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“Research is to see what everybody else has seen, and to think what

nobody else has thought.”

-Albert Szent-Gyrgy, Nobel Prize in medicine, 1934



Abstract

Background: Since the emergence of Kenyan endurance runners on the

world stage at the 1968 Mexico Olympics, where they won 8 medals ranging

from 400 m relay to the 10 000 m, Kenyan success has grown year on year.

The staggering success of a country that compromises just 0.5 % of the world

population has triggered a number of explanations. Heavily cited explana-

tions are genetic superiority and environmental factors. Despite a number

of investigations, genetic superiority remains to be determined, what is clear

though is that the environmental factors that interact with each genetic el-

ement leading to world-class performance are particularly important. Aims

and objectives: Given the importance environmental factors may have on

the process leading to world class performance, the main aims of the following

research were: 1) to determine the composition of elite Kenyan endurance

runners diet and assess their energy balance status prior to major competition

using gold standard methods; 2) to establish lifestyle practices of elite Kenyan

endurance runners prior to major competition that will allow an insight in

to the preparation of some of the best athletes in the world; 3) to ascertain

the hydration status of elite Kenyan endurance runners during an important

training period and directly compare these results to traditional paradigms

and current thinking on optimal fluid intake for superior endurance running

performance; 4) to investigate the training process leading to world class per-

formance by quantifying training load in the lead up to major competition;

5) to determine the fluid intake behaviours of the world’s best marathon

runners during racing. This will allow an insight into current practices of

elite runners that will act as a benchmark and comparison of current fluid

intake guidelines; and 6) to validate and combine existing technologies of

heart rate and accelerometry for quantifying energy expenditure during free

living conditions. Methods: Chapters 2 and 3 detail extensively the diet,

hydration, lifestyle and training practices of a group of highly successful elite

Kenyan endurance runners during important training periods based at a high

altitude camp in Kenya. Chapter 4 explores the significance of the hydration

practices reported in Chapters 2 and 3 (i.e., ad libitum fluid intake) have
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on elite marathon running performance and the wider implications for fluid

intake recommendations for elite marathon running. Chapter 5 investigates

novel technology (i.e., the combined use of accelerometry and heart rate) that

may further enhance our understanding of the physical activity patterns and

training practices of elite Kenyan endurance runners on a day-to-day basis.

Results and discussion: Chapter 2 reported elite Kenyan endurance run-

ners are in negative energy balance prior to major competition as assessed by

the gold standard doubly labeled water method (Energy intake: 13.2 ± 1.3

MJ·d−1 vs. Energy expenditure: 14.6 ± 1.0 MJ·d−1; p < 0.005). Consider-

ing the relatively high carbohydrate content of their diet (e.g., 67.3 ± 7.8 %,

9.8 g·kg−1BM·d−1) it is hypothesised the caloric deficit may not have a direct

impact on their training performance. In fact the performance implications

of reducing body mass as a result of energy deficiency is that the athletes

will be lighter for competition and may thus be at an advantage as the en-

ergy cost per unit distance increases in direct proportion to the added load

expressed as a percentage of body mass. Measured physical activity patterns

(i.e., Physical Activity Ratio (PAR) and accelerometry) of elite Kenyan en-

durance runners strongly suggest rest between running training sessions is an

important lifestyle factor as it was found time spent relaxing, in light activ-

ity, slow running (8.0-13.6 km·hr−1), moderate running (13.7-17.3 km·hr−1),

and fast running (≥ 17.4 km·hr−1) as estimated using the PAR method was

82 ± 6 %, 8 ± 6 %, 3 ± 1 %, 5 ± 1 %, 2 ± 1 %, respectively. The reported

time spent in light, moderate, hard and very hard activity as determined by

accelerometry was 82 ± 3 %, 11 ± 2 %, 6 ± 3 %, and 1 ± 1 % respectively. A

further striking finding in Chapter 2 was the relatively low daily fluid intake

that consisted of primarily water (0.9 ± 0.5 L·d−1) and milky tea (0.9 ± 0.3

L·d−1). Chapter 3 found athletes remained hydrated day-to-day drinking ad

libitum despite this relatively low daily fluid intake that corroborated prevail-

ing fluid intake recommendations. This was evidenced by mean total body

water and pre training body mass being maintained day-to-day throughout

the recording period (p = 0.194 and p = 0.302, respectively). Furthermore,

there was no significant difference between the osmolality of the morning

urine sample and the evening sample (p = 0.685). It was also found that
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athletes remained in electrolyte balance (Na+ intake: 3245 ± 901 vs. Na+

loss: 3254 ± 1070 mg·d−1; p = 0.975) day-to-day thus negating the need for

further supplementation. The training load analysis supports the contention

that elite endurance athletes spend the majority of their training time at low

intensity (26 % of total weekly training time spent > 80 % heart rate peak)

with periods of high intensity work interspersed (e.g., twice weekly track

session). Chapter 4 reported prevailing fluid intake recommendations that

recommend a specific fluid intake rate (i.e., 0.4-0.8 L·hr−1) are insufficient

for elite marathon running evidenced by mathematical modelling and video

analysis of drinking behaviours of the winners of a major city marathon. As

a direct result of these findings it is proposed the best strategy for competi-

tive marathon running in temperate conditions is to drink ad libitum as long

as body mass loss is kept within acceptable limits, possibly < 3 %. The

ad libitum drinking pattern supports observations of the elite Kenyan en-

durance runners reported in Chapter 2 and 3. Chapter 5 is the first study

to report an accelerometer that can operate up to and including 20 km·hr−1.

It was also found the combined use of tri-axial accelerometry and heart rate

(R2 = 0.80) predict V̇ O2 better during fast running than either predictor

alone (heart rate: R2 = 0.59; accelerometry: R2 = 0.76) and that subjects

individually calibrated data further improves V̇ O2 estimation (R2 = 0.99).

Conclusions: The main findings of the research do not point to one single

explanation for the Kenyan running phenomenon. The results suggest the

explanation is likely to be complex in origin and that many individual fac-

tors may well aggregate to produce world class performance. It is proposed

that future studies should focus on developing combined technologies such as

accelerometery and heart rate in order to better understand physical activ-

ity patterns and energy expenditure of elite Kenyan endurance runners on a

day-to-day basis over an extended period of time that incorporates multiple

training cycles. It is also suggested that similar studies to those presented

here in Chapters 2-3 are conducted in Ethiopia due to their recent staggering

success in endurance running.
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1
General Introduction

1.1 Kenyan Running Phenomenon

After the world witnessed Lazaro Chepkwoney, the first Kenyan endurance

runner to race on European soil, drop out 15 laps into the 6 mile race due to

fatigue at the English Amateur Athletics Association championships in 1954,

no one would have thought Kenya would go on to be a leading force in world

endurance running. Fourteen years on though Kenya displayed their running

prowess by winning 8 medals ranging from 400 m relay to the 10 000 m at the

1968 Mexico City Olympic Games. Leading on from then, Kenyan success

has grown year on year (Table 1.1). So much so that by 2004 the majority

(51 %) of top ten yearly performances from 800 m to marathon were from

Kenyan athletes compared to just 1 % in 1964 (data taken from IAAF all

time outdoor list). In cross-country running the pattern of winning is even

more staggering for a country that comprises just 0.5 % of the total world

population. Since 1986 Kenya has won a remarkable 18 straight men’s IAAF

world cross-country crowns; Ethiopia eventually breaking the stranglehold by

winning in 2004. Individually, three Kenyans have won 12 individual crowns

since the cross-country championships inception in 1973. John Ngugi won

five titles between 1986 and 1992, William Sigei won twice in 1993 and 1994,

and previous marathon world record holder Paul Tergat won five straight

titles between 1995 and 1999. At the highest level Kenyans have also ex-

celled. Since 1964 Kenya has won 54 medals including 16 gold, 23 silver and

1



1.2. EXPLANATIONS

Table 1.1: Percentage of male Kenyan athletes in IAAF top ten yearly rank-
ings in events ranging from 800 m-marathon. *Kenyan withdrawal from
international competition due to a boycott.

Year % In top ten
2004 51
2000 49
1996 47
1992 40
1988 16
1984 7
1980 *
1976 *
1972 7
1968 9
1964 1

15 bronze in events ranging from 400m to the marathon at summer Olympic

Games. At IAAF World Championships the phenomenon is underlined with

Kenya winning a staggering 72 medals since the first championship in 1983

in events ranging from 400 m to the marathon that places them 3rd in the

all-time medal table behind the USA and Russia. The medal haul includes

27 gold, 22 silver and 23 bronze with the largest in any one championship

being the most recent (Osaka, 2007) where Kenyan athletes won 5 gold, 3

silver and 5 bronze indicating their running prowess is by no means dimin-

ishing. Historically the success of Kenya in all major competitions is almost

exclusively due to male runners but as Figure 1.1 demonstrates the increase

in medals at the 2007 IAAF World Championships was due to a significant

increase in the number of medals won by female Kenyan runners suggesting

female Kenyan runners are beginning to excel on the world stage also.

1.2 Explanations

The staggering success of Kenya has prompted many explanations. It is

however recognised that it is unlikely that one aspect alone can explain the
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Kenyan running phenomenon. Accordingly, Myburgh (2003) proposes that

advancement in understanding of what makes elite athletes truly elite will

require a multidisciplinary approach. For ease of discussion here however,

explanations are broadly described as psychological, socio-cultural, physio-

logical, genetic and environmental. The following sections address each of

these areas in sequence.

1.2.1 Psychological explanations

The Kenyan running phenomenon is unequivocal; however there have been

periods in history when other countries or groups of athletes have also had

great success in distance running. For example Scandinavian runners such

as Paavo Nurmi and Lasse Viren and British runners such as Sebastian Coe

and Steve Ovette enjoyed considerable success in their own era. However,

these feats by these individual athletes are exactly that, individual. That is

they do not reflect a domination of endurance running like what we see today

by east African runners as a whole. There are of course outstanding Kenyan

athletes such as Kip Keino, Amos Biwott and more recently Paul Tergat who

enjoyed a large amount of individual success but Kenyan athletes as a whole

seem to do well even if not always in major competitions. To illustrate this

point, in 1986 48.3 % of the top 20 performances in events ranging from 800

m to the marathon where from European athletes compared to 26.6 % by

east Africans. By 2003 this changed to 11.7 % Europeans and 85.0 % east

Africans, with the majority of these places filled by Kenyans (55.8 %) (data

taken from IAAF all time outdoor list). It is this level of domination in

endurance running that has lead Hamilton (2000) to postulate that Kenya’s

past and present success that has resulted in a steadily growing dominance

may in fact be self perpetuating. That is, when athletes with ancestry other

than east African stand on the start line next to those that do have east

African ancestry they may well be psychologically primed for racing to be

the first non-African runner rather than the overall race winner. This po-

tential psychological advantage is the basis for the concept typically termed

stereotype threat that is used by Baker and Horton (2003) to explain the
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dominance of certain sports by certain groups. The crux of the argument

is that the level of success in a certain situation/task may actually be de-

pendant on the individual’s perception of their own ability rather than their

actual ability. In the context of endurance running, and indeed across a

number of other sports, the perception is typically that black athletes are

more athletically gifted than their white counterparts, a perception that has

been augmented and driven by the media in more recent times (e.g., Entine,

2001). An example of the influence stereotype threat could have on the po-

tential outcome of a sporting event is demonstrated in the study of Stone

et al. (1999). Those authors gave black and white students the same golf

task with three varying conditions. The three conditions were designed to

measure the outcome when the perceived reasons for testing were natural

athletic ability, sport intelligence and sport psychology. It was found that

both black and white students scored equally for sport psychology, but black

students outperformed white students when the test was perceived as a test

of natural athletic ability, whereas when the test was perceived as a test of

sport intelligence the whites outperformed the blacks. These results corrob-

orate the stereotype threat thesis but it is still unclear what affect this trend

may actually have when applied to endurance runners competing at the elite

level.

1.2.2 Social-cultural explanations

Regardless of whether the continued success of Kenyan runners on the road

and track racing circuits can be attributed to stereotype threat, many Kenyan

athletes are capitalising from the sport and making a good living for their

families and villages back home. Considering the average daily wage in Kenya

is around $1-2 the lucrative road and track racing circuits in Europe and

America are very attractive. Indeed the motivation to compete for money is

demonstrated by Onywera et al. (2006) who reported the main motivation

for 33 % of Kenyan international athletes (n = 97) and 38 % of Kenyan

national athletes (n = 307) to run was money compared to just 14 and 12

%, respectively who stated Olympic glory (Figure 1.2).
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However, although running for money may be a powerful motivator for

some Kenyan athletes, it is by no means an explanation for the Kenyan

running phenomenon as if it where that simple then significantly more ath-

letes from other relatively poor countries would be cashing in also. Manners

(1997) argue other aspects of Kenyan culture may have more of a connec-

tion to their running success. That author proposes that the history and

customs of one ethnic group in particular, the Kalenjin, may provide impor-

tant clues. The Kalenjin have a population of around 3 million (10 % of the

total Kenyan population) yet have won about 75 % of the countries medals

(Manners, 1997). To further highlight their extraordinary success, Manners

(2006) reports that Kalenjin runners account for 50 % of the all time top

10 times in the 8 Olympic endurance running races alone. Data reported

by Onywera et al. (2006) supports the performance data by demonstrating

that among Kenyan national (n = 307) and international (n = 97) athletes,

Kalenjin ethnicity is predominantly overrepresented (49 % and 75 %, respec-

tively) compared to a control group made up of the general population (n

= 87; 8 %). As a result Manners (1997) has highlighted their custom of

male circumcision and cattle raiding as important factors in their success on

the track and road. It follows that the ritual of public male circumcision of

young boys about to enter adulthood instils courage, endurance and deter-

mination which when combined with the fierce tactics and large distances

run during cattle raiding mean that a track or road race are relatively pain-

less. These rituals are no longer practiced by the Kalenjin and opponents

of this hypothesis may well argue that there has never been a cattle raider

go on to be an elite runner. In addition Bale and Sang (1996) suggest that

such rituals are not unique to just the Kalenjin when compared to Kenya’s

other diverse ethnic groups or indeed throughout the world and propose that

the Kalenjin stereotype for successful endurance running has meant that this

group has been particularly cultivated for talent and hence overrepresented

in world endurance running. In addition, those authors stress the influence

British colonisation had throughout east Africa that undoubtedly laid the

foundations and instilled a competitive spirit that we see so overwhelmingly

today.
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1.2.3 Physiological explanations

While psychological and socio-cultural reasons, discussed above, may be im-

portant factors in shaping Kenyan runners, to compete and win at the elite

level in endurance running it is undoubtedly necessary to have the correct

physiology to do so. A pre-requisite for elite endurance running is certainly a

high V̇ O2max. Typically international male endurance runners have V̇ O2max

values of 70-85 mL·kg−1·min−1 (Sjodin & Svedenhag, 1985) that are about 45

% higher than age and sex matched sedentary individuals (American College

of Sports Medicine, 2006); females generally have values around 10 % lower

due to lower haemoglobin and higher body fat levels (Davies & Thompson,

1979). V̇ O2max values of Kenyan runners reported in the scientific literature

appear to support this principal (Saltin et al., 1995; Billat et al., 2003). It

follows then that a high V̇ O2max is an important predictor of performance

in a heterogeneous population (e.g., Sjodin & Svedenhag, 1985), it does not

however appear to be so in a homogenous population such as a group of

elite or sub-elite distance runners with comparatively similar V̇ O2max values

(Conley & Krahenbuhl, 1980). For example, those authors (Conley & Kra-

henbuhl, 1980) reported the relationship between V̇ O2max and 10 km race

time was r = -0.12 (p = 0.35) in 12 elite runners who had a narrow range

of V̇ O2max values (66.1-73.7 mL·kg−1·min−1). This is in contrast to the re-

lationship between V̇ O2 at three submaximal running paces (241, 268, and

295 m·min−1) and 10 km race time that were r = 0.83, 0.82 and 0.79 (p <

0.01), respectively. The submaximal V̇ O2 at a given running velocity is typ-

ically termed running economy as it reflects the ratio of work done to energy

expended. Runners with good running economy use less oxygen than run-

ners with poor running economy at the same steady state speed (Saunders

et al., 2004) and this can vary by as much as 30 % in runners with simi-

lar V̇ O2max values (Daniels, 1985). To illustrate the potential performance

implications of good or poor running economy, Figure 1.3 depicts two inter-

national 10 km runners that have similar V̇ O2max values but significantly

different running economies. Subject 1 is 1 min quicker over 10 km which is

likely a result of better running economy (Saunders et al., 2004). Evidence

8



1.2. EXPLANATIONS

Figure 1.3: Comparison of V̇ O2 (mL·kg−1·min−1) in two international caliber
10 km runners, one with good economy (i.e., subject 1) and the other with
poor economy (i.e., subject 2). Figure taken from Saunders et al., 2004.
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favouring superior running economy in Kenyan endurance runners compared

to Caucasian athletes is presented by Saltin et al. (1995). In that study,

Kenyan runners exhibited better running economy compared to their Scan-

dinavian counterparts whilst running at sub-maximal running speeds even

though their absolute V̇ O2max was not different. Those authors also found

the Kenyan runners had lower lactate and ammonia accumulation. Other

East African runners have also been reported to have superior running econ-

omy compared to Caucasians. Lucia et al. (2006a) reported elite Eritrean

runners had superior running economy compared to elite Spanish runners.

