastasis and depth of local 

invasion[69-71]. Furthermore, inhibition or knockdown of NOTCH1 reduces cell 

proliferation and invasion[69, 72]. The conflicting roles of NOTCH1 are likely 

influenced by the presence of other genetic alterations and the surrounding 

microenvironment[73, 74]. 

1.3.2 Structural Variations 

HNSCCs exhibit a high degree of chromosomal instability, which contributes to 

the vast heterogeneity of the disease and represents a major clinical challenge. 

Structural variations occur frequently through mutational mechanisms, including 

errors in DNA recombination, replication and repair processes[75]. These include 

insertions, deletions, duplications, translocations and inversions, all of which 

can lead to changes in gene copy number. Originally, structural variation was 

defined as a genomic alteration involving a segment of DNA larger than 1 Kb; 

however improvements in detection have led to a revision of this definition to 

include changes involving more than 50 base pairs[76]. In contrast, insertions 

and deletions (INDELs) normally involve only a few base pairs. 

Copy number alteration (CNA) refers to copy number changes occurring in 

somatic cells and should not to be confused with copy number variation (CNV) 

which is germline in origin. A recent analysis of 3,299 tumour samples spanning 

12 cancer types revealed two major classes of genetic alteration in cancer that 

are characterised by recurrent somatic mutation (M class) or copy number 

alteration (C class), with HNSCC primarily falling under the latter category[77]. 

Using various techniques, a high incidence of LOH/deletion on chromosomes 3p, 

5q, 8p, 9p and 18q[78-80] and high levels of gain/amplification on 3q, 5p, 7p, 8q 

and 11q have been identified in HNSCC, many of which have been confirmed in 

recent years utilising high-throughput sequencing methods. 



27 
 
1.3.2.1 Epithelial Growth Factor Receptor (EGFR) 

Focal amplification of 7p11.2 occurs in approximately 31% of HNSCCs[81]. The 

region is home to the gene encoding EGFR, a receptor tyrosine kinase which is 

expressed in over 90% of HNSCCs[82]. Increased protein expression of EGFR is 

observed early in carcinogenesis, and increases with the degree of dysplasia[83]. 

Protein overexpression has been shown to occur in a similar percentage of oral 

SCC samples[84-86]. Moreover, EGFR has been repeatedly verified as a negative 

prognostic indicator in HNSCC with its overexpression correlating with 

significantly decreased overall and disease-free survival in addition to high rates 

of loco-regional relapse[87]. Similar findings are found in patients with tumours 

with increased EGFR copy number[88, 89].  Activation of EGFR signalling brings 

about a malignant phenotype which is characterised by enhanced angiogenesis, 

decreased apoptosis and a propensity to metastasize to local and distant 

sites[90]. This is achieved through activation of downstream signalling pathways 

such as AKT, STAT3 and MAPK[91-94]. Despite a solid biological rationale to 

target EGFR, inhibitors of the receptor have met with limited success as a 

monotherapy, indicating a requirement for additional therapeutics in this 

disease.  

1.3.3 Summary 

A number of studies have sought to capitalise on recent technological advances 

in order to associate key molecular alterations to specific pathological traits. 

Overall, a complex pattern of chromosomal alteration has emerged in which the 

gains and losses commonly observed in HNSCC translates into clinically relevant 

prognoses, and correlates with poorer survival in patients[95]. While some of 

these regions contain key oncogenes and tumour suppressor genes, the 

importance of other regions to disease progression is currently unknown[96].  

Distinguishing driver mutations from randomly occurring passenger mutations 

(which result from a higher basal rate of alteration in tumour cells), remains a 

challenge[97]. A driver mutation has a causal role in oncogenesis and confers a 

growth advantage to the tumour cell that is passed on to daughter cells, 

allowing it to alter core processes, overcome cell cycle restriction and activate 

survival and invasion pathways[43]. In contrast, passenger mutations are not 
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selected for and generally do not confer a growth advantage. These somatic 

mutations are passed on with no functional consequence[98]. In addition, 

facilitator mutation events, which are not oncogenic by themselves, often 

promote the genetic diversity that enables tumour cells to overcome restrictions 

on their growth. The difficulty is in distinguishing the types of mutation, which 

relies largely on measuring how randomly they are distributed. Inevitably, a 

number of mutations will be falsely classified and should be interpreted with 

caution. Consolidation of driver mutations is achieved by investigating their 

phenotypic consequence. 

1.4 Genetic Progression  

1.4.1 Precursor Lesions 

Genetic alterations occur in a stepwise progression, accompanied by 

macroscopic changes in the oral mucosa known as precursor lesions. The most 

common of these is the appearance of a white patch on the mucosal lining 

termed oral leukoplakia. These lesions occur in approximately 1.5% of the 

population and are associated with an increased risk of malignant 

transformation[99]. The rate of development into invasive carcinoma differs 

depending on population cohort and variation in assessment, but it is currently 

thought that ~1% of leukoplakia make the transition into oral SCC[99]. 

By the time leukoplakias are visible to the naked eye, the cells will have 

undergone a number of histological and genetic alterations. The first genetic 

multi-step progression model of HNSCC was proposed in 1996 (updated in Figure 

1.3). The model provides a link between instances of chromosomal loss and 

histopathological observations in early and late stage tumours.   

1.4.2 Field cancerisation 

Early genetic changes can also be present in the macroscopically normal 

epithelium surrounding lesions[100]. ‘Field Cancerisation’ describes the 

existence of a pre-neoplastic field of epithelium outside the surgical margins 

defined by macroscopically visible lesions[101]. The field arises from a single 

cell which develops a genetic alteration and clonally expands, later giving rise to 
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a secondary invasive carcinoma[102, 103]. Slaughter et al. was the first to link 

the existence of such fields to the high propensity of HNSCCs to recur in 

patients[104]. An analysis of macroscopically normal mucosa surrounding HNSCC 

revealed genetic alteration in 36% of patients[105]. HNSCCs have the second 

highest percentage of multiple primary tumours (15%) of all cancer types[106].   

However, fixed linear models of progression, such as that in Figure 1.3, do not 

fully capture the heterogeneous nature of HNSCC, which has been shown to 

involve multiple molecular routes to a metastatic endpoint.   

 

 

Figure 1.3 Genetic progression model of HNSCC. Chromosomal regions with frequent copy 
number alterations are presented, along with associated oncogenes or tumour suppressors. 
NOTCH1 has been reported as both an oncogene and tumour suppressor gene in HNSCC, 
indicating its function may vary depending on genetic context. Adapted from [107]. 
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1.4.2 Major Copy Number Events in HNSCC 

Somatic copy number alterations affect a larger proportion of the cancer 

genome than any other type of genetic alteration[108]. Much like somatic 

mutations, it is important to distinguish driver events that contribute to cancer 

progression from passenger events that are acquired throughout the lifetime of a 

tumour, but do not impart a phenologic change[109]. Driver CNAs that provide a 

growth advantage occur more often and similar patterns of alteration are seen in 

cancers of similar tissue types[110]. Copy number alterations can be divided into 

“arm-level” events encompassing entire arms or smaller “focal” events, which 

occur within a specific region[111]. Additional copies of certain genes can lead 

to over activity of the protein product. Oncogenes are often activated in this 

way and lead to cellular transformation. Figure 1.4 shows the most significant 

chromosomal alteration events in HNSCC, according to GISTIC 2.0 analysis[112]. 

Amplification of chromosome 3q26-29 is a defining feature of squamous type 

cancers and is estimated to occur in up to 75% of HNSCCs[113]. The region 

contains a number of established and prospective oncogenes, including PIK3CA, 

TP63 and SOX2[114-116]. Furthermore, it has a demonstrated ability to enhance 

migration and invasion and is consistently associated with a poor prognosis in 

HNSCC patients[117-119]. The 3q26-29 amplicon forms a major part of this 

project and will be discussed further in chapters four, five and six. In particular, 

the role of a binding protein involved in insulin signalling will be assessed. 
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Figure 1.4 Major arm-level and focal copy number alterations in HNSCC. (A) Graphical 
representation of significant chromosomal alterations in HNSCC in TCGA dataset, as determined 
by GISTIC 2.0, n = 279 samples (green = amplification; red = deletion, yellow, both). Vertical lines 
represent arm level events and rectangles depict focal alterations with significance set at a q-value 
= 0.25. (B) Major focal copy number alterations in HNSCC. GISTIC 2.0 analysis reveals 36 
significantly recurring deletion events and 26 amplification events, ranked by descending residual 
q-value. Data adapted from [51]. 
 

A 
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1.5 IGF Signalling in HNSCC 

3q26-29 copy number amplification is the most frequent genomic alteration in 

HNSCC and is universally associated with a poor prognosis[113]. Whole exome 

sequencing revealed the presence of this amplicon in a number of oral SCC cell 

lines used in this project. Subsequent analysis of the region identified a number 

of genes, which are highly significant for survival in patients (TCGA HNSCC 

dataset). The most significant gene in terms of overall survival was insulin-like 

growth factor 2 binding protein 2 (IGF2BP2). In the cell, IGF2BP2 binds to and 

stabilises specific gene transcripts, thus regulating their translation. One of the 

confirmed targets of the gene is insulin-like growth factor 2 (IGF2), which acts 

through the IGF1 receptor (IGF1R) to activate downstream growth and survival 

pathways. A central aim of this project was to determine if IGF2BP2 acts as a 

key driver gene in HNSCC progression. 

1.5.1 Overview 

The IGF signalling pathway represents a very attractive target in cancer therapy, 

however effective inhibition of the network has proven challenging. To date, 

most inhibitors have IGF1R, a heterodimeric transmembrane receptor that is 

associated with poorer survival in advanced stage oral SCC [120] and is 

preferentially overexpressed in HPV-negative HNSCC[121]. IGF1R was found to 

be significantly expressed in a series of oral cancer biopsies taken from patients 

prior to treatment[122]. Moreover, it has been shown that elevated expression 

of IGF1R, in combination with its binding protein, IGFBP3, correlates with a 

significantly shorter time to progression in HNSCC[123]. In vivo studies also 

support a role for IGF1R in tumour progression. Constitutive activity of IGF1R led 

to the rapid induction of tumours in a transgenic mice model, while a small-

molecule inhibitor of the receptor reduced the tumour burden[124]. Conversely, 

deletion of IGF1R or genetic reduction of circulating IGF1 has been shown to 

negate tumour progression[125, 126]. 

The IGF1R receptor is composed of two extracellular α subunits which mediate 

ligand binding and two transmembrane β subunits with tyrosine kinase activity 

(Figure 1.5)[127]. There is a 60% amino acid sequence homology between the 

IGF1R receptor and the insulin receptor (IR)[128], which allows the formation of 
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hybrid receptors which can bind both IGF ligands[129]. Ligand binding of IGF1 or 

IGF2 to IGF1R (or hybrid/insulin receptors) leads to autophosphorylation of the 

receptor and activation of insulin receptor substrate (IRS)[130]. There are six 

distinct IRS proteins but IRS-1/2 mediate most of the downstream 

signalling[131]. Phosphorylation of IRS-1 at Tyr612 activates the p85 regulatory 

subunit of PI3K and subsequently AKT[132, 133], while phosphorylation at Tyr896 

promotes binding of Grb2 and activation of the MAPK pathway[134]. AKT 

activation frees mTOR from tuberous sclerosis complex 2 (TSC2)-driven 

inhibition, thus promoting cell growth and survival[135]. PI3K activity is 

negatively regulated through PTEN-mediated dephosphorisation of PIP3[136], 

however the PTEN tumour suppressor gene is commonly mutated/deleted in 

HNSCC (8-23% of cases)[44, 137]. 

 

Figure 1.5 Insulin Signalling in HNSCC. An overview of the insulin signalling pathway, depicting 
the interaction of IGF-binding proteins with IGF ligands, IGF ligand-receptor binding and targeted 
therapeutics of IGF1R which have been trialled in HNSCC. 
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1.5.2 Clinical Trials 

Despite promising pre-clinical results, IGF1R inhibitors and monoclonal 

antibodies have lacked efficacy in human trials. One such monoclonal therapy, 

figitumumab, provided no benefit to patients with palliative HNSCC in a phase II 

clinical study[138].  Another phase II trial assessing cixutumumab (IMC-A12) in 

combination with cetuximab is ongoing in HNSCC patients (ClinicalTrials.gov 

identifier: NCT00957853), however the same regimen held no benefit for 

colorectal cancer patients[139]. In fact, lack of efficiency has led to early 

termination in some trials and one phase II study comparing cetuximab 

with/without the dual IGF1R/IR inhibitor OSI-906 (ClinicalTrials.gov 

identifier:NCT01427205) was withdrawn prior to enrolment. 

A possible reason for the failure of IGF1R inhibition is the compensatory action 

of homologous receptors, such as IR or hybrid receptors. High IR to IGF1R ratios 

have been associated with IGF1R inhibitor resistance[140, 141]. Indeed, the 

stimulation of IR can maintain cellular proliferation in the absence of 

IGF1R[142]. Furthermore, downregulation of IR in LCC6 cells was shown to 

reduce the growth rate of xenografts in athymic mice independently of 

IGF1R[143]. Dual blockade of IGF1R and IR tyrosine kinase activity is a feasible 

therapeutic option[144] and has been shown to synergise with approved 

cytotoxic agents as well as targeted Src-kinase inhibition and hormonal 

modulation[145-147].  

Crosstalk with other growth factor receptors can also contribute to treatment 

failure. Upregulation of EGFR is associated with resistance to IGF1R inhibition in 

vitro and vice versa[148, 149]. Barnes et al. showed that stimulation with either 

IGF or EGF resulted in heterodimerisation of both IGF1R and EGFR and that 

simultaneous blockade of the receptors lead to a greater reduction in cellular 

proliferation and migration than single receptor inhibition[150]. In support of 

this resistance mechanism, EGF-EGFR binding was shown to directly 

phosphorylate IRS and activate AKT and MAPK pathways, independently of 

IGF1R[151]. However, other studies have found that dual inhibition of IGF1R and 

EGFR provided no added benefit[152].  
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Combination with other forms of therapy has also yielded positive results. 

Concurrent administration of ganitumab (AMG-479) and panitumumab with 

radiation resulted in significantly higher rates of success than the use of either 

given alone with radiotherapy[153]. 

1.5.3 IGF binding proteins 

IGF2BP2 belongs to a conserved family of three mRNA-binding proteins, IGF2BP1, 

IGF2BP2 and IGF2BP3 (also known as IMP1, IMP2 and IMP3), which bind multiple 

gene transcripts with unique and overlapping functions[154]. Expression of the 

gene family is predominantly embryonic, but is often upregulated in aggressive 

cancer[155]. IGF2BP2 is the most divergent family member with moderate to 

high expression in a wide range of adult tissues, including the testis, colon and 

kidneys[156].  

Alternative translational initiation gives rise to two isoforms of IGF2BP2 with 

molecular weights of 62 and 66kDa[157]. IGF2BPs contain four C-terminal K-

homology (KH) domains which bind RNA transcripts[158] and two N-terminal RNA 

recognition motifs (RRMs) which stabilise the interaction[159]. The process 

involves the formation of large, granular complexes called ribonucleoprotein 

(RNPs) which facilitate the transport of transcripts to their target destination, 

while maintaining the integrity of mRNA molecules[160]. 

1.5.4 Regulation of IGF2BP2 

While a comprehensive network of IGF2BP2 interactions has yet to be 

completed, recent studies suggest an important role for high-mobility-group A2 

(HMGA2). HMGA2 is a transcription factor which exhibits a very similar 

expression pattern to IGF2BP2 and is correlated with decreased overall survival 

in HNSCC[161]. Embryonic HMGA2 has been shown to regulate the level of 

IGF2BP2 mRNA in the cell, and promote its transcription in cooperation with 

NFKB1[162, 163]. Furthermore, IGF2BP2 is significantly downregulated in HMGA2 

knockout mice, which exhibit impaired skeletal muscle development and 

reduced myoblast proliferation. Rescuing of this phenotype was partially 

achieved by overexpressing IGF2BP2 in knockout myocytes[164]. The study also 

found that knockdown of IGF2BP2 led to reduced protein expression of c-MYC 
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and IGF1R but did not alter mRNA expression of these genes. This suggests that 

IGF2BP2 alters the rate at which mRNAs are translated without affecting overall 

mRNA levels. 

In the last decade, microRNAs (miRNAs) have garnered increasing interest in 

cancer research stemming from their role as regulators of gene expression[165]. 

Luciferase gene reporting revealed that miR-1193 directly targets the 3’UTR of 

IGF2BP2 and reduces its expression in breast cancer. miR-1193 mediated 

suppression of IGF2BP2 led to deactivation of the PI3K and ERK signalling 

pathways and a significant diminution of proliferative and invasive 

capacity[166]. 

A recent global miRNA profiling analysis of 51 locally advanced HNSCC tumour 

samples reported consistent downregulation of Let-7 miRNA family members, 

Let-7a and Let-7c[167]. In line with this, Let-7 miRNAs have been shown to 

negatively regulate the expression of IGF2BP2, HMGA2, CCND1 and IGF1R[168]. 

The study also showed that the RNA binding protein, Lin28bc can inhibit Let-7, 

thus upregulating the expression of its target genes, including IGF2BP2. 

Importantly, the expression of Lin28b, IGF2BP2 and IGF2 are significantly 

correlated with high rates of disease relapse[168]. 

The same Lin28b/Let-7 axis was later shown to drive oncogenic SOX2 expression 

in HNSCC, where it reprograms cells to a stem-like state[169, 170]. Stem cells 

are capable of initiating and sustaining tumour growth, thus they represent a 

valuable therapeutic target in HNSCC[171]. This supports previous findings that 

Let-7 negatively regulates expression of stemness genes[172]. Interestingly, 

stemness is maintained in Let-7 expressing primary GBM cultures in the absence 

of Lin28b, suggesting other mechanisms must exist to preserve tumour cell 

stemness[173]. IGF2BP2 has been shown to protect Let-7 target transcripts 

(including HMGA2) from gene silencing. Loss of tumour-initiating capacity 

incurred by IGF2BP2 depletion was restored by overexpressing Lin28b[173, 174]. 

Disruption of this reciprocal relationship between Let-7 miRNA and IGF2BP2 

could be important in the promotion of HNSCC tumour progression. 
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1.5.5 Target Transcripts of IGF2BP2 

At present, little has been confirmed about the role of IGF2BP2 in cancer, but 

there is mounting evidence that it facilitates oncogene expression[175-177]. As 

one of 422 predicted RNA-binding proteins in mammalian cells, IGF2BP2 could 

potentially regulate the translation of numerous gene transcripts with wide 

ranging cellular functions[178]. The range of roles carried out by an RNA-binding 

protein is include pre-mRNA splicing, post-transcriptional modification, and 

regulation of translation. The key question is what its target transcripts within a 

cell are, and following on from this, does IGF2BP2 bind different targets in 

different cancer types? 

Janiszewska et al. employed a RIP-CHIP microarray in glioblastoma spheroid 

cultures and found approximately 400 transcripts that were bound to the 

IGF2BP2-RNP complex with a significant overrepresentation of genes involved in 

mitochondrial metabolism[179]. A number of IGF2BP2 binding partners have also 

been identified in mouse myoblasts, including MYC, SP1, IGF1R, CCNG1, 

NOTCH2, CDK6, AKT3, MDM2, KI67, ARF1, and MAPK1[164]. Surprisingly, no 

strong IGF2BP2-IGF2 binding was observed in these cells. A similar study in 

colorectal cancer revealed IGF2BP2 binding of MAPK1, EFF2F, RAF1, SP1, CCNB1, 

CCNA2, NUCKS1 and importantly, IGF2. However, IGF2 was the least enriched of 

the aforementioned gene transcripts[175]. 

IGF2BP2 binds to and stabilises IGF2 mRNA within the cell, positively regulating 

its translation[180]. Like IGF1, IGF2 is a major growth factor involved in 

development as evidenced by growth retardation in mice lacking it[181]. Mature 

IGF2 is a 7.5 kDa peptide growth factor produced mainly in the liver, but it can 

be secreted by most tissues where it acts in an autocrine or paracrine 

manner[182]. Like IGF2BP2, it is highly expressed in the embryonic tissue where 

it promotes foetal growth, and its expression declines rapidly after birth[183]. 

While IGF2 is a major growth factor in the prenatal state, IGF1 takes over during 

post-natal development and remains until puberty[184].  

The growth factor is able to exert its effects through binding and activating 

either the IGF1 receptor (IGF1R), insulin receptor A (IR-A) or heterodimeric 
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IGF1R/IR-A[185-187]. IGF2R specifically binds IGF2, but lacks an intracellular 

tyrosine kinase domain required for signalling. IGF2R is responsible for regulating 

IGF2 levels in the extracellular matrix, thus acting as a negative regulator of its 

mitogenic activity[188, 189]. Circulating levels of IGF2 are regulated by 

interactions with secreted IGFBPs, which stabilise the growth factor and limit its 

bioavailability for other receptors as unbound IGF2 has a half-life of only a few 

minutes[190, 191]. The majority of circulating IGF2 is bound to IGFBP3 and a 

glycoprotein called acid-labile subunit (ALS), and to a smaller extent, 

IGFBP5[192, 193]. IGFBPs and IGF2BPs interact widely with IGF-independent 

ligands and thus are capable of both promoting and suppressing tumour 

progression[194]. 

1.5.6 IGF2BP2 in cancer 

While re-expression of IGF2BP1 and IGF2BP3 has been observed in a number of 

aggressive malignancies[195-197], studies on IGF2BP2 have mainly focused on its 

putative role in type II diabetes[198, 199] and an unrelated role in the regulation 

of smooth muscle cell adhesion and motility[200]. Since the original discovery 

that the p62 splice variant of IGF2BP2 elicits an auto-antibody response in 

hepatocellular carcinoma (HCC)[201], other immune responses have been 

documented in oesophageal adenocarcinoma (ESCC) and breast cancer[202, 

203]. Elevated expression of IGF2BP2 has also been correlated with higher rates 

of metastasis and shorter survival in oesophageal adenocarcinoma[176]. In 

addition, IGF2BP2 was recently shown to promote colorectal cancer cell 

proliferation by protecting RAF1 mRNA from miR-195 mediated 

degradation[175]. RAF1 is an essential component of the mitogen-activated 

protein kinase (MAPK) pathway, where it phosphorylates and activates the 

mitogen-activated protein kinase (MEK)-1/2, which in turn phosphorylate and 

activate extracellular-related kinase (ERK)-1/2[204, 205]. 

The gene is frequently overexpressed in glioblastoma multiforme (GBM)[206, 

207] where it has been shown to control oxidative phosphorylation in stem cells 

through stabilisation of gene transcripts involved in the mitochondrial 

respiratory chain[179]. Further evidence suggests that IGF2BP2 modulates GBM 

progression through an IGF2-IGF1R-PI3K axis[177]. Interestingly, IGF2BP2 also 
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inhibits translation of the mitochondrial transport protein, uncoupling protein-1 

(UCP1), in breast cancer[208]. This preferential interaction of IGF2BP2 with 

mRNA components of mitochondrial complex could provide the metabolic link 

between its involvements in cancer, obesity and type-II diabetes[209]. 

Enhanced invasion is a key hallmark of cancer, and is often a precursor to full-

blown metastasis. Epithelial to mesenchymal transition (EMT) describes a 

process in which an adherent epithelial cell acquires a more motile phenotype 

and is underwritten by a series of molecular alterations[210]. The loss of E-

cadherin (encoded by CDH1) is one such alteration and is driven by 

transcriptional repressors such as Snail (SNAI1) and Slug (SNAI2)[211, 212].  

IGF2BP2 is implicated in the EMT process in breast cancer[213] and its 

overexpression has been shown to enhance the invasive phenotype of GBM 

through modulation of EMT components[177]. Moreover, knockdown of IGF2BP2 

led to a reduced ability of cells to migrate and invade. A key upstream regulator 

of IGF2BP2, HMGA2, was recently shown to be essential for TGFβ-mediated EMT 

in breast cancer where it localises at the invasive front of tumour cells and 

regulates Snail expression[214, 215]. In addition, overexpression of HMGA2 has 

been strongly correlated with HNSCC progression and survival where it 

upregulates Snail and promotes EMT[216]. 

1.5.7 Summary 

It is clear that IGF2BP2 is not merely a passive reservoir of IGFs, but exerts 

control over a multitude of genes with wide-reaching consequences throughout 

the cell. Expression analyses have revealed elevated expression of IGF2BP2 in 

tumour compared to normal tissue and a carcinogenic role has already been 

established in certain cancer types. Through its regulation of IGF2 and 

subsequent activation of downstream oncogenic signalling nodes, IGF2BP2 has 

been shown to promote cell growth and survival in addition to maintaining 

metabolic integrity. However, a role in head and neck cancer has yet to be 

assessed. Herein, the process of IGF2BP2 identification from a comprehensive 

analysis of patient data combined with genomic screening, and validation of its 

phenologic influence in a series of patient-derived HNSCC cell lines is described.  
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1.6 The Significance of Hypoxia 

One of the primary aims of this thesis was to identify genes that were selectively 

essential in hypoxia. To this end, a whole genome siRNA screen was carried out 

to determine genes, which are selectively essential in hypoxia. These genes 

represented ~10% of the total 18,075 genes knocked down. However, a more 

manageable number of hits were needed to follow up so the results of the siRNA 

screen were combined with pathway analysis to determine if these genes had 

common functions in the cell. The top hit returned a subset of genes involved in 

the metabolism of fatty acids and cholesterol biosynthesis. The importance of 

hypoxia and lipid metabolism in HNSCC is discussed in the remainder of the 

introduction. 

1.6.1 Clinical Definition 

Hypoxia results from the tumour mass growing faster than the vascular supply, 

leading to regions with a decreased supply of nutrients and oxygen[217, 218]. 

Hypoxia is a defining feature of solid tumours, including head and neck 

cancers[219, 220]. There is a strong correlation between tumour volume and the 

degree of hypoxia in HNSCC tumours and hypoxic tumour volume is an 

independent prognostic factor for survival in patients [221]. Approximately two 

thirds of TCGA primary HNSCC tumours are stage 3 or 4, which suggests that at 

least this many tumour samples are hypoxic to some degree[54]. 

Well-oxygenated peripheral tissue generally has an oxygen tension of 

approximately 40 mmHg (5% O2)[222]. Tumours are considered to be hypoxic 

when the oxygen tension within the tumour falls below that of the surrounding 

tissue and is generally accepted to be ≤8 mmHg (1% O2), however a cellular 

response to hypoxia can be activated anywhere below 5% O2, and the exact 

value will vary between different tumours[223]. The diffusion limit of oxygen 

falls between 70-200µm from the nearest blood vessel[223]. This diffusion limit 

also applies to anti-cancer drugs, which often fail to penetrate the tumour mass 

and reach internal cells at a lethal concentration (Figure 1.6). In addition, 

hypoxia brings about a slowing of cell growth, which renders a number of 

conventional chemotherapies ineffective[224].
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Figure 1.6 Oxygen diffusion gradient in a solid tumour. (A) Diagram shows tumour cells in 
relation to the nearest blood vessel and the extracellular matrix (ECM). Anti-cancer drugs fail to 
reach isolated tumour cells furthest from blood supply. (B) The partial oxygen pressure (pO2) drops 
from 40 mmHg in peripheral tissue to less than 5 mmHg in tumours and is accompanied by a drop 
in physiological pH, creating a more acidic environment. 
  

A 

B 
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1.6.2 Transcriptional Regulation by HIF-1A 

Hypoxia exerts a strong selective pressure on tumour cells, promoting genomic 

instability and increasing rates of mutation[225]. This in turn drives a more 

aggressive phenotype with enhanced proliferative, invasive and metastatic 

potential[226]. Hypoxia-responsive genes are estimated to make up about 1.5% 

of the human genome and effect wide-ranging adaptive changes to aid cells in 

their survival of a low oxygen environment[227]. Genetic changes occur 

predominantly, but not exclusively through hypoxia inducible factor-1α (HIF-

1α)[228]. 

HIF-1α is the master regulator of hypoxia. It exists as a dimer with HIF-1β (not 

induced by hypoxia) and acts as a transcription factor, which binds to hypoxia 

response elements (HREs) in the promoter region of target genes. At normal 

oxygen tension, HIF-1α is kept under a constant state of hydroxylation and is 

marked for destruction by the von Hippel-Lindau protein (VHL)[229, 230]. This 

hydroxylation cannot occur in low oxygen, leading to stabilisation of HIF-1α and 

increased transcription of genes containing a HRE (Figure 1.7)[46].  

 

Figure 1.7 The fate of HIF-1α in the cell. (A) HIF-1α is rapidly degraded in normoxic conditions 
via hydroxylation by prolyl hydroxylase-domain enzymes (PHDs), recruitment of VHL and 
subsequent ubiquitination/proteasomal degradation. (B) In hypoxia, HIF-1A binds hypoxia-
response elements within target genes, and activates their transcription.  

B 

A 
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In addition, the activation of HNSCC oncogenes such as PIK3CA, and loss of 

tumour suppressors such as PTEN, can compensate for the degradation of HIF-1α 

in oxygenated environments by increasing its translation[231]. This highlights the 

tumour cell’s dependence on HIF-1α to maintain an aggressive phenotype under 

conditions of stress. To date, no HIF-1α inhibitors have been approved for use in 

cancer due to their lack of efficacy or low tolerability. The tumour 

microenvironment produces discrepancies between in vitro and in vivo efficacy 

studies, often resulting in clinical failure. In addition to the challenge of 

delivery, no robust hypoxic marker exists for the preselection of patients with 

high HIF-1α activity[232]. 

The significance of low oxygen has been well documented within a metabolic 

context where it exerts great physiological stress on tumour cells, requiring 

adaptation in order to best utilise the limited oxygen available[233, 234]. One of 

the outcomes of this is an increased reliance on glycolysis as the primary means 

of ATP production rather than (the more efficient) oxidative phosphorylation. 

Interestingly, this preference is also observed in areas of tumours which are not 

oxygen limited, in a process termed “aerobic glycolysis”[235]. This has led to 

the conclusion that the glycolytic phenotype confers a survival advantage to 

tumour cells, despite the lower output of ATP and the acidification of the 

surrounding extracellular matrix (ECM)[236].  

The evolutionary drive to survive in these low oxygen/ATP/pH conditions occurs 

in the early stages of tumour formation, when the tumour epithelial boundary 

expands beyond the oxygen diffusion limit (>70-200µm) [236, 237]. The scarce 

resources drives the selection of cells favouring those less sensitive to growth 

restraints and therefore more capable of survival in low oxygen, acidic 

environments[238]. This is supported by the upregulation of H+ transporters in 

cancer cells[239], in addition to increased expression of high performance 

glucose transporters (e.g. GLUT1)[240]. Lactate production and the resulting 

acidification of the surrounding ECM have also been shown to enhance invasion 

and stimulate the activation of tumour-associated macrophages[241, 242].  

To date, two major hypoxic gene signatures have been developed. Winters et al. 

developed a 99-gene set that was shown to be a significant prognostic factor for 
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recurrence-free survival in HNSCC patients[243]. Toustrup et al. developed a 15-

gene hypoxic classifier set in HNSCC (Table 1.2), based on the gene expression 

profiles of cell lines exposed in vitro to different oxygen and pH levels, and 

followed up with in vivo xenograft studies[244, 245]. The list predominantly 

comprises genes involved in cell metabolism, stress response and apoptosis. 

ALDOA, which codes for a glycolytic enzyme and catalyses the conversion of 

fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone 

phosphate, is frequently upregulated in oral SCC [246] but has not as yet been 

linked to patient outcome. Higher expression of SLC2A1 (GLUT1) is consistently 

associated with a poor prognosis in patients with oral SCC [240, 247] while 

HNSCC cells treated with a GLUT1 inhibitor demonstrate enhanced 

chemosensitivity to cisplatin[248]. 

Hypoxia Responsive Genes 
ADM C3orf28 P4HA1 

ALDOA EGLN3 P4HA2 
ANKRD37 KCTD11 PDK1 

BNIP3 LOX PFKFB3 
BNIP3L NDRG1 SLC2A1 

Table 1.2 Hypoxia gene classifier set. Gene set developed by Toustrup et al. [244]. 
 

1.6.3 Hypoxia and Clinical Failure 

Tumour hypoxia is consistently correlated with poorer prognosis in HNSCC, and is 

a major determinant of resistance to chemo/radiotherapy[249]. A large multi-

centre study of 397 patients with HNSCC found that overall survival was 

significantly impaired in tumours with pre-treatment oxygen tensions of less 

than 2.5 mmHg[250]. Concomitant chemo/radiotherapy is the cornerstone 

postoperative treatment for HNSCC patients, and despite improving the 

prognosis of patients with locally advanced disease[251], recurrence occurs in 

>50% of patients with stage 3/4 tumours, in which the median survival is <12 

months[252]. In normoxic tissue, the high oxygen tension acts as a 

radiosensitising agent by prolonging the lifespan of the highly reactive hydroxyl 

radicals produced when tightly bound electrons are removed from water in the 

sheath surrounding DNA (radiolysis)[253]. These free radicals cause damage to 

DNA in the form of double strand breaks (DSBs), single strand breaks (SSBs), DNA 
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base damage and DNA-DNA/DNA-protein crosslinking[254]. In hypoxic tissue, 

fewer hydroxyl radicals are produced, thus decreasing the frequency of DNA 

damaging events. 