This finding is further supported by Lucia et al. (2008) who reported the

running economy of Eritrean Tadesse Zerisenay, IAAF World Cross Country

Champion 2007, was 150 mL O2·kg−1·min−1; the lowest ever published value

to the present author’s knowledge. Zerisenay’s V̇ O2max is 83 mL·kg−1·min−1

and supports the principal of a high V̇ O2max for superior endurance running.

However it may be that the reported values may be erroneous. Successful en-

durance running performance is essentially related to the interplay of three

key physiological principles: V̇ O2max, running economy and the fractional

utilisation of the V̇ O2max (which is related to markers of blood lactate ac-

cumulation such as the lactate threshold and maximal lactate steady state)

(Coyle, 1995). The interaction of V̇ O2max and running economy can be used

to calculate the speed at V̇ O2max (i.e., vV̇ O2max) (Morgan et al., 1989).

For example, an athlete with an economy of 200 mL O2·kg−1·min−1 and a

V̇ O2max of 65 mL·kg−1·min−1 would have a vV̇ O2max of 19.5 km·hr−1(65 ×
60) ÷ 200) (example taken from Jones, 2006). In the case of Zerinesay his

calculated vV̇ O2max is 33.2 km·hr−1. Assuming a typical fractional utilisa-

tion of vV̇ O2max of 97 % for a 5 km run, this would predict a time of 9 min 31

sec. Even considering a small error in the percentage fractional utilisation of

vV̇ O2max assumed for 5 km running performance, this time is considerably

quicker than the present world record set by Ethiopia’s Kennisa Bekele of

12 min 37 sec and Zerinesay’s own personal best of 12 min 59 sec. Never-

theless that study does convey the importance of excellent running economy

for superior endurance running performance. Jones (2006) reports longitu-

dinal laboratory physiological data of Paula Radcliffe, the current women’s

10



1.2. EXPLANATIONS

marathon world record holder, from 1992 to 2003. Over the 11 year period

V̇ O2max remained relatively stable at approximately 70 mL·kg−1·min−1 but

running economy on the other hand improved by 15 % (205 ml O2·kg−1·min−1

vs. 175 ml O2·kg−1·min−1, respectively) that coincided with steady improve-

ments in performances also. Hand in hand with an improvement in running

economy was an increase in the speed at lactate threshold (14-15 km·hr−1

vs. 17.5-18.5 km·hr−1, respectively) and the second lactate turn point (16

km·hr−1 vs. 20 km·hr−1, respectively). This improvement in running econ-

omy over a significant number of years of training shares similarities with

Lance Armstrong, seven times Tour de France Champion (Coyle, 2005b). In

that study, Coyle (2005b) reported a 9 % improvement in cycling efficiency

over a 7 year period. It has been suggested however that the timing of test-

ing may have been a limitation of this study (i.e., tested 5 times over a 7

year period with only first and last test conducted in the same month of

a given year) (Martin et al., 2005). Nevertheless, considering these studies

(Conley & Krahenbuhl, 1980; Jones, 2006; Lucia et al., 2006a; Lucia et al.,

2008) it may be concluded that a high V̇ O2max is indeed a requirement for

superior endurance performance but major improvements in running econ-

omy, that may take several years of training, may be the major physiological

improvement leading to world class performances in future years.

As mentioned there is evidence that Kenyan runners may poses superior

running economy compared to Caucasians (Saltin et al., 1995). In his 2003

review, Larsen (2003) postulated that superior running economy of Kenyan

runners may partly be explained by their small calf circumference. It follows

that the minimum amount of mass around the extremities is conducive for

running economy (Myers & Steudel, 1985; Jones et al., 1986). Myers and

Steudel (1985) compared adding weight proximally to the centre of mass (i.e.,

the waist) and distally on the limbs (i.e., foot/ankle) during running and re-

ported that the energy cost was increased by a factor of 1.5-5.5 by the latter.

Similarly, Jones et al. (1986) measured the energy cost of wearing shoes of

varying weight during running and walking and reported an average incre-

ment in V̇ O2 cost of 1 % per 100 g of weight added. There is no scientific

evidence of elite Kenyan endurance runners having smaller calf circumfer-
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ences just anecdotal observations. However there is emerging evidence albeit

in Eritreans compared to their Spanish counterparts that east African run-

ners do indeed have smaller calf circumferences (Lucia et al., 2006a). There

is an important, often overlooked, issue to address here if generalising the

results of subjects purely by skin colour though. This is discussed in the

following section (section 1.2.4) but essentially the preconception that race,

defined simply by skin colour, constitutes a genetically homogenous group is

contrary to the finding of Yu et al. (2002) that there is more genetic variation

within Africa than between Africa and Eurasia. In the athletic arena this

is demonstrated by the fact that athletes of west African ancestry dominate

sprint events whereas athletes of east African ancestry dominate endurance

events; both populations have black skin but typically have physiologies at

the opposite end of the spectrum. Therefore, the finding of smaller calf cir-

cumferences of Eritrean’s compared to Caucasian Spanish runners (Lucia et

al., 2006a) should be interpreted with caution. Similarly any inferences re-

garding running economy from that study (Lucia et al., 2006a) and others

that have compared physiological parameters of black (South African) run-

ners versus white runners (Bosch et al., 1990; Coetzer et al., 1993; Weston

et al., 1999; Weston et al., 2000) should also be treated with caution. It was

found that black South African runners have lower levels of lactate accumu-

lation (Bosch et al., 1990; Coetzer et al., 1993; Weston et al., 1999), superior

running economy (Weston et al., 2000), greater fatigue resistance (Coetzer

et al., 1993; Weston et al., 1999) and greater fractional utilisation of V̇ O2max

at race pace (Bosch et al., 1990; Coetzer et al., 1993; Weston et al., 2000)

compared to white runners. Another overlooked factor with those studies

is that the athletes were elite compared to the general population but they

were not world class as none of the athletes studied have 10 km and 42.2 km

race times that would qualify them to compete in the Olympic Games (Table

1.2). Larsen (2003) suggests that the Kenyans studied by Saltin et al. (1995)

may have also been sub-elite apart from one (J. Machuka) who incidentally

recorded the highest V̇ O2max (84.8 mL·kg−1·min−1) compared to his Kenyan

(mean: 79.9 mL·kg−1·min−1) and Scandinavian (mean: 79.2 mL·kg−1·min−1)

counterparts that is more in keeping with other elite Kenyan runners such as

12



1.2. EXPLANATIONS

T
ab

le
1.

2:
T

op
:

M
ea

n
10

k
m

an
d

42
.2

k
m

ra
ce

ti
m

es
of

w
h
it

e
an

d
b
la

ck
su

b
je

ct
s;

B
ot

to
m

:
A

-S
ta

n
d
ar

d
q
u
al

if
y
in

g
ti

m
e

fo
r

10
k
m

an
d

42
.2

k
m

ra
ce

s
in

th
e

O
ly

m
p
ic

G
am

es
p
lu

s
th

e
w

in
n
in

g
ra

ce
ti

m
es

fo
r

th
e

20
08

B
ei

ji
n
g

O
ly

m
p
ic

G
am

es
.

S
tu

d
y

W
h
it

e
R

u
n
n
er

s
B

la
ck

R
u
n
n
er

s
10

k
m

R
ac

e
T

im
e

C
o
et

ze
r

et
al

.,
19

93
29

m
in

38
S
ec

28
m

in
33

se
c

W
es

to
n

et
al

.,
19

99
33

m
in

36
se

c
32

m
in

48
se

c
W

es
to

n
et

al
.,

20
00

32
m

in
00

se
c

32
m

in
48

se
c

42
.2

k
m

R
ac

e
T

im
e

B
os

ch
et

al
.,

19
90

2
h
r

32
m

in
31

se
c

2h
r

30
m

in
42

se
c

A
-S

ta
n
d
ar

d
Q

u
al

if
y
in

g
T

im
e

20
08

B
ei

ji
n
g

O
ly

m
p
ic

s
W

in
n
in

g
T

im
e

10
k
m

R
ac

e
27

m
in

50
se

c
27

m
in

01
se

c
42

.2
k
m

R
ac

e
2

h
r

15
m

in
00

se
c

2
h
r

06
m

in
32

se
c

13



1.2. EXPLANATIONS

Kipchoge Keino (82.0 mL·kg−1·min−1) (Saltin & Astrand, 1967) and Henry

Rono (84.3 mL·kg−1·min−1) (see Saltin et al., 1995). Therefore, on reflection

there is very limited scientific data to conclude that Kenyan runners have

unique physiological advantages over runners from other countries, particu-

larly Caucasian runners. Rather it is clear to perform at a world-class level in

endurance running a high V̇ O2max, excellent running economy and an ability

to run at a high percentage of V̇ O2max is desirable regardless of ethnicity.

Myburgh (2003) proposes that conventional methods (i.e., physiology, bio-

chemistry and histology) may be insufficient for assessing and distinguishing

between elite and truly world-class athletes and exercise physiologist must

embrace a multidisciplinary approach that also includes molecular biology

and genetics.

1.2.4 Genetic explanations

Onywera et al. (2006) reported an over-representation of national (65 %)

and international (82 %) runners from a distinct region in Kenya called the

Rift Valley compared to controls (20 %) (Figure 1.4). Given that such a

large percentage of the world’s best endurance runners originate from one

distinct region rather than being evenly distributed it is tempting to suggest

that the Kenyan running phenomenon may in fact be genetically mediated

(Entine, 2001; Larsen, 2003). Either genetic drift (in isolated populations

this has the potential to cause certain alleles to increase or decrease in fre-

quency compared to neighbouring populations) or selection for a particular

phenotype such as endurance performance (if it offers an advantage in that

environment) may result in individuals with a conducive genetic make up

for endurance running (Scott & Pitsiladis, 2007). Evidence from unmea-

sured genotype approach studies that estimate the relative contribution of

the genetic variation to the phenotype variance by studying twins as well

as extended family data support a large genetic component in aerobic fit-

ness parameters such as V̇ O2max (Klissouras, 1971; Bouchard et al., 1986;

Fagard et al., 1991; Maes et al., 1996; Bouchard et al., 1998). In the first

such study Klissouras (1971) estimated V̇ O2max heritability as high as 93
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Figure 1.4: Regional distribution of subject groups and Kenyan population
(K). Regional distribution of controls did not differ from the Kenyan popula-
tion (p = 0.23), but differed from both national (p < 0.001) and international
athletes (p = 0.001). National athletes also differed from international ath-
letes (p = 0.022). Figure taken from Onywera et al., 2006.

%. Later studies corroborate this finding but to a lesser extent, Fagard et

al. (1991) reported V̇ O2max heritability ranged from 66-77 % when con-

sidering body weight, skinfold thickness and time spent training. Similarly,

Maes et al. (1996) reported the genetic component for V̇ O2max variation

was 87 % for females and 69 % for males. In contrast, the heritability of

V̇ O2max has been found to be significantly lower at 40 % (Bouchard et al.,

1998). Those authors propose a more realistic value may actually be 10 %

once environmental conditions are considered. More recently though in the

HERITAGE Family Study (Bouchard et al., 1998), the biggest study of its

kind, heritabilities for V̇ O2max ranged from 51-59 % depending on the type

of adjustment performed (i.e., age, sex, body mass). Thus taking all these

studies together it is clear that there is a genetic influence on V̇ O2max in the

sedentary state with the estimate varying depending on which environmental

factors are considered in the analysis. Considering elite endurance running

performance requires a high V̇ O2max, amongst other physiological factors (see

section 1.2.3), intuitively elite endurance runners as a whole must therefore

have the correct genetics compared to the general population. As a result

15



1.2. EXPLANATIONS

there is growing exploration of the genome to identify particular gene variants

that may be responsible for this genetic effect using the measured genotype

approach. The measured genotype approach includes direct measurement of

genetic variation at the protein or DNA level and seeks to estimate the im-

pact of allelic variation on the phenotypic variation (Klissouras, 2001). The

most recent yearly publication that summarises genes and gene variants that

contribute to human performance includes 165 autosomal gene entries, plus

5 on the X chromosome and a further 17 mitochondrial genes (Rankinen et

al., 2006). Despite a growing number of candidate genes, only two nuclear

candidate genes have been investigated in elite Kenyan runners, the ACE

and ACTN3 genes (Scott et al., 2005a; Yang et al., 2007).

The ACE gene has an insertion polymorphism (I) in intron 16 of the gene

that is associated with lower levels of circulating and tissue ACE than the

deletion (D) (Rigat et al., 1990; Danser et al., 1995). It has been reported

homozygotes for the I-allele, and therefore lower circulating ACE levels, is

conducive for endurance performance (Gayagay et al., 1998; Montgomery et

al., 1998; Myerson et al., 1999; Scanavini et al., 2002). For example My-

erson et al. (1999) reported the frequency of the I-allele increased linearly

with running distance in Australian runners (i.e., < 200 m, 400-3000 m or

> 5000 m). Other studies have not found the same association (Rankinen

et al., 2000a; Rankinen et al., 2000b). Investigation of 221 national and 70

international Kenyan athletes (Scott et al., 2005a) corroborates those other

studies (Rankinen et al., 2000a; Rankinen et al., 2000b) as no association was

found between ACE genotype (frequency of I-allele) and elite endurance ath-

lete status compared to 85 control subjects (general Kenyan population), as

shown in Figure 1.5. Unlike Caucasians, Africans have another variant that is

closely associated with circulating ACE levels. The polymorphism A22982G

in the ACE gene is normally in linkage disequilibrium in a Caucasian pop-

ulation but in Africans this is typically not the case. As a result this gene

was also investigated (Scott et al., 2005a), but similarly it was found not to

be associated with elite endurance status and genotype frequency. Thus in

this elite Kenyan cohort the absence of an association between the I/D and

A229282G polymorphisms with elite endurance athlete status suggests that
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Figure 1.5: ACE I/D genotype frequencies in athletes and controls. The
number of subjects for each genotype is indicated. No significant differences
in genotype frequency were present between groups. Figure taken from Scott
et al., 2005a.
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the ACE gene is not important or indeed partly responsible for the Kenyan

running phenomenon.

Similar to the ACE gene, there are equivocal findings for the ACTN3

R577X polymorphism (Niemi & Majamaa, 2005; Lucia et al., 2006b; Paparini

et al., 2007; Yang et al., 2007). The nonsense polymorphism R577X results

in complete deficiency of ∝-actinin-3 protein in around 16 % of the global

population (North et al., 1999). The ∝-actinin-3 deficient XX genotype

has been found at low frequencies in power/strength athletes and at higher

frequencies in elite female endurance runners compared to controls (Yang et

al., 2007). This finding is supported in Finnish track and field athletes (Niemi

& Majamaa, 2005) but not in elite Spanish endurance cyclists and runners

(Lucia et al., 2006b) and elite Italian rowers (Paparini et al., 2007). In

elite Kenyan endurance runners there was no association between the R577X

polymorphism and elite endurance athlete status (Yang et al., 2007). In that

study it was also found there was no association in elite Ethiopian endurance

runners and also elite Nigerian sprinters suggesting the ∝-actinin-3 deficiency

is not a major influence in African runners as a whole.

Investigation of mtDNA haplogroup distribution and its association with

elite Kenyan endurance runners looks more promising (Scott et al., 2009).

mtDNA is subject to a matrilinear pattern of inheritance and can be used

to trace the ancestral origins of individuals or populations. Given the strong

maternal influence of aerobic performance phenotypes such as V̇ O2max (e.g.,

Bouchard et al., 1998), this hints that mtDNA may in fact have some role in

determination of aerobic endurance capacity. A hypothesised role of mtDNA

in the determination of aerobic capacity is further supported as mtDNA en-

codes for a number of proteins that are vital for oxidative phosphorylation. It

was found international athletes (n = 70) showed a significantly different dis-

tribution of mtDNA haplogroups relative to control subjects (general Kenyan

population; n = 85) and national standard athletes (n = 221), displaying an

excess of L0 haplogroups (controls: 15 %, national: 18 %, international: 30

%) and a dearth of L3* haplogroups (control: 48 %, national: 36 %, interna-

tional: 26 %) (Scott et al., 2009). This may suggest that these haplogroups

contain polymorphisms which may influence aerobic performance but it is
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unclear which variant(s) this could be as full genome sequencing have found

greater than 40 polymorphisms (Maca-Meyer et al., 2001; Kivisild et al.,

2004). In fact those authors (Scott et al., 2009) do stress that further inves-

tigation at a higher resolution is required as mutations in mtDNA have in

the past been demonstrated to only subtly influence disease phenotypes (for

a reveiw see Herrnstadt & Howell, 2004). This study (Scott et al., 2009) does

however represent a significant leap forward in beginning to understand the

genetics of elite endurance athlete status but the significance of these results

should be interpreted with care. For example Scott et al. (2005b) reported no

association between mtDNA haplogroup and elite Ethiopian athlete status.

The haplotype frequency differences are in fact large between the Kenyans

and Ethiopians. For example, the frequency of the Eurasian haplogroup, R,

is at less than 5 % frequency in Kenya but almost 30 % in Ethiopia. Such

diversity in the Ethiopian’s mtDNA and indeed the haplogroup frequency

differences between Kenyans and Ethiopians highlights that east Africans

are by no means a genetically distinct group. This supports the contention,

as mentioned in the previous section (section 1.2.3), that results of inves-

tigations that have used skin colour as a surrogate for defining genetically

homogenous groups (i.e., black versus white runners) should thus be inter-

preted with caution (Bosch et al., 1990; Coetzer et al., 1993; Weston et

al., 1999, 2000; Lucia et al., 2006a). The findings from investigations of

mtDNA (Scott et al., 2005b; Scott et al., 2009) and nuclear polymorphisms

(Scott et al., 2005a; Yang et al., 2007) also demonstrate that the sugges-

tion of African genetic superiority is not at present warranted. Williams and

Folland (2008) recently calculated that the likelihood of a single individual

in the world possessing the advantageous form of 23 polymorphism’s that

would lead to the ideal polygenic profile for endurance running is 0.00005

%. Given the genetic contribution to endurance performance (Klissouras,

1971; Bouchard et al., 1986; Fagard et al., 1991; Maes et al., 1996; Bouchard

et al., 1998) this suggests there is significant unrealised potential in the hu-

man genome for endurance performance improvements and the prediction by

Joyner (1991) of a 1 hr 58 min marathon may be plausible. However this

investigation (Williams & Folland, 2008) further highlights that the success
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of east African endurance runners is likely to be an interplay of complex

genetic factors and their surrounding environment. Without this interaction

between each genetic element and the environment, world class performance

will never be achieved.

1.2.5 Environmental explanations

As mentioned in the previous section (Section 1.2.2; Figure 1.4), a major

stimulus for a genetically mediated explanation for the Kenyan running phe-

nomenon is the finding that many runners originate from a distinct region

of Kenya (Onywera et al., 2006). The Rift Valley region is part of the Great

Rift Valley that is approximately 6000 km in length running from northern

Syria in Southwest Asia to central Mozambique in East Africa. The Rift

Valley in Kenya is about 2000 m a.s.l. and it is this altitudinous location

that has been speculated to be an important factor for their success. Many

lowlanders sojourn to altitude as some coaches and athletes believe there may

be a benefit for subsequent sea level performance. The scientific literature

generally corroborates the anecdotal evidence with about a typical 1 % im-

provement in endurance performance reported (Levine & Stray-Gundersen,

1997; Nummela & Rusko, 2000; Hahn et al., 2001; Stray-Gundersen et al.,

2001) when using the popular live high-train low model that was proposed

by Levine and Stray-Gunderson (1997). As the name implies, the protocol

requires sleeping at moderate altitude (1500-3000 m a.s.l.) and training at

low altitude (< 1500 m a.s.l.); this allows maintenance of training intensities

plus the proposed benefits of adaptations to altitude. It is unclear what the

exact mechanism(s) may be for an improvement in subsequent sea level en-

durance performance but the primary explanations for an improvement are

favourable alterations in haematological parameters and or improvements in

running economy (for a review of the key arguments see Point:Counterpoint

Gore & Hopkins, 2005; Levine & Stray-Gundersen, 2005). Another expla-

nation may be a role for the brain (Noakes, 2005) but as yet this is unde-

termined. Regardless of the mechanism for an improvement in performance

following a live high-train low regime it is difficult to extrapolate these find-
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ings to elite Kenyan endurance runners as they are indigenous high altitude

natives who are born, raised and train at moderate altitude. Whether be-

ing able to train normally at moderate altitude affords them any benefit is

unclear. Schmidt et al. (2002) reported, albeit it in cyclists, that endurance

training and chronic altitude exposure (2600 m a.s.l.) combine synergisti-

cally to influence performance. Those authors propose that a high V̇ O2max

at altitude would intuitively result in even higher values at sea level, this

however is equivocal (e.g., Saltin et al., 1995; Favier et al., 1995). Thus the

relative importance of chronic altitude exposure and endurance training on

the Kenyan running phenomenon is unclear and therefore requires further

investigation.

Another often cited explanation for the extraordinary success of Kenyan

runners is that many Kenyan runners ran to school (Onywera et al., 2006).

Onywera et al. (2006) reported 81 % of international athletes and 73 % of

national level athletes ran to school compared to 22 % of control subjects

(Figure 1.6). Those authors also reported that a higher proportion of inter-

national (51 %) and national athletes (42 %) travelled farther than 5 km to

school each day than controls (25 %). In terms of the potential physiolog-

ical effects of increased childhood physical activity, a previous investigation

suggests that Kenyan boys who run to school have V̇ O2max levels 30 %

higher than sedentary Kenyan boys (Saltin et al., 1995). Although the sam-

ple size was small (6 sedentary boys and 4 active boys), this does suggest

that childhood physical activity may be important for developing aerobic ca-

pacity. Indeed this finding has since been corroborated in other studies that

investigated the physiological characteristics of Nandi town boys compared

to Nandi village boys (Larsen et al., 2004; Larsen et al., 2005). For example

Larsen et al. (2004) found that V̇ O2max was significantly correlated to daily

physical activity (r = 0.55, p < 0.01) with town boys having a mean V̇ O2max

of 50 mL·kg−1·min−1 compared to 55 mL·kg−1·min−1 in village boys. Hence

childhood activity, particularly running, is likely to be an important factor

in the development of aerobic capacity in many Kenyan runners; it is recog-

nised however that there are many elite Kenyan runners who did not run

or walk to school that have gone on to be very successful on the track and
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Figure 1.6: Method of travel to school. The percentage of participants using
each method of travel to school is shown. Controls differed from both athlete
groups (N: p < 0.001, I: p < 0.001). National and international athletes did
not differ in their distribution (p = 0.22). Figure taken from Onywera et al.,
2006.
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road racing circuits (e.g., former men’s marathon world record holder Paul

Tergat).

Further investigation of the benefits of childhood physical activity is a

growing area of investigation due to the increasing prevalence of childhood

obesity in the UK and USA (Ebbeling et al., 2002). Accelerometry is a

commonly used tool to asses physical activity in large epidemiology studies

(Puyau et al., 2002; Reilly et al., 2004) with cut-off limits set for minimum

desired physical activity per day. Recently Ojiambo et al. (2008) used ac-

celerometry to objectively measure habitual physical activity levels in urban

and rural Kenyan children from the region of Nandi. Those authors found

rural children in the Nandi region of Kenya spent significantly more time

doing moderate to vigorous activity (Puyau et al., 2002; Reilly et al., 2004)

compared to urban children that may reflect a rural African lifestyle (e.g.,

cattle herding) and the necessity to travel long distances to school by walk-

ing or running (Onywera et al., 2006). The physical activity pattern of elite

(adult) Kenyan endurance runners is however undetermined. Accelerometry

may offer an insight, and in combination with heart rate may even offer the

possibility of training quantification as it has previously been reported that

combining methodologies improves the accuracy to predict physical activ-

ity and energy expenditure compared to their respective individual methods

(Avons et al., 1988; Haskell et al., 1993; Moon & Butte, 1996; Luke et al.,

1997; Eston et al., 1998). For example, Heskell et al. (1993) reported an

R2 value improved from 0.69 to 0.82 when arm motion, as assessed by ac-

celerometry, was combined with heart rate monitoring during arm ergometer

exercise. There is no doubt that the training process is a cornerstone of the

development of world class athletes (Myburgh, 2003) and technology such

as accelerometry and heart rate may allow a greater insight into this pro-

cess on a larger scale due to its ease of use, viability to wear during training

and its inexpensive cost. Combining methodologies thus seems promising,

but it remains to be determined whether laboratory defined relationships be-

tween heart rate, accelerometer counts and V̇ O2 will also apply in free-living

situations (Strath et al., 2005).

Other factors that may have a significant impact on the effectiveness of
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training and subsequent performances of elite Kenyan endurance runners are

diet and hydration practices. Indeed hydration status and muscle glycogen

content are both important determinants of endurance performance. How-

ever, during the first half of the twentieth century it was typically believed

and practiced by many sportsmen that consuming fluid, or indeed eating

during an endurance event, was not necessary, but was in fact, a sign of

weakness (Noakes, 1993). For example, Arthur Newton, an ultra-marathon

runner holding several world records in events ranging from 50-130 miles in

the early part of the twentieth century, commented: “Even in the warmest

English weather, a twenty-six mile run ought to be manageable with no more

than a single drink, or at most two” (Newton, 1948). But by the 1930 and

40s the effects of dehydration on exercise performance began to be stud-

ied (e.g., Adolph, 1938) with Pitts et al. (1944) first demonstrating that

some fluid intake compared to no fluid intake improves long duration exer-

cise. More recently there has been a vociferous debate regarding just how

much fluid intake is required to maintain performance (e.g., Noakes, 2003).

A recent review (Cheuvront and Haymes, 2001b) of the endurance running

literature reported no effect of dehydration on core temperature for losses

of body mass up to 3.1 % (mean: < 2.5 %), whereas a positive relationship

was found between the level of dehydration and rise in core temperature

when losses were greater than 3 % body mass. Coyle (2004) suggests that

a range of 1 - 2 % may be tolerable in temperate conditions and that >

2 % may be tolerated in colder environments. A number of studies have

reported no benefit of drinking enough fluid to replace sweat losses dur-

ing exercise (Convertino et al., 1996) compared to ad libitum fluid intake

during exercise. This has prompted the ACSM to recently update their Po-

sition Stand (ACSM, 2007) that now advocates drinking ad libitum (0.4-0.8

L·hr−1) during exercise (with the lower value for slower, lighter individuals

competing in cooler environments, and the higher value for faster, larger in-

dividuals competing in warmer environments) in order to prevent excessive

dehydration (i.e., < 2 % body mass loss) and only aggressively ingest fluid

and electrolytes before/after exercise if time does not permit consumption of

normal meals and beverages to replace exercise induced fluid and electrolyte
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losses. The importance of muscle glycogen for endurance exercise capacity

is also well recognised (Jeukendrup, 2004). Alterations in muscle glycogen

availability have marked effects on muscle substrate utilization and exchange

during exercise (Gollnick et al, 1972) with a linear relationship between pre-

exercise muscle glycogen levels and its subsequent utilisation during exercise

(Hargreaves, 1995). Late in a bout of continuous exercise, such as marathon

running, ingested carbohydrate may become the predominant fuel source

and it has been shown that carbohydrate ingestion delays fatigue during

prolonged running and cycling and it also improves the power output that

can be maintained (Millard-Stafford et al., 1995, 1997; Hargreaves, 1996).

It is also known that depletion of muscle glycogen during exercise activates

glycogen synthase and this activation is greater when muscle glycogen is

lower (Zachwieja et al., 1991). More recently it has also been demonstrated

that low muscle glycogen content actually results in greater transcriptional

activation of a number of genes that are important for exercise adaptation

(Keller et al., 2001; Febbraio et al., 2002; Pilegaard et al., 2002). Given

the importance of carbohydrate, electrolyte and hydration status, such fac-

tors have been the subject of extensive investigation over the last several

decades which have resulted in a plethora of recommendations for optimal

nutrition for superior performance. An International Olympic Committee

consensus statement on sports nutrition (Maughan et al., 2004) encapsulates

the main findings of these studies and the importance of diet and hydration:

“The amount, composition and timing of food intake can profoundly affect

sports performance. Good nutritional practice will help athletes train hard,

recover quickly and adapt more effectively with less risk of illness and injury.

The right foods contribute not only to success in sport, but also to enjoy-

ment of life.” Considering the phenomenal success of Kenyan runners and

the importance of diet and hydration before, during and after exercise for

optimal performance, these factors certainly warrant further investigation in

elite Kenyan endurance runners.

The diet of 10 elite Kenyan endurance runners was investigated over a

7 day training period one week before the Kenyan national cross country

trials (Onywera et al., 2004). Energy intake was assessed by weighed dietary
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record and was significantly lower than energy expenditure as assessed by

PAR (Ainsworth et al., 2000) (EI: 12 486 ± 1225 kJ·d−1 vs. PAR: 15 069

± 497 kJ·d−1; mean ± SD), suggesting that the athletes were in negative

energy balance prior to competition. The mean difference of 2585 kJ·d−1

between energy intake and energy expenditure accounted precisely for the

loss in body mass over the 7 day period (BM: 58.9 ± 2.7 kg vs. 58.3 ±
2.6 kg; where 1 kg was assumed to be 30 000 kJ; (Westerterp et al., 1995)).

These results corroborated those of an earlier study that evaluated the nu-

trient intake of Kenyan runners (Mukeshi & Thairu, 1993). The reported

energy intake in that study was low (EI: 9781 kJ·d−1) and considering the

athletes were training intensely, the validity of these results were questioned

by the authors of the only other study to have assessed the dietary intake of

Kenyan runners (Christensen et al., 2002). Those authors studied 12 ado-

lescent (15-20 y) male Kenyan runners during a 2 week period and found

the athletes to be in energy balance (EI: 13 186 ± 274 kJ·d−1 vs. EE: 13

210 ± 283 kJ·d−1). However, those athletes were regarded as promising ju-

nior athletes competing at regional level and were studied during a period of

regular training. Unfortunately none of the previous studies used the gold

standard doubly labeled water method to measure energy expenditure prior

to major competition and so the findings are equivocal. Hence further in-

vestigation of the diet of elite Kenyan endurance runners is required so that

firm conclusions can be made regarding performance implications.

Onywera et al. (2004) found athletes did not consume fluids before or

during training, and only infrequently consumed modest amounts of fluids

immediately after training. This contributed to low daily fluid intake, mainly

water (1.1 ± 0.3 L) and milky tea (1.2 ± 0.3 L). This fluid intake and drinking

habits are substantially less than previous recommendations of the American

College of Sports Medicine (Convertino et al., 1996), which were 0.4-0.6 L of

fluid 2-3 hr before exercise, 0.6-1.2 L·hr−1 while exercising, aiming at total

replacement of all fluid lost during exercise, or at least up to the maximal

amount tolerated; a pattern and volume of fluid replacement similar to that

recommended by the NAAT (Binkley et al., 2002), and the US Army (Mon-

tain et al., 1999). The drinking behaviours (i.e., ad libitum) reported previ-
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ously in elite Kenyan endurance runners (Onywera et al., 2004) are consistent

with empirical observations that elite athletes typically do not adhere to pre-

vailing fluid intake recommendations (for a review see reference Cheuvront

& Haymes, 2001b). Recently the ACSM has replaced their prior Position

Stand (Convertino et al., 1996) with an updated version on exercise and fluid

replacement (American College of Sports Medicine, 2007) that advocates

drinking ad libitum (0.4-0.8 L·hr−1) during exercise (with the lower value for

slower, lighter individuals competing in cooler environments, and the higher

value for faster, larger individuals competing in warmer environments) in or-

der to prevent excessive dehydration (i.e., < 2 % body mass loss), and only

aggressively ingest fluid and electrolytes before/after exercise if time does

not permit consumption of normal meals and beverages to replace exercise

induced fluid and electrolyte losses. These new recommendations (American

College of Sports Medicine, 2007) appear to be more in keeping with previ-

ous observations of elite Kenyan endurance runners (Onywera et al., 2004)

though their hydration status day-to-day during an important training pe-

riod remains to be determined. Furthermore, little is known of what today’s

best elite athletes actually drink during racing (for a review of the marathon

running literature see reference Cheuvront & Haymes, 2001b). The ACSM’s

new guidelines represent a compromise between preventing dehydration that

may impact upon performance (i.e., > 2 % body mass loss from water deficit

(Wyndham & Strydom, 1969; Cheuvront & Haymes, 2001b; Coyle, 2004;

Fudge et al., 2006a; American College of Sports Medicine, 2007) versus pre-

venting excessive ingestion of fluid that may result in hyponatraemia (i.e.,

serum sodium concentration < 130 mmol·L−1 (Almond et al., 2005; Hew-

Butler et al., 2005). The rationale for drinking ad libitum 0.4-0.8 L·hr−1

during exercise is based on a theoretical study modelling data that reflects

the general population (Montain et al., 2006). It does not take into consid-

eration the fluid requirements of elite endurance runners in its calculations

(e.g., maximum running speed calculated was 15 km·hr−1 whereas the win-

ner of a major city marathon will have to run > 19 km·hr−1). Therefore

the fluid intake behaviours of the world’s leading endurance runners during

racing also require investigation.
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1.3 Aims and Objectives

Given the staggering success of Kenyan endurance runners on the road and

track and the possible role environmental factors may play in their success,

the main objectives of the following research were:

1. To determine the composition of elite Kenyan endurance runners diet

and assess their energy balance status prior to major competition using

“gold standard” methods. The results will allow direct comparison to

established guidelines on optimal nutrition and from this the perfor-

mance implications may be considered.

2. To establish lifestyle practices of elite Kenyan endurance runners prior

to major competition that will allow an insight in to the preparation

of some of the best athletes in the world.

3. To ascertain the hydration status of elite Kenyan endurance runners

during an important training period and directly compare these results

to traditional paradigms and current thinking on optimal fluid intake

for superior endurance running performance. From this the perfor-

mance implications may be considered.

4. To investigate the training process leading to world class performance

by quantifying training load in the lead up to major competition.

5. To determine the fluid intake behaviours of the world’s best marathon

runners during racing. This will allow an insight into current practices

of elite runners that will act as a benchmark and comparison of current

fluid intake guidelines.