Rapidly dividing tumour cells are more vulnerable to DNA damage than normal 

cells with their lower turnover. Radioresistance arises when oxygen tension 

drops to ≤5 mmHg in HNSCC tumours[253], although less severe oxygen levels are 

sufficient to cause a multitude of gene expression changes[255, 256]. It has been 

demonstrated in head and neck cancer that hypoxic radioresistance can be 

counteracted by hypoxia modifying approaches, such as treating with 

nitroimidazoles (which mimic oxygen during irradiation) [257] or by increasing 

oxygen delivery to the affected area, potentially via the ARCON (accelerated 

fractionated radiotherapy with carbogen and nicotinamide) strategy[258]. The 

high cytotoxicity of the drugs has hampered their implementation at a clinically 

relevant dose[259], but there has been a small, but significant improvement in 

locoregional control over radiotherapy alone[260]. 

Cells in hypoxic conditions can exhibit resistance to drugs, primarily owing to 

their distance from blood vessels, which can decrease the effective 

concentration to which they are exposed [261], depending on the structure and 

metabolic stability of the drug. In addition, some drugs require oxygen in order 

to be maximally cytotoxic (e.g. bleomycin)[262]. A study by Yoshiba et al. 

showed that hypoxia was able to induce resistance to 5-flurouracil in oral cancer 

cells by inducing cell cycle arrest at the G1/S transition phase[263]. Similarly, 

knockdown of GLUT1 in a panel of oral cancer cell lines sensitised hypoxic cells 

to cisplatin-mediated apoptosis[264]. Cells in a hypoxic environment exhibit a 

slower cell cycle progression, which enhances their resistance to anticancer 

drugs[265]. Furthermore, the selection pressure exerted by hypoxia favours cells 

expressing mutant p53, as p53-dependent apoptosis will eliminate susceptible 

cells with wild-type p53[225], thus decreasing sensitivity to treatment. In this 

way, hypoxia can also compromise surgical outcome and increasing rates of 

relapse[266]. 
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1.6.4 Summary 

Hypoxia is one of the defining characteristics of head and neck squamous  cell 

carcinoma, and one of the major causes of the chemo/radioresistance and the 

resulting poor prognosis. Identifying pathways involved the hypoxic response 

(HIF-1α dependent or not) and how they influence the behaviour of tumour cells 

and the surrounding extracellular matrix, is essential if the efficacy of therapies 

are to be improved. To some extent, hypoxia underpins every hallmark of cancer 

by promoting genomic instability. This, in turn, drives the selection of cells with 

an aggressive phenotype that are highly adapted to their harsh environment. The 

role of hypoxia in HNSCC has been extensively studied and this has shown that it 

carries a consistently negative prognosis. This is compounded by the lack of a 

robust biomarker in the clinic, which will impede the implementation of 

targeted therapies. To this end, hypoxic gene signatures have been developed 

that can successfully predict treatment outcome. However, this approach is 

limited by highly heterogenous tumours such as HNSCCs. This study seeks to 

identify genes that are not only highly expressed in hypoxia, but are also 

essential for cell survival under these conditions. 
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1.7 Lipid Metabolism 

Hypoxia creates an environment in which a tumour cell must adapt in order to 

survive. Immediate changes occur in cellular metabolism in order to compensate 

for the loss of ATP resulting from decreased oxidative phosphorylation[267]. To 

date, most metabolism studies in cancer have focused on changes in glucose and 

glutamine; however, the roles of lipids in tumour progression are increasingly 

recognised. Implementation of an unbiased genomic screen has identified a 

subset of genes involved in triglyceride metabolism, with potential importance 

in HNSCC progression. In addition, the role of a class of lipids known as ether 

lipids (plasmalogens), which are present at higher levels in tumours than normal 

tissue[268], is investigated in a panel of oral SCC cell lines. 

1.7.1 Fatty Acid Metabolism 

A number of metabolic changes occur in cells undergoing malignant 

transformation, including a switch to a glycolytic energy profile, heightened 

glutaminolysis and an increase in de novo fatty synthesis[269-271]. 

Reprogramming of lipid metabolism is increasingly recognised as a hallmark of 

cancer and involves the fining-tuning of synthesis, storage and degradation of 

triglycerides (TGs), phospholipids (PLs), cholesterols (CLs) and cholesterol esters 

(CEs)[272]. Figure 1.8 provides a graphical overview of the key events in lipid 

metabolism. Free fatty acids (FAs) are the essential building blocks for the 

synthesis of membrane lipids and lipid second messengers such as 

phosphatidylinositol-3,4,5-trisphosphate (PIP3), as well as acting as substrates 

for energy production[273]. FAs can come from exogenous sources in the diet or 

can be synthesised de novo in the cytoplasm. 

 



              

Figure 1.8 Overview of lipid metabolism. 
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1.7.2 Fatty Acid Synthesis 

Sterol regulatory element-binding proteins (SREBPs) are transcription factors 

which act as master regulators of lipid metabolism by controlling the synthesis of 

FAs, TGs and CLs[274]. Three isoforms exist in mammalian cells (SREBP-1a, -1c 

and -2), with distinct but overlapping roles, and encoded by SREBP-1a/1c and 

SREBP2, respectively[275]. Fatty acids are primarily synthesized from 

tricarboxylic acid (TCA) cycle-derived citrate, which is converted to 

oxaloacetate and acetyl-CoA by ATP citrate lyase (ACLY). Acetyl-CoA is then 

carboxylated to malonyl-CoA by acetyl-CoA carboxylase (ACC) and condensed to 

palmitate by fatty acid synthase (FASN). This basic, 16-carbon FA can be 

elongated and desaturated to various degrees, generating a wide range of FAs 

with different functionalities[276]. In order to become biologically active, a FA 

must gain one molecule of coenzyme A in a two-step reaction catalysed by acyl-

CoA synthetase (ACS). In this form, FAs can be further modified to triglycerides 

through esterification with glycerol and stored in lipid droplets for future use. 

There are currently 26 genes encoding ACS enzymes, which are categorised 

according to the length of the acyl chain they generate[277].  

At this stage, fatty acid chains are completely saturated and must gain at least 

one double bond in order to perform their complete range of functions. The 

insertion of a cis double bond at the delta-9 position of short chain fatty acids 

(C-16, C-18) is catalysed by stearoyl-CoA desaturase (SCD) and significantly 

alters the physical properties of FAs[278]. There are two SCD isoforms in 

mammalian cells - SCD1 and SCD5. The former is the most extensively studied 

and its overexpression has been implicated in a number of human cancers[279]. 

Limiting the supply of fatty acids by blocking their synthesis or decreasing their 

release from storage could prove to be an effective strategy for slowing tumour 

cell proliferation. Inhibition of enzymes required for the synthesis of fatty acids 

should theoretically limit tumour cell growth while having a negligible effect on 

normal cells. 

Indeed, knockdown or inhibition of ACLY in cancer cell lines has been shown to 

limit in vitro proliferation and survival as well as in vivo xenograft growth[280, 

281]. Similarly, ACC1 knockdown induced apoptosis in prostate and breast 

cancer, but not in non-malignant control cells[282, 283]. However, knockdown 
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of either of the two ACC isoforms, ACC1 and ACC2, was shown to accelerate 

proliferation in lung cancer cells by maintaining NAPDH generation in the 

absence of AMP-activated protein kinase (AMPK)[284]. Increased FASN expression 

has been reported in HNSCC[285, 286] and its expression is linked with tumour 

metastasis and recurrence[287]. Likewise, high levels of phosphorylated ACC is 

correlated with decreased overall survival in HNSCC patients[288]. FASN has 

been the focus of a number of drug discovery efforts leading to the generation of 

specific inhibitors (e.g. C75) which has been shown to have an effect on cancer 

cell proliferation and viability[289-291]. In HNSCC, inhibition of FASN sensitises 

cells to radiotherapy[292] . However, their development has been plagued by 

poor pharmacokinetics and off-target toxicities[293, 294].  

SCD1 inhibition or knockdown has been shown to induce apoptosis in malignant 

cell lines of the lung and hypopharynx when cultured in reduced serum in a 

response attributed to the ER stress pathway[295]. A similar study found that 

SCD1 inhibition caused apoptosis in colorectal cancer cells via stimulation of the 

ceramide synthesis pathway[296]. Endogenous levels of ceramide (a sphingosine 

attached to a fatty acid chain) are increased under stresses such as hypoxia or 

radio/chemotherapy[297, 298]. Ceramide expression is consistently lower in 

HNSCCs compared to normal or pre-malignant keratinocytes and is inversely 

correlated with rates of nodal metastasis[299, 300]. Moreover, treatment with 

ceramide enhanced the cell killing effect of paclitaxel and knockdown of 

ceramide synthase led to apoptotic resistance in HNSCC cells[301, 302]. 

1.7.3 Dynamic Lipid Storage 

De novo lipogenesis is essential for the dynamic remodelling of lipid membranes 

required for rapidly proliferating cells. Cancer cells, with their rapid 

proliferation rates are heavily dependent on de novo synthesis, favouring this 

method over extracellular scavenging of fatty acids[303]. However, cancer cells 

retain their dynamism through a complementary lipolytic pathway that can 

liberate free fatty acids from neutral and phospholipid stores (lipid droplets) 

when needed for lipid-mediated intracellular signalling[49]. Elevated numbers of 

lipid droplets are commonly observed in tumour cells and have been correlated 

to the malignant potential of cancers[304-307]. The stepwise synthesis of 

triglycerides is catalysed by monoacylglycerol and diacylglycerol acyltransferases 
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(MGATs and DGATs) of which a number of isoforms exist depending on cellular 

context[308, 309]. An alternative pathway, the glycerol-3-phosphate pathway 

(G-3-P), exists, but both pathways converge on the final step to generate 

TGs[310].  

The breakdown of TGs is mediated by an antagonistically acting set of enzymes, 

including hormone-sensitive lipase (LIPE), adipose triglyceride lipase (ATGL)[311] 

and monoacylglycerol lipase (MGLL), which governs the final step in the lipolytic 

cascade resulting in the generation of FAs and glycerol. The enzyme has been 

shown to be tumourigenic in ovarian, breast and melanoma by liberating FAs to 

serve as building blocks for lipid signalling molecules such as lysophosphatidic 

acid (LPA) and prostaglandins (e.g. PGE2), which effect a diverse lipid signalling 

network thus stimulating survival, migration and invasion[312]. The authors of 

this study also showed that inhibition of MGLL simultaneously stimulates anti-

tumourigenic cannabinoid pathways and depresses pro-tumourigenic lipid 

signalling in aggressive prostate cancer[313].  

Other studies have shown the blockade of MGLL inhibits the proliferation of 

colorectal cancer cells in vitro[314, 315] and attenuate the growth of colorectal 

and hepatocellular carcinoma xenografts in vivo[316, 317]. Furthermore, MGLL is 

able to promote a more invasive phenotype in nasopharyngeal carcinoma 

through positive regulation of EMT proteins[318]. Conversely, a tumour 

suppressive role for MGLL was reported in colorectal cancer, where it negatively 

regulates PI3K/AKT signalling[319], which serves to highlight the complexity of 

the signalling networks involved. While current evidence strongly favours an 

oncogenic role, it is possible that MGLL has dual roles in cell growth regulation 

depending on cellular context. Clearly, more work is needed to affirm its role in 

cancer progression. 

1.7.4 The Role of Hypoxia in Lipid Metabolism 

Fluctuations in oxygen levels may drive the selection of cells that are able to 

switch between anabolic and catabolic processes[320, 321]. Hypoxia increases 

fatty acid synthesis and FASN expression through the activation of AKT and 

SREBP1. FASN protein was recently shown to localise to hypoxic regions in breast 

cancer xenografts[322]. Increasingly, evidence suggests that aggressive tumours 
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are highly reliant on acetate as a carbon source in the generation of lipids. A 

recent study showed that a short chain variant of ACS, cytoplasmic acetyl-CoA 

synthetase (ACSS2), becomes essential under metabolically limiting conditions 

such as hypoxia.  

In the absence of oxygen, entry of pyruvate into the TCA cycle is inhibited and 

acetyl-CoA must be generated from other sources. An alternative source is the 

condensation of acetate by ACSS2, which is stimulated in hypoxia-induced 

metabolic stress[323, 324]. Furthermore, its expression is positively correlated 

with tumour stage and patient survival and it was recently identified as a critical 

enzyme for the growth and survival of breast cancer cells screened in low 

oxygen and low serum[325]. A follow up study found that knockout of ACSS2 

inhibited growth of breast cancer xenografts inhibited in mice[325]. Loss of 

ACCS2 was also shown to reduce tumour burden in a genetic mouse model of 

hepatocellular carcinoma[326]. Additional compensation of lipogenesis comes 

from increased uptake of exogenous lipids in hypoxia and the promotion of lipid 

droplet formation[327]. Lipids stored in droplets can also be deployed as an 

antioxidant buffer if there is a sudden increase in available oxygen[328]. 

Cancer cells thrive on an abundance of fatty acids, which they use for membrane 

building, energy storage and production of signalling molecules[329]. Various 

competing mechanisms exist to regulate the synthesis, storage and release of 

fatty acids from lipid storage droplets[330]. The correct functioning of this 

system revolves around the action of enzymes, which are vulnerable to hijacking 

by aberrant signalling processes in cancer. However, this dependence on 

enzymes to catalyse rate-limiting steps in lipid metabolism also leaves cancer 

cells vulnerable to targeted therapeutics, which selectively target highly 

proliferative cells. As ever, the vast heterogeneity of cancers may undermine 

this approach through differential expression of various isoforms, crosstalk with 

other signalling networks and other compensatory measures including the 

development of resistance. Successful application will require studying the 

specific metabolic dysregulations of any given tumour. 
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1.7.5 Lipid Rafts and Metastasis 

Cell membranes consist of a variety of lipid structures, the proportions of which 

influence the fluidity of the membrane[331]. Lipid rafts are low-density 

membrane domains, which consist of tightly packed saturated fatty acids in the 

form of sphingolipids and cholesterol (Figure 1.9). Lipid rafts also act as 

platforms for signalling molecules and facilitate the transduction of cell death 

and/or survival signals throughout the cell[332]. These include the insulin and 

EGF receptors, which play a major role in HNSCC progression[333]. 

 

Figure 1.9 Structure of a lipid raft. Lipid rafts are membrane domains that are rich in certain lipid 
species such as sphingosine, cholesterol and gangliosides. Lipids within the structure are very 
tightly packed, leading to the formation of distinct “floating” rafts that can diffuse freely throughout 
the plasma membrane. Lipid rafts are dynamic structures, capable of rapid assembly and 
disassembly, and contain a number of transmembrane proteins (TMP) and 
glycosylphosphatidylinositols (GPI). PC, phosphatidylcholine; PE, phosphatidylethanolamine; GA, 
gangliosides; PS, phosphatidylserine; CL, cholesterol; PI, phosphatidylinositol; SP, sphingomyelin. 
 

Dynamic reorganisation of lipid raft domains in cell membranes has been shown 

to influence the response of HNSCC cells to radiation treatment[334]. Radiation 

and other cellular insults such as cisplatin stimulate the reorganisation of these 

domains, and the recruitment of receptors such as FasR/CD95 or EGFR[335]. 

Moreover, elevated levels of cholesterol have been observed in oral SCC tumour 

compared to normal tissue[336], while elevated levels of sphingosine kinase 1 

(SPHK1), which catalyses the phosphorylation of sphingosine, have been 

implicated in HNSCC invasion through positive regulation of EGFR and 
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STAT3[337]. The metabolism of the major sphingolipid component, ceramide, 

has been shown to play an important part in HNSCC pathogenesis[338]. The 

levels of C18-ceramide were significantly decreased in advanced HNSCCs 

compared to normal tissue and correlated with increased nodal invasion and 

metastasis[300]. Ceramide is a potent inducer of apoptosis and has been shown 

to enhance the growth inhibition effect of paclitaxel in in vitro HNSCC 

assays[301, 339]. 

1.7.6 Summary 

Lipids represent an important source of energy for the cell, and are an essential 

biosynthetic resource. The structural variation of fatty acids gives rise to a 

number of lipid species with different characteristics. The relative ratios of 

these lipids dictate membrane fluidity and function and can influence tumour 

cell migration and invasion[340]. De novo lipid synthesis is an essential process in 

tumour development and generates up to 95% of the lipids required by the 

rapidly dividing cells[341]. Neutral lipids such as triglycerides are stored in lipid 

droplets, which are vital for survival under energy stress and are frequently 

found in higher numbers in tumour cells[305]. Recently, it was shown that 

cancer stem cells have a higher ratio of unsaturated versus saturated fatty acids 

and that this ratio is essential for the maintenance of stemness[342]. Interfering 

with the lipogenic process was shown to impair stemness and tumour initiation 

capacity in ovarian cancer stem cells[343]. A complete picture of how metabolic 

alterations sustain an aggressive phenotype in HNSCC has yet to emerge, as 

research in this field is limited. However, an increased requirement for lipids is 

common to all cancer cells, including those of the head and neck. A better 

understanding of deregulated metabolic pathways could lead to novel 

therapeutics, which are so greatly needed in HNSCC. 
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1.8 Cysteinyl Leukotrienes and Inflammation 

Inflammation is an important micro-environmental factor in the progression of 

cancer[344]. The innate immune response is responsible for the clearing of 

infection from affected areas, but it is also advantageous for the tumour to 

recruit inflammatory mediators. Tumour cells release chemical signals to lure 

macrophages and granulocytes to the site of tumour growth and stimulate them 

to release cytokines, which drive angiogenesis and aid in the restructuring of 

surrounding stroma[344]. A drug-repurposing screen (conducted as part of this 

project) identified a family of compounds involved in the regulation of 

inflammation, which significantly inhibited the growth of an aggressive, patient-

derived oral cancer cell line. 

The oral cavity is the first point of contact with exogenous carcinogens, such as 

alcohol, tobacco and betel quid. Prolonged exposure to these agents damages 

the mucosal lining and leads to the accumulation of mutations over a 

lifetime[345]. Cigarette smoke in particular has a significant effect on the innate 

immune system through the generation of reactive oxygen species, which 

activate pro-inflammatory signalling cascades in oral epithelial cells[346].  

The NF-κβ transcription factor is the primary regulator of genes involved in the 

inflammatory response and is the central hub through which inflammatory 

agents act[347]. Inactive NF-κβ exists in a sequestered state in all mammalian 

cells; it is only upon translocation to the nucleus that it becomes an active 

inflammatory mediator. Constitutive activation of NF-κβ is detected in head and 

neck cancer cells and its expression is positively correlated with tumour 

stage[348, 349]. NF-κβ upregulates the expression of pro-inflammatory cytokines 

interleukin-8 (IL-8) and tumour necrosis factor-α (TNFα)[350]. The latter has 

been shown to regulate the activity of a group of lipid inflammation mediators 

called eicosanoids[351]. 

1.8.1 Eicosanoids 

The eicosanoid (greek: eicosa, 20) family of lipophilic signalling molecules are 

important regulators of inflammation[352]. In response to stimulation, cysteinyl 

leukotrienes are rapidly generated from arachidonic acid (AA), a 20-carbon, 
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polyunsaturated fatty acid which is esterified to glycerol in cell membrane 

phospholipids[353]. AA is released directly into the cytosol through activation of 

calcium-dependent cytosolic phospholipase A2 (cPLA2) which catalyses the 

hydrolysis of phospholipid molecules. Phospholipase C and D can also liberate AA 

indirectly by generating diacylglycerol and phosphatidic acid, (intermediate lipid 

products from which fatty acids can be released by the action of diacylglycerol 

and monoacylglycerol lipases)[354]. Free AA that does not diffuse into the 

extracellular matrix is metabolised within the cell via three major 

pathways[355], giving rise to lipid molecules with overlapping and distinct roles 

in inflammation (Figure 1.10). This project focuses specifically on the role of 

the lipoxygenase pathway in oral cancer. 

 
Figure 1.10 Pathways of arachidonic acid metabolism. 
 

 
1.8.2 Lipoxygenases (LOX pathway) 

Liberated AA can be converted to a group of lipid molecules known as 

leukotrienes, which play a pivotal role in the inflammatory response and feature 

predominantly in asthma[356]. The first step in the synthesis of leukotrienes is 

the translocation of cytosolic AA to the phospholipid membranes of the nucleus, 

endoplasmic reticulum and Golgi apparatus[357]. Here, 5-LOX activating protein 

(FLAP) presents AA to 5-lipoxygenase (5-LOX) which catalyses the sequential 

oxidation at the C-5 position to generate 5-hydroxyperoxyeicosatetraenoic acid 

(5-HPETE), and dehydration to form the unstable intermediate, leukotriene A4 

(LTRA4)[358].  

The pathway branches off at this point to produce either LTB4, which acts as a 

chemotactic for neutrophils or the cysteinyl leukotrienes (CysLTs) - LTC4, LTD4 

ARACHINDONIC ACID 

CYTOCHROME P450 CYCLO-OXYGENASES LIPOXYGENASES 
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and LTE4[359, 360]. CysLTs get their name from the presence of a conserved 

cysteine residue and are the primary lipid mediators of inflammatory disease 

and are mainly produced by eosinophils, mast cells and macrophages[361]. 

Despite structural similarities, the CysLTs are functionally diverse. LTRA4 is 

processed into the intermediate metabolite, 5-HETE, which is hydrolysed by 

LTRA4 synthase to form LTB4. LTC4 is generated through the enzymatic activity 

of LTC4 synthase exported from cells where it is sequentially metabolised to 

LTD4 and LTE4 (Figure 1.11). Small molecule inhibitors, which target the 5-LOX 

pathway, have been approved for the treatment of asthma. 

 

Figure 1.11 Overview of cysteinyl leukotriene metabolism. CysLT1R has been shown to 
activate downstream pathways including PI3K[362], ERK[363] and GSK3β[364]. Inhibitors act on 
various points in this pathway (purple boxes). LTRA4, C4, D4, leukotriene A4, C4, D4; FLAP, 5-
lipoxygenase-activating protein; 5-LO, 5-lipoxygenase; 5-HPETE, 5-hydroperoxyeicosatetraenoic 
acid; GSK3β, glycogen synthase kinase 3 beta; PI3K, phosphoinositide 3-kinase; PKCα, protein 
kinase C α; ERK, extracellular signal-related kinase; MEK, mitogen-activated protein kinase kinase; 
cPLA2, cytosolic phospholipase A2. 
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LTB4 binds its cognate GPCRs, BLT1 and BLT2, with a high and low affinity, 

respectively[365, 366]. BLT1 expression is confined mainly to peripheral 

leukocytes, whereas BLT2 is fairly ubiquitous with peak expression in the spleen, 

liver and lymphocytes[367]. LTD4 has the highest in vivo activity of the terminal 

CysLTs and can act through two GPCRs termed CysLT1R and CysLT2R. The 

receptors exhibit different affinities for their respective ligands, with CysLT1R 

selectively binding LTD4 and CysLT2R having a lower but equal affinity for LTC4 

and LTD4[368, 369].  

At the site of inflammation, CysLTs can be produced by leukocytes alone, which 

produce all of the enzymes required for their synthesis. However, the situation 

in vivo is often more complex and involves a degree of cellular cooperation. On 

one hand, epithelial and endothelial cells expressing LTRA4 hydrolase can 

generate leukotrienes from LTRA4, which is released from neutrophils; 

conversely, leukocytes can utilise AA released from these cells as fuel to 

generate leukotrienes[370, 371]. This transcellular metabolism highlights the 

shortcomings of simple 2D in vitro assays in determining the role of leukotrienes 

in inflammation and cancer. 

1.8.3 Leukotrienes and Cancer 

To date, the majority of work exploring the role of leukotrienes in a disease 

setting has centred on pre-existing inflammatory conditions. Inflammatory bowel 

disease (IBD) such as ulcerative colitis and Crohn’s disease are known risk factors 

of colorectal (bowel) cancer (CRC)[372], the fourth most common cancer and 

the second most common cause of cancer death in the UK[373]. A recent meta-

analysis showed that the risk of bowel cancer was 70% higher in people with IBD 

compared to the general population[374]. IBD is characterised by high levels of 

AA-derived pro-inflammatory metabolites such as CysLTs and prostaglandins in 

the intestinal wall, which are produced by infiltrating leukocytes. 

Correspondingly, high levels of LTE4 have been detected in the urine of IBD 

sufferers[375].  

Overexpression of CysLT1R has been found in a number of cancer types, 

including those of the bladder, prostate, breast and bowel, and are associated 

with decreased patient survival[376-379]. On the other hand, high CysLT2R 
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expression is predictive of a favourable prognosis in CRC[380]. This expression 

pattern may be explained by the counteracting role of the CysLT2R which keeps 

CysLT1R locked in a heterodimer under basal conditions in intestinal epithelial 

cells[381, 382]. Upon LTC4 stimulation, CysLT2R induces internalisation of the 

heterodimeric complex, negatively regulating the plasma membrane expression 

of CysLT1R[382].  

LTD4 stimulation of CysLT1R leads to enhanced cell survival signalling in 

intestinal epithelial cells with a concomitant increase in proteins such as COX-2, 

β-catenin and Bcl-2[383], as well as increased proliferation and migration via the 

ERK1/2-p90RSK and PI3K-Rac pathway, respectively[362, 384]. The anti-

tumourigenic signalling protein IFN-α has been shown to induce CysLT2R 

promoter activity, whereas mitogenic EGF suppresses it. Furthermore, EGF-

induced cell migration in the colon cancer cell line, Caco-2, was mitigated by 

LTC4 stimulation of CysLT2R[385]. At the time of writing, no studies have 

established a role for CysLTs in oral cancer, although one study found 

significantly elevated levels of LTB4 in oral SCC compared to normal control 

tissue[386]. 

A number of CysLT1R antagonists (montelukast, pranlukast, zafirlukast) have 

been approved for the treatment of asthma[387] and drug-repurposing studies 

have shown that the compounds can induce apoptosis in cancer cell lines in 

vitro[376, 378, 388, 389]. Antagonism of CysLT1R in colon cancer cell lines has 

been shown to reduce proliferation and combination treatments of the COX-2 

inhibitor (celecoxib) with either a 5-LOX inhibitor (MK-886) or CysLT1R 

antagonist (LY171883) produced an additive effect[390, 391]. Subsequent in vivo 

work has shown that CysLT1R antagonists negatively regulate VEGF expression in 

mice and reduce vascular permeability[392]. Furthermore, in a murine Lewis 

lung carcinoma model, pranlukast and montelukast prevented tumour metastasis 

by inhibiting capillary permeability[393]. In line with these findings, Savari et al. 

showed that Montelukast treatment successfully inhibited the growth of human 

colon cancer xenografts in nude mice[394]. 
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1.8.4 Summary 

The crosstalk of the host’s immune system with tumour cells is highlighted by 

the recent approval of pembrolizumab for the treatment of 

recurrent/metastatic HNSCC[14]. It is increasingly evident that chronic 

inflammation contributes to the development and progression of cancer. 

Repeated inflammatory insults, such as those experienced by smokers or IBD 

sufferers, predispose to the development of dysplasia. The recruitment of pro-

inflammatory cytokines and growth factors promote the growth and survival of 

tumour cells and facilitate their invasion through the extracellular matrix. 

Further evidence for the tumour-promoting role of inflammation stems from the 

success of non-steroidal anti-inflammatory drugs (NSAIDs) in preventing 

carcinogenesis[395].  

Cysteinyl leukotrienes have been less well studied than their COX pathway 

counterparts, but early evidence suggests an equally important role in tumour 

progression. By promoting the transcription of oncogenic genes[396], 

leukotrienes have been shown to sustain proliferation and enhance migration 

and invasion in colon cancer cells[397]. Through its interaction with VEGF, they 

can also induce angiogenesis[398], while inhibition of the CysLT1R inhibited the 

growth of tumours in a xenograft model[394]. CysLT1R signalling is linked with a 

number of cancer hallmarks and targeting the receptor shows promise as a 

therapeutic strategy.  

Herein, a drug-repurposing screen reveals a group of CysLT1R inhibitors that are 

highly effective at inhibiting the growth of oral SCC cell lines. This study sought 

to validate the significance of the pathway for in vivo tumour growth. 
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1.9 Thesis Aims and Objectives 

HNSCC survival rates have remained stagnant for decades in the absence of 

effective targeted therapies. This project sought to identify novel driver genes 

in the disease through the application of large-scale genomic and compound 

screening. Hypoxia was chosen as the differential in these screens, owing to its 

prognostic significance in solid tumours. Following on from this, potential targets 

were followed up using a combination of bioinformatic and functionality-based 

approaches. Three major themes emerged from this work: (1) the amplification 

of chromosome 3q36-29, (2) the role of hypoxia in lipid metabolism and (3) 

tumour-related inflammation. Chapter 3 will give a brief overview of the screen 

results, while chapters 4, 5 and 6 will focus on the identification and validation 

of 3q26-29 genes that are frequently overexpressed in HNSCC and significant for 

patient survival. Chapter 7 will investigate the destabilising effect of hypoxia on 

the HNSCC genome and the importance of lipid metabolism genes. Chapter 8 

assesses the effect of anti-inflammatory compounds on HNSCC progression. 
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Chapter 2 Materials and Methods 

2.1 Cell lines 

The patient-derived epithelial cell lines used in this thesis are listed in Table 

2.1. All cell lines were adherent and HPV-negative. Cell lines were grown in 

keratinocyte serum free medium supplemented with 25µg/mL bovine pituitary 

extract (BPE) and 2.5ng/mL epithelial growth factor (EGF), unless otherwise 

stated. 

# Cell Line Tissue Gender/Age TNM Stage Disease Ref 
1 Liv7k Tongue ? / ? T3N2b SCC R. Shaw 
2 Liv37k FoM M / 57 T3N2b SCC R. Shaw 
3 Liv52k Tongue M / 30 T2N0 SCC R. Shaw 
4 Liv72k Tongue F / 79 T3N2c SCC R. Shaw 
5 KR19 Tongue F / 19 T4aN2b SCC In-house 

6 OKF4/tert1 
(puro) FoM M / 28 - - [399] 

7 
OKG4/bmi1 
(puro)/tert1 

(bsd) 
Gingiva ? / 27 - - [400] 

Table 2.1 Cell lines used in this thesis. Details include the tissue of origin, patient details and 
TNM stage. FoM, floor of mouth; TrigRE, retromolar trigone. 
 

The “Liv” series of cell lines were generously gifted by Professor Richard Shaw 

(University of Liverpool, UK) and the OKF4 and OKG4 lines were purchased from 

the Rheinwald Lab (Boston, USA). The KR19 cell line was extracted from primary 

patient tissue by Dr Lynn McGarry (CRUK Beatson Institute, UK). 

2.2 Reagents and Vendors 

Reagents were purchased from various companies for use in this work. Reagents 

and company details are listed in Table 2.2. 

Product Catalog Number 
Thermo Fisher Scientific 
NuPAGE™ Transfer Buffer NP0006 
NuPAGE™ Tris-Acetate SDS Running Buffer LA0041 
NuPAGE™ MOPS SDS Running Buffer NP000102 
NuPAGE™ MES SDS Running Buffer NP000202 
Restore™ Fluorescent Western Blot Stripping 
Buffer 62300 
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Halt™ Phosphatase Inhibitor Cocktail 78420 
Keratinocyte-SFM Medium (Kit) with L-
glutamine, EGF, and BPE 17005075 

DMEM, high glucose, pyruvate, no glutamine 21969035 
DMEM/F-12, no glutamine 21331020 
MEM α, nucleosides 22571020 
RPMI 1640 Medium, no glutamine 31870074 
Foetal Bovine Serum, qualified, E.U.-approved, 
South America origin 10270106 

Lipofectamine™ RNAiMAX Transfection Reagent 13778500 
Lipofectamine™ 2000 Transfection Reagent 11668019 
NuPAGE™ LDS Sample Buffer NP0007 
NuPAGE™ Sample Reducing Agent NP0004 
NuPAGE™ Antioxidant NP0005 
Trypan Blue Stain (0.4%) for use with the 
Countess™ Automated Cell Counter T10282 

RNaseZap™ RNase Decontamination Solution AM9780 
High-Capacity cDNA Reverse Transcription Kit 4368814 
RNaseOUT™ Recombinant Ribonuclease 
Inhibitor 10777019 

Pierce™ BCA Protein Assay Kit 23225 
NuPAGE™ 4-12% Bis-Tris Protein Gels, 1.0 mm, 
12-well NP0322PK2 

PageRuler™ Prestained Protein Ladder, 10 to 
180 kDa 26617 

PVDF Transfer Membrane, 0.45 µm 88518 
FastDigest NheI FD0973 
FastDigest BamHI FD0054 
FastDigest SalI FD0644 
FastDigest Esp3I (BamHI) FD0454 
FastDigest Buffer B64 
Orange DNA Loading Dye R0631 
MAX Efficiency™ DH5α™ Competent Cells 18258012 
GeneRuler 1 kb DNA Ladder SM0312 
T4 Polynucleotide Kinase (10 U/µL) EK0031 
T4 DNA Ligase Buffer 46300018 
TaqMan™ Gene Expression Master Mix 4369016 
TaqMan™ RNase P Detection Reagents Kit 4316831 
GE Healthcare (Dharmacon) 
5X siRNA Buffer B-002000-UB-100 
Sigma-Aldrich Company 
DAPI, dilactate D9564 
Triton™ X-100 X100 
Zafirlukast Z4152 
Staurosporine from Streptomyces sp. S4400 
Doxycycline Hydrochloride D3072 
RNase-Free Water W3513 
Rapid DNA Ligation Kit 11635379001 
cOmplete™, Mini Protease Inhibitor Cocktail 04693124001 
Bovine Serum Albumin Fraction V 10735086001 
TWEEN® 20 P9416 
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Qiagen 
QIAshredder 79654 
RNeasy Mini Kit 74104 
QIAprep Spin Miniprep Kit 27104 
AllPrep DNA/RNA Mini Kit 80204 
RNase-Free DNase Set 79254 
Santa Cruz 
Bortezomib sc-217785 
Tocris Bioscience 
MK 886 1311 
Invivogen 
Puromycin ant-pr-1 
Clontech 
Lenti-X™ Concentrator 631231 
In-Fusion® HD EcoDry™ Cloning Plus 638912 
Stellar™ Competent Cells 636763 
Macherey-Nagel™ NucleoSpin™ Gel and PCR 
Clean-up Kit 12303368 

Dimethyl Sulfoxide 10213810 
SelleckChem 
Carfilzomib S2853 
Cayman Chemical 
Montelukast (sodium salt) 10008318 

Table 2.2 List of reagents. 
 
2.3 Cell Culture Methods 

2.3.1 General Maintenance 

The media for cell lines used in this thesis are detailed in section 2.1. Stocks 

were maintained to keep a good stock of low passage cells. All procedures were 

carried out using aseptic techniques in a class II laminar flow hood with HEPA 

filtration. Cells were centrifuged at 300 x g for 5 minutes using a Beckman 

Coulter Allegra X-22R benchtop centrifuge. Cells were incubated at 37°C / 5% 

CO2, unless otherwise stated. 

2.3.2 Thawing stocks 

Cells were thawed from liquid nitrogen stocks in 37°C water bath and 

resuspended in pre-warmed culture medium. The cell suspension was pelleted 

by centrifugation, medium removed and the cells resuspended in fresh medium 

for seeding in an appropriate flask. 



65 
 
2.3.3 Passage of cell cultures 

Cell lines were split upon reaching confluence to continue growing stocks or seed 

for experiments. Spent medium was removed by aspiration and cells were 

washed once in sterile 1 x PBS. This was removed and a small volume of trypsin 

was added to the cell layer (3mL for T175, 2mL for T75 and 1mL for T25). Gentle 

rocking of flasks ensured even coverage of the cell layer. Flasks were incubated 

at 37°C for 5-10 minutes to maximise enzyme activity. Once cell detachment 

was confirmed under a light microscope, 10mL of serum-containing media was 

added to inactivate the trypsin. This suspension was centrifuged to pellet, the 

supernatant was removed and the pellet was resuspended in fresh medium and 

the cells seeded into a new flask. 

2.3.4 Cell Counting 

An aliquot of live cell suspension was mixed 1:1 with trypan blue stock solution 

(0.4%) and pipetted into a Countess chamber slide. Cells were counted using a 

Countess™ automated cell counter (Thermo Scientific). Dead cells were 

subtracted from total cell count and live cell counts were used. 

2.3.5 Creation of frozen cell stocks 

Stocks of early passage cells were generated for all cell lines used in this thesis. 

Cells were pelleted as in section 2.5.3 and resuspended in freezing solution. 

This solution consisted of 70% culture medium, 20% FBS and 10% DMSO. Cells in 

this solution were aliquoted into labelled and barcoded 2mL cryo-vials, scanned 

into the cell stock spreadsheet and placed into a freezing container (Mr Frosty, 

Nalgene) to allow gradual cooling. This was stored at -80°C overnight and frozen 

cells were transferred to liquid nitrogen stores the next day. 

2.4 Plasmid Manipulation 

A number of cell lines were modified by plasmid integration in order to achieve 

gene knockdown. SnapGene software (GSL Biotech LLC) and free-to-use ApE 

software (M. Wayne Davis, University of Utah, USA) were used to design plasmids 

in this project. 
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2.4.1 pTRIPZ_IGF2BP2 (tet-inducible) 

Glycerol stocks of five custom-made pTRIPZ plasmids, three containing a unique 

shRNA sequence targeting IGF2BP2, one positive GAPDH shRNA control and one 

non-targeting shRNA control, were ordered from Dharmacon. The plasmid 

contains a tetracycline-inducible promoter, so gene expression can be switched 

on and off. Glycerol stock were thawed on wet ice and grown in AMP-containing 

LB-broth. Plasmid DNA was extracted and purified by maxiprep. 

 
Figure 2.1 pTRIPZ lentiviral vector map, provided by Dharmacon. The empty vector is 
13,362bp in size. 
 

The plasmid DNA was subsequently digested using Fast Digest SalI (Thermo Fisher 

Scientific) as a quality control check. This was incubated for 5 minutes at 37° 

and run on a 1% agarose gel to generate bands of approximately 7104bp, 4028bp, 

2188bp. The sequencing primer used for the plasmid was 

GGAAAGAATCAAGGAGG.  
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2.5 Bacterial Transformation 

Either DH5α™ (Thermo Fisher Life Technologies) or Stellar™ competent cells 

(Clontech) were used for transformation reactions, depending on RecA status 

required. Competent cells were thawed on wet ice prior to use and mixed gently 

to ensure even distribution. 50µL of competent cells were transferred to a 14mL 

round-bottomed falcon tube and 1µL of ligated DNA was added. The cells were 

kept on ice for 25 minutes and then heat shocked for 45 seconds at 42°C. Tubes 

were then placed on ice for 2 minutes and 500µL of pre-warmed (37°C) SOC 

medium was added. Cells were incubated with shaking at for 45 minutes at 37°C 

and 100µL of neat and diluted transformation reaction was plated onto agar 

plates containing appropriate antibiotic. Plates were incubated overnight at 

37°C. 

2.6 Plasmid cloning, purification and sequencing 

Colonies were picked from agar plates using sterile pipette tips and placed into 

14mL round-bottomed falcon tubes containing 5mL of LB broth, supplemented 

with antibiotic. Tubes were incubated overnight at 37°C with constant shaking. 

The following day, bacterial cells were pelleted by centrifugation, the 

supernatant was removed and a QIAprep Spin Miniprep Kit (Qiagen) was used to 

purify plasmid DNA according to manufacturer’s instructions. The eluted DNA 

was sequenced with appropriate primer(s) and compared to the plasmid map. 

Following this, correct sequences were transformed into competent cells again 

and grown up for maxiprep by a Genomic-tip 500/G kit (Qiagen). Maxiprep was 

performed as directed by manufacturer. Minipreps and maxipreps were carried 

out by Andrew Keith (CRUK Beatson Institute). DNA was sequenced using the 

Applied Biosystems 3130xl Genetic Analyser, according to manufacturer 

instructions. 

2.7 Lentiviral transfection of mammalian cells 

2.7.1 Packaging and envelope system 

Plasmids with the correct sequence were transfected into 293T cells using the 

psPAX2 lentiviral packaging and pCMV-VSV-G envelope plasmids in order to 

generate lentiviral particles. psPAX2 is a 2nd generation lentiviral packaging 
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plasmid and contains Gag, Pol, Rev and Tat HIV-1 genes. psSPAX2 and pCMV-VSV-

G are available from Addgene (plasmid #12260 and #8454) and were kindly gifted 

by Loic Fort (Laura Machesky Lab). They were originally deposited by Didier 

Trono and Bob Weinberg, respectively. 

2.7.2 Puromycin kill curves and selection 

To generate stable cell lines expressing the plasmid, a dose response curve of 

puromycin was applied to determine the minimum amount of antibiotic required 

to kill 100% of non-transfected cells. Cells of interest were seeded in a 24 well 

plate and incubated overnight. The next day, the media was replaced with 

media containing puromycin at concentrations ranging from 0-2µg/mL. Cells 

were examined daily to identify the minimal concentration of antibiotic that 

efficiently kills all non-transfected cells between 4-7 days after addition. Media 

was changed as necessary. 

2.7.3 Lentiviral transfection into 293T cells 

Briefly, 2.5x106  293T cells were seeded in a 10cm dish in 10mL of full growth 

medium (DMEM, 10% FBS, 2mM L-glut) and incubated overnight at 37°C / 5%CO2. 

The next day, 15µg psPAX2, 5µg pCMV-VSV-G and 10µg target plasmid were 

added to 1mL of serum-free medium in a 1.5mL eppendorf and mixed well. In a 

separate tube, 30µL Lipofectamine 2000 (Thermo Fisher Scientific) was added to 

1mL of serum-free medium and mixed. The packaging mix was combined with 

the transfection mixed by gentle inversion. The mixture was incubated at room 

temperature for 15 minutes and added dropwise to 293T cells. Gentle rocking of 

the dish ensured even coverage of the plasmid mix and cells were then 

incubated overnight at 37°C / 5%CO2. *Containment Level II procedure from this 

point*. The next day, the virus containing media was removed from 293T cells 

and discarded in a 1% virkon solution. New growth media was added gently to 

293T cells to avoid detachment of cells. 

2.7.4 Concentration of lentivirus 

Virus-containing media was harvested from 293T cells into a sterile 50mL falcon 

tube. Virus containing media was centrifuged briefly at 500 x g for 10 minutes at 

4°C and filtered through a 0.45 polyethersulfone (PES) filter into a new sterile 
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50mL falcon (do not use nitrocellulose – it binds surface proteins on the lentiviral 

envelope).  One volume of Lenti-X concentrator (Clontech) was added to 3 

volumes of clarified supernatant, and mixed by gentle inversion. This solution 

was incubated overnight at 4°C. The next day, the solution was centrifuged at 

1,500 x g for 45 minutes at 4°C to pellet the virus and the supernatant was 

discarded in a 1% virkon solution. Next, the pellet was gently resuspended in 

1/10 the original volume of keratinocyte serum-free media. The concentrated 

virus was used immediately for titration or stored at -80°C. Repeat the next day. 

2.7.5 Lentiviral transduction of Liv7k cells 

Liv7k cells were seeded at 1.5x106 per 10cm dish and incubated overnight at 

37°C / 5%CO2. The next day, concentrated virus was added dropwise to cells and 

the plate was gently rocked to ensure even distribution. Cells were incubated 

overnight and fresh media containing virus was added to target cells. After 

another overnight incubation, virus-containing media was removed and cells 

were allowed recover for 24-48 hours in full growth media. 

2.7.6 Determination of viral titer 

This was carried out on the cell line of interest, in order to determine the 

optimal multiplicity of infection (MOI), which is defined as the number of 

transducing units per cell. Cells of interest were seeded at 25,000 cells/well in a 

24-well plate. Cells should be 40-50% confluence the next day. A five-fold 

dilution series of concentrated viral stock was created in a sterile V-bottomed 96 

well plate using serum free medium, and mixed well by pipetting up and down 

at each dilution stage. Media was removed from target cells and 225µL of serum-

free medium was added to each well. Then, 25uL was transferred from the viral 

source plate to the cell plate and incubated for 4 hours at 37°C / 5%CO2. Virus 

containing medium was removed from cells followed by a gently rinse with 1x 

PBS. Full medium containing 1 µg/mL of doxycycline was added and incubated 

for a further 72 hours. Then, the number of turbo-RFP expressing cells was 

counted and the number of transducing units per mL was calculated: 

#TU/mL = # 𝑜𝑜 𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑒𝑐𝑐𝑒 ∗ 𝑣𝑒𝑒𝑣𝑐 𝐷𝑡 ∗ 40 
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2.7.7 Puromycin selection of stably expressing cells 

Target cells were allowed to recover for 24-48 hours after lentiviral infection 

and passaged if necessary. Following this, a pre-determined concentration of 

puromycin was added to cells in full growth medium and incubated for up to 7 

days, until only stably transduced cells remained. These cells were expanded 

and frozen down as stocks. 

2.8 Molecular Biology Techniques: RNA 

2.8.1 Isolation of RNA from mammalian cell lines 

Extraction of total RNA was performed using RNase-free reagents and plastic 

ware. Surfaces and pipettes were cleaned with RNaseZap™ RNase 

Decontamination Solution (Thermo Fisher Scientific) prior to work. RNA was 

isolated from cells using an RNeasy® Mini Kit (Qiagen), according to 

manufacturer’s instructions. A QIAshredder spin column (Qiagen) was used to 

homogenise the cell pellet. DNase digestion was performed using an RNase-Free 

DNase Kit (Qiagen) for every RNA sample used within this body of work. RNA 

concentration was measured and assessed for purity using a NanoDrop 

spectrophotometer. RNA was stored at -80°C until use. 

2.8.2 Normalisation and reverse transcription of RNA 

Each RNA sample was normalised to 100ng/µL and reverse transcribed using a 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems™), according 

to manufacturer’s instructions. RNase Out (Thermo Fisher Scientific) solution 

was used for every sample. RNA samples were stored at -20°C until needed. 
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2.8.3 Generation of cDNA standard curves 

A four-point standard curve was created for each experiment. First, the neat 

cDNA samples were diluted 1:1 in RNase-free water. Next, a pool of all cDNA 

samples was created and diluted 1:4 in RNase-free water, with careful mixing at 

each step. Individual samples were diluted 1:24 in RNase-free water and mixed 

well (Figure 2.2). 

 
Figure 2.2 Generation of a standard curve for RTq-PCR experiments. 
 

 
2.8.4 Real time quantitative PCR (RTq-PCR) 

RT-qPCR was primarily used to measure knockdown efficiency of RNAi 

transfections but was also used to quantify gene expression in panels of cell lines 

grown in different oxygen conditions. 2 x qPCR Mastermix was ordered from 

Primer Design and all primers were either designed using NCBI primer blast 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) or ordered from Qiagen. 

Melt curves were generated to assess primer specificity. The optimal reference 

gene was determined on an experiment-to-experiment basis. RTq-PCR was 

performed using an Applied Biosystems 7500 Fast system.  

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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2.8.5 Primer Design 

Standard parameters were used to design forward and reverse primers which 

covered a region of 100-300bp in length, and spanned an exon-exon junction 

(Table 2.3). Both primers were assessed for off-target binding using BLAST. 

Primers are listed in Table 2.4. 

Primer Attribute Optimal Range 
Sequence Length 18-23 bp 
PCR Product Size 100-300 bp 
GC Content 40-60% 
Melting Temp 57-63°C (max 3°C diff) 
Max Self-Complementarity 2 
Max 3’ Self-Complementarity 1 

Table 2.3 Optimal primer attributes. 
 

Target 
Gene Primer Sequence 

Amplicon Length 
(bp) 

IGF2BP2 For 5’-GGCTTGACCATAAAGAACATCAC-3’ 
Rev 5’-GGAATCTCTTCGGCTAGTTTGG-3’ 190 

CDH1 For 5’-GTCAGTTCAGACTCCAGCCC-3’ 
Rev 5’-AAATTCACTCTGCCCAGGACG-3’ 295 

SNAI1 For 5’-ACTCTAATCCAGAGTTTACCTTCC-3’ 
Rev 5’-CAGGACAGAGTCCCAGATGAG-3’ 124 

SNAI2 For 5’-TCAAGGACACATTAGAACTCACAC-3’ 
Rev 5’-CTACACAGCAGCCAGATTCC-3’ 199 

CDH1 For 5’-CGAACTATATTCTTCTGTGAGAGG-3’ 
Rev 5’-ATGATAGATTCTTGGGTTGGGTC-3’ 160 

VIM For 5’-CTTAAAGGAACCAATGAGTCCCT-3’ 
Rev 5’-GCAGGTCTTGGTATTCACGA-3’ 162 

HIF1A For 5’-TTTTTCAAGCAGTAGGAATTGGA-3’ 
Rev 5’-GTGATGTAGTAGCTGCATGATCG-3’ 66 

ARNT For 5’-CTACCCGCTCAGGCTTTTC-3’ 
Rev 5’-CACCAAACTGGGAAGTACGAG-3’ 75 

18S For 5’-GTAACCCGTTGAACCCCATT-3’ 
Rev 5’-CCATCCAATCGGTAGTAGCG-3’ 151 

GAPDH For 5’-GAAGGTGAAGGTCGGAGTC-3’ 
Rev 5’-GAAGATGGTGATGGGATTTC-3’ 226 

ACTB For 5’-CCAACCGCGAGAAGATGA-3’ 
Rev 5’-CCAGAGGCGTACAGGGATAG-3’ 97 

Target 
Gene Qiagen cat # Lot # 

Exon(s) 
Detected 

Amplicon Length 
(bp) 

PSME4 Hs_PSME4_1_SG 203776661 12/13 107 
CYSLTR1 Hs_CYSLTR1_1_SG 197629900 1/2/3 126/209/186 
PSMC2 Hs_PSMC2_2_SG 197629899 N/A 106 
PSMD6 Hs_PSMD6_1_SG 197629898 5/6 91 
PSMD2 Hs_PSMD2_1_SG 187169669 3/4 120 
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IGF2BP Hs_IGF2BP2_1_SG 187163099 9/10 87 
MGLL Hs_MGLL_1_SG 172785459 5/6 64 
DGAT2 Hs_DGAT2_1_SG 172757566 2/3 95 
GNPAT Hs_GNPAT_1_SG 180726532 4/5 84 
FAR2 Hs_FAR2_1_SG 180726539 8/9 103 
FAR1 Hs_FAR1_1_SG 180726538 5/6/7 106 
SCD Hs_SCD_1_SG 174465809 2/3 66 
DGAT1 Hs_DGAT1_1_SG 174465808 2/3/4 67 
LIPE Hs_LIPE_1_SG 174464740 6/7 120 
DAGLA Hs_DAGLA_1_SG 174464739 15/16/17 130 
AGPS Hs_AGPS_1_SG 174465765 15/16/17 140 
PNPLA2 Hs_PNPLA2_1_SG 174465764 4/5 80 

Table 2.4 Primers used in this thesis, custom made and off the shelf 
 

2.9 Molecular Biology Techniques: Protein 

2.9.1 Cell Lysis (6 well plate) 

Cell plates were placed on wet ice and medium aspirated. Cells were then 

washed once with cold PBS and 80µL of cold RIPA buffer (50mM Tris HCl (pH 8, 

150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1x protease 

inhibitor, 2x phosphatase inhibitor) was added to each well, after which the cell 

layer was scraped and transferred to a 1.5mL eppendorf tube. Samples were 

mixed by vortexing and kept on wet ice for 30 minutes, with further vortexing 

every 10 minutes. Samples were passed through a 0.5mm diameter needle five 

times and centrifuged for 10 minutes at 10,000 x g at 4°C. The supernatant was 

transferred to a new eppendorf tube and stored at -20°C. 

2.9.2 Protein Quantification (BCA Assay) 

Protein samples were quantified using a Pierce™ BCA assay kit (Thermo Fisher 

Scientific), according to the manufacturer’s instructions. Samples were 

normalised to equivalent concentrations. 

2.9.3 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 
(SDS-PAGE) 

Samples were mixed 1:3 with NuPAGE® 4x LDS Sample Buffer and 1:9 with 

NuPAGE® 10x Reducing Agent (Thermo Fisher Scientific) and heated at 70°C for 

10 minutes. 10-30µg of protein was pipetted into each lane of a pre-cast 
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NuPAGE™ 4-12% Bis-Tris Protein Gel held in an XCell SureLock™ Mini-Cell gel 

electrophoresis tank (Thermo Fisher Scientific). 10µL of PageRuler™ Prestained 

Protein Ladder (10 to 180 kDa) was run alongside samples for size estimation. 

Electrophoresis was performed at 120V for 80 minutes or until the running front 

reached the bottom of the gel. 

2.9.4 Western Blotting 

Gels were transferred onto 0.45µm polyvinyl difluoride (PVDF) membrane using a 

Bio-Rad Mini-Protean Tetra Cell at 70V for 120 minutes. The membrane was then 

stained with 0.1% Ponceau S solution (diluted in 5% acetic acid) for 10 minutes to 

ensure complete transfer. The membrane was rinsed for 15 minutes in 1 x TBST 

to remove the stain and then blocked for 1 hour at room temperature in 5% 

BSA/TBST. After blocking, the membrane was placed in a 50mL falcon containing 

5mL of primary antibody/5% BSA/TBST. The membrane was incubated overnight 

at 4°C with constant rolling. The following day, the membrane was washed 3 

times for 10 minutes with 1 x TBST and incubated with secondary antibody in 5% 

BSA/TBST for 1 hour at room temperature. The membrane was washed three 

more times and imaged on a LI-COR CLx (LI-COR Biosciences).  

A full list of antibodies used for western blotting in this body of work is detailed 

in Table 2.5. Secondary antibodies were used at a 1:2000 dilution in 5% 

BSA/TBST (either goat anti-rabbit IgG (H+L) Cross Adsorbed Secondary Antibody, 

DyLight 800 or goat anti-mouse IgG (H+L) Cross Adsorbed Secondary Antibody, 

Alexa Fluor 680). 
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Target protein Company Catalog # Species/ isotype Dilution 

AGPS Atlas HPA030210 Rb IgG 1:500 
Akt (p) Ser473 Cell Signalling 4060 Rb IgG 1:1000 

Akt (pan) Cell Signalling 2920 Ms IgG1κ 1:1000 
GAPDH Cell Signalling 2118 Rb IgG 1:1000 
IMP2 Cell Signalling 14672 Rb IgG 1:1000 

MAPK (p) 
Thr202/Tyr204 Cell Signalling 

9101 
Rb IgG 1:1000 

MGLL ProteinTech 14986-1-AP Rb IgG 1:1000 
p70 S6K Cell Signalling 2708 Rb IgG 1:1000 
p70 S6K Cell Signalling 9206 Ms IgG 1:1000 

p70 S6K (p) 
Thr389 Cell Signalling 

9206 
Ms IgG2a 1:1000 

PSMD2 Cell Signalling 14141 Rb IgG 1:1000 
PSMD6 Bethyl Labs A303-827A Rb IgG 1:1000 
PSME4 Bethyl Labs A303-880A Rb IgG 1:1000 

α-tubulin Cell Signalling 3873 Ms IgG1 1:1000 
β-Actin Cell Signalling 3700 Ms IgG2b 1:1000 

Table 2.5 List of antibodies. (p) phospho. 

 

2.10 Statistical Analysis 

Data was analysed for significance using GraphPad Prism (San Diego, CA, USA). 

Statistical significance was set at p<0.05 unless otherwise stated. 

2.11 RNA Sequencing 

RNA was extracted as described in section 2.8. Library generation and 

sequencing was carried out by William Clark (CRUK Beatson Institute). The 

quality of RNA was assessed using a RNA ScreenTape assay with the 2200 

Tapestation system (Agilent Technologies). RNA-seq libraries were generated 

using the TruSeq Stranded mRNA LT Kit (Illumina), according to an adapted 

version of manufacturer’s instructions from Fisher et al.[401]. cDNA synthesis 

and adaptor ligation was performed as in Bailey et al.[402]. The quality and 

quantity of the DNA libraries was assessed using a DNA D1000 ScreenTape assay 

with the 2200 Tapestation system (Agilent Technologies) and Qubit Fluorometric 

Quantitation system (Thermo Fisher Life Technologies), respectively. All libraries 

were sequenced using the Illumina NextSeq 500 system with the High Output Kit 

v2 (75 cycles) to generate 2x36 paired-end reads. 

RNA sequencing analysis was carried out by Ann Hedley and Gabriela Kalna 

(CRUK Beatson Institute). Quality checks on the raw RNASeq data files were done 
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using fastqc: (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

and fastq_screen: 

(http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). RNASeq 

reads were aligned to the GRCh38[403] version of the human genome using 

TopHat2 version 2.0.10[404] with Bowtie version 2.1.0[405]. Expression levels 

were determined and statistically analysed by a combination of HTSeq version 

0.5.4p3: (http://htseq.readthedocs.io/en/release_0.9.1/), the R 3.1.1 

environment, utilizing packages from the Bioconductor data analysis suite and 

differential gene expression analysis based on the negative binomial distribution 

using the DESeq2[406]. Pathway analysis of genes with a fold change >2.0 and an 

adjusted P value <0.05 was performed using GeneGo Pathways Software 

(MetaCore; https://portal.genego.com/ version 6.22.67265). 

  

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
http://htseq.readthedocs.io/en/release_0.9.1/
https://portal.genego.com/
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2.12 High Throughput Screening: siRNA 

Two high throughput screens were performed in this project, including a whole 

genome siRNA screen and an FDA-approved compound screen. Both screens were 

carried out on the Liv7k cell line in normoxic and hypoxic conditions and 

included three replicates per condition. Automated liquid handling machinery 

was used in order to reduce variability between batches and minimise human 

error (Table 2.6). Sterile technique was maintained throughout the screen. All 

surfaces and plastic ware were sprayed with 70% ethanol before work and gloves 

and PPE were worn at all times. The automated machines were used inside 

laminar flow hoods to maintain sterility. All screening plastic ware used in the 

course of this project are listed in Table 2.7. 

Equipment 
Janus Varispan and MDT automated workstation (Perkin Elmer) 
Matrix WellMate® liquid dispenser (Thermo Fisher Scientific) 
Envision 2102 plate reader (Perkin Elmer) 
ALPS 3000 plate sealer (Thermo Fisher) 
Operetta high content microscope (Perkin Elmer) 
Opera high content confocal microscope (Perkin Elmer) 

Table 2.6 List of automated equipment used in the screens. 
 

Greiner Bio One 
Product Catalog # 
Cell culture microplate, 96 well, polystyrene, flat-bottom 
(chimney well), µclear®, black, CellStar®, tissue culture, 
lid with condensation rings, sterile, 8 pcs/bag 

655090 

Cell culture microplate, 384 well, polystyrene, flat-
bottom, µclear®, black, CellStar®, tissue culture, lid, 
sterile, 8 pcs/bag 

781091 

Microplate, 96 well, polypropylene, V-bottom, chimney 
well, natural, 10pcs/bag 

651201 

Microplate, 384 well, polypropylene, flat-bottom, 
natural, 10pcs/bag 

781201 

Cell culture microplate, 96 well, polystyrene, flat-
bottom, chimney well, µclear®, white, CellStar®, tissue 
culture, lid with condensation rings, sterile, 8pcs/bag 

655098 

Table 2.7 List of screening plastic ware used in the screens. 
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2.12.1 Liquid Handling Quality Control 

To ensure even dispensing throughout plates, a quality control check of the 

automated workstation was performed prior to the screen. A 96 well V-bottomed 

plate containing 50µL 2.5mM Orange G dye was used in place of the siRNA source 

plate. 2.5µL of Orange G was transferred to every well of a black, clear-

bottomed 384 well plate. Then, a WellMate was used to dispense 47.5µL of 

sterile ddH2O to each well containing Orange G. The plate was shaken for 15 

minutes at room temperature, and absorbance was measured at 460nm on an 

Envision plate reader. The mean, standard deviation and the coefficient of 

variation (CV) was calculated for each plate. A CV of <10% was deemed within 

acceptable limits.  

% CV =
𝑒𝑠

𝑚𝑒𝑣𝑒
∗ 100 

 

 
2.12.2 Preparation of source plates 

96-well source plates containing “siGENOME” pooled siRNA were purchased from 

Dharmacon (GE Healthcare) and diluted to a concentration of 500nM. On the day 

of screening, source plates were removed from -20°C storage and allowed to 

thaw at room temperature. While the source plates were thawing, control plates 

were prepared containing All Stars® cell death control (Qiagen) (LO control) and 

non-targeting negative control (Dharmacon “On-Target Plus”) (HI control) in the 

relevant wells. The percentage growth inhibition caused by target siRNAs will be 

normalised to that of the non-targeting control siRNA. All Stars siRNA will be 

used as a positive control to confirm successful transfection. See plate layout in 

Figure 2.3.The concentration of siRNA in the control plate was also 500nM. Once 

thawed, plates were spun down for one minute at 2000rpm in batches of six and 

placed inside the laminar airflow hood. Plate seals were peeled off and plates 

were placed in six stacks of four with a lid on the top plate. 
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Figure 2.3 Stamping of source plates into 384 well experimental plates. 
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2.12.3 Experimental Design 

Prior to beginning the screen, a number of transfection reagents were tested at 

a range of concentrations in the Liv7k cell line. RNAiMax was chosen because it 

had the highest on-target effect with minimal toxicity. 

The classes of siRNA target are detailed in Table 2.8, and contained siRNAs to 

18,075 genes in total. The screen was designed to include three replicates per 

oxygen condition and was carried out in 10 batches. Each batch consisted of 24 x 

96-well siRNA source plates being stamped into 36 x 384-well experimental 

plates. Six “cells only” plates were also included to assess edge effects (Figure 

2.4). In total, 231 source plates were stamped into 342 experimental plates, 

with an additional 60 cell only plates (total 402 x 384-well plates).  

The Janus automated workstation was used to stamp each experimental plate 

with 2.5µL of control and target siRNA. 7.5µL of RNAiMAX transfection reagent 

(diluted in serum-free media) was then added to the siRNA using the WellMate 

and placed on a plate shaker at 600rpm for 15 minutes. Following this, 40µL of 

cell suspension was added using the WellMate and plates were incubated at 37°C 

/ 5% CO2 in either normoxic or hypoxic conditions for 72 hours. 

Class Number of source plates 
Kinase 9 

G-Protein Coupled Receptor 5 
Phosphatase 4 
Ion Channel 5 
Drug Target 60 

Protease 6 
Ubiquitin 9 

Rest of Genome 133 
Total 231 

Table 2.8 Classes of siRNA used in the screen. 
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Figure 2.4 Experimental design of a screen batch. 
 
2.12.4 Fixation and Staining 

At the 72-hour time point, cells were fixed with 4% formaldehyde for 15 minutes 

followed by a PBS wash. Then, cells were permeabilised with 0.1% TX-100 and 

stained with 1µg/mL DAPI for 2 hours. Cells were washed once more with PBS 

and plates were sealed for imaging on the Operetta high content microscope 

(Perkin Elmer). A nuclei count was carried out using Harmony software, and 

analysed with Dotmatics browser. 

2.12.5 Hit Selection 

The percentage growth inhibition of each siRNA was normalised to negative 

control values from the same plate. The mean, median and standard deviation 

were calculated from three technical replicates. To identify hypoxia-specific 

hits, the difference between the median of the normoxic condition was 

subtracted from the median of the hypoxic condition. A threshold of minimum 

growth inhibition of 10% in hypoxia and a window of 20% between the two 

conditions was applied. Genes that met these criteria were selected for 

rescreen. In addition, a number of plate-level calculations were performed.  
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2.12.5.1 Signal to Background Ratio (S2B) 

The signal to background ratio is the difference between the mean of the 

positive and negative control samples. As it does not take standard deviation in 

to account, it does not provide any information about data variability. Xp and Xn 

represent the sample mean of the positive and negative controls, respectively. 

𝑆2𝐵 =  
𝑋𝑒
𝑋𝑒

 

2.12.5.2 Z-factor (Z’) 

The Z-factor (or Z prime, Z’) accounts for variability in the positive and negative 

controls and involves four parameters: 

Z′ =
(𝑋𝑒 − 𝑋𝑒) − 3(𝑆𝑒 − 𝑆𝑒)

(𝑋𝑒 − 𝑋𝑒)
 

where Xp and Xn represent the mean of the positive and negative control 

samples while Sp and Sn denote standard deviations of the same. The constant 

in the equation is based on three standard deviations from the mean, assuming a 

normal distribution. The Z’ gives an indication of how difference the positive 

and negative controls are and thus the quality of the experiment (Table 2.9). 