6. To validate and combine existing technologies of heart rate and ac-

celerometry for quantifying energy expenditure during free living con-

ditions. This may allow future investigations a greater insight in to the

lifestyle and training practices of elite Kenyan endurance runners.
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2
Energy balance and lifestyle practices

of elite Kenyan endurance runners

2.1 Introduction

Male Kenyan middle- and long-distance runners have dominated athletics

since the 1960s. Until recently, diet and nutrition in these athletes had not

been comprehensively investigated. The diet of 10 elite Kenyan endurance

runners was investigated over a 7 day training period one week before the

Kenyan national cross country trials (Onywera et al., 2004). Energy intake

was assessed by weighed dietary record and was significantly lower than en-

ergy expenditure as assessed by PAR (EI: 12 486 ± 1225 kJ·d−1 vs. PAR:

15 069 ± 497 kJ·d−1; mean ± SD), suggesting that the athletes were in

negative energy balance prior to competition. The mean difference of 2585

kJ·d−1 between energy intake and energy expenditure accounted precisely

for the loss in body mass over the 7 day period (BM: 58.9 ± 2.7 kg vs. 58.3

± 2.6 kg; where 1 kg was assumed to be 30 000 kJ; (Westerterp et al., 1995)).

These results corroborated those of an earlier study that evaluated the nu-

trient intake of Kenyan runners (Mukeshi & Thairu, 1993). The reported

energy intake in that study was low (EI: 9781 kJ·d−1) and considering the

athletes were training intensely, the validity of these results were questioned

by the authors of the only other study to have assessed the dietary intake of

Kenyan runners (Christensen et al., 2002). Those authors studied 12 adoles-
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cent (15-20 y) male Kenyan runners during a 2 week period and found the

athletes to be in energy balance (EI: 13 186 ± 274 kJ·d−1 vs. EE: 13 210 ±
283 kJ·d−1). However, those athletes were regarded as promising junior ath-

letes competing at regional level and were studied during a period of regular

training.

The dietary habits and energy balance of elite senior Kenyan endurance

runners have not been comprehensively studied in the days prior to major

competition. Since none of the previous studies used the doubly labeled water

method to measure energy expenditure, the aim of the present study was to

directly measure the energy balance status of elite Kenyan endurance runners

prior to major competition using gold-standard methods. Taking previous

results into consideration we hypothesized that elite Kenyan endurance run-

ners may be in negative energy balance prior to major competition.

2.2 Methods

2.2.1 Subjects

Nine male elite Kenyan endurance runners with a mean (± SD) age of 21

± 2 y and percent body fat of 7.1 ± 2.5 % were invited to participate in

this study (Table 2.1). All athletes gave their written informed consent prior

to participating in the study. The research protocol was in accordance with

the Helsinki declaration and was approved by the local Kenyan authorities

in Nairobi, Kenya. The athletes were highly trained and included World,

Olympic and Junior Champions frequently competing in major national and

international middle- and long-distance running events. At the time of the

study the athletes were based at a high altitude training camp (Global Sports

Training Camp, Kaptagat, Eldoret, Kenya) situated in the North Rift Valley

(altitude: 2200 m a.s.l., daytime Ta: 8-24 ◦C, RH: 31-100 %). All athletes

belonged to one of eight small tribes, collectively known as the Kalenjin (i.e.,

Nandi, Kipsigis, Tugen, Keiyo, Marakwet, Pokot, Terik and the Sabaot).

The Kalenjin have a population of approximately 3 million, or about 10 %

of the Kenyan population, yet have won about 75 % of all major distance
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running races in Kenya (Pitsiladis et al., 2004). The athletes were in peak

physical condition as the investigation was undertaken in the week before the

Kenyan Olympic trials and 5 months before the Athens 2004 Olympics.

2.2.2 Experimental design

Subjects were monitored for a period of 7 training days during the course of a

standard training week prior to major competition. Organised training runs

were carried out mostly in groups that were influenced by athletic discipline

and instructions from coach/manager. Training schedules typically incorpo-

rated up to 2 variable distance-training sessions per day (i.e., a morning run

and a non-compulsory afternoon run) and 2 interval-training sessions per

week (i.e., mid-morning run).

2.2.3 Experimental procedures

Food and water intake

In order to ensure a representative sample of the dietary habits, athletes

were asked to follow their normal diet whilst weighing (individual digital

weighing scales readable to 1 g were used) and recording all food and water

consumed for 7 consecutive days using a nutritional diary. The manager of

the high altitude training camp assured investigators that the 7 day dietary

intake was typical of the diet during a period of intense training. Meals and

snacks were served at standard times of day: breakfast (08:00), mid-morning

snack (10:00), lunch (13:00), afternoon snack (16:00), and dinner (19:00); the

athletes selected their portion sizes ad libitum from the provided food. The

athletes were also required to weigh and record all food and water consumed

away from the camp. Data from the nutritional diaries were used to calcu-

late the intake of total energy, carbohydrate, fat, protein, and water using

a computerised version of the National Food Composition Tables of Kenya

(Sehmi, 1993). Total water intake was determined by combining the reported

dietary intake of water with the estimated metabolic water. Metabolic water

was determined by multiplying measured energy expenditure by the fraction
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of energy in the diet from carbohydrate, protein, and fat (data derived from

the 7 day nutritional diaries). The oxidation of carbohydrate, protein and

fat yields 0.60, 0.41, and 1.07 mL water·g−1, respectively (Fjeld et al., 1988).

In the calculations of the doubly labeled water method we corrected for the

effect on isotope abundance changes resulting from the exchange of water

in the respiratory system. If on a net basis water is lost in the expired air,

inspired water is partly taken up in the respiratory system thus diluting the

doubly labeled water induced increases in isotope abundances. Inspired wa-

ter was calculated as:

Inspiratory water intake (g·d−1) = Respiratory volume × Absolute humidity

÷ 1000 (Fjeld et al., 1988)

Where respiratory volume (L·d−1) was estimated using carbon dioxide

production (rCO2) derived from the measurement of energy expenditure by

doubly labeled water, assuming that 3.5 % of expired air was CO2. The

reported mean absolute and relative humidity was 10.2 mg·L−1(range: 2.6-

21.7 mg·L−1) and 75 % (range: 31-100 %) respectively at a mean ambient

temperature of 16 ◦C (range: 8-24 ◦C).

Body mass, energy expenditure and water loss

On the morning (05:30) of the first and final day of the recording week, body

mass and percent body fat was measured by bio-electrical impedance (Tanita

Body Fat Analyzer, Tanita Corporation of America, Inc., IL., USA). The es-

timates of percent body fat provided by the manufacturers software were

reported (the prediction equation used by the Tanita system is not disclosed

by the manufacturer so the equation used cannot be presented). Measure-

ments were made after the subjects had voided and before any food or drinks

had been consumed. Energy expenditure was measured by doubly labeled

water (EEDLW ) (see Westerterp et al., 1986). Water loss was calculated from

deuterium elimination in accordance with the doubly labeled water method.

Athletes were given a weighed dose of a mixture of 99.84 atom% 2H2O in
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10.05 atom% H2
18O, on the evening of day 0 in order to increase baseline

levels to ≥ 300 ppm for 2H and ≥ 2300 ppm for 18O. A background urine

sample was collected on the evening of day 0 and additional urine samples

were collected on day 1 (from the second daily void and in the evening), the

morning and evening of day 3, and the morning and evening of day 7. A

correction factor for the change in isotope dilution space was applied, as cal-

culated from the difference between initial and final study body mass of the

athletes, assuming the change in body water was linear and proportional to

the change of body mass. Doubly labeled water measured CO2 production

was converted to energy expenditure with an energy equivalent calculated

from the macronutrient composition of the diet. BMR was estimated using

the Schofield Equation (Schofield, 1985). A significant difference between

energy intake and energy expenditure required the calculation of percent un-

derreporting and undereating as follows:

Underreporting = [(EI - EE) ÷ EE] × 100 % (Goris & Westerterp, 1999)

Undereating = [(∆ BM × 30 000 kJ·7d−1) ÷ EE] × 100 % (Lissner et al.,

1998)

Physical activity and training

The ActiGraph activity monitor (Manufacturing Technology, Inc., Florida,

USA) and PAR were used to assess physical activity (Ainsworth et al., 2000).

The activity monitor was secured to the right hip with a belt after being

initialized according to the manufacturer’s specifications. The data were

analysed according to Freedson et al. (1998) and Ainsworth et al. (2000).

In short, waking time was subdivided in categories of activity ranging from

light to very heavy and relaxing to fast running, respectively. Subjects were

also instructed to record in detail their individual activities each day (includ-

ing type, intensity and duration of activity). The Compendium of Physical

Activity (Ainsworth et al., 2000) was used to assign specific activities with
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their respective MET. The Timex BodylinkTM system (Timex Corporation,

Middlebury, CT, USA) was used to accurately determine the distance, time

and speed of the training runs by utilizing GPS technology. Athletes wore

the Timex Performance device during individual and group runs.

2.2.4 Data analysis

Data are expressed as the mean ± SD or median (range) as appropriate

following a test for the normality of distribution. Paired t-tests were used to

compare energy intake vs. energy expenditure, total water intake vs. water

loss, and starting body mass vs. final body mass. The Pearson product

moment correlation coefficient (r) was used to assess the relationship between

energy intake and expenditure, and also the relationship between the percent

underreporting and the percent energy derived from carbohydrate, protein

and fat to determine whether there was selective underreporting. Statistical

power calculations (80 % power) were carried out using energy intake vs.

energy expenditure data from Onywera et al. (2004). Statistical significance

was set at p < 0.05.

2.3 Results

Values for energy intake, energy expenditure, BMR, ADMR/BMR, change

in body mass, BMI, water intake, water loss, metabolic water and inspiratory

water intake are shown in Table 2.2. The reported energy intake of 13 241 ±
1330 kJ·d−1 was significantly lower than the measured energy expenditure

(EEDLW : 14 611 ± 1043 kJ·d−1; p = 0.046). The value calculated for percent

underreporting was 13 % (range: -24-9 %). There was no correlation between

energy intake and expenditure (r = -0.071; p = 0.855) as shown in Figure

2.1; line of identity and ± 2SD are also shown.

The initial body mass of 56.0 ± 3.4 kg was not significantly different

from the final body mass (55.7 ± 3.6 kg; p = 0.285); however the vast

majority of subjects lost body mass over the 7 day recording period. Percent

undereating was calculated at 9 % (range: -54-39 %). The mean difference in
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Figure 2.1: Relationship between energy intakes from weighed dietary intake
and energy expenditures measured with doubly labeled water in elite Kenyan
endurance runners. Solid line: line of identity, dashed lines: ± 2SD.
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Table 2.2: Energy and metabolic parameters over the 7 day recording period.

Mean SD
EI (kJ·d−1) 13 241 1330
EEDLW (kJ·d−1)* 14 611 1043
BMR (kJ·d−1) 6408 224
ADMR/BMR 2.3 0.1
∆ BM (kg·wk−1) -0.3 0.8
BMI (kg·m−2) 18.4 1.3
Water Consumed (L·d−1) 3.5 0.6
Metabolic water (L·d−1) 0.5 0.04
Inspiratory water (L·d−1) 0.2 0.01
Total water intake (L·d−1) 4.2 0.6
Water Loss (L·d−1) 4.5 0.8
Key: *significantly different from EI, p = 0.046.

energy intake (EI: 13 241 ± 1330 kJ·d−1) and energy expenditure (EEDLW :

14 611 ± 1043 kJ·d−1; p = 0.046) was 1370 ± 1738 kJ·d−1; when calculated

over the 7 day period this equated to approximately 9590 kJ, or alternatively,

0.3 kg (where 1 kg was assumed to be 30 000 kJ; (Westerterp et al., 1995)).

Total water intake (including reported water intake, calculated metabolic

water and inspiratory water) was 4.2 ± 0.6 L·d−1 and was not significantly

different to the measured water loss (4.5 ± 0.8 L·d−1; p = 0.496).

Approximately 77 % of the energy consumed by the athletes was at-

tributable to vegetable sources; the remaining 23 % coming from animal

sources (Table 2.3). The diet consisted mainly of carbohydrate (67.3 ± 7.8 %,

9.8 g·kg−1BM·d−1) compared with protein (15.3 ± 4.0 %, 2.2 g·kg−1BM·d−1)

and fat (17.4 ± 3.9 %, 1.1 g·kg−1BM·d−1). Daily variation in the macronu-

trient composition of the athlete’s diet was observed during the 7 day exper-

imental period. The reported percentages of energy from carbohydrate (r =

0.085; p = 0.828), protein (r = 0.019; p = 0.962) and fat (r = 0.187; p =

0.629) were not related to percent underreporting. Fluid intake was modest

and consisted mainly of water (0.9 ± 0.5 L·d−1) and milky tea (0.9 ± 0.3

L·d−1) with a small contribution from the intake of other fluids such as soft

drinks (0.4 ± 0.2 L·d−1).
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Table 2.3: Food sources as percentage of daily intake of each macronutrient.

Energy (%) Carbohydrate (%) Fat (%) Protein (%)
Sugar1 10 15 0 0
Bread 9 10 3 8
Rice 9 12 2 6
Potatoes 3 4 0 2
Beans 2 2 0 5
Kales 2 2 0 10
Milk 12 5 35 17
Maize 1 2 1 1
Meat 11 0 28 38
Ugali 19 25 5 6
Chapatti 7 6 14 4
Other2 15 17 12 3
Animal 23 5 63 55
Vegetable 77 95 37 45

Energy (kJ) Carbohydrate (g) Fat (g) Protein (g)
Mean 13 241 552 61 122
SD 1330 81 15 33

Key: 1Sugar consumed in tea and porridge; 2Food sources that contribute
less than 1 % to total energy intake.
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2.4. DISCUSSION

Time spent in activity during waking hours estimated using accelerom-

etry and PAR is presented in Table 2.4. The reported time spent in light,

moderate, hard and very hard activity as determined by accelerometry was

82 ± 3 %, 11 ± 2 %, 6 ± 3 %, and 1 ± 1 % respectively. Time spent relaxing,

in light activity, slow running (8-13.6 km·hr−1), moderate running (13.7-17.3

km·hr−1), and fast running (≥ 17.4 km·hr−1) as estimated using the PAR

method (Ainsworth et al., 2000) was 82 ± 6 %, 8 ± 6 %, 3 ± 1 %, 5 ± 1 %,

2 ± 1 %, respectively. The morning run (06:00) comprised a long run of 10.6

± 3.8 km carried out at either moderate or fast running pace (average run-

ning speed: 15.1 km·hr−1, maximum: 24.0 km·hr−1) depending on instruc-

tions received from the coach/manager (distances and speed determined by

the Timex BodylinkTM system). The late-morning (11:00) training session

was not compulsory and included light exercise such as jogging, stretching

or walking. Athletes completed at least one weekly high-intensity interval

training session on a 400 m dirt track. Typical interval training sessions in-

cluded 4 times 600 m at 1 min 30 sec pace and 6 times 400 m at 58 sec pace

for the middle distance runners or 6 times 600 m at 1 min 33 sec pace and 6

times 400 m at 59 sec pace for the long distance runners. The late-afternoon

run (17:00) was a short run (6.2 ± 1.3 km) usually run at an easier run-

ning speed (average running speed: 14.7 km·hr−1 maximum: 15.2 km·hr−1).

Weekly training distance was in excess of 117 km (note this does not include

the late morning training session). The remainder of the time at the train-

ing camp was spent resting, eating, and washing. Some athletes went home

at the weekend and completed individual training runs as prescribed by the

coach/manager.

2.4 Discussion

The average energy intake of the elite Kenyan runners investigated was lower

than energy expenditure (i.e., 13 241 ± 1330 kJ·d−1 vs. 14 611 ± 1043

kJ·d−1; p = 0.046), suggesting that these elite runners were, as a group, in

negative energy balance during the study period of intense training. These

results confirm previous studies evaluating the food and macronutrient intake
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2.4. DISCUSSION

of Kenyan runners (Mukeshi & Thairu, 1993; Onywera et al., 2004). Com-

bined with the subsequent outstanding performances of these athletes, the

observations raise the intriguing possibility that this seemingly unintentional

negative energy balance during an intense training week just prior to major

competition may somehow benefit their race running performance.

The reported energy intake of the elite runners in the present study (i.e.,

13 241 ± 1330 kJ·d−1) was very similar to a previous investigation carried

out at the same training camp (i.e., 12 486 ± 1225 kJ·d−1; (Onywera et

al., 2004)) but both were at the lower end of the range of 12 540-20 900

kJ·d−1 recommended for endurance athletes during intense training (Grand-

jean, 1997). As in the present study, the data in the earlier study suggested

that athletes were in negative energy balance. Energy expenditure, however,

was only estimated in the previous study using PAR, which may be subject to

significant errors when applied to athletes of this caliber. For example, in the

Compendium of Physical Activity compiled by Ainsworth et al. (2000), the

fastest running speed possible is ≥ 17.4 km·hr−1 and assigned 14-18 MET.