Z’ Category Interpretation 

Z’ = 1 Ideal A perfect assay - Z factors cannot 
exceed 1 

1 > Z’ ≥ 0.5 Excellent There is a large difference between 
positive and negative controls 

0.5 > Z’ ≥ 0.3 Marginal There is a moderate difference between 
positive and negative controls 

0.3 > Z’ > 0 Poor There is too much overlap between 
positive and negative controls 

Z’ < 0 Failed There is no difference between positive 
and negative controls - redesign assay 

Table 2.9 Z-factor and its interpretation. 
  



83 
 
 
 
2.12.5.3 Coefficient of Variation (CV) 

A CV was calculated for both the positive and negative controls: 

% CV =
𝑒𝑠

𝑚𝑒𝑣𝑒
∗ 100 

2.12.5.4 Strictly Standardised Mean Difference (SSMD) 

The inclusion of three replicates allowed for an accurate estimation of siRNA 

variability. To this end, the uniformly minimal variance unbiased estimate of 

strictly standardised mean difference (umvue SSMD) was calculated to assess the 

size of siRNA effects: 

𝑆𝑆𝑆𝐷 =   
Г �(𝑒 − 1)

2 �

Г �(𝑒 − 2)
2 �

 � 2
𝑒 − 1

𝑠𝑒
𝑒𝑒

  

where n is the number of replicates, di and si are the sample mean and standard 

deviation of the difference between the ith siRNA and the negative control and 

Г() is a gamma function (i represents a specific siRNA). Table 2.10 provides a 

breakdown of SSMD rankings in terms of effect size. 

Effect Ranking 
Negative SSMD 

thresholds (inhibition) 
Positive SSMD thresholds 

(activation) 
Extremely Strong SSMD ≥ 5 SSMD ≤ -5 

Very Strong 5 > SSMD ≥ 3 -5 < SSMD ≤ -3 
Strong 3 > SSMD ≥ 2 -3 < SSMD ≤ -2 

Fairly Strong 2 > SSMD ≥ 1.645 -2 < SSMD ≤ -1.645 
Moderate 1.645 > SSMD ≥ 1.28 -1.645 < SSMD ≤ -1.28 

Fairly Moderate 1.28 > SSMD ≥ 1 -1.28 < SSMD ≤ -1 
Fairly Weak 1 > SSMD ≥ 0.75 -1 < SSMD ≤ -0.75 

Weak 0.75 > SSMD > 0.5 -0.75 < SSMD < -0.5 
Very weak 0.5 ≥ SSMD > 0.25 -0.5 ≤ SSMD < -0.25 

Extremely Weak 0.25 ≥ SSMD > 0 -0.25 ≤ SSMD < 0 
Zero SSMD = 0 SSMD = 0 

Table 2.10 SSMD values and effect size. 
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2.13 High Throughput Screening: Drug-Repurposing 

The Liv7k cell line was subjected to 1,351 FDA-approved compounds for oncology 

and non-oncology indications in normoxic and hypoxic conditions. The library 

was tested at a single concentration of 10µM. Candidates were prioritised based 

on three criteria: (1) drugs which were maximally effective (≥90% kill); (2) 

selectivity in the hypoxic condition; and (3) selectivity for Liv7k cells. The latter 

criterion was based on comparisons from previous drug screens carried out 

within the Screening Facility. Drug libraries are listed in Table 2.11. 

Library Name Number of Compounds 
NIH Evotec Clinical Collection 1 281 
NIH Evotec Clinical Collection 2 446 
LOPAC Pfizer (Sigma Aldrich) 90 
Selleck FDA-Approved Library 420 

Developmental Therapeutics Program 
(DTP) FDA-Approved Oncology Set 114 

Table 2.11 Details of compound libraries used in the drug-repurposing screen. 
 

The drug screen was performed in normoxic and hypoxic conditions with three 

replicate plates per condition. Similar to the siRNA screen, automated liquid 

handling machinery was used. On day 0, Liv7k cells were seeded in 190µL of K-

SFM at 5000 cells per well in black, clear bottomed 96-well plates. The cells 

were incubated overnight at 37°C / 5% CO2. The next day, drug source plates 

(stock concentration 10mM in DMSO) were removed from -20°C storage and 

allowed to thaw. Plates were centrifuged at 2000 rpm for 1 minute.  

In a laminar airflow hood, plate seals were removed and replaced with a sterile 

plastic lid. For every compound source plate, an intermediate dilution plate was 

created. 98µL of serum-free media was dispensed into a PP V-bottomed plate 

using the WellMate and covered with a sterile lid. Relevant controls were then 

added to the intermediate plate. Staurosporine (stock 1mM, final concentration 

1µM) was used as a positive control to confirm successful stamping of drugs and 

DMSO was used a negative control at a concentration of 0.1%.  

Using the Janus, 2µL of drug stock was transferred from the source plate to the 

intermediate dilution plate to create a 1 in 50 dilution. The intermediate plates 
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were placed on a plate shaker for 30 minutes at 750 rpm to ensure complete 

mixing. After 30 minutes, 10µL of drug-containing media from the intermediate 

plates was stamped into six cell plates to create a further 1:20 dilution. The 

final concentration in the well was 10µM of compound.  

Cell plates were incubated at the relevant oxygen condition for 72 hours, after 

which the cells were fixed and stained as for the siRNA screen. A nuclei count 

was performed using the Operetta high content microscope. 

2.14 RNAi transfection (96 well plate) 

Stock siRNA was diluted to a working concentration of 500nM. 10µL of diluted 

siRNA was dispensed into each well and 30µL of diluted RNAiMax transfection 

reagent was added on top. Incubation for 15 minutes at room temperature with 

shaking ensured complex formation. Cells are a concentration of 5000/well were 

seeded in a 160µL of full media. The final concentration of siRNA in each well 

was 25nM and the final volume of transfection reagent was 0.125µL/well. Cells 

were incubated at 37°C / 5% CO2 for 72 hours unless otherwise stated. At 

experiment end-point, cells were fixed and stained as in the siRNA screen. A list 

of siRNAs used in transfections is provided in Table 2.12. 

siRNA ID Sequence(s) Catalog # 
Qiagen   

Hs_MGLL_1 
Hs_MGLL_2 
Hs_MGLL_3 
Hs_MGLL_5 

CTGGACCTACCTTAATGGTTA 
AAGACAGAGGTCGACATTTAT 
TCAGAGCTTGATGCTACTGTA 
CAGCGTGCTCTCTCGGAATAA 

SI00096250 
SI00096257 
SI00096264 
SI03067729 

Hs_AGPS_4 
Hs_AGPS_5 
Hs_AGPS_6 
Hs_AGPS_7 

CACCATGGAGTGGGCAAGTTA 
AAGCGGCAAGAAGTTATGAAA 
CTGAGGAGTGATACACGTGTA 
ATGGTAACACCTAGAGGTATA 

SI00293440 
SI04211795 
SI04221994 
SI04263553 

Hs_GNPAT_1 
Hs_GNPAT_3 
Hs_GNPAT_5 
Hs_GNPAT_6 

CACGTAATTACTCTCATCGAA 
CTCGATCAAGGTACCTCTCAA 
CAGCGCTGTCGTGCTCCTCTA 
GAGGCTCGGAGTAGTGGAGAA 

SI00103887 
SI00103901 
SI03067232 
SI03103870 

Hs_FAR2_5 
Hs_ FAR2_6 
Hs_ FAR2_7 
Hs_ FAR2_8 

ATCCAGCACGCTCAAAGTTTA 
TTCGTCCCTATTCCTTAACTA 
ACAGTCGTCAATCTCATGCTA 
CCCAGGTTGGGTTGATAATAT 

SI03149293 
SI03242673 
SI04139821 
SI04199881 

Hs_ FAR1_3 
Hs_ FAR1_5 
Hs_ FAR1_6 
Hs_ FAR1_7 

CAGGATAGCCTACTAAATTAA 
TGGATGGATGATGGCCTAGTA 
AGCGAACTCACCCAACCTAAA 
CAAGTTGCGGAATATACGTTA 

SI00646513 
SI04207546 
SI04261481 
SI04263119 

Hs_DGAT2_1 
Hs_DGAT2_3 

CAGGAACTATATCTTTGGATA 
CACGCTCGTCTAGTCCTGAAA 

SI00363097 
SI00363111 
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Hs_DGAT2_6 
Hs_DGAT2_7 

CAGCCGGGACACCATAGACTA 
CCTGTTCTAGGTGGTGGCTAA 

SI04273626 
SI04342667 

HS_PNPLA2_3 
HS_PNPLA2_4 
HS_PNPLA2_5 
HS_PNPLA2_6 

CTGAAATATGTGTGTGAAGAA 
CGCCAAAGCACATGTAATAAA 
CAAGTTCATTGAGGTATCTAA 
GACGGCGAGAATGTCATTATA 

SI00688289 
SI00688296 
SI03019310 
SI03019611 

Hs_SCD_4 
Hs_SCD_5 
Hs_SCD_6 
Hs_SCD_7 

TAGGTCATCATGAAAGGTTAA 
AAAGATGGTTGTAGCATTTAA 
AGGGCAGACAATAGTATAGAA 
TGGGCAAGTCACTTAACTATA 

SI00711704 
SI03019177 
SI04184488 
SI04217843 

Hs_ DAGLA _1 
Hs_ DAGLA _2 
Hs_ DAGLA _3 
Hs_ DAGLA _5 

CCCACAGTATCCGACCCTCAA 
CACCAAGTACCTCGACCTCAA 
CTGCAGTGCTGTACATGTTTA 
CTGACAAGATCCGGACTTCTA 

SI00084686 
SI00084693 
SI00084700 
SI03093034 

Hs_ DGAT1_5 
Hs_DGAT1_8 
Hs_DGAT1_9 
Hs_DGAT1_12 

CACCTTGTGCTACGAGCTCAA 
CTGGTTGAGTCTATCACTCCA 
CACCGTGAGCTACCCGGACAA 
CGGGTCCGAGGGTGTCAATAA 

SI04891999 
SI03246754 
SI04145330 
SI05462086 

Hs_IGF2BP2_4 
Hs_IGF2BP2_3 
Hs_IGF2BP2_2 
Hs_IGF2BP2_1 

CCCGGGTAGATATCCATAGAA 
CAGCGAAAGGATGGTCATCAT 
TCCGCTAGCCAAGAACCTATA 
CAGGGCGTTAAATTCACAGAT 

SI04367020 
SI04138820 
SI03232481 
SI03176593 

Hs_CYSLTR1_4 
Hs_CYSLTR1_3 
Hs_CYSLTR1_2 
Hs_CYSLTR1_1 

AAAGCAGACATTCGTAGAGAA 
CTGTATATATTGGCTAGCAAA 
CACCTATGCTTTGTATGTCAA 
CAAGTATACATGATTAATTTA 

SI00090573 
SI00090566 
SI00090559 
SI00090552 

Hs_PSME4_6 
Hs_PSME4_5 
Hs_PSME4_8 
Hs_PSME4_7 

CTCGATTGGCTACAGATAATA 
AAGCGGTCTGCTACAGTGTAA 
TAGGTCTGTCTTCTACGTTTA 
AAGATTCTCCAAAGAACCCTA 

SI04297251 
SI04220510 
SI04360041 
SI04336969 

Hs_PSMD2_6 
Hs_PSMD2_5 
Hs_PSMD2_8 
Hs_PSMD2_7 

CTCCGGAGGGCTGTACCTTTA 
TGGGTGTGTTCCGAAAGTTTA 
CTGCGTCCACACTATGGCAAA 
CTGATCCAGAAGTTTCCTATA 

SI02779791 
SI02779763 
SI03095603 
SI03093811 

Hs_IGF1R_8 
Hs_IGF1R_7 
Hs_IGF1R_6 
Hs_IGF1R_1 

CTGGACTCAGTACGCCGTTTA 
TCGAAGAATCGCATCATCATA 
AGGATTGAGTTTCTCAACGAA 
ATGGAGAATAATCCAGTCCTA 

SI03096926 
SI02624552 
SI02624545 
SI00017521 

GE Healthcare (Dharmacon) 
PSMD6-1 
PSMD6-2 
PSMD6-3 
PSMD6-4 

CCUUAGGAUUGGCUUAUUU 
GAUCUCAUCACACGAAACA 
UCGAUACUAUGUAAGAGAA 
CAUUAGCGGUUGUGGAACA 

D-021249-01 
D-021249-02 
D-021249-03 
D-021249-04 

PSMC2-1 
PSMC2-2 
PSMC2-3 
PSMC2-4 

GCACGACUGUGUCCAAAUA 
UAACAGACCUGAUACUUUG 
GUACAAAGAUAAUCAAUGC 
GAUAUCAGAUUUGAACUGU 

D-008180-01 
D-008180-02 
D-008180-03 
D-008180-04 

Table 2.12 List of siRNA sequences. 
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2.15 Functional Assays: Incucyte Zoom3® 

2.15.1 Propagation 

On day 0, cells were seeded at a range of concentrations in black, clear-

bottomed 96-well plates in 200µL of K-SFM. Cells were incubated overnight at 

37°C / 5% CO2. The next day, plates were added to the Incucyte and imaged 

every 3 hours for 72-96 hours. Propagation was calculated from the confluence 

mask generated by the device’s software. 

2.15.2 Migration (Wound Assay) 

Cells were seeded in 100µL K-SFM at 30,000 cells per well in Essen Imagelock™ 

96-well plates and incubated overnight at 37°C / 5% CO2. The next day, a 

scratch was made using a woundmaker tool™ (Essen Bioscience), according to 

manufacturer’s instructions. The cell layer was checked to ensure a good scratch 

was made and washed once with 1 x PBS. 200µL of full media was added 

carefully to avoid disturbing the cells around the wound. Plates were added to 

the Incucyte and imaged every 3 hours for 72-96 hours until complete wound 

closure. Migration is quantified using device software using relative wound 

density (RWD). RWD is calculated as the cell density in the wound area relative 

to the cell density outside of the wound area over time. 

2.15.3 Invasion (Wound Assay) 

The day before making the wound, growth factor reduced matrigel (stock 

9mg/mL) was placed in a fridge on wet ice and allowed to thaw. On the same 

say, cells were seeded in 100µL K-SFM at 30,000 cells per well in Essen 

Imagelock 96-well plates and incubated overnight at 37°C / 5% CO2. The next 

day, matrigel was diluted 1:1 in full media to a concentration of 4.5mg/mL, and 

kept on wet ice. A scratch was made as for migration, and the cell layer was 

washed once with 1 x PBS. PBS was tipped into a container containing 1% virkon 

solution and the cell plate was placed in a coolbox to ensure the matrigel 

remains between 4-8°C.100µL of diluted matrigel was added to each well using a 

multichannel pipette and the plates were incubated at 37°C / 5% CO2 for one 

hour to allow matrigel to set. 100µL of full media (plus 2 x compound if 
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required) was added on top of the matrigel and added to the Incucyte. RWD was 

the primary readout for this assay. 

2.15.4 Inverse Invasion Assay (Transwell®) 

Matrigel (9mg/mL) was allowed to thaw slowly on ice and diluted 1:1 in full 

media. 100µL of diluted matrigel was carefully pipetted into the centre of each 

transwell insert (6.5mm Transwell® with 8.0µm Pore Polycarbonate Membrane 

Insert, Corning) and incubated for one hour at 37°C / 5% CO2. During this time, a 

cell suspension was prepared containing 5x106 cells per mL in full media. When 

the matrigel had set, the Transwell inserts were inverted and 100µL of the cell 

suspension was pipetted onto the underside of the filter (which is now 

uppermost). Transwell inserts were covered using the base of the 24-well culture 

plate, which was carefully lowered until it contacted the droplet of cell 

suspension. The inverted plate was incubated for 4 hours to allow the cells to 

attach. After 4 hours, the plate was turned upright again. Transwell inserts were 

dipped sequentially in 3 x 1 ml serum free medium to wash and left in wash 3 for 

incubation. 100µl of full media plus extra growth factor (insulin/IGF1) was gently 

pipetted into the insert on top of the matrigel/media. The plates were 

incubated at 37°C / 5% CO2 for 5 days.  

Cells were live stained with 4µM Calcein AM and 2µM Hoechst 33342 for one hour 

and the lower side of the insert was imaged on an Olympus FLUOVIEW FV1000 

confocal laser-scanning microscope. The experiment is carried out in three sets 

of technical duplicates with five fields imaged in Z-stacks ranging from 0µm 

(base) up to 120µm into the membrane. Quantification was performed using 

ImageJ. 

2.15.5 3D Spheroid Formation 

Spheroids were created using Cultrex® 3D Spheroid Cell Invasion Assay (Trevigen 

catalog # 3500-096-K), according to manufacturer instructions. A seeding density 

of 5000 cells per well was used. 
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2.15.6 Neutral Lipid Staining 

Cells were fixed in 4% formaldehyde for 15 minutes, followed by 

permeabilisation with 0.1% TX-100 in 1 x PBS for 1 hour. Cells were then washed 

once with 1 x PBS and sequentially stained with 1µg/mL DAPI (sigma # D9564, 

0.5µg/mL Deep Red Cell Mask (Thermo Fisher #H32721) and 2µg/mL BODIPY 

493/503 neutral lipid stain (Thermo Fisher # D3922). Cells were imaged using the 

Operetta high content microscope (Perkin Elmer). 

2.15.7 MitoStress Assay (Seahorse, Agilent) 

The day before the assay, cells were plated at 5000 cells/well in a Seahorse 

XF96 cell culture microplate (Agilent). The next day, Seahorse XF media was 

modified to have the same concentration of L-glutamine, D-glucose and pyruvate 

as keratinocyte serum free media, and 1M NaOH was added until a pH of 7.4 was 

achieved. Next, oligomycin, FCCP, rotenone and antimycin-A were diluted in 

seahorse media in order to give a final concentration of 1μM in the cell plate. 

One hour before the assay, the media in the cell plate was exchanged for 

seahorse media and incubated at 37°C. The assay was performed according to 

manufacturer’s instructions and oxygen consumption rate/extracellular 

acidification rate was normalised to cellular nuclei count. 

2.15.8 Proteasome Activity Kit  

Proteasome activity was measured according to manufacturer’s instructions 

(Promega #G8660). 

2.16 Liquid Chromatography Mass Spectrometry (LCMS) 

2.16.1 Lipid Extraction 

Cells were seeded into a 6 well plate and siRNA/TR mix was added. After a 72-

hour knockdown, the cell layer was washed once with ice-cold PBS. Lipids were 

extracted by adding 0.75mL of ice-cold methanol:PBS (1:1) to each well and 

scraping cells into a 1.5mL eppendorf. At this point, internal standard controls 

were spiked into each sample (pos-mode, PC 170/170; neg-mode, PE 170/170). 

0.5mL of ice-cold chloroform was added and the tubes were vortexed for 1 
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minute, followed by centrifugation (14000rpm) at 4°C for 10 minutes. Carefully, 

the lower layer of chloroform containing dissolved lipids was moved into a glass 

autosampler vial. Butylated hydroxytoluene (BHT) was added to each sample and 

the lipid-containing chloroform was evaporated using nitrogen gas. Dried lipids 

were sealed in the glass autosampler vials and stored at -20°C until 

reconstitution in chloroform:methanol:water (1:1:0.3) (pos-mode) or isopropyl 

alcohol:chloroform:methanol (90:5:5) (neg-mode). 

2.16.2 LCMS 

Lipidomic analysis was performed by Gillian Mackay and Sergey Tumanov (CRUK 

Beatson Institute) using Q Exactive orbitrap mass spectrometer coupled to 

Dionex UltiMate 3000 LC system (Thermo Scientific). The LC parameters were as 

follows: 3 µL of sample was injected onto a 1.7 µm particle 100 x 2.1mm ID 

Waters Acquity CSH C18 column (Waters) which was kept at 50°C. A gradient of 

(A) water/acetonitrile (40:60, v/v) with 10 mM ammonium formate and (B) 

acetonitrile/2-propanol (10:90, v/v) with 10 mM ammonium formate at a flow 

rate of 0.3 mL/min was used. The gradient ran from 0% to 40 % B over 6 min, 

then from 40% to 100% B in the next 24 min, followed by 100% B for 4 min, and 

then returned to 0% B in 2 min where it was kept for 4 min (40 min total). Lipids 

were analysed in both positive and negative mode. The electrospray and mass 

spec settings were as follows: spray voltage 3 kV (positive mode) and 3.5 kV 

(negative mode), capillary temperature 300°C, sheath gas flow 50 (arbitrary 

units), auxiliary gas flow 7 (arbitrary units) and sweep gas flow 5 (arbitrary 

units). The mass spec analysis was performed in a full MS and data dependent 

MS2 (Top 10) mode, with a full scan range of 300-1200 m/z, resolution 70,000, 

automatic gain control at 1 x106 and a maximum injection time of 250 ms. MS2 

parameters were: resolution 17,500, automatic gain control was set at 1 x105 

with a maximum injection time of 120 ms. 

2.17 In vivo xenografts 

Animal handling in this project was carried out by Susan Mason (Karen Blyth lab, 

CRUK Beatson Institute). Project license number: PPL70/8645. 5x106 Liv7k cells 

were subcutaneously injected into NOD/SCID mice (n=20). Mice were split into 

treatment or control groups by cage assignment (n=10 per group). Montelukast (5 
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mg/kg) or vehicle control were administered daily by oral gavage once tumours 

were palpable and had reached a predetermined size (~5 mm). Tumour volume 

was calculated as (length x width2) / 2, and statistical significance between the 

two groups was determined by unpaired t-test. Thereafter, measurements were 

taken using calipers three times weekly until tumour size reached 15mm in any 

direction, as per licence conditions. Mice were taken at this point and survival 

curves were plotted. Statistical significance of survival was determined using 

Log-rank test. 

2.18 Immunohistochemistry 

Immunohistochemistry (IHC) was carried out by Colin Nixon and the Beatson 

histology department. Tumour xenografts were fixed in 4% formaldehyde for 24-

36 hours and embedded in paraffin. Slices were adhered to glass slides for 

staining. Prior to staining, slides were washed twice in 1 x PBST and blocked for 

six minutes in peroxidase-blocking solution (Dako #S2023). Staining was 

performed using the Dako Autostainer. Sections were washed twice in 1 x PBST 

and blocked for 30 minutes in 2.5% normal horse serum (Vector #MP-6401-15) or 

Mouse on Mouse Blocking Reagent (Vector #MKB-2213). Primary antibodies and 

their dilutions used are listed in Table 2.13. Secondary antibodies, HRP 

conjugated goat anti-mouse (Dako #K4001), and horse anti-rabbit (Vector #MP-

6401-15) were used as appropriate. After further washing 1 x PBST, 3,3’-

diaminobenzidine tetrahydrochloride (Dako #K3468) was added and slides were 

counterstained with haematoxylin Z solution, and mounted with DPX (Sigma 

#44581). Tissue sections were scanned and images uploaded into Halo (Indica 

Labs) for staining analysis. 

Target Species Supplier Catalog # Dilution 
Ki67 Rabbit Thermo Fisher RM-9106 1:500 

AKT (phospho) Rabbit Cell Signalling 4060 1:250 
ERK1/2 (phospho) Rabbit Cell Signalling 9101 1:250 

ERK1/2 Rabbit Cell Signalling 9102 1:250 
MTOR (phospho) Rabbit Cell Signalling 2976 1:100 

HLA Mouse Abcam ab70328 1:100 
F4/80 Rat Abcam ab6640 1:250 
NIMP Rat Abcam ab2557 1:100 

Table 2.13 List of primary antibodies used for immunohistochemistry. 
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2.19 Patient sample acquisition and processing 

Patient samples were acquired from the NHS Queen Elizabeth University Hospital 

in Glasgow and were restricted to HPV- negative primary tumours with evidence 

of lymph node involvement. Processing of samples involved either snap freezing 

for RNA/DNA extraction, fixation in formaldehyde for immunohistochemical 

staining or culturing of fresh tissue for the generation of primary cell lines. 

Frozen samples were processed as in Biankin[407] et al., 2012. 

Chapter 3 Results – High Throughput Screening 

The over-arching aim of this project was to identify novel driver genes in oral 

squamous cell carcinoma. We chose to approach this using an aggressive (T42Nb) 

patient derived cell line (Liv7k), 

utilising hypoxic conditions to mimic 

the common feature of HNSCC 

tumours. As such, siRNA and drug-

repurposing screens were performed 

in both hypoxia (0.1% O2) and 

normoxic (21% O2) conditions. This 

allowed for the selection of genes or 

drugs based on their response in 

each condition. A complete protocol 

for both screens can be found in 

chapter 2, but a brief summary of 

the process is provided in Figure 

3.1.  

Percentage growth inhibition was 

the primary output in both the siRNA 

and drug screens, and was 

calculated relative to the non-

targeting control siRNA and DMSO 

vehicle control, respectively. The 

negative controls were also used to 

Mycoplasma tesing, banking of cell 
stocks 

Determine optimal cell density, assess 
edge effects 

Lipid-based transfection reagent 
assessment, efficacy vs toxicity 

Mock screen under experimental 
conditions, postive control spiked 

randomly throughout plates to mimic 
hits, determination of plate statistics 

Primary screen (n=3 per condition), 
output: growth inhibition (nuclei count) 

 
Confirmed hits validated using multiple 
molecular / phenotypic assays, and in 

vivo evaluation 
  

Figure 3.1 Screening workflow summary. 
The process applies to both compound and 
siRNA screens, except for transfection reagent 
assessment (green). 
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monitor data variability across all plates throughout the screen. The positive 

control (siAllStars in the siRNA screen and staurosporine in the drug screen) was 

used to monitor the consistency of data produced and aid in the selection of 

hits. This chapter provides an overview of the quality assessment of the siRNA 

and drug screens. 

3.1 siRNA Screen 

The primary screen was performed in normoxic and hypoxic (0.1% O2) conditions 

in an effort to recapitulate the low oxygen environment often found in solid 

HNSCCs [408]. In total, 18,175 genes were silenced using the Dharmacon 

siGENOME library (GE Healthcare) which is broken down into functional classes in 

Table 3.1.  

siRNA Library Class Number of Genes 
Kinase 720 

G-Protein Coupled Receptor 390 
Phosphatase 256 
Ion Channel 352 
Drug Target 4,795 

Protease 480 
Ubiquitin 600 

Rest of Genome 10,582 
Total 18,175 

Table 3.1 Details of the Dharmacon siRNA library. 
 

In the siRNA screen, the positive and negative controls used were All Stars siRNA 

(Qiagen) and non-targeting control siRNA (NTC; Dharmacon On-Target Plus), 

respectively. The cell nuclei counts for the control cells were highly consistent 

within each batch, although normoxic negative controls typically had a higher 

cell count than hypoxic cells, indicating a faster rate of proliferation (Figure 

3.2). The primary method of assessing the quality of the siRNA screen was plate 

z score, which calculates the difference in growth inhibition between the 

positive and negative controls. A z score of > 0.3 is typically deemed acceptable, 

but the majority of plates fell above 0.4, indicating a highly robust assay (Figure 

3.3).  
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Binning of the results revealed a normal distribution of percentage growth 

inhibition in both oxygen conditions (Figure 3.4), with most of the siRNAs 

yielding a percentage growth inhibition of between 0-20%. A greater percentage 

growth inhibition was observed in the normoxic condition, possibly owing to a 

higher rate of proliferation in these cells. Given this, the percentage growth 

inhibition in the hypoxic condition was mean-normalised to the normoxic 

condition in order to make the results more comparable. The strictly 

standardised mean difference (SSMD) was used as a measure of effect size, with 

more negative values representing a higher percentage growth inhibition (Figure 

3.5). This also allowed the confirmation of the effect of silencing genes that are 

known to be essential for cell viability, such as WEE1 or PLK1. All calculations 

used in the analysis of the siRNA screen can be found in chapter 2. In order to 

identify a greater number of hits, the median growth inhibition was used in the 

initial screen. However, validation experiments utilised the mean growth 

inhibition in order to provide greater stringency.  

 

Figure 3.2 Average nuclei count for control wells throughout the siRNA screen. Values are 
plate averages of non-targeting (NTC) and All Stars control wells. Control outliers were excluded 
prior to analysis. 
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Figure 3.3 siRNA screen z score values (per plate). Values of ≥ 0.3 (indicated by green line) 
were considered within the acceptable limits. Greater variability was observed in the hypoxic 
condition. Plates that dropped below the 0.3 threshold were repeated. 

 

 

Figure 3.4 Frequency distribution chart of percentage growth inhibition in normoxic and 
hypoxic conditions. A clear shift was observed in the mean percentage growth inhibition of cells 
grown in the normoxic condition compared to the hypoxic condition. 
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Figure 3.5 SSMD values for all tested siRNAs, relative to NTC, in (A) normoxic and (B) 
hypoxic conditions. SSMD is a measure of effect size - the more negative the value, the higher 
the percentage growth inhibition (or the lower the cell viability). Some known driver genes in 
HNSCC, as well as genes essential for cell viability are labelled. 
  

A 

B 
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3.2 Drug-Repurposing Screen 

As an additional method of identifying targetable genes in HNSCC, a drug-

repurposing screen was employed, where the efficacy of 1,351 FDA-approved 

drugs developed for cancer and non-cancer indications were assessed for their 

ability to inhibit the growth of Liv7k cells in vitro. The drug libraries used are 

listed in chapter 2. Drugs chosen for further investigation were required to meet 

three main criteria: (1) result in over 90% growth inhibition; (2) exhibit higher 

efficacy under hypoxia; and (3) exhibit selectivity for Liv7k cells over non-cancer 

cells/other cancer types. The last was included, based on comparisons from 

previous drug screens carried out within the Screening Facility. The results from 

the drug screen are shown in Figure 3.6 in which drugs are coloured based on 

their library of origin. Interestingly, the procollagen C-proteinase inhibitor (UK-

383367) and estradiol valerate were found to have a greater effect on cell 

viability in hypoxia, but this angle was not followed up in this project. 

 

Figure 3.6 Scatter plot showing percentage growth inhibition of Liv7k cell line in response 
to treatment with FDA-approved compounds. A single concentration of 10μM was used for all 
compounds, and growth inhibition values were normalised to DMSO vehicle control. Results are 
the median of three screening replicates. Colours indicate the compound library used: Green, NIH 
Evotec Collection 1; Yellow, NIH Evotec Collection 2; Blue, Developmental Therapeutics Program 
(DTP) FDA-Approved Oncology Set; Red, LOPAC Pfizer (Sigma Aldrich); Orange, Selleck FDA-
Approved Library. Circle size depicts significance according to unpaired t-test (p value). Dashed 
lines indicate 0% growth inhibition in both conditions. 
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3.3 Screening Analysis 

The results from both screens were analysed and combined with data from a 

number of other sources, including RNA and whole exome sequencing, pathway 

analysis software, in-house screening data and publically available patient 

datasets such as The Cancer Genome Atlas (TCGA). This allowed for the 

selection of the genes most likely to be involved in HNSCC progression. The 

validation approach of genes of interest largely depended on their function 

within the cell (i.e. metabolism, cell movement, epigenetics). Whole exome 

sequencing revealed the presence of a commonly amplified region of 

chromosome three, while a differential susceptibility to gene silencing in 

hypoxia formed the basis of a project centred on triglyceride and ether lipid 

metabolism. Finally, the drug-repurposing screen identified a dependence of 

oral cancer cells on cysteinyl leukotriene signalling (involved in the inflammatory 

response).  
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Chapter 4 Results – Identification of HNSCC 
survival significant genes in the 3q26-29 
amplicon 

Whole exome sequencing of aggressive patient derived oral cancer cell lines 

revealed copy number amplification of a region at the terminal end of 

chromosome three (3q26-29). The region harbours 366 genes, 188 of which are 

protein coding. This chapter presents an analysis of genes within the amplicon, 

supported by transcriptomic data from The Cancer Genome Atlas (TCGA, n = 522 

samples), experimental screening data and pathway analysis. This led to the 

generation of a 6-gene set, which was statistically significant for patient 

survival. Knockdown of these highly expressed genes led to high percentage 

growth inhibition in an oral SCC cell line. Two genes were selected for target 

validation studies. 

Chromosome 3q26-29 is the most frequently amplified region in HNSCC and is a 

negative prognostic factor associated with increased invasive potential and 

decreased overall survival [409]. The region harbours multiple driver genes 

including PIK3CA, which encodes the p110 catalytic subunit of PI3K[410]; SOX2, a 

key regulator of stem cell differentiation[116]; TP63, a relative of TP53 with 

pleiotropic functions[411]; TERC, which encodes the RNA component of 

telomerase[412] and PRKCI, a serine/threonine kinase in the NF-Kβ 

pathway[413]. 

The close proximity of these genes makes an independent assessment of their 

oncogenic potential difficult and this complexity is further compounded by the 

co-amplification of other genes in the region. It is likely that most of the genes 

residing in these regions are passengers experiencing copy number gain in 

parallel with driver genes[414]; however, the presence of yet unidentified driver 

genes remains a possibility. 
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4.1 Amplification of chromosome 3q26-29 in oral SCC 

cell lines 

In order to determine if our patient derived cell lines contained the same 

pattern of copy number alteration as those in the TCGA dataset (see Figure 

1.4), whole exome sequencing (outsourced to Oxford Gene Technology, UK) was 

performed. This revealed copy number gain of 3q26-29 in the Liv7k and KR19 

cell lines but deletion in the Liv37k cell line, when compared to a reference 

human genome HG19 (Figure 4.1). The Liv7k cell line was used for the majority 

of subsequent phenotypic experiments, as they were a good representation of 

the 20% of patient tumour samples with the amplicon. 
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Figure 4.1 Copy number analysis of chromosome 3 from whole exome sequencing. Copy 
number plot (chromosome 3), showing amplification of q26-29 region (upper red line) in: (A) Liv7k 
and (B) KR19 and deletion of the region in (C) Liv37k. Each blue dot represents a probe from a 
microarray assay and is plotted vertically based on its fluorescent intensity. The intensity for each 
probe is plotted relative to a reference genome baseline (green line) and provides a copy number 
estimate for that probe represented on a log2 scale. 
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4.2 Identification of pro-oncogenic factors in 3q26-29 

Chromosome 3 is the third largest chromosome and contains 1078 protein coding 

genes[415]. 3q26-29 amplification is not unique to HNSC - it is a feature of 

squamous cell carcinomas in general, including those of the lung[113], 

cervix[416], oesophagus[417] and skin[418], and is consistently correlated with 

poor prognosis in these cancers. The 3q26-29 amplicon consists of four 

cytogenetic bands and contains 366 genes (188 of which are protein coding). 

TCGA analysis reveals that 117 (62%) of the 366 genes are upregulated at mRNA 

level (z score > 2) in more than 10% of patients with HNSCC (Figure 4.2). 

 

Figure 4.2 Expression profile of genes contained within 3q26-29 amplicon. 3q26-29 contains 
366 gene identities, which are split between four sub-regions. Genes are arranged by 
chromosomal location; the size of the circle depicts the total number of genes within the denoted 
chromosomal locus and inner segments represent the number of genes within that locus with 
mRNA upregulation (defined by a statistical cut-off of z score > 2 in > 10% samples, TCGA HNSCC 
dataset, n = 522 samples). Copy number amplification, mRNA upregulation and mutation 
frequencies are listed for known HNSCC driver genes (red, starred) and genes that we have 
identified to be significant for survival in our analysis (blue). Published in [419]. 
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4.3 10 genes are implicated in HNSCC patient survival 

(TCGA) 

In order to determine which of the 188 protein-coding genes were most relevant 

to HNSCC progression, additional criteria were applied. Interrogation of gene 

mRNA expression data in combination with patient survival statistics allowed for 

the identification of oncogenic targets with potential therapeutic significance. 

Using this approach, a total of ten genes (AHSG, EIF5A2, FXR1, IGF2BP2, PSMD2, 

SEC62, ALG3, DNAJC19, IL1RAP and NMD3) were identified as having a negative 

effect on overall and disease free survival when overexpressed at mRNA level in 

HNSCCs (p ≤ 0.05) (Figure 4.3).  

 

Figure 4.3 Survival significant genes are scattered throughout 3q26-29. Correlation plot of 
genes showing the percentage of patients with increased mRNA expression as defined by a z 
score of ≥ 2 versus chromosomal location (TCGA HNSCC dataset, n = 522 samples). Circle size 
and colour denote significance of reduced overall survival. Genes identified as being highly 
significant for patient survival in this analysis and known HNSCC driver genes are labelled. 
Published in [419]. 
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These genes are spread over the 3q26-29 amplicon with no obvious clustering. In 

addition, six genes (AHSG, EIF5A2, FXR1, IGF2BP2, PSMD2 and SEC62) have a 

greater cumulative effect on survival when overexpressed simultaneously 

(Figure 4.4a) (overall survival p=2.78x10−06, disease-free survival P=1.63×10−03). 

Although not the most frequently overexpressed gene in the analysis, 

overexpression of IGF2BP2 correlated with most significant decrease in survival. 

Four of the identified genes in the 6-gene set (AHSG, EIF5A2, FXR1 and IGF2BP2) 

encode RNA-binding proteins (RBPs) which regulate the translation of numerous 

gene transcripts and hence influence a wide range of cellular functions. Pathway 

analysis of survival significant genes identified interactions with known 

oncogenes in HSNCC which are also frequently amplified or overexpressed, 

including PRKCI, SOX2 and ECT2 (Figure 4.4b).  
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Figure 4.4 Pathway analysis of survival significant genes reveals links to known oncogenes. 
(A) Survival analysis: left: Kaplan–Meier curves showing overall survival of patients with (red) or 
without (blue) overexpression of the 10-gene survival set identified in our analysis; right: table 
showing overall and disease-free survival p-values for overexpression of individual genes and 
concurrent overexpression of the gene set. Survival significance is categorised by log rank value: 
*10−1 **10−2, ***10−3, ****10−4. Survival is based on mRNA upregulation (z score ≥ 2) only. (B) 
Pathway analysis identifies interactions between survival significant genes and a module of core 
genes (PRKCI, SOX2, ECT2 and FXR1) which are known to be significant in HNSCC progression. 
GeneGo MetaCore™ was used to generate the signalling network of gene connections. Published 
in [419].  
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4.4 IGF2BP2 and PSMD2 are required for Liv7k viability in 

vitro and are highly significant for patient survival 

A number of survival-associated genes were found to be significantly upregulated 

at mRNA level in both the Liv7k cell line and TCGA dataset (blue dots, Figure 

1.9). Cross-referencing TCGA data with results from a whole genome siRNA 

screen identifies genes that are important for cell viability in the Liv7k cell line. 

Two genes (IGF2BP2, PSMD2) met all criteria, exhibiting amplified gene copy 

number, mRNA upregulation and significance for survival in patients, in addition 

to being required for Liv7k viability (Figure 4.5 and Figure 4.6). 

 

Figure 4.5 Highly expressed genes are also important for Liv7k cell viability. Scatter plot of 
mRNA expression in TCGA patient data (percentage of patients with a z score ≥ 2, cut-off minimum 
10% patients, red vertical line) and Liv7k siRNA screen (percentage growth inhibition > mean + 
1SD, blue upper horizontal line) identifies genes most substantially upregulated in patient samples 
and required for Liv7k viability. Blue dots represent 22 most highly expressed genes from RNA 
sequencing of Liv7k cell line, while 10 genes identified as significant for patient survival are labelled 
with gene symbol. 
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Figure 4.6 IGF2BP2 and PSMD2 overexpression is significantly correlated with reduced 
overall survival in HNSCC patients. mRNA overexpression (z score > 2) of either IGF2BP2 or 
PSMD2 is highly significant for overall survival in patients, as shown in Kaplan-Meier curves (log-
rank test, p < 0.01). Data generated from TCGA HNSCC dataset (n = 522 patients). Percentage of 
deceased patients at time of publication and median survival statistics are presented in graph. 
 

4.5 Discussion 

In this chapter, the process of identifying potential oncogenic driver genes in 

HNSCC is described. First, amplification of a region located at the terminal end 

of chromosome 3q in patient derived cell lines was confirmed. This region is 

amplified in a number of squamous cell carcinomas and is consistently associated 

with a poor prognosis in patients[113]. The region itself contains 188 protein-

coding genes, of which 117 (62%) are overexpressed (z score > 2) in more than 

10% of patients with HNSCC (see Figure 4.5). Additionally, 10 genes in the 

amplicon were found to be statistically correlated with for patient survival (p < 

0.05) in the TCGA HNSCC dataset (AHSG, EIF5A2, FXR1, IGF2BP2, PSMD2, SEC62, 

ALG3, DNAJC19, IL1RAP and NMD3). These genes are spread throughout the 

3q26-29 region, with no obvious clustering. Moreover, six of these genes have a 

greater negative effect on overall survival when overexpressed simultaneously 

(AHSG, EIF5A2, FXR1, IGF2BP2, PSMD2 and SEC62). 

Pathway analysis of the 10-gene set uncovered a number of interactions with 

known HNSCC driver genes, such as the stem cell maintenance gene SOX2 and 
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the protein kinase PRKCI. Of the 117 overexpressed genes, knockdown of 46 

genes (39%) caused a loss of viability greater than mean ±1 SD in a patient 

derived cell line. In the 10-gene set, overexpression of insulin-like growth factor 

2 binding protein 2 (IGF2BP2, 3q27.2) correlated most significantly with 

decreased patient survival, and silencing of the gene in Liv7k cells led to 

significant growth inhibition in a whole genome siRNA screen. Taking all of the 

data into account, IGF2BP2 was the first gene chosen for validation. 

Similarly, overexpression of proteasome 26S subunit, non-ATPase (PSMD2, 

3q27.1) correlates significantly with reduced patient survival. Moreover, 

silencing of the gene led to the highest percentage growth inhibition of survival 

significant genes in the Liv7k cell line. The gene encodes a subunit of the 19S 

regulatory cap, which flanks the 20S catalytic core of the 26S proteasome. 

Rapidly proliferating cells exhibit high rates of protein turnover and thus have an 

increased reliance on proteasomal machinery[420]. Chemical inhibition of the 

proteasome is an approved therapy for multiple myeloma[421], but has failed to 

provide a similar benefit in solid cancers such as HNSCC[422]. This is despite in 

vitro success, where treatment with the proteasomal inhibitor, bortezomib, was 

shown to induce apoptosis synergistically with cisplatin in HNSCC cells[423]. 

Moreover, bortezomib-induced proteasomal inhibition of HPV-positive HNSCC 

cells led to the restoration of functional p53 and the induction of cell cycle 

arrest[424]. In lung cancer, PSMD2 was identified as part of a metastatic gene 

signature, while silencing of the gene resulted in growth inhibition in lung 

adenocarcinoma cells[425, 426]. Given the importance of proteasomal activity in 

cancer and the inhibitory effect of PSMD2 silencing in a patient derived cell line, 

the gene was selected for follow up. 

Although not chosen for validation, previous studies have shown that other genes 

in the set can drive SCC progression and display a striking degree of cooperation 

in doing so. Four genes (AHSG, EIF5A2, FXR1 and IGF2BP2) encode RNA-binding 

proteins (RBPs), which can regulate the translation and stability of a number of 

gene targets and potentially affect a host of signalling pathways. Interestingly, 

HNSCCs have been shown to be enriched for genes encoding RBPs compared to 

matched normal tissue (p < 0.05)[427].  
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In a study of 81 HNSCC tumour samples, increased levels of fragile X-related 

gene 1 (FXR1, 3q26.33) mRNA was correlated with metastasis-free survival[428]. 

The same study also showed that FXR1 binds to and regulates the expression of 

two other 3q26-29 genes, epithelial cell transforming sequence 2 (ECT2) and 

protein kinase C iota (PRKCI), in non-small cell lung carcinoma (NSCLC). ECT2 

was overexpressed in 29% of patient tumour samples in this analysis, and has 

been shown to drive cell proliferation in oral SCC[429]. PRKCI is co-amplified 

with sex determining region Y (SOX2) and both genes cooperate to activate 

hedgehog signalling in lung squamous cell carcinoma (LSCC)[430]. FXR1 has also 

been shown to overcome cellular senescence in HNSCC through its joint 

modulation of p21 and stabilisation of TERC mRNA[431].  

Similarly, increased protein expression of SEC62 (SEC62, 3q26.2) was correlated 

with reduced overall and disease-free survival in 35 pre-treatment biopsies 

taken from patients with locally advanced HNSCC[432]. SEC62, another RBP, was 

identified as a potential oncogenic driver in prostate cancer and silencing of the 

gene significantly reduced the invasive potential of a number of cancer cell 

lines[433, 434]. Additionally, expression of the protein is essential for the 

maintenance of ER stress tolerance in the disease[435]. 

Although not directly studied in HNSCC, eukaryotic translation initiation factor 

5A2 (EIF5A2, 3q26.3) is overexpressed in a number of malignancies, where it is 

correlated with a poor prognosis and/or an aggressive phenotype[436-439]. 

Knockdown of the gene significantly impaired proliferation, migration and 

invasion processes in gastric cancer cell lines and was accompanied by 

downregulation of cyclin D1 (CCND1)[440]. Recent studies have shown that 

EIF5A2 promotes oncogenesis through its upregulation of the metastasis-

associated protein 1 gene (MTA1) in a c-MYC dependent process, which 

positively regulates epithelial to mesenchymal transition (EMT)[438]. Recently, 

it was discovered that functional EIF5A is essential for HIF-1α activation during 

hypoxia[441]. In this way, the 3q26-29 amplicon may promote the adaption of 

HNSCC cells low oxygen environments, thereby driving the selection of cells with 

a more aggressive phenotype. 

The majority of alpha-2-HS-glycoprotein (AHSG, 3q27) is synthesized in the liver 

and secreted into serum where it is involved in bone remodelling[442]. However, 
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the oral cavity is unique in that it can produce endogenous AHSG, which has 

been shown to promote a more invasive phenotype in HNSCC cell lines[443]. In 

support of this role, it has been demonstrated that circulating AHSG can protect 

matrix metalloprotease 9 (MMP9) from autolytic degradation potentially 

enhancing invasion[444]. In vivo studies have shown that AHSG can also promote 

the progression of breast cancer through its modulation of TGFβ signalling[445], 

while AHSG-/- mice show a reduced tumour burden in a Lewis Lung carcinoma 

model[446]. 

Overall, it is clear that the 3q26-29 amplicon contributes to HNSCC progression 

through the overexpression of one of more of its constituent genes. However, 

extricating the network of genes and the role each plays is difficult. Moreover, 

the degree of cooperation between these genes in HNSCC is unknown and makes 

the identification of putative driver genes even more challenging. Some of the 

genes contained within the amplicon are known oncogenes in the disease and a 

small number are targeted by currently available drugs, for example PIK3CA[447] 

and PRKCI[448]. Given the degree of interaction between certain genes, 

combination therapy may be the optimal way forward. However, the fact that 

overexpression of known HNSCC oncogenes (such as the two aforementioned 

genes) did not significantly affect patient survival in the TCGA dataset could 

place a greater importance on as yet undiscovered upstream mediators.  

The PI3K pathway is the most frequently mutated pathway in HNSCC, with a 

third of pathway genes containing driver mutations[57]. However, of the 162 

HNSCC samples overexpressing PIK3CA in this analysis, only 21.5% contain 

activating mutations in the gene. This substantiates the importance of 3q26-29 

amplification in HNSCC. Refinement of existing therapies to improve efficacy is a 

worthwhile venture, however intrinsic heterogeneity of tumours and the 

development of resistance will always be an obstacle to successful treatment. 

The development of novel targeted therapeutics is essential to maximise benefit 

to patients with HSNCC in the long run. There was a strong rationale to follow up 

of a number of 3q26-29 genes as potential therapeutic targets and/or predictive 

biomarkers, but based on patient survival data, two genes (IGF2BP2 and PSMD2) 

were selected to be characterised more fully for their role in HNSCC progression. 
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Chapter 5 Results – Validation of IGF2BP2 as a 
driver gene in oral squamous cell carcinoma 

5.1 Introduction 

Overexpression of IGF2BP2 had the most significant correlation in terms of 

overall patient survival in an analysis of TCGA data. The gene was also shown to 

be important for viability in a patient derived oral cancer cell line. An RNA-

binding protein (RBP), known to be upregulated in many cancers[177], IGF2BP2 

was selected as one of the targets for further investigation in this body of work. 

A comprehensive summary of what is known about the role of IGF2BP2 is 

provided in chapter 1.5. First, validation of knockdown and the effect on 

growth was carried out using deconvolved siRNA (the same as those used in the 

screen). Next, pathway analysis was performed on computationally predicted 

mRNA targets of IGF2BP2 from a collection of experimentally probed RBP binding 

sites in human transcriptomes[449]. The wider role of IGF signalling components 

was assessed using results from the siRNA screen and RNA sequencing data, 

which were carried out as part of this study. 

Based on the purported role of IGF2BP2 in IGF2-IGF1R-PI3K-AKT signalling[177], a 

major aim of this project was to determine the effect of IGF2BP2 depletion on 

cellular function. To this end, a number of models were created for use in 

phenotypic assays. These included knockdown of IGF2BP2 using siRNA, shRNA 

and CRISPR technologies. Upon validation of effective knockdown, these models 

were employed in proliferation, migration and invasion assays, as well as other 

3D models and metabolic measurements. In addition, western blots were 

performed to determine if IGF2BP2 is involved in oncogenic signalling. 
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5.2 IGF2BP2 expression in a series of oral SCC cell lines 

and validation of growth inhibition 

Gene expression levels of IGF2BP2 were measured in a panel of oral cancer and 

immortalised “normal” control cell lines using qRT-PCR (Figure 5.1). This 

allowed for categorisation of cell lines, which have high and low gene expression 

of IGF2BP2. In the panel, Liv7k cells had the highest expression of the gene, 

while Liv37k cells had the lowest, which corresponded to measured copy 

number. Two immortalised keratinocyte cell lines, OKF4 and OKG4, exhibited 

moderate expression of IGF2BP2. The inhibitory effect on cell growth was 

validated using a deconvolved pool of the screen siRNA set (Figure 5.2A). The 

percentage growth inhibition caused by IGF2BP2 knockdown varied with no 

obvious selectively for carcinoma cell lines over the immortalised cell lines. 

Knockdown efficiency of each deconvolved siRNA is shown in Figure 5.2B, as 

determined by qRT-PCR and western blot. 

 

Figure 5.1 : Bar chart showing mRNA expression of IGF2BP2 in four oral SCC cell lines 
(Liv7k, Liv52k, KR19, Liv52k) and two oral keratinocyte cell lines (OKF4, OKG4). Gene 
expression was measured by qRT-PCR and normalised to ACTB. Data is mean ± SD of three 
independent experiments.  
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Figure 5.2 Silencing of IGF2BP2 results in growth inhibition in oral SCC and oral 
keratinocyte cell lines. (A) Bar chart showing the effect of IGF2BP2 knockdown on cell growth. 
Results are plotted relative to non-targeting control siRNA (NTC). Data is mean ± SD of three 
technical replicates. (B) qRT-PCR showing reduction in IGF2BP2 gene expression after siRNA 
knockdown in Liv7k cells. IGF2BP2 expression was normalised to ACTB and presented relative to 
NTC. Data is mean ± SD of three biological replicates. Inset: western blot of IGF2BP2 expression 
after transfection with pooled siRNA used in screen. α-tubulin was used as a loading control.  
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5.3 Predicted Binding Sites of IGF2BP2 

In order to determine a potential role for IGF2BP2 in human cancer, predicted 

binding targets of the protein were acquired from a publically available 

database, (POSTAR, platform for exploring POST-trAnscriptional Regulation 

coordinated by RNA-binding proteins)[449]. These were input into the Reactome 

(http://www.reactome.org)[450] database to determine if IGF2BP2 

preferentially bound genes involved in a particular biological process. The 

POSTAR database contained mRNA targets of the protein in HEK293 cells only, in 

which there were over 100,000 sequence clusters recognised by IGF2BP2, with 

preferential binding to a CAUH (H = A/U/C) consensus sequence[451]. Overall, 

IGF2BP2 binding sequences were present in 3,442 protein coding mRNA 

transcripts (“Piranha” peak-calling, p-value < 0.01)[449]. Analysis of these 

transcripts using the Reactome database revealed significant overrepresentation 

of genes involved in cell cycle progression and metabolism of RNA (Table 5.1) 

[452, 453]. 

Rank Pathway 
Identifier Pathway Name Genes 

Found 
Genes 
Total Ratio P value FDR 

1 R-HSA-69278 Cell Cycle, Mitotic 239 566 0.0418 8.33E-10 1.72E-06 

2 R-HSA-1640170 Cell Cycle 272 680 0.0503 8.08E-09 8.34E-06 

3 R-HSA-72163 mRNA Splicing 96 185 0.0136 2.27E-08 1.56E-05 

4 R-HSA-72203 

Processing of 
Capped Intron-
Containing Pre-

mRNA 

121 254 0.0187 3.91E-08 2.02E-05 

5 R-HSA-72172 mRNA Splicing 97 196 0.0145 1.62E-07 6.69E-05 

6 R-HSA-69620 Cell Cycle 
Checkpoints 121 279 0.0206 3.75E-06 1.29E-03 

7 R-HSA-8953854 RNA Metabolism 285 782 0.0578 7.35E-06 2.16E-03 

8 R-HSA-453279 Mitotic G1-G1/S 
phases 80 170 0.0125 1.10E-05 2.83E-03 

9 R-HSA-3247509 Chromatin 
modification 110 257 0.0190 1.73E-05 3.46E-03 

10 R-HSA-4839726 Chromatin 
organization 110 257 0.0190 1.73E-05 3.46E-03 

Table 5.1 Reactome analysis reveals predicted IGF2BP2 function. The top 10 biological 
processes of 3,442 protein-coding genes containing IGF2BP2 binding sites in HEK293 cells, as 
predicted by POSTAR[449]. Pathway hits are ranked by p value. FDR, false discovery rate. 
  

http://www.reactome.org/
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All three IGF2BP family members appear to recognise a similar set of target 

transcripts, suggesting a degree overlapping functionality [451]. However, this 

study used exogenously expressed IGF2BP2 and it is been shown that this can 

lead to aberrant sedimentation of RNA, as evidenced by sucrose gradient 

sedimentation[155]. Therefore, further validation is needed to confirm binding 

of IGF2BP2 to its proposed mRNA target.  

5.4 IGF2 is highly expressed in tumour cell lines 
compared to immortalised oral keratinocytes 

In chapter 4, IGF2BP2 was identified as part of an amplified region of 

chromosome 3 in two oral SCC cell lines (Liv7k, KR19). However, several layers 

of regulation exist between genomic DNA and the finished gene transcript. Most 

studies have reported a reasonable correlation between gene copy number (CN) 

and mRNA expression (GE) [454, 455]. As a rule, CN amplification is a stronger 

predictor of increased GE than vice versa. Pollock et al. reported that 40-60% of 

high level CN amplifications in human breast cancer tumours also showed 

elevated GE, while only ~10% of highly expressed genes were amplified[456]. In 

line with this, approximately 36% of patients with amplified IGF2BP2 copy 

number in the TCGA HNSCC database also exhibit overexpression of IGF2BP2 

mRNA. 

Previous studies have shown that IGF2BP2 binds to and stabilises IGF2 mRNA, 

thus regulating its translation[180, 457, 458], making the insulin signalling 

pathway a primary target for functional validation. IGF2 is a growth factor, 

which is most highly expressed in the early developmental stages. To this end, 

RNA sequencing of two patient-derived oral SCC (Liv7k, KR19) and two purchased 

oral keratinocyte cell lines (OKF4, OKG4) revealed mRNA expression levels of 

insulin pathway components (Liv7k comparisons are shown in Figure 5.3 and 

5.4, but KR19 was similar). The mRNA expression level of IGF2 was significantly 

higher in the SCC cell lines compared to oral keratinocyte cell lines, whereas 

IGF2BP2 was similarly expressed in all tested cell lines. Negligible levels of IGF1, 

IGFBP1 and INS and INSR were observed in tested cell lines. Copy number 

analysis of IGF2BP2 in the oral keratinocyte cell lines was not performed, so the 

correlation between copy number and mRNA could not be directly assessed for 

these lines. 
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Figure 5.3 RNA sequencing reveals fold change gene expression of insulin signalling genes 
between Liv7k and OKF/OKG4 cell lines. Scatter plot showing fold change of gene expression 
between Liv7k oral SCC cell line and two immortalised keratinocyte cell lines (OKF4, OKG4). Circle 
size and colour depicts significance according to unpaired t-test (p value). Insulin pathway genes 
are labelled. 

 

 
Figure 5.4 RNA sequencing reveals gene expression of insulin signalling genes. Mean 
normalised read count of insulin signalling genes in two oral SCC cell lines (Liv7k, KR19) and two 
immortalised keratinocyte cell lines (OKF4, OKG4). IGF2BP2 is highlighted. 
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5.5 Knockdown of insulin signalling genes results in 

suppression of fitness in Liv7k cell line 

RNA expression of IGF2BP2 and other insulin pathway signalling genes was 

analysed in order to identify components of the pathway, which were 

upregulated in oral cancer cell lines versus immortalised keratinocyte lines. In 

addition, percentage growth inhibition (GI) data from the siRNA screen revealed 

variable dependencies on IGF signalling genes, with knockdown of IGF2BP2 

causing approximately 30% GI (Figure 5.5 and Figure 5.6). Applying a minimum 

cut-off value of 20% GI, genes that are important for survival in the Liv7k oral 

SCC cell line include IGF1, IGF2, IGF2BP2, IGFBP2, IGFBP4, IGFBP6, IGFBP7 and 

INSR.  

The mRNA expression of IGF2BP2 does not change significantly between tumour 

and keratinocyte cell lines. However, it is possible that IGF2BP2 acts on a 

different set of target transcripts in cancer cells compared to normal, or exhibits 

different activities. Interestingly, silencing of IGF2 results in a similar 

percentage growth inhibition as IGF2BP2; possibly suggesting that IGF2BP2 is 

exerting its phenotypic effect through the IGF2 growth factor. 

Despite the negligible expression of IGF1, INS and INSR (shown in Figure 5.4), 

knockdown of these genes using pooled siRNAs resulted in a high percentage 

growth inhibition (Figure 5.6). This suggests that the siRNAs used in the screen 

are having off-target effects. 
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Figure 5.5 Scatter plot showing percentage growth inhibition in the Liv7k (median) cell line 
versus fold change of gene expression between Liv7k and OKF4 cell line. Thick lines 
represent fold change ≥ 2 for fold change and minimum growth inhibition of 30%, relative to siNTC 
control; colour is percentage growth inhibition upon gene knockdown in Liv7k cell line (green = low, 
red = high). IGF2BP2 is highlighted. 

 

  

Figure 5.6 The effect on Liv7k growth of knockdown of insulin pathway genes in siRNA 
screen. Results are normalised to non-targeting control (NTC) and presented as mean ± SD. 
IGF2BP2 is highlighted. 
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5.6 Quantification of IGF2BP2 levels in patient tumour vs 

matched normal tissue 

IGF2BP2 is overexpressed in ~22% of patients with HNSCC, according to the TCGA 

dataset. To determine IGF2BP2 expression in patient derived tumours versus 

normal matched tissue, RNA was isolated from four tumour/normal paired 

samples and converted to cDNA for qRT-PCR analysis (Figure 5.7). Two out of 

four showed increased expression of IGF2BP2 (fold change > 2) while a decrease 

was observed in one sample. Normal as described here refers to a sample taken 

from outside the tumour boundary, and was not histologically defined. IGF2BP2 

copy number was not measured in these tumour samples, but analysis of HNSCC 

(and oral SCC) datasets in Oncomine (www.oncomine.org) reveals consistent 

over-expression of the gene in tumours compared to normal matched tissue[459-

463]. 

 

Figure 5.7 IGF2BP2 mRNA expression was measured in patient tumour and matched normal 
samples. qRT-PCR showing IGF2BP2 gene expression in patient samples. IGF2BP2 expression 
was normalised to ACTB and given as tumour/normal. Data is mean ± SD of three technical 
replicates from the same samples.  
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5.7 Generation of an shIGF2BP2 knockdown model 

In order to further assess the role of IGF2BP2 in HNSCC, Liv7k and Liv37k cells 

were infected with an inducible shRNA plasmid, which also contained an RFP 

reporter for visual confirmation of induction. After selection, cells were further 

selected by fluorescence-activated cell sorting. Cells were treated for 72 hours 

with doxycycline to induce maximum RFP expression and cells with high RFP 

expression were isolated and cultured independently (Figure 5.8). 

 

 

Figure 5.8 Generation of an inducible shRNA knockdown model. (A) FACS of Liv7k cells into 
high RFP expressing sub-population. (B, C) The efficiency of shRNA knockdown was assessed by 
western blot and RTq-PCR in Liv7k and Liv37k cells. For western blots, cells were treated with 
1µg/mL doxycycline for 72 hours prior to cell lysis. 20µg of protein was loaded per lane. ACTB was 
used as a loading control. RTq-PCR results are the mean ± SD of three biological replicates. 
IGF2BP2 expression was normalised to ACTB reference gene and presented relative to shNTC 
negative control.  
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5.8 IGF2BP2 knockdown does not significantly affect oral 

cell line propagation 

Evidence in the literature has suggested that IGF2BP2 can enhance growth and 

survival of cancer cells[177]. To determine the role of IGF2BP2 in promoting an 

aggressive phenotype in oral SCC (based on TNM stage), a series of phenotypic 

assays were performed upon shRNA-mediated knockdown of the gene. The 

Incucyte ZOOM® (Essen BioScience) was used to measure cell propagation, 

migration and invasion, which were quantified using ZOOM software. Two unique 

shRNA sequences (#12532, #164973) were tested in each assay, with identical 

results. Hence, the result for one shRNA only is shown here.  

The result of each knockdown was normalised to a non-targeting control cell 

line. 1µg/mL doxycycline was added 72 hours prior to starting assays to ensure 

complete knockdown at experimental start point. Two cell lines were tested in 

each assay (Liv7k and Liv37k) because of their high and low expression of 

IGF2BP2, respectively. In addition, the Liv37k cell line exhibited a loss of the 

3q26-29 region (Figure 4.1). 

Cell propagation analysis (percentage confluence) revealed no impairment of 

propagation in either cell line. A representative result of shRNA-mediated 

knockdown is shown below (Figure 5.9). Non-doxycycline treated cells serve as 

an additional control showing changes in proliferation rates are not due to 

silencing of IGF2BP2. 
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Figure 5.9 Cell propagation quantification following silencing of IGF2BP2 in (A) Liv7k and 
(B) Liv37k. Percentage confluence is shown for a non-targeting negative control cell line (shNTC) 
and a stable IGF2BP2 knockdown cell line (sh#12532) for each cell line. Results are plotted as the 
mean ± SD of one representative experiment, n=3-6 wells.  
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5.9 IGF2BP2 knockdown does not significantly affect oral 

cell line migration 

The effect of IGF2BP2 knockdown on cell migration (wound healing assay) was 

measured and normalised to the shNTC negative control cell line. The result for 

one representative experiment is shown below (Figure 5.10). Knockdown of 

IGF2BP2 did not significantly impair cell migration following wounding of the 

monolayer. Follow up experiments in which human recombinant insulin and IGF-I 

growth factor were added in addition to knockdown yielded a similar result 

(data not shown). 

 

 

Figure 5.10 Measurement of cell migration following silencing of IGF2BP2 in (A) Liv7k and 
(B) Liv37k cells. Cells were pre-treated with 1µg/mL doxycycline and grown to a confluent 
monolayer over 24h. Following this, a scratch was made. The wound was imaged every two hours 
until complete closure. Relative wound density was calculated by the Incucyte ZOOM software and 
represents the density of the wound at the indicated time points compared to the initial wound. 
Graph shows results from one representative experiment, mean ± SD, n=3–6 wells per condition.  
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5.10 IGF2BP2 knockdown does not impair oral cell line 

invasion 

The rate of invasion through matrigel extracellular matrix was measured in Liv7k 

and Liv37k cell lines after IGF2BP2 knockdown. A schematic of the scratch assay 

is shown in Figure 5.11. However, silencing of the gene did not significantly 

slow the rate of invasion in the scratch assay over a 72-hour period (Figure 

5.12). Induction of the shRNA was confirmed by imaging in both brightfield and 

the red channel (representative result shown in Figure 5.13). 

 

Figure 5.11 Schematic representation of scratch assay used to assess oral SCC invasion. 
Briefly, diluted matrigel was used to coat each well of a 96-well plate and incubated overnight. The 
next day, 30,000 cells per well were seeded on top of the matrix layer and allowed to adhere 
overnight at 37°C / 5% CO2. A scratch was made using a Woundmaker™ (Essen Bioscience) and 
concentrated matrigel was added on top of the cell layer. Images were acquired every 2-3 hours for 
72 hours on the Incucyte Zoom 3™ (Essen Bioscience). 
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Figure 5.12 Cell invasion analysis following IGF2BP2 knockdown in (A) Liv7k and (B) Liv37k 
cells. Knockdown of IGF2BP2 does not impair wound healing through matrigel. Cells were pre-
treated with doxycycline and grown to a monolayer over 24 h. Following this, a scratch was made 
and images were taken every 2 hours for 72 h. Relative wound density was calculated by the 
Incucyte ZOOM software and represents the density of the wound at the indicated time points 
compared to the initial wound. Graph shows results from one representative experiment, mean ± 
SD, n=3–6 wells per condition. 
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Figure 5.13 Confirmation of RFP induction in Liv37k cells stably expressing the plasmid.