However, the Kenyan athletes participating in both these studies would fre-

quently run at much faster running speeds in training and the MET assigned

using the Compendium of Physical Activity would most likely underestimate

the true metabolic cost, although this has yet to be demonstrated. Despite

this limitation in the determination of energy expenditure, the mean differ-

ence of 2583 kJ·d−1 between energy intake and expenditure in the earlier

study by Onywera et al. (2004) agreed precisely with the loss of body mass

over the 7 day period (58.9 ± 2.7 kg vs. 58.3 ± 2.6 kg). Estimated energy

expenditure in that study (15 069 ± 497 kJ·d−1) was also very similar to en-

ergy expenditure measured in the present study (14 611 ± 1043 kJ·d−1). The

present study thus confirms and consolidates these earlier findings because

of the more accurate methodology used, i.e., doubly labeled water.

The negative energy balance in the present study was not accompanied

by a significant loss in body mass (56.0 ± 3.4 kg vs. 55.7 ± 3.6 kg; p

= 0.285) as reported previously (Onywera et al., 2004). Nevertheless, the

energy equivalent of the non-significant change in body mass was very similar

to the significant energy deficit when calculated over the 7 day assessment
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period (9000 kJ vs. 9590 kJ respectively; where 1 kg is assumed to be 30 000

kJ; (Westerterp et al., 1995)). Failure to achieve and/or detect a significantly

lower body mass over the 7 day period may be due to the slightly higher mean

energy intake and lower energy expenditure in the current study. It can also

be seen from Figure 2.1 that there was considerable amount of heterogeneity

in the energy balance status of the athletes; five runners were clearly in

negative energy balance, two were somewhat borderline, while the remaining

two runners were in positive energy balance. Interestingly, both athletes in

positive energy balance ran in the Kenyan National Championships (i.e., 5 km

and 10 km races) on day 5 of the investigation and had actually reduced their

training load in the days leading up to and after the event while appearing

to maintain normal dietary habits.

Percent underreporting, which expresses a measured energy deficit in the

light of any possible inaccurate dietary intake recording, was calculated at

13 % (range: -24-9 %) in the present study. However, we found that it was

almost entirely accounted for by undereating which was calculated at 9 %

(range: -54-39 %). It is unlikely that there was considerable underrecording

in the present study since no significant difference was found between total

water intake and total water loss (4.2 ± 0.6 L·d−1 vs. 4.5 ± 0.8 L·d−1;

p = 0.496), suggesting that the athletes had accurately recorded all food

and water consumed. The percent underreporting of 13 % in the present

study was lower than values reported in other studies on athletes (Westerterp

et al., 1986; Edwards et al., 1993). For example, Edwards et al. (1993)

reported that energy intake was 32 % below energy expenditure estimated

by doubly labeled water in non-elite female distance runners. In another

study, underreporting rose progressively over a 3 week period in professional

cyclists competing in the Tour de France; one of the world’s most demanding

cycle races. In that study underreporting over the 3 week study period

was 13 % over the first 7 days (i.e., similar to the present study), 21 %

over the next 8 days, and 35 % over the last 7 days (Westerterp et al.,

1986). The authors attributed the significant underreporting to athletes not

recording what they had eaten (i.e., underrecording) rather than undereating

as no difference in body mass (or body composition) was found over each
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of the three recording periods. The elite cyclists in that study reached an

ADMR of 3.4-3.9 and 4.3-5.3 times BMR based on the food record technique

and the doubly labeled water technique, respectively; while in the present

study the athletes reached an ADMR/BMR of 2.1 (range: 1.7-2.4) and 2.3

(range: 2.1-2.6) for the two respective techniques. It is recommended that an

ADMR/BMR for sustainable lifestyles should fall within the range of 1.2-2.5

(Black et al., 1996); individuals with values > 2.5 may experience a loss of

body mass (Westerterp, 1998) and may thus require supplementation of the

diet with energy dense carbohydrate. The difference between values reported

in the present study and those obtained in elite cyclists (Westerterp et al.,

1986) is likely to be due to the length of daily exercise in the Tour, typically

4-5 hours for a flat stage and 5-6 hours for a mountain stage (Lucia et al.,

2003). Nevertheless, an ADMR/BMR of 2.3 ± 0.1 estimated in the present

study (Table 2.1) highlights the substantial amount of training undertaken by

these athletes in the week prior to major competition for most of the athletes.

Although weekly training distances in excess of 117 km were documented

in the present study (note this does not include the late morning training

session), the athletes spent the majority (82 %) of their waking hours resting

(Table 2.3). A Previous study by Saltin et al. (1995) reported the daily

training schedule of Kenyan athletes; in that study, athletes were running

less than 100 km·wk−1. However, the majority of these runners were talented

junior runners (n = 16) with only the inclusion of a small number of truly

elite athletes (n = 6). The greater training distances in the more recent

study may also reflect the current increased demands placed on the athletes

as compared to almost a decade ago.

The consequences of training and competing while in negative energy

balance have been well documented and current recommendations for en-

durance events advocate athletes refrain from training and/or competition

while consuming a hypocaloric diet (American College of Sports Medicine,

2000). Informal discussion with the present group of elite Kenyan runners

revealed a number of the athletes complained of reduced appetite follow-

ing hard training, a phenomenon commonly referred to as “exercise-induced

anorexia” (King et al., 1994; Blundell et al., 2003). For example, Blundell
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et al. (2003) proposed that a depressed appetite following strenuous exercise

could be due to a re-distribution of blood away from the splanchnic circula-

tion in favour of the working muscles. On the other hand, King et al. (1994)

argued for a delayed response in the matching of energy intake to acute

changes in energy expenditure resulting in acute periods of negative energy

balance. Whether either of these suggestions is implicated in the reported

negative energy balance found in the current study is unclear. Both are in

agreement with a recent review that suggested that the control of appetite

was due to a complex interaction between homeostatic mechanisms and envi-

ronmental and cognitive factors (Berthoud, 2004). Therefore, a great number

of factors could be responsible for the negative energy balance and reduced

appetite reported by many of the athletes during the 7 day recording period.

The view that reducing body mass may potentially improve endurance

running performance has been discussed previously (Myers & Steudel, 1985;

Jones et al., 1986; Noakes, 2000). Indeed, the simple notion of reducing

mass while keeping power constant, and therefore reducing the oxygen cost

of movement, seems valid and there is not a single study to date that would

refute this view. Yet current recommendations discourage reducing body

mass in the build-up to an important race; rather it is typically recommended

that athletes follow adequate nutrition and hydration practices and remain

in energy balance, or even attempt to increase energy stores in the form

of glycogen, combining training and dietary manipulation (for a review see

American College of Sports Medicine, 2000). Interestingly, even though anec-

dotic, is the recent observation that the winner of the women’s 2004 London

Marathon was Margaret Okayo from Kenya (previous marathon world record

holder) who weighed only 39 kg at the time of the race (normal weight: 43

kg, height: 1.5 m).

Analysis of allometric relationships throughout the animal kingdom may

allow an insight into additional benefits of reducing body mass. For exam-

ple, Noakes (2000) proposes that the small size and high degree of running

economy displayed by the Cheetah provides a physiological advantage over

its prey in terms of delaying heat accumulation and therefore, the onset of

fatigue. Extrapolating this notion to humans, smallness, lightness, and a
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greater running economy may benefit endurance running performance. In-

deed, Marino et al. (2000; 2004) suggest that heavier runners display a

greater degree of heat retention than lighter individuals and this may be a

major factor limiting the performance of physically larger and heavier ath-

letes in distance running events; this is particularly evident in hot environ-

ments. It was additionally reported that heavier runners self-selected a slower

running speed than lighter runners whilst running in the heat and that this

speed was inversely related to body mass (Marino et al., 2000; Marino et

al., 2004). In addition, observations from human gait analysis suggest that

the addition of mass will increase absolute O2 cost (Myers & Steudel, 1985;

Jones et al., 1986). For example, Myers and Steudel (1985) compared adding

weight proximally to the centre of mass (i.e., the waist) and distally on the

limbs (i.e., foot/ankle) during running and reported that the energy cost was

increased by a factor of 1.5-5.5. Interestingly, the largest increase in energy

cost was observed when weight was added distally and when running velocity

was increased, thus prompting the authors to conclude that long and slen-

der legs would confer an advantage to running economy. Similarly, Jones

et al. (1986) measured the energy cost of wearing shoes of varying weight

during running and walking and reported an average increment in O2 cost of

1 % per 100 g of weight added. Consequently, reducing body mass and leg

mass in particular, ought to enhance running economy and therefore running

performance as a consequence of reducing the kinetic energy required to ac-

celerate and decelerate the limbs. When considering that running economy

has been consistently shown to be a good indicator of performance, it would

stand to reason that a low body mass and minimal leg mass in particular,

may be advantageous for endurance running performance. Evidence favour-

ing superior running economy in Kenyan endurance runners compared to

Caucasian athletes was first presented by Saltin et al. (1995). In that study,

Kenyan runners exhibited better running economy compared to their Scan-

dinavian counterparts whilst running at sub-maximal running speeds even

though absolute V̇ O2max was not different. Interestingly, the BMI of the

Kenyan runners was significantly lower than the Scandinavian runners. In a

recent review, Larsen (2003) postulated that the superior running economy
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of Kenyan runners could partly be explained by their low BMI combined with

the fact that the majority of their body mass is distributed proximally, with

the mass of the extremities being kept to a minimum, especially in the calf

and thigh area. More recently, Larsen et al. (2004) reported that untrained

Kenyan Nandi (a Kalenjin sub-tribe) boys, are slender, have relatively long

legs, and have 20-25 % lower BMI as compared to untrained children of

a similar age from Nigeria, Libya, USA (i.e., blacks, whites, and Hispan-

ics), Mexico (i.e., Mexican-Americans) and Greenland (Larsen et al., 2004).

Whether these anthropometric characteristics are indeed typical of Kenyans

and responsible, in part at least, for the outstanding running performances

of Kenyans remains to be determined.

In the present study, the diet consisted mainly of carbohydrate sources

(67.3 ± 7.8 %, 9.8 g·kg−1BM·d−1) compared with protein (15.3 ± 4.0 %, 2.2

g·kg−1BM·d−1) and fat (17.4 ± 3.9 %). The composition of the diet was con-

sistent with previous results from this laboratory (i.e., 77 % carbohydrate,

10 % protein, 13 % fat; (Onywera et al., 2004)) and complied with current

recommendations for macronutrient intake for endurance athletes, typically

55-58 % (6-10 g·kg−1BM·d−1) of energy from carbohydrate, 12-15 % (1.2-1.4

g·kg−1BM·d−1) of energy from protein and > 15 % of energy from fat (Amer-

ican College of Sports Medicine, 2000). A particular feature of the Kenyan

diet is the large contribution of carbohydrate to the diet. A typical nutrient is

Ugali (a carbohydrate dense combination of maize and water that is usually

eaten in combination with meat-stew, vegetables, and grains). In fact, there

are anecdotal reports attributing the success of Kenyan endurance athletes

to the frequent inclusion of Ugali in their diets (e.g., Tanser, 1997). It is

also noteworthy that Ugali continues to be part of the training diet of the

Kenyan athletes when living and competing abroad (e.g., at the Global Sports

Communication Camp, Nijmegen, The Netherlands). There is, however, no

scientific justification for Ugali to have effects on performance; the macronu-

trient composition of Ugali is similar to rice (i.e., carbohydrate, protein and

fat content of Ugali is 25.3, 1.3, and 0.5 g·100g−1 and for cooked rice 31.0,

2.6, and 1.3 g·100g−1, respectively; (Sehmi, 1993)). Nevertheless, a typical

Kenyan diet, rich in carbohydrate, allows optimal storage of liver and muscle
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glycogen. This is in contrast to what appears to be the case in athletes from

industrialised countries where carbohydrate intake can be at the lower end

of the range recommended for endurance athletes (e.g., 6.1 g·kg−1BM·d−1,

(Moses & Manore, 1991)), especially when a typically western diet of 55-58

% carbohydrate (American College of Sports Medicine, 2000) is consumed.

Endurance athletes consuming a western diet will almost certainly be limit-

ing carbohydrate availability, especially if they are trying to be as light as

possible before racing. Interestingly, the ACSM (2000) proposes that ath-

letes training and competing while in negative/borderline energy balance are

at increased risk of fatigue, illness, injury and loss of muscle mass. Indeed,

it has previously been proposed that the high turnover of Kenyan runners in

international athletics may be a consequence of repetitive periods of nega-

tive/borderline energy balance in the face of increased pressure to compete

successfully internationally (Onywera et al., 2004).

Fluid intake in the present study was comprised primarily of water (0.9

L·d−1) and milky tea (0.9 L·d−1), thus confirming previous results (i.e., wa-

ter: 1.1 L·d−1, tea: 0.9 L·d−1; (Onywera et al., 2004)). As in the previous

study, the athletes in the present study did not consume water before or dur-

ing training and sometimes consumed only small amounts of water following

training. Therefore, the fluid intake reported here is substantially less than

current recommendations (e.g., American College of Sports Medicine, 2000),

although it has recently been suggested that such recommendations are ex-

cessive and can be detrimental to exercise performance (Noakes, 2003). The

advantages and disadvantages of drinking ad libitum or drinking enough liq-

uid to satisfy specific guidelines remain to be investigated in this population

of elite athletes (see chapter 3).

Physical activity patterns assessed using accelerometry and PAR (Ainsworth

et al., 2000) are reported in Table 2.4. The reported time spent in light, mod-

erate, hard and very hard activity as determined by accelerometry was 82 ±
3 %, 11 ± 2 %, 6 ± 3 %, and 1 ± 1 % respectively. Time spent relaxing, in

light activity, slow running (8.0-13.6 km·hr−1), moderate running (13.7-17.3

km·hr−1), and fast running (≥ 17.4 km·hr−1) as estimated using the PAR

method (Ainsworth et al, 2001) was 82 ± 6 %, 8 ± 6 %, 3 ± 1 %, 5 ± 1
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%, 2 ± 1 %, respectively. To the present authors knowledge there are no

comparable data in elite western endurance runners, but time spent in light

activity as assessed by accelerometry and the time spent relaxing as assessed

by accelerometry is high. Taking these measures together it may be sug-

gested that rest is an additional important facet of elite Kenyan endurance

runner’s typical training practices.

Unfortunately the precise quantification of physical activity or energy

expenditure using PAR and accelerometry can be erroneous. PAR is an

indirect method and in the case of accelerometry, studies have reported that

despite increased energy demands as a result of increasingly faster running

speeds, output from some motion sensors plateau (Haymes & Byrnes, 1993;

Nichols et al., 2000; Brage et al., 2003). Future studies should addresses

these issues by assessing whether biomechanical and/or device limitations

cause the observed levelling off of accelerometer counts during running by

investigating the outputs from a number of accelerometers, uni- and tri-

axial, with various sampling frequencies, band pass filtering ranges and peak

acceleration amplitudes (see chapter 5).

Conclusions

This study confirms previous findings (Onywera et al., 2004) that elite Kenyan

endurance runners are frequently in negative/borderline energy balance dur-

ing periods of intense training and/or prior to major competition. The sig-

nificance of this is unclear, however, it is suggested that a reduced body

mass consequent to being in negative energy balance may potentially be ad-

vantageous to the endurance athlete as this may enhance running economy,

this is especially apparent when competing in the heat. The unintentional

weight loss prior to competition is most likely a gradual process taking place

over a number of weeks leading up to an event rather than a rapid reduc-

tion in body mass in the week before the event. This “strategy” would have

less, or even no negative impact on the quality of training especially when

athletes are consuming a diet high in carbohydrate (e.g., 67.3 ± 7.8 %, 9.8

g·kg−1BM·d−1) and sufficient protein (e.g., 15.3 ± 4.0 %, 2.2 g·kg−1BM·d−1)
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as is typically the case in Kenya.
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3
Hydration and electrolyte balance and

training load in elite Kenyan

endurance runners

3.1 Introduction

Kenya has enjoyed increasing success in international racing over the last

four decades since its emergence in world athletics in the 1960s. For exam-

ple, in 2004 the majority (51 %) of top ten yearly performances from 800m

to marathon were from male Kenyan athletes. Considering the success of

these runners and the importance of diet and lifestyle for optimum endurance

running performance (American College of Sports Medicine, 2000), the diet

and lifestyle practices of this unique group of runners warrants examination.

Two recent investigations (Onywera et al., 2004; Chapter 2) reporting the

nutritional and lifestyle practices of elite Kenyan endurance runners whilst

preparing for major competition (Kenyan National Championships 2003 and

Athens Olympic games 2004 national trials, respectively) found athletes did

not consume fluids before or during training, and only infrequently consumed

modest amounts of fluids immediately after training. This contributed to

low daily fluid intake, mainly water (1.1 ± 0.3; 0.9 ± 0.5 L·d−1, Onywera et

al., 2004 and Chapter 2, respectively) and milky tea (1.2 ± 0.3; 0.9 ± 0.3

L·d−1, respectively). These fluid intake and drinking habits were substan-
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tially less than previous recommendations of the ACSM (Convertino et al.,

1996), which were 0.4-0.6 L of fluid 2-3 hr before exercise, 0.6-1.2 L·d−1 while

exercising, aiming at total replacement of all fluid lost during exercise, or at

least up to the maximal amount tolerated; a pattern and volume of fluid re-

placement similar to that recommended by the NAAT (Binkley et al., 2002),

and the US Army (Montain et al., 1999). The drinking behaviours reported

previously (i.e., ad libitum in elite Kenyan endurance runners (Onywera et

al., 2004; Chapter 2) are consistent with empirical observations that elite

athletes typically do not adhere to prevailing fluid intake recommendations

(for a review see reference Cheuvront & Haymes, 2001). Recently the ACSM

has replaced their prior Position Stand (Convertino et al., 1996) with an

updated one on exercise and fluid replacement (American College of Sports

Medicine, 2007) that advocates drinking ad libitum (0.4-0.8 L·hr−1) during

exercise (with the lower value for slower, lighter individuals competing in

cooler environments, and the higher value for faster, larger individuals com-

peting in warmer environments) in order to prevent excessive dehydration

(i.e., < 2 % body mass loss), and only aggressively ingest fluid and elec-

trolytes before/after exercise if time does not permit consumption of normal

meals and beverages to replace exercise induced fluid and electrolyte losses.

These new recommendations (American College of Sports Medicine, 2007)

appear to be more in keeping with previous observations of elite Kenyan

endurance runners (Onywera et al., 2004; Chapter 2). However, their hy-

dration status day-to-day during an important training period remains to be

determined.

Therefore, the main aim of the present investigation was to assess the hy-

dration status of elite Kenyan endurance runners during an important train-

ing period given their previously reported drinking behaviours in Chapter 2

that appear more in line with recent recommendations (American College of

Sports Medicine, 2007). This investigation also provides a rare insight into

the day-to-day practices of some of the most successful endurance runners

in the world 1 week prior to major competition. Therefore secondary aims

are to assess electrolyte balance and training load 1 week prior to major

competition.
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Table 3.1: Physical and anthropometric characteristics of elite Kenyan en-
durance runners (n = 14). Mean ± SD is shown.

Mean SD
Age (y) 22 3
Height (cm) 170 5
BM (kg) 54.8 6.3
BMI (kg·m−2) 19 2
AD (m2) 1.6 0.1
AD·kg−1 (cm2·kg−1) 300 19
Body Fat (%) 7.5 1.4

3.2 Methods

3.2.1 Subjects

Fourteen elite Kenyan endurance runners (range of athletic discipline: 800

m-marathon) were invited to participate in this study (Table 3.1). All ath-

letes gave their written informed consent prior to participating in the study

(Appendix 1). The experimental procedures were in accordance with the

Helsinki declaration and were approved by the local ethics committee at

Kenyatta University, Nairobi, Kenya (Appendix 1). The athletes were highly

trained and included World, Olympic and Junior Champions frequently com-

peting in major national and international middle- and long-distance running

events. Athletes were based at a high altitude training camp (Global Sports

Training Camp, Kaptagat, Eldoret, Kenya) situated in the North Rift Valley

(altitude: 2400 m a.s.l., daytime Ta: 8-24 ◦C, RH: 31-100 %) and were all

heat and altitude acclimatised at the time of testing. The athletes were in

a 10 day taper phase of their training cycle as the investigation was under-

taken 1 week prior to the Kenyan national trials for the 2005 IAAF World

Championships.
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3.2.2 Experimental design

Subjects were monitored for a period of 5 training days during the course of a

standard training week prior to major competition. Organised training runs

were carried out mostly in groups that were influenced by athletic discipline

and instructions from coach/manager. Training schedules typically incorpo-

rated up to 2 variable distance-training sessions per day (i.e., a morning run

and a non-compulsory afternoon run) and 2 interval-training sessions per

week (i.e., mid-morning run).

3.2.3 Experimental procedures

Body water compartments, urine osmolality and specific gravity, body mass,

and body fat were measured each morning as follows. Body water compart-

ments were estimated using a multifrequency bioimpedance analyser (Body-

stat Multiscan 5000 Bioimpedance analyser, Bodystat Ltd, Isle of Man).

Multifrequency bioimpedance allows total body water and extracellular wa-

ter to be estimated; from these measurements intracellular water can also be

deduced (Vanloan, 1990). The multifrequency bioimpedance measurements

were taken after the subjects woke while they lay comfortably in a supine

position for at least 10 min on a non-conductive surface with their arms

and legs slightly abducted, ensuring consistent distribution of body water.

Following this, subjects were asked to supply a 20 ml urine sample, which

was analysed for osmolality by freezing point depression (Micro-osmometer

3300, Vitech Scientific, West Sussex, UK) and specific gravity (Combur test

strips, Roche Diagnostics, East Sussex, UK) within 15 min to give an index

of pre-training hydration status (Shirreffs & Maughan, 1998); subjects also

provided a 20 ml urine sample before going to sleep each night. Body mass

and percent body fat measurements were then made simultaneously after

subjects had voided and before the consumption of any food or fluid using a

leg-leg bioimpedance system equipped with a digital scale (Tanita Body Fat

Analyzer, TBF 521, Tanita Corporation of America, Inc., Arlington Heights,

IL) (Cable et al., 2001).

Prior to the morning training session on the first day of the 5 day in-
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vestigative period, height was recorded using a wall mounted stadiometer.

AD was calculated from body mass and height as described by (DuBois &

DuBois, 1916); following this, AD·kg−1 was also calculated.

A heart rate monitor (Suunto t6, Suunto Oy, Vantaa, Finland) was at-

tached to record heart rate continuously throughout each training run. The

HRpeak was considered the highest achieved heart rate in all training ses-

sions completed by individual subjects throughout the recording period. Ti

was monitored using a telemetric pill system (CorTemp, HQ inc., Palmetto,

Florida, USA) that subjects consumed 8-10 h before the morning run (Easton

et al., 2007). Ti was recorded continuously during the exercise period on the

CorTempTM receiver that was secured to the small of the subject’s back in

a neoprene running pack (Hybrid music pak, NATHAN Human Propulsion

Laboratories, Philadelphia, USA). The Timex BodylinkTM system (Timex

Corporation, Middlebury, CT, USA) was used to determine the distance,

time and running speed of the training runs by utilizing GPS technology.

Athletes wore the Timex Performance device during individual and group

runs. HR, Ti, and Timex data were recorded during all training sessions

throughout the study period. Body mass was measured before and after

each training session. Sweat loss and sweat rate were calculated from the

change in body mass (the relatively small changes in body mass due to sub-

strate oxidation and other sources of water loss were ignored). RPE (Borg,

1982) was reported at the end of each training run. Environmental conditions

(i.e., Ta and RH) were recorded (C8600 10 channel microprocessor, Comark,

Hertfordshire, UK) each morning and before and after every training session.

The dietary intake of ten subjects was measured daily during the 5 day

investigative period. While at the training camp, meals and snacks were

served at standard times each day: breakfast (08:00), mid-morning snack

(10:00), lunch (13:00), afternoon snack (16:00), and dinner (19:00). Athletes

selected their portion sizes ad libitum from the provided food. Samples of

all foods and fluids consumed were chemically analysed (Food Industrial Re-

search and Technological Development Company S.A., Athens, Greece) for

energy (calculated by Atwater energy factors (Merrill & Watt, 1973)), carbo-

hydrate (calculated “by difference”, i.e., carbohydrate = 100 - fat - proteins -
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moisture - ash), fat (measured by petroleumether extraction according to the

Soxhlet method (Helrich, 1990)), protein (calculated from analysis by Kjel-

dahl titration method (Helrich, 1990)), moisture (determined by oven drying

the sample at 105 ◦C for 4 hr (Helrich, 1990)), and Na+ and K+ content

(both analysed by flame photometry). During the study period, subjects

were required to weigh and record all food and drink consumed; individ-

ual digital weighing scales readable to 1 g were used. All food items were

weighed before and after cooking and cooking method noted. Subjects were

also required to continue weighing all food and drink when away from the

camp (e.g., athletes occasionally walked to the local shop for snacks between

training runs); samples of any food or drinks consumed were collected for

chemical analysis. The weighed dietary intake data were used to determine

energy intake and diet composition using results of the chemical analysis of

foods. Metabolic water was determined by multiplying estimated energy ex-

penditure by the fraction of energy in the diet from carbohydrate, protein,

and fat (data derived from chemical analysis of foods). The oxidation of

carbohydrate, protein and fat yields 0.60, 0.41, and 1.07 mL water·g−1, re-

spectively (Fjeld et al., 1988). Athletes did not receive any specific dietary

recommendations from their coach/manager. One subject consumed a daily

multivitamin.

Energy expenditure was assessed by PAR (Ainsworth et al., 2000). Sub-

jects were instructed to record in detail their individual activities each day

(including type, intensity and duration of activity). The Compendium of

Physical Activities (Ainsworth et al., 2000) was used to assign specific ac-

tivities with their respective MET. The total energy cost is expressed as

a multiple of BMR. In the present study, BMR was calculated using the

Schofield Equation (Schofield, 1985).

Nine of the ten subjects who recorded dietary intake during the 5 day

investigative period also completed one 24 hr urine collection. The urine

volume was measured and mixed thoroughly before a representative 20 mL

sample was analysed for osmolality and specific gravity (as described above)

and [Na+] and [K+] by flame photometry (Flame Photometer Model 410,

Corning, Halstead, Essex, UK). During the 24 hr urine collection period

55



3.2. METHODS

sweat samples were also collected during all training sessions from four skin

sites (chest, forearm, back and thigh) by absorbent sweat patches applied

to the skin surface (Tagaderm+Pad, 3M, Loughborough, UK). The gauze

patches were covered with an adhesive non-porous film that held them in

place and prevented evaporation of sweat. The patches were positioned be-

fore the start of each training session and remained in place throughout the

session. All patches were placed on the right hand side of the body after

preparation of the skin site by washing with deionised water and drying with

a clean electrolyte-free gauze swab. The patches were removed after each

training session and placed in sealed sterile containers until they were anal-

ysed. After weighing of the patches and elution of sweat with distilled water,

the sweat collected was analysed for [Na+] and [K+] by flame photometry

(as previously described). The [Na+] and [K+] were used to calculate total

Na+ and K+ loss from sweat loss (i.e., body mass loss) during training runs.

The total quantity of Na+ and K+ lost in the sweat and urine over the 24

hr period was used to calculate an estimate of total Na+ and K+ lost from

the body over the course of a single day and compared to the total Na+ and

K+ intake of the diet assessed by chemical analysis of all food and fluids

consumed during the 24 hr period.

3.2.4 Data analysis

Data are expressed as the mean ± SD or median (range) as appropriate

following a test for the normality of distribution. Paired t-tests were used

to compare body mass loss during training sessions, pre training body mass

in the morning vs. pre interval training body mass, pre training body mass

in the morning vs. pre training body mass in the afternoon, pre interval

training body mass vs. pre training body mass in the afternoon, initial body

mass vs. final body mass, energy intake vs. energy expenditure, morning

urine osmolality vs. evening urine osmolality, morning urine specific gravity

vs. evening urine specific gravity, Na+ intake vs. Na+ loss, and K+ intake vs.

K+ loss. A one-way ANOVA for repeated measures was used to determine

if there was a significant difference in daily total body water, extracellular
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water and intracellular water compartments and body mass measured in the

morning before training. Statistical power calculations (80 % power) were

carried out using the daily body mass data obtained. Statistical significance

was set at p < 0.05.

3.3 Results

Environmental conditions

Environmental conditions (i.e., Ta and RH) during the morning (06:00), in-

terval (09:00), and afternoon training sessions (15:00) were 10.7 ± 1.6 ◦C

and 75 ± 3 %RH, 17.9 ± 1.1 ◦C and 68 ± 4 %RH, and 21.1 ± 2.1 ◦C and

43 ± 11 %RH, respectively.

Body Mass and Fluid Balance

No correction was required for food and fluid intake during training sessions

as no fluid or food was consumed. On the days when urinary losses were not

recorded, body mass was not corrected for any urinary losses during training

runs. Any body mass losses due to fecal losses during training runs were

not corrected for. On average there was a significant body mass loss during

the short, medium and long morning training runs (0.5 ± 0.4 kg, p < 0.001;

0.8 ± 0.4 kg, p < 0.001; 1.1 ± 0.4 kg, p < 0.001) as well as interval (0.7 ±
0.3 kg; p < 0.001) and afternoon (0.5 ± 0.4 kg; p < 0.001) training runs.

This was equivalent to 0.8 ± 0.5, 1.5 ± 0.5, 2.0 ± 0.7, 1.3 ± 0.5 and 1.0

± 0.6 % body mass loss, respectively, and mean sweat rates of 1.0 ± 0.7,

1.0 ± 0.4, 0.8 ± 0.4, 1.0 ± 0.4 and 0.9 ± 0.6 L·hr−1, respectively. Despite

significant loss in body mass, athletes that completed a morning run and

an afternoon run in the same day, had no significant difference between pre

training body mass in the morning and afternoon pre training body mass

(56.1 ± 4.4 kg vs. 56.0 ± 4.0 kg; p = 0.761). In contrast, athletes that

completed a morning run and an interval training session in the same day,

commenced interval training with a significant loss in body mass (0.8 ± 0.5

kg; p < 0.001); post interval training, athletes had a mean body mass deficit
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of 1.5 ± 0.6 kg, equivalent to 2.7 ± 1.0 % body mass loss. Nevertheless,

athletes that completed an interval training session and an afternoon run in

the same day, had on average regained all water lost via sweating and more

as evidenced by a significant positive difference between pre training body

mass prior to interval training and afternoon pre training body mass (53.5

± 2.1 kg vs. 54.1 ± 2.4 kg; p = 0.007). Similarly, athletes that completed

a morning run, interval training and an afternoon run in the same day had

no significant difference between pre training body mass in the morning and

afternoon pre training body mass (53.9 ± 2.5 kg vs. 53.6 ± 2.6 kg; p =

0.400). Mean total body water (31.4 ± 3.4 L; p = 0.194), extracellular water

(14.2 ± 1.5 L; p = 0.564), intracellular water (17.1 ± 1.9 L; p = 0.557),

and pre training body mass (53.6 ± 6.8 kg; p = 0.302) were well maintained

day-to-day throughout the investigative period. Mean osmolality and specific

gravity of urine supplied by the athletes in the morning was not significantly

different from the evening sample supplied before sleeping (osmolality: 522

± 117 vs. 505 ± 98 mOsmol·kg−1, respectively; p = 0.685; specific gravity:

1.017 ± 0.004 vs. 1.016 ± 0.004, respectively; p = 0.388).

Energy Balance, Physical Activity and Diet Composition

The reported energy intake assessed by chemical analysis of all food and

fluids consumed was not significantly different from the estimated energy

expenditure assessed by PAR (12.3 ± 1.5 MJ·d−1 vs. 13.6 ± 2.2 MJ·d−1; p

= 0.154; n = 10). Body mass on day 1 and day 5 did not differ significantly

(55.9 ± 6.1 kg vs. 55.6 ± 6.2 kg; p = 0.167; n = 10). Physical activity level

was 2.1 ± 0.3 (i.e., ADMR/BMR). The diet consisted mainly of carbohydrate

(79.0 ± 2.6 %, 9.8 g·kg−1BM·d−1) compared with protein (14.3 ± 2.1 %, 1.8

g·kg−1BM·d−1) and fat (6.6 ± 1.0 %, 0.8 g·kg−1BM·d−1).

Mean Na+ intake assessed by chemical analysis of all food and fluids

consumed in a 24 hr period was not significantly different from Na+ loss

during the same 24 hr period in sweat and urine assessed by 24 hr urine and

training run sweat patch analysis (3245 ± 901 vs. 3254 ± 1070 mg·d−1; p =

0.975; n = 9). In contrast, mean K+ intake was significantly different from
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Table 3.2: Sweat electrolyte concentration during training sessions calculated
from four collection sites and 24 hr urinary losses (n = 9). Mean ± SD is
shown.

Mean SD
Sweat [Na+] (mmol·L−1) 37.0 8.0
Sweat [K+] (mmol·L−1) 4.6 1.1
Urine Na+ loss (g·d−1) 2.3 1.2
Urine K+ loss (g·d−1) 2.1 0.9

K+ loss in sweat and urine (3812 ± 489 vs. 2346 ± 846 mg·d−1; p < 0.001;

n = 9). All nine athletes completed a morning run (17.4 ± 2.8 km) with a

further three completing an additional afternoon run (5.0 ± 1.0 km). Sweat

electrolyte concentration obtained from the four collection sites and 24 hr

urinary losses are shown in Table 3.2.

Daily fluid availability consisted mainly of water (0.7 ± 0.5 L·d−1; 18.4

%) and milky tea (1.2 ± 0.4 L·d−1; 31.6 %) with a small contribution from

the intake of other fluids such as soft drinks and milk (0.4 ± 0.2 L·d−1; 10.5

%). Other sources of daily fluid intake were water consumed as moisture in

food (1.0 ± 0.1 L·d−1; 26.3 %) and metabolic water production as a result of

oxidation of carbohydrate, protein, and fat (0.5± 0.1 L·d−1; 13.2 %) resulting

in a mean total daily fluid intake of 3.8 ± 0.8 L·d−1. Mean osmolality of

the tea regularly consumed by the athletes was 281 ± 55 mOsmol·kg−1;

composition of the tea was 0.2 MJ·100g−1 of energy, 1.0, 0.2 and 8.28 g·100g−1

of protein, fat and carbohydrate, respectively, and 16.98 and 28.77 mmol·L−1

of [Na+] and [K+], respectively.