5.11 The role of IGF2BP2 in epithelial to mesenchymal 
transition (EMT) 

Metastasis to local lymph node is a multistep process involving the detachment 

of transformed cells from tumour tissue and invasion through the extracellular 

membrane. Loss of E-cadherin leads to reduced intracellular adhesion of tumour 

cells and a more mesenchymal phenotype. In addition to directly assessing the 

role of IGF2BP2 in invasion, evidence suggests that IGF2BP2 may promote 

invasion indirectly through its modulation of epithelial to mesenchymal 

transition (EMT)[177].  

Different invasive phenotypes were observed in the Liv7k and Liv37k cell lines, 

which were dyscohesive and non-cohesive, respectively. Expression of common 

markers of EMT (Slug, Snail and E-cadherin) was measured by western blot in the 

Liv7k and Liv37k cell lines. Complete loss of E-cadherin and high expression of 

Slug and Snail were observed in the Liv37ks, suggesting a more invasive 

phenotype in this low-expressing IGF2BP2 cell line. Silencing of IGF2BP2 led to a 

decrease in the expression of Snail, but not Slug in the Liv37k cell line (Figure 

5.14). 

 

Figure 5.14 IGF2BP2 knockdown leads to decreased Snail expression in Liv37k cell line. 
Western blot showing expression of E-cadherin, Slug and Snail in IGF2BP2-knockdown cell lines. 
20µg protein was loaded per well and α-tubulin was used as a loading control. 
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5.12 IGF2BP2 depletion did not significantly impair 

chemotactic invasion in Liv37k cells 

Based on their enhanced invasiveness and EMT, Liv37k cells were selected for 

another invasion assay, this time involving a chemoattractant. These results 

suggest that IGF2BP2 is not required for chemotactic invasion in oral SCC cells as 

no difference in invasion was observed in a matrigel-containing transwell 

membrane (Figure 5.15). 

 

 

Figure 5.15 Inverse invasion assays were performed on shIGFBP2-induced Liv37k cell line. 
Cells were seeded in media (- EGF) and left to invade upwards toward media (+EGF and 20% 
FBS) for 5 days, when cells were live-cell stained with calcein AM and imaged using confocal 
microscope. Graph shows quantification of calcein AM area as measured by Fiji (ImageJ), mean ± 
SD, n = 3 independent experiments. 
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5.13 IGF2BP2 knockdown did not affect spheroid growth 

This project has mainly used in vitro 2D phenotypic assays to assess the role of 

IGF2BP2 in oral cancer progression. However, a 2D monolayer does not 

reproduce the complex architecture of a tumour in vivo, and often creates 

discrepancies in the efficacy of anti-cancer compounds. 3D culturing of cells 

creates a more physiologically relevant environment and represents the early, 

avascular stage of tumour formation. Additional factors such as tumour 

heterogeneity, hypoxia, cell-cell interaction and the remodelling of extracellular 

matrix are recapitulated in a 3D context[464].  

In order to provide a more accurate depiction of the role of IGF2BP2 in vivo, 3D 

spheroid models were formed using three oral SCC cell lines (Liv7k, Liv37k and 

Liv72k) with and without IGF2BP2 knockdown. Silencing of IGF2BP2 did not 

affect spheroid growth in any cell line tested. The results for one experiment 

carried out on the Liv7k cell line is shown in Figure 5.16.  
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Figure 5.16 Spheroid formation assay, showing the effect of IGF2BP2 knockdown in the 
Liv7k cell line. 5000 cells/well were seeded in ultra-low attachment round bottomed plates in ECM 
matrix and spun down to form a sphere. After 3 days, concentrated invasion matrix gel was added 
and images of spheroids were taken with 4x objective lens. Image quantification was carried out 
using ImageJ. Results are presented as mean ± SD (n = 6) based on one experiment. 
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5.14 The role of IGF2BP2 in mitochondrial metabolism 

Based on previous results published by Janiszewska et al.[179], measurements 

reflecting mitochondrial activity were made in the Liv7k and Liv37k (not shown) 

cell lines. Following stable knockdown of IGF2BP2, oxygen consumption rate 

(OCR) and extracellular acidification rate (ECAR), which are indicative of levels 

of oxidative phosphorylation and glycolysis, respectively, were measured (Figure 

5.17). No significant change was detected in either metabolic readout.

 

 

Figure 5.17 The effect of IGF2BP2 depletion on OCR and ECAR in Liv7k cell line. (A) Bar 
chart showing OCR and ECAR normalised to number of nuclei. Values were normalised to post-
measurement nuclei counts (DAPI stained cells read on Operetta) and presented as mean ± SD, 
n=20 wells. One representative experiment of three biological replicates. (B) Extracellular flux 
analysis in Liv7k cell line. OCR was measured under basal conditions followed by the sequential 
addition of oligomycin (1μM), FCCP (1μM), rotenone (1μM)  and antimycin A (1μM). Each data 
point represents an OCR measurement. OCR, oxygen consumption rate; ECAR, extracellular 
acidification rate. 
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5.15 The role of IGF2BP2 in the regulation of oncogenic 

signalling 

In order to determine if IGF2BP2 is an upstream activator of oncogenic signalling 

pathways, western blots were performed following shRNA-mediated knockdown. 

The results for the Liv7k cell line are shown in Figure 5.18. Human recombinant 

insulin was added to stimulate IGF-1R activation. However, no decrease in the 

phosphorylation of AKT, MAPK or p70 S6 kinase was observed. Similar results 

were obtained for the Liv37k and Liv72k cell lines and for cells treated with IGF1 

growth factor (data not shown). Knockdown of IGF-1R did not decrease IGF2BP2 

expression and silencing of IGF2BP2 did not decrease IGF-1R phosphorylation in 

Liv7k or Liv37k cell lines (data not shown). Given that knockdown of IGF-1R did 

reduce the expression of phospho AKT and MAPK, it appears that IGF2BP2 is not 

acting via this receptor, at least in oral cancer (Figure 5.19). 

 

Figure 5.18 The effect of IGF2BP2 knockdown on oncogenic signalling in the Liv7k cell line. 
Western blot shows expression of phospho and total AKT, phospho and total MAPK, phospho and 
total p70 S6 kinase and PI3K upon IGF2BP2 knockdown. 20µg protein was loaded per well and β-
actin was used as a loading control. Insulin was added to cells for 5 minutes prior to cell lysis.  
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Figure 5.19 Western blot showing expression of phospho and total IGF1R, IGF2BP2, 
phospho and total AKT and phospho and total MAPK upon IGF1R knockdown in Liv7k cell 
line. Results include cells treated with 100ng/mL IGF-1 for 15 minutes. 20µg protein was loaded 
per well and α-tubulin was used as a loading control. 
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5.16 Discussion 

In this chapter, the role of IGF2BP2 in HNSCC was assessed in a variety of 

phenotypic assays. There was a strong rationale in selecting the gene as a 

potential oncogenic driver in the diseases, based on genomic data and its 

correlation with patient survival. RNA-binding proteins, like IGF2BP2, interact 

with a large number of RNA transcripts throughout the cell and thus have the 

potential to influence a wide range of cellular processes[465]. RNA-

immunoprecipitation experiments have uncovered a host of new binding targets, 

further expanding the possible roles of IGF2BP2[173]. Previous studies have 

shown how IGF2BP2 can control oxidative phosphorylation in primary 

glioblastoma spheroids, and regulate the translation of EMT proteins[179, 213].  

TCGA patient data reveals IGF2BP2 upregulation in ~22% of HNSCC tumour 

samples. However, the same is true of many of genes in the 3q26-29 amplicon. It 

is likely that the majority of genes contained within this region are passengers of 

larger amplification events and have no effect on cell phenotype. For this 

reason, it was necessary to factor in additional selection criteria, such as patient 

survival, to refine the list of genes down to a more manageable set of 10 genes. 

In this set, IGF2BP2 had the highest individual significance on patient survival 

and pathway analysis revealed putative interactions with known oncogenic 

drivers in the disease. Knockdown of the gene also resulted in a high percentage 

loss of viability in the siRNA screen. This stepwise process of elimination allowed 

for the selection of the most likely driver gene candidates in HNSCC progression. 

Insulin signalling represents a key mechanism of HNSCC cell growth and 

survival[466]. IGF1R expression is higher in advanced TNM staged oral SCC 

tumours and is predictive of clinical outcome[120].  Moreover, the receptor can 

be trans-activated with EGFR[467], which also promotes cancer progression, 

metastasis and therapeutic resistance in the disease[468]. A number of small 

molecule inhibitors and monoclonal antibodies to IGF1R have entered clinical 

trials in recent years. Yet, despite a strong rationale, they have failed to show 

significant benefit to patients because of development of resistance and 

receptor crosstalk[153]. 
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Knockdown of IGF2BP2 was achieved by siRNA, shRNA and CRISPR knockout, and 

each system was tested in phenotypic assays. CRISPR knockout cell lines yielded 

similar results to the shRNA models and thus results are not shown. In this study, 

knockdown of IGF2BP2, by any means, did not have a significant effect on the 

proliferation, migration or invasion in a set of oral SCC cell lines. Silencing of 

IGF2BP2 did not impair the growth rate of 3D spheroid models or result in a 

change in oxygen consumption rate. Importantly, knockdown of the gene did 

appear to decrease SNAIL expression in one cell line (Liv37k), but it did not 

translate to a reduced capacity to invade. Moreover, silencing of IGF2BP2 did not 

significantly influence major oncogenic signalling networks in HNSCC. The 

decreased expression of SNAIL in Liv37k cells (which display loss of 3q26-29 and 

have the lowest gene expression of IGF2BP2) is surprising, and may suggest that 

a minimal level of IGF2BP2 activity is required to maintain an aggressive 

phenotype in oral cancer. Overexpression of the gene in this cell line would 

perhaps provide more insight into its cellular function. 

Overall, despite a solid rationale for characterising the role of IGF2BP2 

overexpression, the results here show that it is most likely not a major player in 

HNSCC progression. To date, this is the first functional assessment of IGF2BP2 in 

a head and neck cancer setting. Studies demonstrating an oncogenic role for the 

gene thus far have been performed in other cancer models with potentially very 

different genetic backgrounds. Moreover, the heterogeneity of HNSCC itself may 

explain the inconsistencies in response to IGF2BP2 knockdown in this study. The 

Liv7k and Liv37k cell lines were primarily chosen for their high and low 

expression of IGF2BP2, respectively, and it was hypothesised that these cell lines 

would respond differently to the silencing of the gene. Despite originating from 

primary tumours with nodal involvement, the Liv7k and Liv37k cells displayed 

different invasive phenotypes (dyscohesive and non-cohesive, respectively) 

which may also have influenced their response to IGF2BP2 knockdown. I have 

recently completed an RNA-immunoprecipitation experiment with the Liv7k cell 

line, which is due to be sequenced in the near future. I hope that this will reveal 

novel binding partners of IGF2BP2 and provide further insight into its role in a 

head and neck cancer.  
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Chapter 6 Results – Validation of PSMD2 as a 
driver gene in oral squamous cell carcinoma 

6.1 Introduction 

PSMD2 was the second gene selected for phenotypic validation based on the 

analysis of the 3q26-29 amplicon. The gene, which encodes a subunit of the 26S 

proteasome, is overexpressed in 34% of patients with HNSCC and is significantly 

correlated with reduced overall survival in these patients (Figure 4.3). 

Moreover, silencing of the gene resulted in ~40% growth inhibition of Liv7k cells 

(Figure 4.5). Investigation of the proteasome as a therapeutic target also led to 

the identification of proteasomal subunit genes, which are downregulated in 

patients with HNSCC (compared to normal tissue), such as PSMD6. As proteasome 

activity is essential for cellular function, it was hypothesized that targeting 

genes with partial copy number loss would result in greater loss of viability in 

cancer cells than normal cells. In this chapter, copy number loss of PSMD6 is 

confirmed using Taqman® assays in a series of oral cell lines and the effect of 

siRNA knockdown on cell viability is measured. Dysregulation of the proteasome 

complex is clinically significant in a number of disease pathologies, and can be 

therapeutically exploited in the clinic. 

PSMD2 encodes a non-ATPase subunit (RPN1) of the 19S regulatory cap, which 

exists bound to a 20S catalytic core to form the 26S proteasome (Figure 6.1). 

RPN1 is the largest proteasomal subunit at 110 kDa and coordinates ubiquitin 

processing factors at the boundary between the regulatory and catalytic 

domains[469, 470]. Like PSMD2, PSMD6 encodes a protein in the 19S regulatory 

cap (RPN7) (Figure 6.1). In S. cerevisiae, the protein is essential in the 

maintenance of proteasomal integrity[471], and in human cells it has been 

shown to co-localise with DNA damage foci where it promotes cellular 

senescence following genotoxic insult[472]. Evidence for RPN7’s role in DNA 

damage repair has been strengthened by the finding that it interacts with 

BRCA2[473]. Two other proteasomal subunits, PSMC2 and PSME4, are 

investigated in this chapter based on their copy number alteration status. The 

former encodes RPT1, another essential subunit of the 19S regulatory cap while 

the latter encodes PA200, a regulator of proteasomal activity that stimulates the 
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hydrolysis of small peptides without using ATP[474]. The protein, which is 

primarily localised in the nucleus[475], is required for normal spermatogenesis in 

mice and plays an important role in DNA repair by recruiting proteasomes to 

sites of double stranded breaks[476, 477]. A putative role for PA200 has been 

discovered in a cancer setting where it was shown to regulate tumour cell 

responsiveness to glutamine after exposure to ionising radiation, by enhancing 

postglutamyl proteolytic activity[478, 479]. 

The proteasome represents the end stage of ubiquitin-mediated protein 

degradation and is essential for the maintenance of cellular homeostasis. 

Bortezomib (Velcade®; Millennium Pharmaceuticals Inc., Takeda Oncology, 

Cambridge, MA, USA) specifically targets the β5 subunit of the 20S core, 

inhibiting the chymotrypsin-like activity of the proteasome[480]. Evidence 

suggests that individual subunits play distinct roles in cancer, for example, 

PSMD9 expression has been shown to predict radioresistance in breast cancer 

whereas PSMD10 overexpression can promote cell survival in hepatocellular 

carcinoma[481, 482]. 

 

Figure 6.1 Structure of the 26S proteasome. The 20S catalytic core consists of a barrel of four 
stacked rings (two outer α rings and two inner β rings) and is capped on both ends by 19S 
regulatory particles. RPN1 (PSMD2) is highlighted in red. Bortezomib specifically inhibits the β5 
subunit of the 19S regulatory particle, which is responsible for chymotrypsin-like activity.  



138 
 
In addition to residing in a commonly amplified region of chromosome 3 (q26-

29), PSMD2 was identified as part of a metastatic gene signature in lung cancer 

where high expression of the gene correlates with poor prognosis[425]. 

Furthermore, knockdown of the gene significantly reduced proteasomal activity 

and proliferation in a panel of lung adenocarcinoma cell lines[426]. 

Interestingly, the authors of this study observed an increase in the expression of 

p21 (as well as a modest increase in p53 expression) upon silencing of PSMD2. 

Interestingly, a recent study found that a modest reduction of PSMD2 expression 

induced a shift in 20/26S proteasome complex ratios and protected cells against 

proteasomal inhibition by bortezomib[483]. 

Dependence on proteasomal turnover can leave cancer cells vulnerable to the 

silencing of subunit genes. Indeed, Nijhawan et al. recently showed that tumour 

cells harbouring partial loss of the PSMC2 gene are more sensitive to its silencing 

by siRNA/shRNA than non-tumour cells with normal copy number[484]. In a 

similar manner, this study aims to determine if oral cancer cells harbouring 

partial copy number loss of PSMD6 are more sensitive to knockdown of the gene. 

Collectively, these observations highlight the diverse and dynamic roles of 

proteasomal subunit genes in cancer progression. The current project seeks to 

investigate this reliance in two ways: firstly, to determine if overexpression of 

PSMD2 in oral SCC cell lines confers enhanced sensitivity to bortezomib; and 

secondly, to investigate the sensitivity of oral SCC cell lines exhibiting loss of 

copy number of proteasomal subunit genes to further suppression. 

Tumour cells are heavily reliant on proteasomal machinery in order to support 

high rates of proliferation. Since the FDA’s approval of bortezomib for the 

treatment of multiple myeloma in 2003[480], a number of next generation 

proteasome inhibitors have been developed[485]. However, the success of these 

inhibitors in blood-borne cancers has not extended to solid tumours. Bortezomib 

has been trialled in HNSCC in combination with existing chemotherapies, but the 

response rate in patients has been low[422]. The primary aim of this chapter is 

to determine whether targeting specific proteasomal subunit genes, such as 

PSMD2 or PSMD6 could represent a viable therapeutic strategy in HNSCC, or 

improve the efficacy of existing drugs.  
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6.2 PSMD2 is frequently overexpressed in HNSCC patient 

samples 

Using TCGA’s cBioPortal, the mRNA expression of 43 genes encoding proteasomal 

subunits were queried in the HNSCC dataset (n = 522), revealing upregulation of 

PSMD2 gene expression (z score > 2) in 34% of tumour samples (Figure 6.2). 

Moreover, silencing of the gene caused ~40% growth inhibition in the Liv7k cell 

line, possibly because of incomplete knockdown owing to extra gene copies. 

PSMD2 copy number amplification was present in ~20% of these tumour samples, 

a value consistent with other 3q26-29 genes. 

 

Figure 6.2 Genomic profiling of upregulated genes encoding proteasomal subunits. 43 
genes encoding proteasomal subunits were queried in TCGA’s cBioPortal (n = 522 samples). The 
percentage of patients with gene overexpression (z score ≥ 2) is plotted against the percentage 
growth inhibition resulting from gene knockdown in the Liv7k cell line, normalised to a non-targeting 
control siRNA. Dashed lines indicate a minimum cut-off of 30% growth inhibition and 
overexpression in ≥ 5% of patient samples. 
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6.3 Concurrent downregulation of PSMD6 is a common 

event in HNSCC patient samples 

In addition to upregulation of PSMD2, gene expression and viability analysis for 

related proteasomal subunits identified concurrent downregulation of PSMD6. 

Approximately 60% of patient samples with upregulation of PSMD2 gene 

expression (z score > 2) also exhibited downregulation of PSMD6 gene expression 

(z score < -2) (Figure 6.4). PSMD6 is encoded within 3p14.1, a commonly 

deleted region in HNSCC tumours, which is also observed in the Liv7k cell 

line[117].  

Based on a recent study by William Hahn’s group[484], which identified specific 

vulnerabilities as a result of copy number loss, it was hypothesized that partial 

copy number loss of PSMD6 observed in Liv7k cells would render them highly 

dependent on the expression of the remaining copies. Thus, suppression with 

RNAi would have a greater effect in the Liv7k cell line than in other cancer cell 

lines that have diploid PSMD6 copy number.  

RNAi screening revealed a high dependence on genes with frequent copy number 

loss, including PSMD6, where knockdown in the Liv7k cell line caused ~80% 

growth inhibition (Figure 6.3). Furthermore, loss of PSMD6 copy number is 

correlated with decreased mRNA expression in patient samples (Figure 6.4).   
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Figure 6.3 Genomic profiling of downregulated genes encoding proteasomal subunits. 43 
genes encoding proteasomal subunits were queried in TCGA’s cBioPortal (n = 522 samples). The 
percentage of patients with downregulation of gene expression (z score ≤ -2) is plotted against the 
percentage growth inhibition resulting from gene knockdown in the Liv7k cell line, normalised to a 
non-targeting control siRNA. Dashed lines indicate a minimum cut-off of 30% growth inhibition and 
overexpression in ≥ 5% of patient samples. 
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Figure 6.4 Genomic profile of PSMD6 expression in TCGA patient samples. Copy number 
status is given as GISTIC score (-2, deep deletion; -1, shallow deletion; 0, equal to matched normal 
sample; 1, gain; 2, amplification) alongside mRNA expression z score. PSMD6 copy number loss is 
frequently accompanied by downregulation at mRNA level (TCGA, n=522 samples). Red circles 
represent samples with PSMD2 copy number amplification (GISTIC +2).  
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6.4 PSMD6 gene copy number loss renders tumour cells 

more vulnerable to suppression of remaining copies 

RNA sequencing of two oral SCC and two oral keratinocyte cell lines revealed a 

differential expression of proteasomal subunit genes. PSMD2 and PSMD6 

expression sit at opposite ends of this spectrum. Subtracting the mean gene 

expression in the keratinocyte cells lines from the mean gene expression in the 

oral SCC cell lines revealed: (1) overexpression of PSMD2 and (2) downregulation 

of PSMD6 in carcinoma cells versus keratinocytes (Figure 6.5).  

To validate this, mRNA expression and copy number profiles of four differentially 

expressed genes were generated for a panel of cell lines using qRT-PCR (Figure 

6.6 and Figure 6.7). The genes were selected in order to provide a gradient of 

expression, from highly amplified PSMD2 > moderately amplified PSMC2 > 

moderately deleted PSME4 > highly deleted PSMD6. Copy number measurements 

revealed gain of PSMD2 in Liv7k and KR19 OSCC lines and loss of PSMD6 and 

PSME4, compared to normal control lines. Regardless of gene copy number status 

or mRNA expression, protein expression was similar in all tested cell lines 

(Figure 6.8).  

Percentage loss of viability was measured in two cancer and two non-cancer cell 

lines after siRNA knockdown of PSM genes (Figure 6.9A). This revealed a greater 

sensitivity of Liv7k/KR19 to loss of PSME4 and PSMD6 compared to OKG4, but not 

OKF4. Silencing of PSMD6 is particular caused major growth inhibition in three 

out of four cell lines tested. Validation of PSMD2 knockdown was validated using 

qRT-PCR (Figure 6.9B). Validation of protein knockdown also showed on-target 

effect (data not shown). PSMD6 knockdown could not be assessed owing to very 

high growth inhibitory effect on cells.



 

Figure 6.5 RNA sequencing analysis reveals differential expression of proteasomal subunit genes in oral SCC cells versus immortalised keratinocytes. 
Each bar represents the difference in expression between oral SCC cells and immortalised keratinocyte cells as denoted in the legend. Expression is given as the 
mean of three biological replicate samples. 
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Figure 6.6 Proteasomal subunit RNA expression profile. RTq-PCR was used to confirm 
proteasomal subunit mRNA expression in oral SCC cells and immortalised keratinocytes. Gene 
expression was normalised to β-actin and presented as mean ± SD of three biological replicates. 

 

 

Figure 6.7 Copy number analysis of PSMD2, PSMC2, PSME4 and PSMD6 using Taqman 
RTq-PCR assays in oral SCC/keratinocyte cell lines. RNaseP was used to normalise genomic 
DNA concentrations and DNA from a cell line known to be diploid (copy number = 2) for each gene 
was used as a reference control. Copy number is presented as the mean ± SD of three biological 
replicates. 
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Figure 6.8 Western blot analysis of the expression of the proteins encoded by PSMD2 and 
PSMD6, RPN1 and RPN7 respectively, in two oral SCC and two oral keratinocyte cell lines. 
20µg of whole-cell lysate was loaded per lane. Extracts were quantified and normalised using BSA 
assay and alpha-tubulin was used as a loading control. 
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Figure 6.9 Mean growth inhibition after knockdown of proteasomal subunit genes. (A) 
Pooled siRNA targeting selected proteasomal subunit genes were transfected into two oral SCC 
cell lines and two oral keratinocyte cell lines. 72h post-transfection, cells were fixed and stained 
with DAPI for imaging on the Operetta. Results are normalised to non-targeting control siRNA and 
represent the mean ± SD of three technical replicates. (B) RTq-PCR showing reduction in PSMD2 
gene expression after siRNA knockdown in Liv7k cells. PSMD2 expression was normalised to 
ACTB and presented relative to NTC. Data is mean ± SD of three biological replicates. siRNA #4 
was too lethal to get enough genetic material for analysis by RTq-PCR. 
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6.5 Copy number amplification of proteasomal subunit 

genes does not predict sensitivity to bortezomib 

Using compound screening data from the Sanger Institute[486], the sensitivity of 

427 authenticated cancer cell lines to bortezomib was plotted (Figure 6.10). 

Based on this, the relative sensitivity of the oral cancer cell lines used in this 

project was ascertained. A bortezomib-resistant breast cancer cell line (BT-474) 

was subjected to a dose response experiment alongside four oral cell lines. This 

cell line was used, as it was the only resistant cell line in frozen storage. The 

results are shown in Figure 6.11. All four oral cell lines had an IC50 value of 

between 0.002-0.006 µM, suggesting that the copy number status of PSM genes 

does not predict bortezomib sensitivity. 

 

Figure 6.10 Bortezomib IC50 values from the Genomics of Drug Sensitivity in Cancer Screen 
(Sanger Institute). IC50 values are presented for cell lines < 0.1 µM, with BT-474 cell line labelled. 
Blue dotted line, 0.002µM; green dotted line, 0.006µM). Data adapted from [486].  
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Figure 6.11 Bortezomib dose response curves in BT-474, oral SCC and immortalised 
keratinocyte cell lines. (A) Dose response curves and (B) IC50 values. Bortezomib concentration 
ranges from 0.00001-1µM. Results are normalised to DMSO vehicle control treatment and 
represent the mean ± SD of three technical replicates.  
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6.6 Silencing of PSMD2 does not alter the response of 

oral cancer cells to proteasomal inhibition by 
bortezomib 

Based on a recent study by Tsvetkov et al., which showed that reducing the 

expression of 19S subunits protected cancer cells from bortezomib-mediated 

proteasomal inhibition[483], it was hypothesized that knockdown of PSMD2 in 

oral SCC cells may alter their response to bortezomib. To determine if this was 

the case, siRNA targeting the PSMD2 gene was transfected into Liv7k cells 24 

hours prior to the addition of bortezomib. However, no significant difference 

was observed in cells +/- PSMD2 in response to bortezomib (Figure 6.12).  

 

Figure 6.12 Bortezomib dose response curve +/- PSMD2 in Liv7k cell line. Pooled PSMD2 
siRNA was transfected into cells 24 hour prior to addition of bortezomib (concentration range 
0.0003 - 1 μM). Results are presented relative to DMSO vehicle control and are representative of 
the mean ± SD of three technical replicates.  
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6.7 Proteasomal activity is not altered by gene 

expression of PSMD2 (preliminary data) 

In order to determine if different gene expression profiles affected proteasomal 

function, basal proteasomal activity was measured in a panel of oral cell lines 

using the Proteasome-Glo™ chymotrypsin-like assay (Promega #G8660). Relative 

Light Units (RLU) was normalised to the number of nuclei per well and plotted in 

Figure 6.13. In this experiment, Liv7k and OKF4 cell lines had a lower basal 

proteasomal activity than KR19 and OKG4 cells. The effect of bortezomib on 

proteasome activity was also measured in the Liv7k, Liv37k and OKF4 cell lines, 

but no significant difference in IC50 was observed (Figure 6.14). 

 

Figure 6.13 Basal proteasomal activity measured in oral SCC and immortalised keratinocyte 
cell lines. Chymotrypsin-like activity of oral cell lines is ranked from lowest to highest. RLU is 
normalised to cell number. Bortezomib IC50 values are overlaid. Results are mean±SD of three 
biological replicates. 
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Figure 6.14 The effect of bortezomib treatment on proteasome activity. Bortezomib dose 
response curves in Liv7k, Liv37k and OKF4 cell lines showing concentration required to inhibit 
proteasomal activity by 50%. Results are normalised to negative control and represent the mean ± 
SD of three technical replicates.  
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6.8 Discussion 

PSMD2 encodes a regulatory subunit of the 26S proteasome, which is responsible 

for ATP-dependent degradation of ubiquitinated proteins. Similar to IGF2BP2, 

PSMD2 was shown to be highly upregulated in patient tumour samples and 

amplification of the gene was significantly correlated with reduced survival. 

Highly proliferative cells have a higher proteasomal activity and are thus more 

vulnerable to its depletion than normal cells. Thus, it was hypothesized that 

knockdown of PSMD2 would have a greater effect on the survival of cancer cell 

lines than normal controls.  

Publically available data from the Sanger Institute (Wellcome Trust) presented a 

number of useful control cell lines, previously shown to be sensitive/resistant to 

bortezomib. In a pan-cancer analysis, resistance to bortezomib in these cell lines 

is significantly correlated with a number of genetic alterations (including 

mutation in SOS2), but no alterations in proteasomal subunit genes was detected 

in bortezomib resistant cell lines[486]. To test this theory, I carried out real 

time qPCR on a panel of oral SCC cell lines in order to rank them from highest to 

lowest expression of PSMD2, which I could then relate with their sensitivity to 

bortezomib. To support the mRNA expression, I carried out western blots to 

assess basal protein expression in selected cell lines. No significant difference in 

protein expression was observed. I also generated IC50 curves for bortezomib; 

however, there was no correlation between a higher transcription of the PSMD2 

gene and enhanced sensitivity to bortezomib. A second-generation proteasomal 

inhibitor, carfilzomib, was also tested, but similar results were observed (data 

not shown). However, other factors can also contribute to bortezomib 

sensitivity, including AKT activation status.  

Although there was a higher mRNA expression of the gene in Liv7k cells 

compared to immortalised oral keratinocyte cell lines, protein expression was 

similar in all cell lines tested. In addition, silencing of PSMD2 resulted in a 

similar or greater loss of viability in the normal control cell lines, and did not 

alter the response of Liv7k cells to bortezomib. This, combined with the high 

proteasomal activity in these cell lines, suggests that the immortalised 

keratinocyte cell lines have adapted to growth on a 2D monolayer. This 
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highlights a weakness of this project, which is the lack of control cells that 

accurately represent the situation in normal tissue. Moreover, the tumour cell 

lines may respond differently to loss of proteasomal subunit expression in vivo 

where nutrients and oxygen are limited. 

In addition to upregulation of PSMD2, gene expression and viability analysis for 

related proteasomal subunits identified concurrent downregulation of PSMD6 in 

oral cancer cell lines. Genomic instability of tumours often promotes loss of 

chromosomal regions, which contain tumour suppressor genes, accompanied by 

collateral loss of other genes. Based on a recent study by William Hahn’s 

group[484], which identified specific vulnerabilities resulting from gene copy 

number loss, it was hypothesized that the partial copy number loss of PSMD6 

would render Liv7k cells highly dependent on expression of the remaining copy. 

Thus, suppression with siRNA would have a greater effect in the Liv7k cell line 

than in normal cell lines with diploid copy number. The gene, which is deleted in 

~6% of HNSCCs, is important for cell viability as knockdown of the gene resulted 

in >80% growth inhibition in Liv7k cells. In addition, RNA sequencing revealed 

downregulation of the gene in cancer cell lines compared to oral keratinocytes. 

Knockdown of the gene was only half as effective in the OKG4 cell line. 

However, OKF4 cells did not follow this trend. This inconsistency cannot be 

explained by the expression of PSMD6 in the cell lines, as both OKF4 and OKG4 

showed a relative copy number loss of the gene compared to Liv7k. 

Protein expression of RPN1 (PSMD2) and RPN7 (PSMD6) was equal in all cell lines, 

which might explain the similar response to bortezomib. Gene expression does 

not always correlate with protein expression[487] as many levels of regulation 

exist between gene transcription and production of the final protein[488]. RNA-

binding proteins, such as IGF2BP2, exert a major influence on the stability and 

the rate of translation[489]. However, as previously stated, the environment in 

situ may alter the dynamics of this relationship in such a way as to render the 

expression of PSMD2 or PSMD6 relevant for survival. 

In conclusion, overexpression of PSMD2 could not be correlated to an increased 

dependence on proteasomal machinery in an oral SCC model. Partial copy loss of 

PSMD6 does not appear to render cells more vulnerable to its suppression, and 



155 
 
the gene appears to be critical for survival in oral keratinocyte cell lines. The 

activity of the proteasome, and hence its importance in cancer progression, 

relies on a regulatory system more complex than expression of its individual 

components. Based on these results, there is nothing to support that PSMD2 

amplification or PSMD6 deletion supports patient stratification for bortezomib 

alone.  
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Chapter 7 Results – The Role of Lipid 
Metabolism Genes in Hypoxia 

7.1 Triglyceride Metabolism 

The mainstay treatment for resectable oral SCC is surgery; however, 

chemo/radiotherapy is used as a primary means of treatment in patients who 

are unable to tolerate such a procedure[490]. External beam radiotherapy 

(EBRT) and conventional chemotherapy can also be used as adjuvants. Hypoxia is 

a defining feature of oral SCC and tumours with poor oxygenation are more 

resistant to chemo/radiotherapy[491, 492]. Hypoxia elicits a range of cellular 

responses, including changes in metabolism, increased angiogenesis and 

enhanced growth and survival. The master regulator of the hypoxic response is 

HIF-1α, which is overexpressed in up to 70% of oral SCCs and is significantly 

correlated with poor survival[493]. Moreover, increased expression of HIF-1α is 

associated with increased rates of metastasis through increased expression of 

matrix metalloproteases and chemokines[494, 495]. 