Physiological Response to Running

Mean time, distance, speed, RPE, and % HRpeak for morning runs, interval

training and afternoon runs is shown in Table 3.3. Training distance achieved

over the 5 day recording period was 81.7 ± 11.3 km. Mean Ti and heart rate

at 5 min intervals during morning and afternoon training sessions are shown

in Figure 3.1. Average peak Ti during interval training was 39.5 ± 1.8 ◦C.
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Table 3.3: Training load and physiological response to running during morn-
ing (i.e., AM), mid-morning (i.e., interval training) and afternoon (i.e., PM)
training runs. Mean ± SD is shown.

Mean SD
Short Run - AM
Time (min) 30.3 0.5
Distance (km) 6.4 0.5
Speed (km·hr−1) 12.6 0.9
RPE (6-20) 10 2
% HRpeak 71 9
Ti (◦C) 37.2 0.4
Medium Run - AM
Time (min) 63.2 7.4
Distance (km) 14.0 1.5
Speed (km·hr−1) 13.3 2.0
RPE (6-20) 13 2
% HRpeak 78 10
Ti (◦C) 37.3 0.4
Long Run - AM
Time (min) 63.6 5.4
Distance (km) 18.2 1.4
Speed (km·hr−1) 17.2 1.6
RPE (6-20) 13 1
% HRpeak 81 7
Ti (◦C) 37.9 0.6
Interval Training
Time (min) 49.5 17.4
Distance (km) 5.6 2.1
Peak Speed (km·hr−1) 25.7 2.3
RPE (6-20) 16 2
Peak % HRpeak 96 4
Ti (◦C) 37.9 0.5
Run PM
Time (min) 33.4 6.9
Distance (km) 5.9 1.1
Speed (km·hr−1) 10.5 2.2
RPE (6-20) 9 2
% HRpeak 66 7
Ti (◦C) 37.6 0.5
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Figure 3.1: Intestinal temperature and heart rate at 5 min intervals for morn-
ing (short, medium and long) and afternoon training runs. Mean ± SD is
shown.
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3.4 Discussion

The main finding of the present investigation is that despite low daily fluid

intake, elite Kenyan endurance runners remain well hydrated day-to-day dur-

ing an important training period. The pattern and volume of fluid intake

reported in the present study is consistent with previous observations of elite

Kenyan endurance runners (Onywera et al., 2004; Chapter 2), and supports

the principle of a daily ad libitum fluid and food intake strategy for elite

Kenyan endurance runners during an important training period.

Fluid Intake and Hydration Status

Body mass loss as a result of sweating during running was fairly modest

during training runs. A contributing factor may have been the relatively low

body mass of the subjects in the present study (Table 3.1) that is similar

to reported values of African endurance runners but less than Caucasian en-

durance runners (e.g., Saltin et al., 1995). In contrast, body fat (Table 3.1)

is similar to values reported in the literature for both African and Caucasian

endurance runners (e.g., Saltin et al., 1995). Epstein et al. (1983) suggest

that thermoregulation is more efficient the greater the AD available for evap-

oration per unit of body mass; this is especially apparent when exercising in

a hot dry environment. The AD·kg−1 of the runners in the present study

(Table 3.1), is similar to values previously reported in Kenyan runners but

greater than values reported in Caucasian endurance runners (e.g., Saltin et

al., 1995). Therefore, a low body mass index coupled to a high AD may have

resulted in the modest sweat losses observed, thus requiring relatively little

fluid intake to compensate. In addition, mild ambient conditions and/or rel-

atively low training duration/intensity (Table 3.3) may have also contributed

to the modest fluid losses in the present investigation. Thus, sweat rate can

be influenced by a number of factors, including meteorological variables (e.g.,

Ta, wind speed, RH), exercise intensity, state of fitness, level of heat accli-

mation, and the amount of insulative clothing worn. Indeed, it was found

that sweat rates were similar throughout all training sessions despite lower
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Ta during the morning run compared to the mid-morning and afternoon runs

(10.7 ± 1.6 ◦C vs. 17.9 ± 1.1 ◦C and 21.1 ± 2.1 ◦C, respectively). This is

likely explained by athletes wearing insulative clothing during morning runs

that resulted in a greater than expected sweat loss for the Ta experienced.

Despite relatively low body mass loss during training runs, athletes had

greater losses during interval training (2.7 ± 1.0 % body mass) as a result of

accumulating a deficit from the preceding morning run since athletes ingested

no fluid before and during training and infrequent and modest amounts im-

mediately after. However, these losses may still arguably be within a tolerable

range for dehydration that will not negatively affect performance, especially

in the mild Ta experienced by the runners during the present investigative

period (Maughan et al., 2004). Nevertheless, even though body mass loss

was statistically significant during training runs and irrespective of whether

the elite Kenyan endurance runners had completed 1, 2, or 3 training sessions

over the course of a training day, they remained on average well hydrated

throughout each day of the 5 day recording period with no heat strain evident

at any time during training sessions (Figure 3.1). Maintenance of hydration

balance over the 5 day recording period was evidenced by similar total body

water and body mass values recorded each morning before training despite

athletes incurring body mass deficits due to training runs. Daily hydration

balance was further demonstrated by a similar pre training body mass in the

morning and pre training body mass in the afternoon. It was also found that

there was no significant difference in osmolality and specific gravity of the

urine supplied by the athletes in the morning when compared to the evening

sample. During the 5 day recording period, mean osmolality and specific

gravity in the morning (519 ± 203 mOsmol·kg−1; 1.017 ± 0.006, respec-

tively) and evening (502 ± 229 mOsmol·kg−1; 1.015 ± 0.007, respectively)

were below values suggested to correctly classify dehydration in individuals

(i.e., > 700 mOsmol·kg−1 and a specific gravity ≥ 1.020; (American College

of Sports Medicine, 2007)). Maintenance of hydration status, despite ath-

letes losing body water during training, was achieved by water gained from

the diet and fluid ingested throughout the day ad libitum. The pattern and

volume of fluid intake reported in the present study is consistent with pre-
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vious observations of elite Kenyan endurance runners (Onywera et al., 2004;

Chapter 2) as fluid intake consisted mainly of water (0.7 ± 0.5 L·d−1; 18.4

%) and milky tea (1.2 ± 0.4 L·d−1; 31.6 %) with a small contribution from

the intake of other fluids such as soft drinks and milk (0.4 ± 0.2 L·d−1; 10.5

%). Interestingly the mean osmolality of the milky tea regularly consumed

by the athletes was isotonic (281 ± 55 mOsmol·kg−1), high in energy (0.2

MJ·100g−1) and had a modest [Na+] (16.98 mmol·L−1) that is similar to

conventional sports drinks. Furthermore, Shirreffs et al. (Shirreffs et al.,

2007) found milk (a major constitute of the tea regularly consumed by the

athletes) was effective at replacing sweat losses and maintaining euhydration

following exercise induced dehydration (approximately 2 % body mass loss).

Other sources of daily fluid intake were water consumed as moisture in food

and metabolic water production resulting in a mean total daily fluid intake

of 3.8 ± 0.8 L·d−1.

Daily total ad libitum water intake (0.29 ± 0.1 L·MJ−1) in the present

study was consistent with guidelines from the National Research Council

(US) (1989) that suggest daily water intake requirements of 0.24 L·MJ−1 (1.0

mL·kcal−1) for average energy expenditure and environmental exposure and

0.36 L·MJ−1 (1.5 mL·kcal−1) for higher levels of physical activity, sweating

and solute load and is similar to measured water loss (0.28 ± 0.03 L·MJ−1)

in healthy young men observed in summer in North West Europe with a

temperate climate (Westerterp et al., 2005). Expressing daily fluid intake

relative to body mass, the runners in the present study ingested 42.6 ± 13.9

mL·kg−1·d−1 (68.4 ± 14.9 mL·kg−1·d−1 when taking the water content of

food into consideration). Kirsch and von Ameln (1981) reported that 13

European long distance runners (median body mass of 64.0 kg), training

in similar environmental temperatures (18-24 ◦C; 20-40 %RH), maintained

daily fluid balance with a mean fluid intake of 33 mL·kg−1·d−1. Runners

in the present study probably required greater daily fluid intake due to a

greater training volume as the runners in the study by Kirsch and von Ameln

(1981) trained just once a day. Drinking behaviours observed in the present

study are similar to the findings of Adolph and Dill (1938) (i.e., ingestion

lagged considerably behind output during exercise and was largely made up
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at meals) and are consistent with the ACSM Position Stand on Exercise and

fluid replacement (American College of Sports Medicine, 2007). Thus in the

present study, elite Kenyan endurance runners seemed to perfectly adjust

daily fluid intake to daily fluid needs by relying on their sensation of thirst

and eating and drinking habits alone. However, it is undetermined whether

this would hold under increased heat stress.

During training runs, the athletes did not consume fluid. This was likely

the result of short duration training runs that typically lasted less than or

about 1 hr (Table 3.3) and therefore did not require fluid replacement (Con-

vertino et al., 1996). During longer duration exercise, Noakes et al. (1988)

have proposed that an ad libitum fluid intake strategy is all that is necessary

to offset any negative effects of dehydration. This has since been corrobo-

rated in several studies that have reported no benefit of drinking high rates

of fluid compared to ad libitum (e.g., Saunders et al., 2005). The current

ACSM Position Stand for exercise and fluid replacement (American College

of Sports Medicine, 2007) suggests fluid intake should be ad libitum from 0.4

to 0.8 L·hr−1with the lower value for slower, lighter individuals competing

in cooler environments, and, the higher value for faster, larger individuals

competing in warmer environments. This agrees with fluid intake guidelines

previously proposed by IMMDA (Noakes & Martin, 2002) that suggests ath-

letes should consume fluid as dictated by thirst (i.e., ad libitum) but not more

than 0.4 to 0.8 L·hr−1. These guidelines have also been adopted by other

organizations such as USA Track and Field (Casa, 2003). Similarly, the In-

ternational Consensus Guidelines for the Prevention of Exercise-Associated

Hyponatraemia invoke the same advice (Hew-Butler et al., 2005).

Diet Composition and Energy Balance

The diet fulfilled current recommendations for carbohydrate and protein in-

take for endurance athletes, typically 55-58 % (6-10 g·kg−1BM·d−1) of energy

from carbohydrate, and 12-15 % (1.2-1.4 g·kg−1BM·d−1) of energy from pro-

tein (American College of Sports Medicine, 2000). In contrast, fat intake was

very low (6.6 ± 1.0 %, 0.8 g·kg−1BM·d−1) and did not comply with current

65



3.4. DISCUSSION

recommendations, i.e., typically > 15 % of energy from fat (American College

of Sports Medicine, 2000). Such a low fat diet may compromise intramus-

cular triacylglycerol concentration with presently unknown consequences in

endurance exercise performance (Spriet & Gibala, 2004). Nevertheless, con-

trary to previous observations of elite Kenyan endurance runners in Chapter

2 and in the study by Onywera et al. (2004), who were training prior to ma-

jor competition, the subjects in the present study appeared in energy balance

during the recording period. It is likely this was due to the comparatively

lower weekly training distance achieved during the present recording period

compared to the earlier studies; this is illustrated by the lower physical ac-

tivity level (i.e., ADMR/BMR) in the present study (2.1 vs. 2.3 (Onywera

et al., 2004) and 2.3 (Chapter 2)).

Mean dietary K+ intake was significantly different from mean K+ loss in

sweat and urine over a 24 hr recording period (3812 ± 489 vs. 2346 ± 846

mg·d−1; p < 0.001) equivalent to a mean difference of 1466 ± 846 mg·d−1.

The finding of excess K+ intake when compared to K+ loss in sweat and

urine are likely due to errors in collection of sweat [K+] (Patterson et al.

(2000) and or faecal losses which were unfortunately not measured in the

present investigation. Holbrook et al. (1984) reported that although the

range of Na+ faecal excretion was low in 28 healthy adults investigated over

a 1 year period (10-125 mg·d−1), the range of K+ faecal loss was greater

(112-846 mg·d−1). The mean dietary intake of Na+ in the present study

was similar to that in the study by Holbrook et al. (1984) (3245 vs. 3000

mg·d−1) whereas, K+ intake in the present study was substantially greater

(3812 vs. 2800 mg·d−1). This suggests subjects in the present investigation

may have excreted more K+ in faeces than reported previously (Holbrook

et al., 1984) and thus may explain the apparent K+ excess, however, this

remains to be determined. In contrast, Na+ intake was not significantly

different from Na+ loss (3245 ± 901 vs. 3254 ± 1070 mg·d−1; p = 0.975).

Thus, elite Kenyan endurance runners do not require additional electrolyte

supplementation above habitual dietary intake. This is further supported by

early work by Pitts et al. (1944) who noted that subjects marching in the heat

did not require further salt supplementation above that consumed in their
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diet and is consistent with the new ACSM Position Stand (American College

of Sports Medicine, 2007). It is acknowledged however that the determination

of sweat electrolyte concentrations may have been effected by the collection

method used in the present investigation as it has generally been observed

that local sweat electrolyte concentration using the enclosed patch technique

is higher than measurements using the whole-body technique (e.g., Lemon

et al., 1986). Nevertheless, sweat [Na+] and [K+] in the present investigation

(Table 3.1) are comparable to values reported in heat acclimatised individuals

(Dill et al., 1938; Sawka & Montain, 2000).

Training Load

Training distance achieved over the 5 day recording period (81.7 ± 11.3

km) was substantially lower than that typically reported albeit over a 7 day

training period in other elite endurance runners (e.g., Noakes, 2001). This

was because athletes were in a 10 day taper phase of their training cycle as

the investigation was undertaken 1 week prior to the Kenyan national trials

for the 2005 IAAF World Championships. Nevertheless, the 5 day training

distance achieved in the present investigation is similar to values reported

(Noakes, 2001) for elite Kenyan athletes preparing for major competition

prior to the cross-country season in Kenya (80-100 km·wk−1). Indeed, similar

to the current study, Noakes (2001) reported that during this period, athletes

typically ran an easy run (30 min) each morning, with the final 800-1600 m

being run at race pace, two interval training sessions per wk and two long

runs (60 min). This resulted in 25 % of the training volume run at race pace

or greater; this value is comparable to the weekly training load in the present

investigation (i.e., 26 % of total weekly training time spent > 80 % HRpeak).

Indeed, training sessions in the present study were on average characterised

by moderate to low intensity running interspersed with high intensity running

such as interval training (Table 3.3). This was also reflected in lower mean

peak Ti during morning and afternoon runs (Figure 3.1) compared to interval

training sessions (38.6 ± 0.9 ◦C vs. 39.5 ± 1.8 ◦C, respectively). These

findings corroborate previous investigations that indicate low to moderate
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intensity training accounts for the majority of training time in endurance

athletes (e.g., Esteve-Lanao et al., 2005). Typical examples of this type of

training were the morning short (completed by middle-distance runners) and

medium training runs (equivalent to a short run for long-distance runners) as

well as afternoon runs (all runners). These runs typically served as a warm

up (for interval training) and/or a recovery run that usually compromised

periods of slow and fast running with hopping and bouncing exercises that

resulted in a relatively low mean speed for the training distance achieved

(Table 3.3). Whether the findings of the present investigation apply to elite

Kenyan endurance runners during a period of greater training load/intensity

is unknown and remains to be determined.

Conclusions

In conclusion, these results suggest habitual ad libitum fluid and food intake

is adequate to maintain hydration and electrolyte balance on a daily basis in

elite Kenyan endurance runners under mild ambient conditions and during

a 10 day taper phase. The drinking and eating habits of the elite Kenyan

endurance runners in the present study corroborate the new ACSM guidelines

for fluid and electrolyte replacement (American College of Sports Medicine,

2007). However, this is a narrow sample of athletes and these findings may

not apply to all athletes, in all sports or training scenarios.
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4
Efficacy of new fluid intake

recommendations for elite marathon

running

4.1 Introduction

Fluid intake recommendations for endurance events such as the marathon

have evolved extensively over the last few decades. During the first half of the

twentieth century until the early 1970s, runners were typically advised not to

ingest fluid during competitive marathon running (Noakes, 1993). However,

from then onwards and until relatively recently, fluid intake recommendations

have typically advocated total replacement of all fluid lost during exercise, or

at least up to the maximum amount tolerated (Convertino et al., 1996; Mon-

tain et al., 1999; Binkley et al., 2002). Recently, the ACSM has replaced their

prior Position Stand (Convertino et al., 1996) with an updated version on

exercise and fluid replacement (American College of Sports Medicine, 2007)

that promotes drinking 0.4-0.8 L·hr−1 of fluid ad libitum during exercise

with lower fluid volumes for slower, lighter individuals competing in cooler

environments, and higher volumes for faster, larger individuals competing

in warmer environments. These guidelines represent a compromise between

preventing a level of dehydration that may negatively impact upon perfor-

mance (i.e., > 2 % body mass loss from water deficit (Wyndham & Strydom,
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1969; Cheuvront & Haymes, 2001b; Coyle, 2004; Fudge et al., 2006; Ameri-

can College of Sports Medicine, 2007)) versus preventing excessive ingestion

of fluid that could potentially cause hyponatraemia (i.e., serum sodium con-

centration < 130 mmol·L−1 (Almond et al., 2005; Hew-Butler et al., 2005)).