An increased rate of lipid synthesis is recognised as an important aspect of 

altered metabolism in tumour cells. However, the role that lipids play in cancer 

progression is not clear. Under normal conditions, de novo biosynthesis of fatty 

acids is restricted to particular tissues such as the liver. However, tumours can 

autonomously produce fatty acids and lipid components required for 

growth[272]. Fatty acids are the essential building blocks of lipids and are used 

to build many classes of lipids, which perform a range of functions within the 

cell. A family of transcription factors called sterol regulatory element-binding 

proteins (SREBPS) are master regulators of lipid biosynthesis[496]. Dysregulation 

of SREBPs can stimulate a network of oncogenic signals and promote an 

aggressive phenotype in oral cancer cells[275]. 

7.1.1 Lipid metabolism genes are upregulated in hypoxia 

The aim of this project was to identify genes that provide a growth advantage to 

cells in hypoxia (defined here as 0.1% O2). A data multiplexing approach was 

taken which combined results from a whole genome siRNA screen with RNA 

sequencing analysis. The siRNA screen, which was carried out on the aggressive 
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oral SCC cell line (Liv7k), involved the knockdown of 18,175 genes in normoxic 

(21% O2) and hypoxic (0.1% O2) conditions. In addition, RNA sequencing (RNAseq) 

was carried out to identify changes in gene expression in hypoxia. 

A threshold window of 20% growth inhibition was set between hypoxia and 

normoxia, with a 10% minimum growth inhibition in hypoxia. Of 18,175 genes 

screened, 11% (n=1990) met this criteria (Figure 7.1). However, only 813 genes 

in this subset were deemed significant when a Mann-Whitney t-test was applied 

(p<0.05). Of this filtered set, 127 genes (22%) were also significantly upregulated 

at mRNA level (p<0.05) by ≥ 2-fold. Gene Ontology analysis of this refined gene 

set revealed significant over-representation of genes involved in lipid 

metabolism. 

Enrichment analysis was carried out using Metacore GeneGo™ software in order 

to narrow down specific canonical pathways, which are upregulated in hypoxia 

(Figure 7.2). In this analysis, control of cholesterol and fatty acid biosynthesis 

by SREBP ranked as the second most significant biological pathway (Figure 7.3). 

Sterol regulatory element binding proteins (SREBPs) are a family of transcription 

factors that regulate various aspects of lipid metabolism. SREBP cleavage-

activating protein (SCAP) acts as a chaperone for SREBPs, mediating their 

transport from the endoplasmic reticulum to the Golgi apparatus where they are 

cleaved into active forms. Three isoforms (SREBP1a, SREBP1c and SREBP2) exist 

in mammalian cells and regulate expression of different target genes. SREBP1c 

preferentially regulates genes involved in fatty acid and triglyceride metabolism 

(e.g. FASN), while SREBP2 activates cholesterol synthesis (e.g. HMGCS1). SREBP1 

is a potent activator of all genes containing the sterol regulatory element DNA 

sequence.  
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Figure 7.1 Primary siRNA screen results showing median percentage growth inhibition 
relative to non-targeting control in normoxic and hypoxic conditions. Gene knockdowns that 
are selectively lethal in hypoxia are highlighted in blue. Growth inhibition is normalised to non-
targeting control siRNA. Cut-off was set at 20% difference between hypoxia and normoxia 
(diagonal line) with a minimum growth inhibition of 10% in hypoxia (horizontal line). Circle size is 
indicative of significance according to Mann-Whitney u-test (p value). 
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Figure 7.2 Metacore GeneGo™ analysis of the hypoxic gene set. Enrichment analysis of 
RNAseq data reveals top 10 upregulated (A) canonical pathways and (B) biological processes in 
hypoxia. Results are ranked in order of significance.  
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Figure 7.3 SREBP-mediated regulation of cholesterol/fatty acid biosynthesis. Pathway 
mapping of “SCAP/SREBP Transcriptional Control of Cholesterol and FA Biosynthesis”, 
highlighting up (red) and downregulated (blue) genes. Image generated by Metacore GeneGo™ 
software. Highlighted genes are discussed further in this chapter and/or the main introduction. 
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7.1.2 A subset of triglyceride metabolism genes are important for 

cell survival in hypoxia 

Based on this analysis, a subset of genes that mediate triglyceride metabolism 

(DAGLA, DGAT1, DGAT2, LIPE, MGLL, PNPLA2, SCD) was selected for further 

study based on the differential effect observed upon their knockdown in 

hypoxia. Six of these genes (DGAT1, DGAT2, LIPE, MGLL, PNPLA2, SCD) 

demonstrated an increase in gene expression in hypoxic conditions (Figure 7.4). 

DAGLA gene expression was reduced by > 2 fold in hypoxia (data not shown). 

In addition, data from the siRNA screen indicated that knockdown of 

monoacylglycerol lipase (MGLL) and diacylglyceride acyltransferase 2 (DGAT2) 

resulted in a significantly greater percentage growth inhibition in hypoxia 

compared to normoxia (Figure 7.5). The proteins encoded by these genes work 

in opposing ways, with DGAT2 building triglycerides from fatty acids and MGLL 

breaking them down. This highlights the importance the two genes play in terms 

of energy release vs storage, a vital process for highly proliferative oral cancer 

cells.



 

Figure 7.4 Window of percentage growth inhibition versus fold change in gene expression 
between hypoxic and normoxic conditions. Blue circles represent statistical significance in both 
the siRNA screen and the RNAseq dataset, including a window of growth inhibition between 
hypoxia and normoxia of ≥ 20%, a minimum growth inhibition of 10% in the normoxic condition (p < 
0.05) and a fold change in gene expression of > 2 (p < 0.05). Circle size denotes growth inhibition 
significance according to Mann-Whitney u-test (p value). Triglyceride metabolism genes are 
labelled. 

 

 
Figure 7.5 Mean percentage growth inhibition after knockdown of triglyceride metabolism 
genes (data from siRNA screen). Results are presented as mean ± SD. DGAT2 and MGLL were 
significantly different according to Mann-Whitney u-test (** p < 0.01). 
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7.1.3 Validation of differential growth inhibition did not confirm 

screen findings 

In order to validate the differential growth inhibition observed in the siRNA 

screen siRNAs from a different supplier targeting genes of interest were 

transfected into two oral SCC (Liv7k, Liv37k) and two immortalised keratinocyte 

cell lines (OKF4, OKG4). However, under these conditions, MGLL and DGAT2 

knockdown resulted in a similar percentage growth inhibition in both normoxia 

and hypoxia (Figure 7.6). Interestingly, silencing of PNPLA2, which encodes 

adipose triglyceride lipase (ATGL), resulted in a greater differential than that 

measured in the siRNA screen. 

Mean Percentage Growth Inhibition 

Gene Screen (N) Screen (H) Validation (N) Validation (H) 

DAGLA 25.0 13.9 48.54 7.75 

DGAT1 20.9 40.6 68.44 39.55 

DGAT2 5.1 48.8 16.33 -14.90 

LIPE 61.8 68.2 47.24 27.63 

MGLL 13.8 60.3 29.59 24.10 

PNPLA2 24.9 17.0 8.04 31.23 

SCD 88.9 95.1 92.49 55.29 

Table 7.1 Mean percentage growth inhibition after knockdown of triglyceride metabolism 
genes (comparison of data from siRNA screen with validation experiments). Results are 
presented as mean ± SD. 
 

The ATGL enzyme works alongside hormone sensitive lipase (LIPE) to mobilise 

triglycerides and provide cells with energy. A series of recent papers document a 

role for ATGL in cancer. Inhibition of ATGL by the small molecule inhibitor 

atglistatin attenuates the growth of non-small cell lung adenocarcinomas, 

suggesting its enables an aggressive phenotype in tumours[497]. Increased 

expression of the protein was also associated with higher rates of stromal 

proliferation in pancreatic ductal adenocarcinoma, possibly contributing to a 

more invasion phenotype[498]. It has been established that ATGL catalyses the 

rate-limiting step in triglyceride metabolism in adipose tissue, and that its 
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activity increases in parallel with tumour growth[499, 500]. ATGL has also been 

implicated in cachexia in cancer patients, confirming in vivo studies which show 

ATGL null mice to be protected from tumour-induced lipolysis[501]. 

The most lethal knockdown observed in these validation studies was that of 

stearoyl-CoA Desaturase (SCD), possibly reflecting its unique importance in fatty 

acid chain modification. While a degree of redundancy exists in the triglyceride 

storage system with more than one enzyme catalysing similar steps, SCD is the 

only enzyme that can create a double bond in long-chain fatty acids. 

Interestingly, silencing of the gene caused greater growth inhibition in the Liv7k 

cell line compared to the OKG4 keratinocyte cell line. This could possibly 

suggest a vulnerability of highly proliferative cells on the modification of fatty 

acid chains, which are synthesized in greater numbers. However, OKF4 cells 

were as sensitive to SCD silencing as the oral cancer cell lines.



 

Figure 7.6 Knockdown of triglyceride metabolism genes leads to growth inhibition in oral cancer cells and immortalised keratinocytes. (A-G) Mean growth 
inhibition was measured in response to gene knockdown and normalised to non-targeting control siRNA in normoxic (red) and hypoxic (blue) conditions. The results 
from pooled siRNA are shown and results are presented as the mean ± SD of three experiments.



7.1.4 Silencing of MGLL leads to a build-up of triglycerides in 
tumour cells 

In order to confirm the mechanism by which silencing of triglyceride metabolism 

genes causes a reduction in cell growth, neutral lipid staining with BODIPY 

493/503 was performed. After treatment with siRNA, cells were fixed and 

stained with DAPI (nuclei), whole cell stain red (cell boundaries) and BODIPY 

493/503 (neutral lipid droplets). Lipid droplet quantifications were generated 

alongside percentage growth inhibition for four cell lines (Liv7k and OKF4 shown 

in Figure 7.7).  

Silencing of MGLL led to a build-up of lipid droplets in both normoxic and 

hypoxic conditions, consistent with its role in breaking down triglycerides into 

fatty acids. Interesting, knockdown of LIPE resulted in a marked difference in 

the levels of lipid droplets between hypoxia and normoxia. Silencing of DGAT2 

led to a small reduction numbers of lipid droplets in the Liv7k cell line. While 

the effect of MGLL knockdown was consistent in all cell lines tested, knockdown 

of LIPE and DGAT2 also caused an increase in the number of droplets in other 

lines. It is possible a degree of overlap exists between DGAT2 and its family 

gene, DGAT1, which could be elucidated by dual knockdown. 

If oral cancer cells are more dependent on fatty acids for energy in hypoxia, it 

would be expected that knockdown of triglyceride lipase genes (DAGLA, MGLL, 

PNPLA2, LIPE) would have a greater effect on cell growth in this condition. In 

the Liv7k cell line, knockdown of MGLL and LIPE led to a build-up of lipid 

droplets in normoxia only (> 1.5 fold). This may suggest a greater activity of 

other lipases in hypoxia, which are able to compensate for the silencing of one 

gene. Interestingly, PNPLA2 knockdown had the opposite effect, showing a 

hypoxia-specific increase in lipid droplets.
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Figure 7.7 Quantification of neutral lipid droplets in oral cell lines. (A-G) BODIPY 493/503 neutral lipid stain was used to stain neutral lipid droplets (mostly 
triglycerides) in normoxia (red) and hypoxia (blue) upon knockdown of triglyceride metabolism genes. Lipid droplets were counted using Harmony software (Perkin 
Elmer) and normalised to non-targeting control siRNA. Fold change is the mean ± SD of three experiments. (H) Representative image of Liv7k cells treated with non-
targeting control and MGLL siRNA, with magnified inset.

H 



7.2 Ether Lipid Metabolism 

Reprogramming of metabolism is an important hallmark of cancer and 

dysregulated lipid metabolism plays a major role in tumour development[502, 

503]. Fatty acids support the rapid proliferation of tumour cells by acting as a 

substrate for energy production, building blocks for cell membranes and lipid 

signalling molecules. Ether lipids make up approximately 20% of total 

phospholipid mass[504], and data from the siRNA screen, in combination with 

pathway analysis suggests that ether lipid metabolism can selectively support 

cell viability in a hypoxic environment.  

Tumour cells possess elevated levels of ether lipids (such as plasmalogens), 

which are characterised by one or more ether linkages on the glycerol backbone, 

in place of the more common ester linkage[505-507]. This alternative structure 

has important implications for the roles of ether lipids within the cell, including 

membrane fusion, vesicle formation and lipid-mediated signalling. A key enzyme 

involved in ether lipid biosynthesis, alkylglycerone phosphate synthase (AGPS), is 

overexpressed in a number of aggressive cancer types, including breast and 

melanoma[268]. By mobilising free fatty acids from neutral lipid stores, AGPS 

intensifies de novo generation of lipid signalling molecules such as 

lysophosphatidic acid (LPA), and enhances tumourigenicity[508]. However, the 

specific role of AGPS and ether lipids in a low oxygen setting is unknown. An 

overview of ether lipid synthesis is shown in Figure 7.8. 
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Figure 7.8 Overview of Ether Lipid Synthesis. AGPS, alkylglycerone phosphate synthase; FAR, 
fatty Acyl-CoA Reductase; GNPAT, glycerone-phosphate O-Acyltransferase; e: lysophosphatidic 
acid-ether. 
 

AGPS catalyses the rate limiting step in ether lipid synthesis but the process also 

involves Fatty Acyl-CoA Reductase 1 and 2 (FAR1/2) and Glycerone-phosphate O-

Acyltransferase (GNPAT)[509]. All three enzymes reside and act within 

peroxisomes where FAR1 and FAR2 provide substrate for GNPAT and AGPS to 

synthesize ether lipids by reducing fatty acids to fatty alcohols. GNPAT catalyses 

the acylation of dihydroxyacetonephosphate (DHAP) to acyl-DHAP, which is 

subsequently acted on by AGPS to exchange the acyl for an alkyl group[510]. 

Genetic deficiencies in AGPS, GNPAT or FAR1 severely impair the formation of 

etherphospholipids, and have been linked to cataract formation in humans and 

mice[511-514]. At the time of writing, only AGPS has been shown to have a role 

in cancer progression[268]. 
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7.2.1 A subset of genes involved in ether lipid synthesis are 

essential for cell viability in hypoxia 

Analysis of the ether lipid synthesis pathway revealed a number of ether lipid-

related genes that when silenced in the Liv7k cell line had an effect on viability 

in hypoxia (Table 7.2). Analysis of the TCGA HNSCC dataset reveals altered gene 

expression of ether lipid biosynthesis genes in 5-10% of cases, confirming the 

importance of this pathway (Figure 7.9). Alterations in the expression of AGPS 

tend toward a reduction in patient survival, according to the TCGA HNSCC 

dataset (not significant). A small percentage of patient samples contain mutually 

exclusive alterations in ether lipid biosynthesis genes, but no further reduction 

in patient survival is observed. 

 Mean % Growth Inhibition  

Gene Normoxia Hypoxia Fold Change P value 

AGPS 19.22 69.06 3.59 0.006 

FAR1 24.27 32.41 1.34 0.619 

FAR2 3.52 34.56 9.80 0.015 

GNPAT 14.74 24.02 1.63 0.398 

Table 7.2 siRNA screen results showing percentage growth inhibition for ether lipid 
biosynthesis genes in Liv7k cell line. Fold change values are given for hypoxia and normoxia 
samples. Significance was assessed using Mann-Whitney u test (p < 0.05). 

 

 

 

 
Figure 7.9 Gene expression of major ether lipid pathway components from TCGA HNSCC 
dataset. Box plot shows the percentage of 522 patients with altered expression (red, z score > 2; 
blue, z score < -2). 
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7.2.2 Validation of AGPS knockdown in oral SCC cell lines 

Knockdown with deconvolved siRNAs (same sequence as in screen) to ether lipid 

genes validated the high percentage growth inhibition from the siRNA screen; 

however, the differential between hypoxia and normoxia could not be repeated 

in 3/4 oligos (Figure 7.10). The efficiency of AGPS knockdown was assessed by 

qRT-PCR showed ≥ 90% loss of gene expression compared to non-targeting 

control (data not shown). A significant reduction is protein expression was also 

observed in response to AGPS knockdown (Figure 7.11). However, AGPS is also 

essential for the viability of normal cell lines, as evidenced by the high 

percentage growth inhibition in OKF4 (data not shown). 

 

Figure 7.10 Validation of growth inhibition upon silencing of ether lipid genes in Liv7k cell 
line. Cells transfected with four individual and pooled siRNA sequences were normalised to non-
targeting control. Results are mean ± SD of three independent experiments. 
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Figure 7.11 Validation of AGPS knockdown in Liv7k cell line. Western blotting of treated cells 
confirmed reduction in AGPS protein expression in response to silencing with siRNA targeting the 
gene. Knockdown was observed in all deconvolved sequences (#1-4). 20µg of protein was loaded 
per lane and β-actin was used as a loading control. 
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7.2.3 Lipid profiling of AGPS knockdown cells in hypoxia 

Ether lipids are present at higher levels in tumour cells, but their function 

therein is unclear. AGPS catalyses a critical step in the production of ether lipids 

and is upregulated in HNSCC. So far, I have shown that AGPS and other related 

pathway components are required for oral cell viability under both normoxia and 

hypoxia. To unravel the dependence of oral cells on ether lipid species, a series 

of LCMS experiments were performed. In addition, the impact of low oxygen on 

levels of ether lipid species was assessed. 

LCMS profiling of Liv7k cells following AGPS knockdown in normoxia and hypoxia 

revealed alterations in multiple ether lipid metabolites, including 

phosphocholines (PC), phosphoethanolamines (PE), phosphoinositols (PI), 

phosphoserines (PS) and lysophosphatidylcholines (LPC) (diacylglycerols and 

triacylglycerols were not included in this analysis). These lipids carry out a range 

of functions, including formation of the cell membrane, energy storage, and cell 

signalling.  

Gillian Mackay (CRUK Beatson Institute) carried out LC-MS analysis in which Liv7k 

cells were treated with a non-targeting control siRNA and compared to four 

unique siRNAs targeting AGPS in normoxia and hypoxia. In addition to internal 

standards (pos, PC 170/170; neg, PE 170/170), the concentration of lipid species 

was measured and normalised to cellular RNA content. In total, 68 ether lipid 

species were detected. Species detected by positive (n=29) and negative (n=39) 

ion mode were combined for this analysis. MetaboAnalyst 3.0 software 

(http://www.metaboanalyst.ca) was used to analyse mass spectrometry data in 

this project[515]. The first step was to normalise and transform the data (Figure 

7.12). Data was mean-centred and divided by the standard deviation in order to 

make individual species more comparable. Following this, the data was logged in 

order to handle zero values in the dataset. 

 

http://www.metaboanalyst.ca/
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Figure 7.12 Pre-processing of LC-MS Data. Data was pre-normalised to internal lipid control 
species (pos, PC 170/170; neg, PE 170/170). Prior to analysis, normalised data was log 
transformed and mean-centred in order to make individual values comparable in magnitude to each 
other. The left panel shows a box and whisker plot of the data before normalisation while the right 
panel shows the data after normalisation. 
  



176 
 
7.2.4 Hypoxia alters levels of ether lipid species 

Unsupervised principal component analysis (PCA) was performed on the non-

targeting groups only to assess the changes in the lipid profile in hypoxic 

conditions. A 2D PCA scores plot describes a set of observations based on a large 

number of variables in a two dimensional graph. PC1 and PC2 represent the 

principal components, which in this case, describe the concentration of lipid 

species spanning the most and the second most variation between hypoxia and 

normoxia, respectively. The levels of lipid metabolites varied depending on 

oxygen condition (Figure 7.13). The expression of 36 metabolites decreased in 

hypoxia while 32 increased (Figure 7.14). However, significant downregulation 

of ether lipids (log2FC > 1.5, p < 0.05) was observed for 5/36 lipids, and only 

1/32 metabolites significantly increased. 

 

Figure 7.13 Principal Component Analysis (PCA) plot of ether lipid species in hypoxia and 
normoxia. PC1 explains 65.8% of variation in the concentration of ether lipid species, while PC2 
explains 20.4%; together PC1 and PC2 account for 86.2% of variation. Non-targeting control 
groups only are shown. Lipid concentrations were normalised and auto-scaled prior to analysis, 
which was performed using MetaboAnalyst 3.0. 
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Figure 7.14 Hypoxia significantly altered levels of certain ether lipids. (A) Heat map showing 
differential lipid profiles in hypoxia and normoxia (siNTC); (B) Significantly altered lipids in the 
dataset (log2FC > 1.5, p < 0.05). PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, 
phosphatidylserine; LPC, lysophosphatidylcholines; ether linkage; p, plasmalogen.  

A 
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7.2.5 AGPS knockdown selectively decreases ether lipid species 

in hypoxia 

Principal component analysis of all tested groups shows the distribution of 

expression changes. The NTC condition in hypoxia is distant from other groups, 

but an outlier replicate (hypoxia replicate #2) maintains a connection with them 

(Figure 7.15). Knockdown of AGPS in hypoxia decreases ether lipid production in 

the Liv7k cell line (Figure 7.16A). Decreases were observed in the levels of 

ether lipids upon pooled knockdown of the gene in hypoxia (Figure 7.16B). 

Three ether lipids were significantly downregulated: PE(160p/203), 

PE(160p/223), PE(181p/225). 

 

Figure 7.15 PCA plot showing distribution of correlations between groups. The 
Hyp_AGPS_N group has an outlying data point (red asterisk), which affects the significance of 
expression changes.  
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Figure 7.16 Heat map and hierarchical clustering of ether lipid metabolites upon knockdown 
of AGPS in hypoxia and normoxia. (A) Expression of lipid metabolites in Liv7k cells in normoxia 
and hypoxia, after transfection with four unique AGPS siRNAs, compared to non-targeting control 
siRNA (n=3). (B) Significant changes in levels of ether lipid metabolites were assessed by unpaired 
t-test upon AGPS knockdown in hypoxia (FClog2 < 1.5, p < 0.05). PE, phosphatidylethanolamine; 
PI, phosphatidylinositol; PS, phosphatidylserine; LPC, lysophosphatidylcholines; ether linkage; p, 
plasmalogen. 
  

B 
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7.3 Discussion 

Hypoxia is a critical modulator of gene expression in solid tumour cells and 

promotes a resistant phenotype associated with reduced survival[250]. However, 

the mechanism of hypoxic tumour progression is not fully understood. The 

extent of hypoxia fluctuates throughout the tumour mass, giving rise to a 

heterogeneous population of cells with varying physiological 

characteristics[516]. Nutrient and oxygen stress leads to the activation of a 

hypoxic transcriptome, which stimulates a network of signalling pathways 

involved in cell growth and survival. This hostile environment also necessitates 

changes to cellular metabolism to utilise limited resources more efficiently[517]. 

Whole genome siRNA screening was combined with RNA sequencing of patient-

derived oral SCC cell lines to identify genes that are equally essential for cell 

growth and viability in hypoxia and normoxia. As a result, lipid metabolism 

pathways pertaining to fatty acid/triglyceride metabolism and ether lipid 

synthesis were selected for follow up. 

SREBP-mediated fatty acid metabolism was identified as a selectively essential 

process in hypoxic conditions. Activation of SREBP1 has been also shown to 

promote survival through an EGFR-AKT signalling axis in glioblastoma, which, like 

HNSCC exhibits a high percentage of EGFR amplification[518, 519]. It has 

previously been shown that loss of SREBP activity leads to growth inhibition in 

cancer cells by preventing SCD1-mediated fatty acid desaturation[520]. SCD1 

was identified in the siRNA screen as being upregulated in hypoxia (Figure 7.3) 

and knockdown of the gene led to a significant inhibition of growth in oral SCC 

cell lines (Figure 7.6). However, in validation experiments, no difference in 

growth inhibition was observed between normoxic and hypoxic conditions. 

Further investigation is merited to confirm the decreased effect of SCD1 

knockdown in OKG4 keratinocyte cell line, in order to see if tumour and normal 

cells rely on the activity of the enzyme to different extents. 

MGLL and DGAT2, which control the catabolism and anabolism of triglycerides to 

fatty acids, respectively, were identified as selectively essential for cell viability 

in the siRNA screen (p < 0.01). However, this differential could not be 

reproduced in validation experiments. The enzymes encoded by these genes 
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catalyse the breakdown and build-up of triglyceride molecules into neutral lipid 

droplets, respectively (Figure 1.8). Despite the inconsistency of results between 

hypoxia and normoxia, the effect on growth inhibition pointed toward the 

importance of dynamic lipid storage for oral SCC growth and survival. To this 

end, the abundance of lipid droplets was measured in response to gene 

knockdown in hypoxia. This revealed a build-up of lipid droplets in MGLL 

knockdown cells, confirming its role in the breakdown of triglyceride molecules 

to free fatty acids. In contrast, silencing of DGAT2 led to a reduction in lipid 

droplet number. The average number of lipid droplets per cell was similar in 

normoxic and hypoxic conditions (data not shown). However, upon silencing of 

MGLL in the Liv7k cell line, a greater increase in the number of lipid droplets 

was observed in the normoxic condition, suggesting that under hypoxic 

conditions, other enzymes may have a more active role in the breakdown of 

triglycerides. Alternatively, it may suggest that under hypoxia, DGAT2 does not 

act to generate triglycerides as efficiently. Cells with knockdown of LIPE (which 

cooperates with MGLL to hydrolyse triglyceride stores) displayed a similar 

change in lipid droplet levels. 

Tumours favour de novo lipid synthesis and it is well documented that hypoxia 

leads to triglyceride accumulation in cancer cells[521]. However, in this study, 

similar levels of LDs were observed under both oxygen conditions. It is possible 

that this is a result of using serum-free media, as it has been shown that lipid 

droplet accumulation in hypoxia is mainly due to fatty acid uptake from 

serum[328]. Bensaad et al. reported that lipid droplet accumulation was due to 

induction of the membrane-associated protein adipophilin (PLIN2) [328] in 

contrast to the SREBP mechanism reported in other cancer models[522]. 

However, PLIN2 gene expression was barely detectable in RNA sequencing of the 

Liv7k cell line in either oxygen condition (data not shown). The size of lipids 

droplets was not analysed in this study, but could perhaps shed more light on the 

impact of hypoxia on lipid storage. 

The greater impact of MGLL knockdown on lipid droplet number in normoxia was 

also unexpected, given that the gene was upregulated (albeit not significantly) 

in hypoxia. In addition, treatment of Liv7k cells with the MGLL inhibitor, JZL-

184, resulted in ~30% growth inhibition in normoxia but had no effect in hypoxia 
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(data not shown). The function of MGLL extends beyond that of lipid 

metabolism - in addition to its role in lipid mobilisation, MGLL is the major 

enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), an 

endogenous ligand of the endocannabinoid system[523]. This system is involved 

in a number of physiological responses, including pain, appetite, mood and 

memory[524]. The product of 2-AG hydrolysis, arachidonic acid, is the precursor 

molecule for eicosanoid biosynthesis, which act to promote inflammation (see 

also chapter 8)[525]. Blockage of MGLL reduces the available pool of 

arachidonic acid, thus diminishing the damaging inflammatory response that 

occurs in hepatic ischemia reperfusion (I/R) injury[526]. The pleiotropic actions 

of MGLL may explain the inconsistencies observed in response to its knockdown 

in this project. 

On the other hand, PNPLA2 (which encodes adipose triglyceride lipase, 

ATGL[527]) was not identified as selectively essential in hypoxia in the siRNA 

screen but caused greater growth inhibition in follow up experiments (Figure 

7.6). Moreover, the gene was ~6-fold upregulated in hypoxia and siRNA-

mediated knockdown led to a build-up of lipid droplets in hypoxia in Liv7k cells 

(Figure 7.7). The efficacy of a small molecule ATGL inhibitor, atglistatin, was 

tested in high and low oxygen, but failed to result in loss of viability in either 

condition at concentrations up to 10µM (Liv7k cells, data not shown). Increased 

ATGL activity has been observed in obese breast cancer patients[528] and has 

been implicated in cancer-associated cachexia[500]. Moreover, high ATGL 

expression led to increased rates of tumour stromal proliferation in pancreatic 

ductal adenocarcinoma[498], whereas inhibition of the protein was shown to 

attenuate the growth of lung cancer cells[497]. 

In addition to genes involved in fatty acid and triglyceride metabolism, a subset 

of genes involved in the synthesis of ether lipids was identified as essential in 

oral cells. The finding here reflects that of another study which showed hypoxia 

increasing levels of ether phosphatidylethanolamines (ePEs) in a leukaemia cell 

line, independently of HIF-1α[529]. Ether lipids constitute ~15-20% of 

phospholipids in cell membranes[504]. 
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Plasmalogens are a lesser-studied species of phospholipid which contain a cis 

double bond adjacent to this ether-linked alkyl chain at the first carbon of 

glycerol[530]. This “vinyl-ether” linkage renders plasmalogens uniquely sensitive 

to reactive oxygen species and as such, they act as effective scavengers of 

ROS[531]. Indeed, plasmalogens have repeatedly been shown to act as 

endogenous antioxidants in mammalian cells[532, 533]. Accordingly, 

plasmalogens have been shown to protect pulmonary artery endothelial cells 

from mitochondrial-derived ROS generated in the initial period of hypoxia, as 

cells adjust their rate of respiration[534]. 

TCGA analysis revealed upregulation of genes involved in ether lipid synthesis in 

~5-10% of HNSCC patients. The rate-limited step of ether lipid biosynthesis is 

catalysed by alkylglyceronephosphate synthase (AGPS), which was recently 

shown to be upregulated in aggressive human cancer and drive an oncogenic 

lipid-signalling network[268]. Moreover, small molecule inhibition of the protein 

impaired cancer migration and invasion[535].  

At the time of writing, a direct role of AGPS in hypoxia had not been studied. In 

this project, RNA sequencing of Liv7k cells revealed a slight downregulation of 

all four ether-lipid synthesizing genes (AGPS, FAR1, FAR2 and GNPAT) in hypoxia 

(data not shown). This project was discontinued after a failure to reproduce the 

hypoxia differential observed in the siRNA screen upon AGPS knockdown (Figure 

7.10), despite showing an efficient reduction of protein expression (Figure 

7.11).  

A direct assessment of the role of AGPS in oral SCC came from the measurement 

of ether lipids upon gene knockdown. As shown in Figure 7.14, hypoxia 

significantly altered ether lipid/plasmalogen levels in Liv7k cells. Knockdown of 

AGPS appeared to reduce ether lipids in the hypoxic condition; however, an 

outlier in the NTC condition meant that only three phosphatidyl ethanolamine-

plasmalogen (PEp) species were significantly downregulated according to 

unpaired t-test (p < 0.05). Further work is required to determine the functional 

impact of AGPS-induced ether lipid reduction in an oral cancer setting. CRIPSR 

knockout cell lines have been generated, but a phenotypic assessment has yet to 
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be completed. Until then, it is difficult to speculate on a role for the gene in 

oral SCC progression or in fact, what the downstream lipids do. 

The absence of clinically applicable methods for measuring tumour oxygenation 

has fuelled the development of hypoxic gene signatures, with the potential to 

predict therapeutic response[536], and the ability to accurately reproduce 

tumour hypoxia in vivo using xenograft models has facilitated this goal[537]. This 

study sought to improve on gene expression studies by identifying genes, which 

are essential for viability in hypoxic conditions. However, the differential effect 

observed between hypoxia and normoxia in the siRNA screen could not be 

reproduced in small scale validation studies. A follow up siRNA screen targeting 

the ~10% of genes which were selectively essential in the hypoxic condition has 

since been completed. This second screen used On-Target Plus siRNA instead of 

the siGENOME set used in the primary screen, which should provide a greater 

knockdown specificity and thus a more robust result. It will be interesting to 

compare the two and identify additional targets to investigate. 

Lipid metabolism is a complex system that is highly dependent on cellular 

context and the surrounding microenvironment. Blocking individual processes in 

a 2D setting is of questionable relevance when it comes to addressing the 

situation in vivo[538]. To this end, the development of high-throughput 3D 

screening methods may help bridge the gap between in vitro and in vivo success. 

Moreover, different tools to tease out the effect of individual lipids in cells and 

the phenotypic effects resulting from fluctuations in lipid biosynthesis would 

shed more light on the situation. 
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Chapter 8 Results – In vivo significance of 
cysteinyl leukotrienes in oral SCC 

8.1 Introduction 

The tumour microenvironment is a dynamic structure that influences tumour cell 

survival and mobility. It consists of a variety of cell types, including those of the 

immune system, tumour vasculature, and the extracellular matrix[539]. 

Cysteinyl leukotrienes are a class of inflammatory mediators, which are 

produced mainly by white blood cells in response to inflammatory stimuli[540]. 

They exert their effect through two G-coupled protein receptors, CysLT1R and 

CysLT2R. The former is the main receptor subtype in the inflammatory response 

and is expressed on the surface of nasal mucosa interstitial cells, endothelial 

and smooth muscle cells, and a variety of inflammatory cells[541-543]. Although 

the receptor is not normally expressed on the surface of epithelial cells (such as 

those in the oral cavity), some epithelial cells are capable of producing CysLT 

ligands[544]. Moreover, overexpression of CysLT1R has been detected in various 

tumours[378, 379]. 

Leukotrienes are a class of biologically active lipids called eicosanoids, which 

have previously been implicated in tumour progression. The leukotriene pathway 

branches off at LTRA4 to generate either LTB4 or LTC4, via LTRA4 hydrolase and 

LTC4 synthase, respectively (Figure 8.1). LTB4 which is elevated in colorectal 

and prostate cancer[545, 546], stimulates a distinct pair of receptors and is not 

discussed here. LTC4 is exported to the extracellular environment and further 

metabolised to LTD4 and LTE4[354]. LTD4 binds the CysLT1R with the highest 

affinity, making it the most potent stimulator of receptor activity[368]. In the 

intestine, LTD4 has been shown to promote proliferation, survival and migration 

through PKC-Raf-Erk, GSK3β-βcatenin and PI3K-Akt-Rac pathways, 

respectively[362-364]. Moreover, CysLT1R is overexpressed in colorectal cancer 

and is associated with a poor prognosis in patients[377]. 
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Figure 8.1 Overview of cysteinyl leukotriene metabolism. CysLT1R has been shown to activate 
downstream pathways including PI3K[362], ERK[363] and GSK3β[364]. Inhibitors act on various 
points in this pathway (purple boxes). LTRA4, C4, D4, leukotriene A4, C4, D4; FLAP, 5-
lipoxygenase-activating protein; 5-LO, 5-lipoxygenase; 5-HPETE, 5-hydroperoxyeicosatetraenoic 
acid; GSK3β, glycogen synthase kinase 3 beta; PI3K, phosphoinositide 3-kinase; PKCα, protein 
kinase C α; ERK, extracellular signal-related kinase; MEK, mitogen-activated protein kinase kinase; 
cPLA2, cytosolic phospholipase A2. 
 

Non-steroidal anti-inflammatory drugs are significantly associated with a 

reduced risk of metastasis development[547]. Montelukast, zafirlukast and 

pranlukast belong to a family of NSAIDs that selectively antagonise CysLT1R, and 

evidence suggests they may be effective in a cancer setting[548]. Zafirlukast was 

found to slow the progression of lung adenomas induced by treatment with vinyl 

carbamate[549]. Similarly, montelukast reduced tumour growth in a colorectal 

xenograft model by slowing proliferation and inducing apoptosis[394]. This 

chapter presents data from experiments designed to assess the effect of 

montelukast in aggressive oral cancer cell lines. This project was performed in 

collaboration with Karen Blyth’s lab (CRUK Beatson Institute) and in vivo 

experiments were carried out by Susan Mason.  
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8.2 Cysteinyl leukotriene pathway inhibitors inhibit 

growth of oral SCC cells in a drug screen 

To complement the results of the siRNA screen, Liv7k cells were treated with 

1,351 FDA-approved drugs for cancer and non-cancer indications. This revealed a 

striking dependence on a subset of genes involved in the cysteinyl leukotriene 

inflammatory pathway (Figure 8.2). Given the resistance often seen in hypoxic 

tumours in response to drug treatment, a 90% growth inhibition minimum was 

set in both normoxic and hypoxic conditions, in order to ensure selection of 

drugs effective in cells in a hypoxic environment. 

 

Figure 8.2 Scatter plot showing percentage growth inhibition of the Liv7k cell line in a drug-
repurposing screen. 1,351 compounds were added to Liv7k cells at a fixed concentration of 10µM 
for 72h. Results are normalised to DMSO control and represent the median of three screening 
replicates in normoxic and hypoxic conditions. Dashed lines represent 0% growth inhibition cut-off 
in normoxia and hypoxia. Circle size and colour is indicative of significance according to unpaired t 
test (p value). 
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Three compounds (montelukast, zafirlukast and MK-886) used for the treatment 

of asthma and inflammatory conditions, caused >90% growth inhibition of Liv7k 

cells, while having little or no effect on non-oral cancer cell lines previously 

tested within the BICR screening facility (Figure 8.3). All three target 

components of the CysLT pathway: MK-886 is an inhibitor of 5-lipoxygenase-

activating protein (FLAP), while montelukast and zafirlukast are CysLT1R 

antagonists (Figure 8.1). 

 

Figure 8.3 Bar chart showing percentage growth inhibition in a panel of cancer cell lines 
treated with CysLT1R antagonists. A fixed concentration of at 10µM was used and the 
experiment end point was 72h post drug-addition. Results are normalised to DMSO control and 
represent the median ± SD of three screening replicates.  
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8.3 Serum-containing media protects cells from 

leukotriene pathway inhibition 

By testing a panel of oral cell lines, it was found that serum-containing media 

negated the growth inhibition caused by leukotriene receptor antagonists 

(LTRAs) and an upstream FLAP inhibitor. Figure 8.4A shows the effect of LTRAs 

in cell lines grown in keratinocyte serum-free media, but testing of seven 

additional oral cancer cell lines grown in serum-containing media showed no 

effect up to 10μM (not shown). However, it is unclear how serum provides a 

survival benefit to cells treated with LTRAs. To validate this effect, Liv7k cells 

were adapted to grow in DMEM containing 10% serum and treated with 

montelukast (Figure 8.4B). The growth inhibition observed in cells grown in 

serum-free media was lost. Comparable IC50 values were observed for two 

immortalised keratinocyte cell lines (OKF4, OKG4) in this analysis. 

  Pan-kinase FLAP CysLT1R 

 Cell Line Staurosporine MK 886 Montelukast Zafirlukast 
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Liv7k 0.0044 0.7129 0.7506 0.4928 

Liv37k 0.0142 0.7954 0.3608 1.0813 

KR19 0.0070 0.6617 0.5324 0.8695 

OKG4 0.0032 0.6333 0.8644 0.3345 

OKF4 0.0020 0.5203 0.6700 0.4884 

scc9 0.0089 0.6771 0.8431 0.9784 

 

 
Figure 8.4 Percentage growth inhibition (IC50 values) of leukotriene pathway antagonists in a 
series of oral cell lines. (A) IC50 values (μM) in a series of oral cell lines, grown in keratinocyte 
serum-free media. OKF4 and OKG4 are immortalised keratinocytes. MK 886, montelukast and 
zafirlukast were tested. (B) Montelukast dose-response curve in the Liv7k cell line with a 
concentration range of 0.005-10µM. Results are normalised to DMSO control and represent the 
mean ± SD of three experiments. Liv7k IC50 minus FBS = 0.7506µM.  

A 

B 
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8.4 Montelukast is a selective antagonist of CysLT1R 

Despite the lack of effect in serum-containing media, it was reasoned that 

keratinocyte serum free media contained growth factors at more physiologically 

relevant concentrations than that of serum containing media. STITCH ‘Search 

Tool for InteracTions of CHemicals’[550] reveals known interactors of 

montelukast (Figure 8.5). The strongest interaction occurs between montelukast 

and CysLT1R, the primary binding partner of LTD4. Confidence scores are 

presented in the table, with interacting proteins ranked from highest to lowest 

probability. Montelukast binds to CysLT1R with an IC50 of less than 5nM in human 

HEK-293 cells stably expressing the receptor[551]. 

 

Figure 8.5 Molecular structure of montelukast and its known interactions. Thick lines 
represent stronger associations, which are based on the probability of the interaction being non-
random. Protein-protein interactions are shown in grey, chemical-protein interactions in green and 
interactions between chemicals in red. Small nodes depict proteins of unknown 3D structure; large 
nodes depict proteins where some 3D structure is known. Table shows association probability 
scores. Image was generated using STITCH software[550]. 
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8.5 Knockdown of CysLT1R causes growth inhibition in 

Liv7k cell line 

The efficacy of leukotriene inhibitors is paralleled by the knockdown of CysLT1R, 

which results in > 60% growth inhibition in both normoxic and hypoxic conditions 

in Liv7k cells (Figure 8.6). Screening data also shows a high percentage growth 

inhibition in response to knockdown of genes that are predicted to interact with 

montelukast (Figure 8.5): ALOX5, IL13, CYSLTR2R, LTB4R and LTB4R2. This data 

validated the importance of leukotriene signalling pathways, centred around 

CysLT1R, in oral SCC.

 

Figure 8.6 Bar chart showing percentage growth inhibition upon knockdown of montelukast 
target genes in the Liv7k cell line. Results are normalised to non-targeting control and represent 
the mean ± SD of three screening replicates. Keratinocyte serum-free media was used in the 
siRNA screen. 
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8.6 Montelukast induces cell death in the Liv7k cell line 

To determine if montelukast was cytostatic or cytotoxic, Liv7k cells were 

treated with a range of montelukast concentrations in the presence of Sytox 

Green™ (Thermo Fisher). Higher concentrations (> 1µM) of montelukast resulted 

in cell death after 16 hours, while DMSO control cells remained viable (Figure 

8.7). Lower concentrations of montelukast (≤ 1µM) did not appear to induce cell 

death, but still reduced total cell number.  

 

 

Figure 8.7 Liv7k cells were treated for 16 h with montelukast (0.75-10μM). (A) Cell death was 
quantified using an Incucyte Zoom imager, measuring SYTOX Green uptake. Green cell count was 
normalised to total confluence and is presented relative to DMSO negative control. Results are 
mean ± SD of three experiments. (B) Representative phase and fluorescent images taken of 10µM 
montelukast treated cells at 16 h time point.  
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8.7 Preliminary data shows montelukast slows growth in 

a 3D culture model 

The effect of montelukast was assessed in a 3D spheroid model as a proof of 

principle experiment for in vivo efficacy. 3D culturing of cells creates a more 

physiologically relevant environment in which additional factors such as tumour 

heterogeneity, hypoxia, cell-cell interaction and extracellular matrix 

remodelling are recapitulated. Results from the single experiment performed 

showed a slight decrease in the rate of spheroid growth in cells treated with 

montelukast at 1 and 10µM (Figure 8.8). 

 

Figure 8.8 Rate of spheroid growth in a 3D spheroid model (preliminary data). Liv7k cells 
were cultured into 3D spheroids and treated with montelukast at 1µM and 10µM. 1µM 
staurosporine and 0.1% DMSO were used as positive and negative controls, respectively. Results 
are normalised to start volume and represent mean ± SD of five technical replicates only. 
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8.8 Montelukast tends toward reduced tumour volume in 

Liv7k xenograft model 

Given the success of montelukast in other xenograft models and the results of in 

vitro experiments in this project, its efficacy in vivo was assessed. Prior to drug 

treatment, the ability of Liv7k cells to form tumours in mice was evaluated, and 

showed that tumours formed in 5/5 mice injected (data not shown). Following 

this, twenty NOD/SCID mice were subcutaneously injected with 5x106 Liv7k 

cells. Mice were split into treatment or control groups by cage assignment (n=10 

per group). Montelukast (5 mg/kg) or vehicle control were administered daily by 

oral gavage once tumours were palpable and had reached a predetermined size 

(5mm x 5mm). Thereafter, measurements were taken using calipers three times 

weekly until tumour endpoint had been reached, as per licence conditions 

(15mm x 15mm). Results show that average tumour volume in the control group 

began to separate from the treated group as the experiment progressed. An 

unpaired t-test revealed statistical significance at day 61 post-treatment; 

however, fewer control mice were alive at this point having reached clinical 

endpoint before this time (Figure 8.9). A breakdown of measured tumour 

volumes for each mouse is shown in Figure 8.10. 

 

Figure 8.9 Tumour size as a percentage of start volume for montelukast (n=10) and vehicle 
control groups (n=10). Average tumour volume was normalised to start volume and is presented 
as the mean ± SD of each treatment group. Significance was assessed by unpaired t-test at each 
time point. At day 61, five treated mice were being compared to three control mice. The lower table 
shows number of mice alive at each time point.



 
Figure 8.10 Tumour size as a percentage of start volume for individual montelukast and vehicle control mice. 0 days is the start of treatment at which time all 
mice had palpable tumours.  Vehicle (blue) and montelukast treated (red) cohorts are shown. Mice still alive at 100 days are labelled with unique IDs.



8.9 Montelukast does not significantly delay time to 
tumour endpoint 

Mice were taken when tumour size reached 15mm in any direction (as per 

licence conditions) and survival curves were plotted. However, treatment with 

montelukast did not significantly delay time to tumour endpoint (Figure 8.11). 

Moreover, the survival curves crossed, indicating that the hazard ratio was not 

proportional in the two groups. Three mice in the montelukast group survived 

beyond 100 days, at which point treatment was stopped (# 2, #6 and #7, see 

Figure 8.10). The tumour in one of these mice had regressed by this point (#6, 

while the other two tumours (#2 and #7) gradually increased in size after 

treatment cessation, suggesting that treatment had constrained tumour growth. 

 

Figure 8.11 Survival curve of montelukast (n=10) versus vehicle control (n=10) mice, up to 
100 days since the start of treatment. The difference in survival is not statistically significant, 
according to log-rank test (p > 0.05). The lower panel shows the number of mice alive at each time 
point. 
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8.10 Montelukast does not affect the proliferation of Liv7k 

xenograft cells 

Xenograft sections were stained with Ki67 to determine if montelukast 

treatment had an effect on proliferation. Human lymphocyte antigen staining 

was used to confirm the presence of human cells (data not shown). Halo® 

software (Indica Labs) was used to quantify staining intensity of Ki67 in human 

squamous epithelial cells only (Figure 8.12). However, there was no significant 

difference in staining intensity between the two groups (unpaired t-test, p > 

0.05). The intensity of phospho AKT, phospho MTOR, phospho ERK and total ERK 

was also quantified but no significant differences were observed (data not 

shown).  

Given that mice were taken after tumours reached end point, it is perhaps not 

surprising that there was little difference in proliferation. A cross sectional study 

measuring markers of proliferation and survival at a number of earlier time 

points, when tumours are actively expanding, may yield a more significant 

difference in staining intensity. LTD4 is the most potent activator of CysLT1R but 

free LTD4 is rapidly metabolised into LTE4, which is rapidly eliminated from 

blood plasma (plasma half-life ~7 minutes)[552]. However, LTE4 can be readily 

detected in urine at a concentration of between 10-60 pg/ml in humans (higher 

in asthma sufferers)[552]. The level of LTE4 was measured in mouse urine but no 

meaningful difference was found between control and treated mice, owing to 

inconsistencies in urine collection. 
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Figure 8.12 Ki67 histological staining. (A) Scatter plot showing percentage Ki67 positive cells in 
Liv7k xenograft sections. The differences in the treated (n=6) and control (n=10) groups was shown 
not to be statistically significant when assessed by unpaired t-test. (B) Representative images of 
stained sections are shown. 
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8.11 Montelukast treatment did not significantly alter the 

innate immune response to tumour cells 

Given that montelukast is an anti-inflammatory drug, it was hypothesized that it 

may reduce the inflammatory immune response in treated mice. Neutrophils are 

one of the first responders to inflammatory insult, migrating through dilated 

blood vessels to phagocytose foreign cells and release pro-inflammatory 

cytokines[553]. Similarly, monocytes flood to the site of inflammation and 

differentiate into mature macrophages. The levels of neutrophils (NIMP) and 

macrophages (F4/80) were determined histologically in Liv7k xenograft sections, 

but revealed no obvious difference in the intensity of staining between the 

treated and control groups (Figure 8.13). 
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Figure 8.13 H&E, macrophage (F4/80) and neutrophil (NIMP) histological staining. 
Representative images of stained sections are shown. Ten control tumours and six treated tumours 
were stained in total. 
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8.12 Discussion 

In this chapter, the role of cysteinyl leukotrienes in oral SCC has been addressed 

in a series of in vitro and in vivo experiments. Treatment with the FLAP 

inhibitor, MK-886 and two leukotriene receptor antagonists (LTRAs), montelukast 

and zafirlukast, resulted in near-complete growth inhibition of a patient-derived 

oral SCC cell line in a drug-repurposing screen. In terms of growth inhibition in 

normoxia, the compounds ranked 2nd, 10th and 41st, respectively. LTRAs are 

approved for the maintenance treatment of asthma, where they block the action 

of CysLT1R, thus relaxing airway constriction and reduce inflammation and 

mucus build-up in the lungs[554]. Encouragingly, use of LTRAs was shown to 

decrease cancer risk in a meta-analysis of ~25,000 adults with asthma diagnosed 

between 2001 and 2011[555]. 

Moreover, the effect appeared to be specific to the oral cancer cell line, as no 

effect of montelukast was shown in previous drug screens, carried out on cells 

lines derived from other cancer types by the screening facility. It was later 

discovered that the effect was dependent on the presence of foetal bovine 

serum (FBS) in the culture media, as was the case for the eight breast cancer 

lines and one glioblastoma line screened previously. Many cell lines require FBS 

supplementation for proper growth and proliferation. FBS contains a multitude 

of growth factors, transport proteins, essential amino acids and other small 

molecules such as sugars and lipids[556]. 

A possible explanation for this unusual finding is that LTRAs are bound by serum 

proteins such as human serum albumin (HSA) and alpha-1 acid glycoprotein 

(AGP). In humans, montelukast is rapidly absorbed following administration, and 

has a half-life of 2.7-5.5 hours[557]. Importantly, montelukast has a highly 

lipophilic structure that causes 99% of the molecule to become bound to plasma 

proteins, leaving a limited unbound fraction to have a biological effect[558]. A 

drug-drug interaction study found that montelukast possessed the strongest AGP 

binding affinity in a series of cystic fibrosis drugs[559]. Another possibility is that 

FBS supplementation maintains the activity of oncogenic signalling pathways in 

the absence of CysLT1R activation, through the stimulation of other receptors 

such as IGF1R[560]. However, it is reasonable to assume that keratinocyte serum 
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free media contains more physiologically relevant concentrations of growth 

factors and nutrients than serum-containing media. 

Previous in vitro data supports the potential anti-cancer role of montelukast. 

The major mediator of leukotriene action, LTD4, has been shown to increase cell 

proliferation and survival in intestinal epithelial cells[383]. In addition, LTD4 

significantly reduced apoptosis by preventing the activation of caspase-8[561]. 

Addition of LTD4 to intestinal epithelial cells activated PI3K signalling and 

increased translocation of β-catenin to the nucleus[396]. 

To date, three in vivo studies have shown efficacy of LTRAs as cancer 

therapeutics[393, 394, 549], however their potential role in oral SCC had yet to 

be evaluated. In this study, daily treatment of mice with 5 mg/kg montelukast 

did not significantly reduce tumour volume compared to the control group; 

however, there was a trend for smaller tumour size. No significant difference in 

time to tumour endpoint was observed; albeit a tantalising tail of responders 

was seen in the survival graph (Figure 8.11). In light of these results, it was not 

unexpected to find no significant difference in Ki67 staining intensity between 

the two groups. This is in contrast to findings by Savari et al., who found that 

average tumour weight was significantly reduced in the montelukast group in a 

colorectal xenograft model[394].  

However, there were some important differences between the two studies. This 

study used immunocompromised NOD/SCID mice, while Savari’s study was 

performed on athymic balb/c nude mice in which HCT-116 colorectal cells were 

pre-treated with montelukast prior to injection. In addition, montelukast was 

given by intraperitoneal injection in their study. Reassuringly, no significant 

reduction in Ki67 positive cells was observed in Savari’s study, which suggests 

that the drug may be exerting its anti-tumour effects through other pathways 

(cell death was observed in Figure 8.7). To this end, the authors showed 

montelukast treatment led to significantly increased expression of p21WAF/Cip1 

and decreased levels of VEGF in xenograft samples, indicating roles in cell cycle 

arrest and suppression of angiogenesis. Additional studies performed by the 

group showed montelukast treatment promoted apoptosis through cleavage of 
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caspase-3. The preliminary results in our study have not merited investigation of 

these pathways, although cross-sectional studies in the future may be pursued. 

Future in vivo experiments should have increased numbers of mice to provide 

greater confidence in the results. Moreover, a more thorough characterisation of 

cell lines used in these experiments would likely elucidate the differential 

response to montelukast. This would allow for the categorisation into high and 

low CysLT1R-expressing cell lines, which could be compared in further studies. 

Given that montelukast induced cell death in Liv7k cells, the mode of cell death 

needs to be determined. Cell cycle analysis by flow cytometry will reveal the 

effect of montelukast on cell growth, while western blotting for cleaved caspase 

3 and cleaved PARP will determine if montelukast induces apoptosis in oral SCC 

cell lines. It was hypothesized that blocking the CysLT1R would lead to a build-

up of leukotrienes in the extracellular space. Given that excess leukotriene 

metabolites are excreted in the urine, the concentration of these metabolites 

was measured in treated and control mice by ELISA. However, the results of this 

experiment were extremely variable. Another approach would have been to 

measure the concentration of excreted drug in the urine to provide an idea of its 

bioavailability in this in vivo model. 

In summary, although previous evidence has shown that LTRAs such as 

montelukast can prevent cancer progression, no significant reduction in tumour 

growth was observed in this study, albeit this may be due to limitations in the 

current study design. It is clear from in vitro data that inhibition of CysLT1R is 

effective at inhibiting the growth of oral SCC cells, but this did not translate into 

success in vivo. It is likely that tumour heterogeneity plays an important role in 

the efficacy of leukotriene inhibitors. The patient-derived Liv7k cell line was 

used in these experiments at a low passage, and possibly more heterogeneous 

than the established HCT-116 cell line used in the Savari study. Moreover, the 

basal expression of CYSTL1R in the primary tumour may be predictive of LTRA 

response. High expression of the parallel COX pathway is also predictive of a 

poor prognosis, and may negate the benefit of LTRAs. Therefore, dual inhibition 

of the COX and LOX pathways would be a logical avenue of investigation in 

further studies.  
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Chapter 9 Concluding Remarks 

For many years, the standard treatment options for patients diagnosed with oral 

cancer have been surgery and radio-therapy, and it was only in 2006 that the 

FDA approved chemotherapeutic agents for use in treating HNSCC.  The first of 

these, cetuximab, targets the EGF Receptor, which is expressed in >90% of 

HNSCC tumours[562]. However, recent clinical trials have shown disappointing 

results, and failure to prolong patient survival[563]. The failure of the 

humanised monoclonal antibody to significantly prolong patient survival is 

primarily due to the heterogeneity of the disease, which contributes to intrinsic 

and acquired resistance[564]. While cetuximab undoubtedly has a place in 

HNSCC treatment, it does not provide benefit to a substantial proportion of the 

patient population[565], and indeed, despite the availability of 

chemotherapeutics approved for HNSCC, only one in two patients diagnosed with 

advanced oral cancer in the UK survive for five years after diagnosis[2]. 

Resistance to currently available therapeutics will continue to contribute to high 

rates of recurrence and metastases, necessitating the pursuit of novel 

therapeutic strategies which are based on the identification of driver genes with 

key roles in HNSCC progression. 

Recent advances in the genomic characterisation of cancer have allowed 

tumours to be classified based on molecular subtype[35], which in turn has 

opened the door to personalised treatment strategies with maximal patient 

benefit. This body of work sought to identify novel driver genes in oral SCC, 

which may have potential clinical relevance. In doing so, three major themes 

emerged: (1) the clinical relevance of an amplicon found on chromosome three; 

(2) the role of hypoxia in lipid metabolism; and (3) tumour promoting 

inflammation.  

Analysis of a commonly amplified region of chromosome 3 led to the selection of 

two genes for further investigation, IGF2BP2 and PSMD2, both of which displayed 

amplified copy number, overexpression at mRNA level and significant correlation 

with HNSCC patient survival, in addition to being required for Liv7k cell line 

viability. Potential mechanisms of oncogenic progression in oral SCC were 

explored based on putative roles in the literature. IGF2BP2 was hypothesized to 
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contribute to a more aggressive phenotype through its modulation of the insulin 

signalling pathway. However, silencing of IGF2BP2 did not lead to significant 

abrogation of IGF1R phosphorylation or downstream signalling nodes, such as 

AKT and ERK. Moreover, knockdown of IGF2BP2 did not significantly impair 

proliferation, migration, or invasion, in oral SCC cell lines. This does not 

necessarily rule out a role for the gene in HNSCC/oral cancer, but a better 

understanding of its targets in HNSCC cancer cells, as are expected imminently 

from the results of an RNA immunoprecipitation experiment, will help guide 

further investigations of this molecule and the phenotypic effects of 

amplification and over expression.  

The second gene investigated was PSMD2, which encodes a subunit of the 

proteasome. PSMD2 was found to be over-expressed in >30% of HNSCC tumours, 

with over-expression correlated with reduced overall survival of patients.   

Silencing of the gene resulted in ~40% growth inhibition in the Liv7k cell line. 

The fact that PSMD2 silencing led to the selective induction of p21 in lung 

adenocarcinoma cell lines (but not human dermal fibroblasts) suggested that 

modulation of individual proteasomal subunits could lower the apoptotic 

threshold in cancer cells[426]. However, this did not appear to be the case for 

oral cancer, as equal or greater growth inhibition was observed in response to 

PSMD2 knockdown in immortalised keratinocyte cell lines.  

PSMD6, another proteasomal subunit, was found to be down-regulated in ~6% of 

tumours in the TCGA HNSCC dataset, leading to the hypothesis that the affected 

cancer cells may exhibit a greater dependence on PSMD6 activity than diploid 

oral keratinocytes.  This was borne out by the silencing of the gene, which 

resulted in reduced growth inhibition in a keratinocyte cell line compared to two 

oral SCC cell lines. The resistance to PSMD6 silencing needs to be confirmed in a 

wider range of non-cancer cell lines in order to establish its selectivity in HNSCC. 

A number of proteasomal subunits were identified as being altered in these 

studies and others, giving credence to the use of proteasomal inhibitors in the 

treatment of HNSCC.  In vitro experiments have demonstrated that proteasomal 

inhibition is an effective method of killing HNSCC cells in vitro through the 

stimulation of apoptosis, inhibition of the NF-kB pathway and generation of 
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reactive oxygen species[423, 566, 567]. In clinical trials however, bortezomib 

(which targets the β5 subunit of the 20S proteolytic core), has resulted in high 

rates of resistance and toxicity[422]. Second-generation proteasomal inhibitors 

such as carfilzomib, which exhibit greater specificity than bortezomib, have 

been effective at overcoming resistance to proteasomal inhibitors in vitro and 

inhibiting the growth of HNSCC xenografts[568, 569]. However, the efficacy of 

these agents is limited by the fact that proteasomal inhibitors also stimulate 

survival signals in HNSCC cells[570, 571]. Bortezomib was demonstrated to 

antagonise the action of the EGFR inhibitor cetuximab in a phase I clinical trial, 

resulting in unexpected early progression of HNSCC tumours[572]. This highlights 

the need for a more targeted strategy to inhibit proteasomal activity with 

enhanced specificity and higher tolerability. 

A major aim of this project was to uncover novel processes through which 

hypoxia influences the progression of oral SCC. To this end, an oxygen 

differential was employed in both the siRNA screen and RNA sequencing 

experiments in order to select for genes which, when silenced, resulted in a 

greater percentage growth inhibition in hypoxia than normoxia. Tumour hypoxia 

is an important prognostic factor in HNSCC, and is associated with therapeutic 

resistance and reduced overall survival[47]. A hypoxic tumour microenvironment 

drives phenotypic diversity within the tumour and selects for cells that best 

adapt to nutrient stress[573]. This includes alterations in energy metabolism 

such as increased glycolysis, reduced oxidative phosphorylation and increased de 

novo fatty acid synthesis. In this study, pathway analysis carried out on genes 

upregulated and essential for survival in hypoxia identified a subset of genes 

involved in triglyceride metabolism. 

One of these genes, MGLL, had previously been shown to regulate a fatty acid 

network that promotes cancer pathogenesis[312]. Although the triglyceride 

hydrolysis aspect of MGLL action was confirmed in this study, the selective 

growth inhibition observed in our initial screen could not be reproduced in 

follow up experiments. The gene is involved in additional catalytic processes and 

has even been purported as a tumour suppressor gene in colorectal cancer[319]. 

The pleotropic roles of MGLL in different cancer types may have contributed to 

the inconsistencies observed upon its silencing, but more work is needed to 
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investigate its relevance in HNSCC. Knockdown of another gene responsible for 

triglyceride breakdown, PNPLA2, did show a hypoxia specific effect in follow up 

experiments, but treatment with a small molecule inhibitor of the protein did 

not result in a loss of viability in high or low oxygen. Analysis of data from a re-

screen carried out as part of this project with stricter statistical thresholds, and 

utilising a more specific set of siRNAs, may uncover targets with greater 

significance in hypoxia. 

Similarly, a subset of genes involved in the synthesis of a structural class of lipid 

known as ether lipids were initially found to be essential for viability in hypoxia, 

but this could not be validated upon further experimentation. AGPS, which 

catalyses the rate limiting step in this process, has previously been shown to fuel 

an aggressive phenotype ion cancer cells through its modulation of ether lipid 

signalling molecules[268]. This study found that silencing of AGPS in the Liv7k 

cell line resulted in a hypoxia-selective reduction of ether lipids, supporting the 

original hypothesis. This may suggest the AGPS is required in this condition to 

maintain the structural integrity of rapidly proliferating oral cancer cells. 

Although an outlying replicate affected the overall significance of the result, a 

small number of ether lipid species were altered upon knockdown of AGPS. It is 

possible that these lipids are involved in oncogenic signalling pathways in oral 

cancer, thus contributing to enhanced proliferation and survival. Additional work 

is required to determine if the gene can modulate oncogenic signalling networks 

in HNSCC and effect phenotypic change.  

Finally, a drug-repurposing experiment, carried out to complement the results of 

the siRNA screen, revealed a selective sensitivity of oral cells grown in serum-

free media to a family of leukotriene pathway antagonists. Leukotrienes are 

important pro-inflammatory mediators, which have been identified in a number 

of disease processes, including cancer[574]. Montelukast, an antagonist of the 

primary cysteinyl leukotriene receptor, CysLT1R, resulted in an IC50 of 670 nM in 

oral cancer cells, but showed no effect up to 10 µM in cell lines grown in serum-

containing media. Serum-free media likely recapitulates the limited nutrient 

environment available to tumour cells lacking adequate vasculature, making it 

more physiologically relevant. However, immortalised keratinocyte cells were 



208 
 
equally sensitive to montelukast treatment, indicating a process not specific to 

cancer cells is being targeted. 

Treatment of nude mice with montelukast did tend toward reduced tumour 

volume of Liv7k xenografts, but did not significantly delay time to tumour 

endpoint, although there was a tendency toward prolonged survival. Histological 

staining of xenograft sections revealed no decrease in proliferation as measured 

by Ki67 staining intensity, perhaps not unexpectedly given that tissues were only 

collected at end-point. Interestingly, one tumour did begin to grow slowly upon 

treatment cessation at 100 days, after remaining static while on treatment. 

Staining of these sections may shed some light on its apparent sensitivity to 

montelukast.  

In addition, treatment of cells within an extracellular matrix containing cancer-

associated fibroblasts may elicit a more realistic response to montelukast 

treatment, which better reproduces the cross-talk between oral SCC cells and 

the microenvironment, indicating that patient-derived xenografts, or xenografts 

with and without co-cultured fibroblasts may be required to better tease out the 

potential benefits of montelukast or similar cysteinyl leukotriene receptor 

inhibitors.  Similarly, performing cross-sectional studies, and taking animals at 

particular time points post treatment initiation may reveal differences in tumour 

dynamics, immune cell infiltration, and stromal response. 

Survival rates for patients with advanced HNSCC have not improved since the 

licensing of cisplatin as an antineoplastic agent in the late 1970s[575]. 

Cetuximab represented the first targeted therapeutic agent to be employed in 

the disease, and yet has failed to provide a survival benefit commensurate with 

the extent of EGFR expression in HNSCCs[576]. Equally as important as better 

therapeutic options are the development of biomarkers to predict disease 

behaviour and allow for the stratification of patients into personalised 

therapeutic regimes, because, at present, no such biomarker exists to stratify 

patients into likely effective treatment groups.  

The work described herein sought to combine both the comprehensive genomic 

characterization of cancer genomes available in publicly available datasets such 
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as the TCGA and ICGC, and the power of high-throughput screening, to identify 

potential novel therapeutic targets in HNSCC.  Furthermore, by utilising 

physiologically relevant criteria, such as differential efficacy between hypoxic 

and normoxic conditions, we hoped to generate a set of targets which could be 

used to benefit a substantial portion of the population diagnosed with HNSCC.  In 

summary, this study has provided an analysis of potential driver genes in oral 

squamous cell carcinoma, and insights into their role in the pathobiology of the 

disease. 
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