The efficacy of proposing a specific fluid intake range during exercise has

been investigated in a study that modelled parameters that influence sweat-

ing rate (Montain et al., 2006). Montain et al. (2006) found that this rate

(i.e., 0.4-0.8 L·hr−1) of fluid intake was sufficient to maintain body mass loss

within 3 % and to prevent body mass gain in 50-90 kg subjects running a

marathon at 8.5-15 km·hr−1 in cool and warm ambient conditions (i.e., 18
◦C and 28 ◦C, respectively). These authors suggested that factors that in-

fluence sweat rate such as body mass, running speed and ambient conditions

be considered prior to adopting this specific fluid intake range, and where

necessary adapting the strategy to suit the individual (Montain et al., 2006).

However, in their calculations, these authors did not consider the fluid re-

quirements of elite marathon runners (Montain et al., 2006). For example,

maximum running speed calculated was 15 km·hr−1, whereas to win a major

city marathon a male athlete must run faster than 19 km·hr−1. Furthermore,

the environmental temperatures (i.e., 18 ◦C and 28 ◦C) on the basis of which

sweat rates and resultant body mass loss were estimated do not adequately

reflect the lower environmental temperatures typically experienced in most

major city marathons (Cheuvront & Haymes, 2001b) or indeed the ambient

conditions encountered when the fastest marathons are run (Fudge et al.,

2006). For example, the top ten fastest marathons of all time (up to 2004)

were performed at a mean Ta of 7.3 ◦C (Fudge et al., 2006). This observa-

tion is not unexpected given the laboratory results of Galloway and Maughan

(1997) that found the longest exercise duration at 10.5 ◦C (93.5 ± 6.2 min)

vs. 3.6 ◦C (81.4 ± 9.6 min) vs. 20.6 ◦C (81.2 ± 5.7 min) vs. 30.5 ◦C (51.6

± 3.7 min).

The principle of ad libitum fluid intake currently being advocated is in

agreement with previous observations in elite Kenyan endurance runners dur-

ing important periods of training (Onywera et al., 2004; Chapters 2-3). These

elite Kenyan endurance runners did not consume liquids before or during
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training, rarely consumed liquids after training, and only consumed modest

amounts when they did drink. While the drinking behaviours of some of

the best endurance runners in the world during training are well described

(Onywera et al., 2004; Chapters 2-3), there is almost no information on what

the best marathoners drink when racing (for a review of the marathon run-

ning literature see reference Cheuvront & Haymes, 2001b). Therefore, in the

present study, retrospective video analysis was used to determine the drinking

behaviours of the winning male and female elite runners in the 2006 and 2007

London Marathons in order to assess the efficacy of prevailing fluid intake

recommendations for elite marathon running. To supplement this data, a

mathematical model, similar to that used by Montain et al. (2006) was used

to predict the effect of varying fluid intake rates on hydration status when

body mass, running speed and environmental conditions are systematically

varied. This method uses predicted sweat rates and a range of reasonable

fluid intake rates to estimate percentage body mass loss. Fluid intake rate

is considered adequate if body mass loss remains between 0 and 3 % for the

duration of the race (Wyndham & Strydom, 1969; Cheuvront & Haymes,

2001b; Coyle, 2004; American College of Sports Medicine, 2007). Therefore,

the efficacy of prevailing fluid intake recommendations for elite marathon

running is assessed in the present study by considering both fluid intake be-

haviours of elite marathon runners and modelled fluid intake requirements.

4.2 Methods

4.2.1 Video analysis

A retrospective analysis of the drinking behaviors of the winning male and

female runners of the 2006 and 2007 London Marathons was undertaken

using video tapes provided by the British Broadcasting Corporation. Per-

mission for the present investigation was given by the race organiser. Only

the winners of each race were targeted as the images were recorded on a

motorcycle that followed the lead groups; this resulted in maximum camera

exposure for the race winners. Drinking stations for elite runners were placed
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at or very near every 5 km of the course and from the video images the time

spent ingesting fluid (sec) was measured; the assumption being that mouth

contact with the water bottle equated to drinking time. The entire race was

also monitored for any additional fluid that may have been ingested along the

route (e.g., general water and sports drink stalls). Fluid intake (mL) for each

athlete was estimated by multiplying the total duration spent ingesting fluid

(sec) by 60 as Noakes (In Press) (and verified in the present lab, unpublished

observation) measured the maximal flow rate of typical drinking bottles used

by elite runners during major city marathons and found the maximal flow

rate is approximately 60 mL·sec−1. This value was then used to calculate

the fluid intake rate (i.e., L·hr−1) so that fluid intake could be compared to

prevailing fluid replacement recommendations (American College of Sports

Medicine, 2007) that promote drinking 0.4-0.8 L·hr−1 of fluid ad libitum.

Data are expressed as the mean ± SD.

4.2.2 Mathematical modeling

Body water loss/gain was modelled for subjects of various body mass (45,

55, 65 and 75 kg) running a 42.2 km marathon equivalent to (hr:min:sec)

2:04:00 (i.e., 20.4 km·hr−1) and 2:30:00 (i.e., 16.9 km·hr−1) pace in cold (7.3
◦C) and warm (24.8 ◦C) ambient conditions with water consumption rates

ranging from 0-2 L·hr−1 in 0.1 L·hr−1 increments. These criteria and condi-

tions were chosen as they encompass the typical range of body mass (Tittel

& Wulscherk, 1992; Onywera et al., 2004; Chapters 2-3) and race pace of elite

male and female marathon runners as well as the typical range of weather

conditions encountered in major city marathons. For example, the average

Ta of the top ten fastest marathon times is 7.3 ◦C while the average tem-

perature at summer Olympic Games is 24.8 ◦C (Fudge et al., 2006). This

approach permits a range of fluid intakes that reflect elite marathon running

to be approximated. The body water loss/gain was calculated using the fol-

lowing equations:

SR = (BM × (V)) ÷ 732 × (1 - ((R + C)/H)) (Montain et al., 2006)
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R = (Tsk - Tr) × 5.2 (Kerslake, 1972)

C = (Tsk - Ta) × V 0.5 × 8.3 (Kerslake, 1972)

H = BM × S × 4 (Kerslake, 1972; Gonzalez-Alonso et al., 1999)

FB = FI - SR × t (Montain et al., 2006)

%BML = FB/BMi × 100 (Montain et al., 2006)

where SR is sweating rate (L·hr−1), BM is body mass (kg), V is running

speed (km·hr−1), R is radiative heat loss (W·m−2), C is convective heat loss

(W·m−2), V 0.5 is the square root of the velocity of air over the skin that is

assumed to be equivalent to running speed (m·sec−1), H is heat production

(W·m−2), S is running speed (m·sec−1), FB is fluid balance (L), FI is fluid

intake (L), t is time (hr), %BML is percentage body mass (kg) loss, BMi is

initial body mass (kg), Tsk - Ta is the temperature difference between skin

temperature and ambient temperature (◦C), and finally Tsk - Tr is the tem-

perature difference between skin temperature and the mean radiative tem-

perature (assumed to be the same as ambient temperature (Nielsen, 1996))

of nearby surfaces (◦C). Skin to ambient temperature gradient was 16.4 ◦C

and 5.9 ◦C for cold and warm weather conditions, respectively as predicted

by Nielsen (1996). The sweating rate equation assumes that sweating and

sweat evaporation are 100 % efficient. No attempt was made to adjust for

respiratory water loss, oxidative metabolism, oxidative breakdown of glyco-

gen and protein and potential urine or faecal losses (Montain et al, 2006).

The rate of fluid intake required to maintain body mass loss < 3 % was con-

sidered optimal for endurance running as this allows enough time to accrue

for performance to be significantly compromised after 2 % body mass loss

has been attained (Montain et al., 2006).
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4.3 Results

Video Analysis

The female (F06) and male (M06) 2006 London Marathons were won in

(hr:min:sec) 2:19:36 and 2:06:39, respectively. The female race started at

9.00 am and the male at 9.45 am resulting in a mean Ta of 9.3 ± 0.5 ◦C and

9.9 ± 0.9 ◦C, respectively; mean RH was 82.7 ± 4.1 % and 84.3 ± 2.9 %,

respectively. In 2007, the female (F07) and male (M07) races were won in

(hr:min:sec) 2:20:38 and 2:07:41, with a mean Ta of 15.7 ± 2.6 ◦C and 17.7

± 2.8 ◦C; mean RH was 48.1 ± 8.9 % and 54.7 ± 8.9 %, respectively. Figure

4.1 displays the duration spent ingesting fluid at each drinking station and

fluid consumed between stations; the mean duration spent ingesting fluid at

drinking stations for F06, M06, F07 and M07 were 9 ± 1, 6 ± 3, 5 ± 2

and 1 ± 1 sec, respectively. F06 and M06 did not consume any additional

fluid during the race resulting in total drinking durations of 56 and 38 sec,

respectively. On the other hand, F07 and M07 ingested fluid for 4 and 20 sec,

resulting in estimated total drinking durations of 43 and 31 sec, respectively.

Applying a flow rate of 60 mL·sec−1 (Noakes, In Press) to the total drinking

durations of the elite runners (Figure 4.1), resulted in estimated fluid intakes

for F06, M06, F07 and M07 of 3360, 2280, 2559 and 1860 mL, respectively

that equates to fluid intake rates of 1.5, 1.1, 1.1 and 0.9 L·hr−1, respectively.

The composition of each athletes drink is unknown.

Mathematical Modeling

The predicted sweat rates for 45-75 kg subjects running in cold (7.3 ◦C)

and warm (24.8 ◦C) ambient conditions at (hr:min:sec) 2:04:00 and 2:30:00

marathon pace are shown in Table 4.1. The estimated mean sweat rate

across all conditions was 1.2 ± 0.4 L·hr−1 (range: 0.6-1.9 L·hr−1), although

it is recognized that sweat rates can be much higher in some individuals in

hotter conditions (e.g., 3.7 L·hr−1 was reported for Alberto Salazar when

preparing for the 1984 Olympic Marathon (Armstrong et al., 1984)). The

corresponding percentage body mass loss as a result of varying rates of fluid
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intake (0-2 L·hr−1 in 0.1 L·hr−1 increments) are also shown in Table 4.1.

Across all conditions (i.e., weather conditions, body mass and running pace),

no fluid intake during racing results in a > 3 % loss in body mass loss.

Considering prevailing fluid intake recommendations of 0.4-0.8 L·hr−1, this

range of fluid intake is not adequate to prevent a > 3 % body mass loss and

to prevent body mass gain across all conditions investigated (Table 4.1). For

example, although 0.4 L·hr−1 is adequate for a small (45 kg) and slower (16.9

km·hr−1) individual competing in a cold (7.3 ◦C) environment to maintain

body mass loss < 3 % and prevent body mass gain, a large (75 kg) and

fast (20.4 km·hr−1) individual competing in a warm (24.8 ◦C) environment

consuming 0.8 L·hr−1 is estimated to have a body mass loss of 3.1 %.

4.4 Discussion

This investigation provides a unique snapshot of drinking behaviours of elite

runners during a major city marathon. As demonstrated in Figure 4.1, the

drinking behaviours of the male and female winners of the 2006 and 2007

London Marathon are diverse. For example, the mean duration spent ingest-

ing fluid at 5 km drinking stations for F06, M06, F07 and M07 were 9 ± 1,

6 ± 3, 5 ± 2 and 1 ± 1 sec, respectively. F06 and M06 did not consume any

additional fluid during the race resulting in total drinking durations of 56 and

38 sec, respectively. On the other hand, F07 and M07 ingested fluid away

from drinking stations for 4 and 20 sec resulting in estimated total drinking

durations of 43 and 31 sec, respectively. The consumption of fluids away from

drinking stations by both the winning athletes in the 2007 race may reflect

the warmer ambient conditions (9.3-9.9 ◦C vs. 15.7-17.7 ◦C). However, it is

interesting to note that the warmer conditions did not result in greater total

drinking durations as the highest estimated time ingesting fluid was by F06

followed by F07 who drank for longer than M06 who drank for longer than

M07 (Figure 4.1). Noakes (In Press) measured the maximal flow rate of typ-

ical drinking bottles used by elite runners during major city marathons and

found the maximal flow rate is approximately 60 mL·sec−1 (verified in the

present lab, unpublished observation). Applying this flow rate to the total
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4.4. DISCUSSION

drinking durations of the elite runners measured in the present investigation

(Figure 4.1), resulted in estimated fluid intakes for F06, M06, F07 and M07

of 3360, 2280, 2559 and 1860 mL, that equate to fluid intake rates of 1.5,

1.1, 1.1 and 0.9 L·hr−1, respectively. These estimated fluid intake rates are

greater than prevailing fluid intake recommendations of ad libitum 0.4-0.8

L·hr−1 proposed by the ACSM (American College of Sports Medicine, 2007)

and IMMDA (Noakes & Martin, 2002). It is recognised, however, that these

estimated fluid intakes are the maximum that may be ingested (as this is de-

pendant on the pressure applied to the bottle) and also that these estimates

do not take in to consideration the size of the athletes mouth (which is likely

to be smaller in females). Nevertheless, the data do suggest that it is im-

probable that ad libitum 0.4-0.8 L·hr−1 proposed by the ACSM (American

College of Sports Medicine, 2007) and IMMDA (Noakes & Martin, 2002) is

likely to apply to all the elite marathon runners. Therefore, prevailing fluid

intake recommendations are insufficient for elite marathon running.

Interestingly, M07 was the only athlete who did not drink anything from

35-42.2 km amounting to approximately 22 min. Montain and Coyle (1993)

demonstrated the time course for physiological benefits (reduced heart rate

and core temperature as well as improved blood volume and osmolality) as

a result of fluid consumption probably requires 40-60 min so that the fluid

is ingested and assimilated into the body. It may be suggested then that

M07 may have had a fluid intake behaviour, during the last part of the race

at least, that was the closest to optimum out of all the drinking behaviours

observed for racing performance as consuming fluid towards the end of a

marathon race will essentially leave fluid in the gastrointestinal tract that

will be of no benefit physiologically but will actually add unnecessary body

mass. Indeed being mildly dehydrated towards the end of a marathon race

may actually be an advantage as theoretically it will lower the energy cost

of running at the same relative sub-maximal speed (Armstrong et al., 1985;

Sawka & Montain, 2000; Coyle, 2004; Fudge et al., 2006). To test this hy-

pothesis, Armstrong et al. (2006) ran 10 endurance runners four times for

10 min, twice each at 70 and 85 % of their V̇ O2max. At each intensity, sub-

jects ran once euhdyrated and once dehydrated (by 5.5 and 5.7 % relative
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4.4. DISCUSSION

body mass loss, respectively). These authors found that V̇ O2 (expressed

relative to body mass) was not significantly different and concluded that a

reduction in body mass had no effect on running economy and therefore no

performance impact. However, Armstrong et al. (2006) may have wrongly

interpreted their findings. Reducing body mass will in turn reduce the en-

ergy cost per unit distance, so the finding that running economy expressed in

mL·kg−1·min−1 is not significantly improved when hypohydrated is not sur-

prising as the reduction in body mass will be cancelled out by the reduction

in energy cost per unit distance. What is more pertinent is the absolute O2

cost at the same relative speed. At 85 % V̇ O2max the fractional utilisation

of V̇ O2max was 3.2 % lower when hypohydrated compared to euhydration

(i.e., 86.6 vs. 89.8 % V̇ O2max, respectively). This difference was not found

to be statistically significant but in terms of a performance effect for an elite

runner completing the last part of a marathon race, this may well have a

performance impact (Hopkins et al., 1999).

Despite the scarcity of data to support an ergogenic effect of drinking ad

libitum at present, drinking ad libitum throughout a marathon appears to

confer no major disadvantage over drinking to replace all fluid losses or at

least up to the maximal amount tolerated (McConell et al., 1997; Daries et

al., 2000; Cheuvront & Haymes, 2001a; Kay & Marino, 2003; Saunders et

al., 2005). For example Daries et al. (2000) ran 8 endurance runners twice

for 2 hr with subjects ingesting a carbohydrate electrolyte drink either ad

libitum or in set volumes that approximated full replacement of sweat loss.

It was found that the higher rates of fluid ingestion did not alter plasma

volume and osmolality and did not improve 2 hr running performance. An

important consequence of drinking ad libitum however is that it typically

results in modest dehydration. A review (Cheuvront & Haymes, 2001b)

of the endurance running literature reported no effect of dehydration on

core temperature for losses of body mass up to 3.1 % (mean: < 2.5 %),

whereas a positive relationship was found between the level of dehydration

and rise in core temperature when losses were greater than 3 % body mass.

Consequently, the present study uses a mathematical model to estimate fluid

intake rates for elite marathon runners with varying body mass and running
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4.4. DISCUSSION

speeds in typical ambient conditions that are required to keep body mass loss

< 3 % and prevent body mass gain (Table 4.1). It was found that across all

conditions (i.e., weather conditions, body mass and running pace) no fluid

intake resulted in body mass loss > 3% which suggests marathon running

performance may be impaired in those who drink nothing at all. Considering

prevailing fluid intake recommendations of 0.4-0.8 L·hr−1, this range of fluid

intake was found to be inadequate even when applying the ACSM (American

College of Sports Medicine, 2007) and IMMDA (Noakes & Martin, 2002)

important caveat of the lower value for slower, lighter individuals competing

in cooler environments, and the higher value for faster, larger individuals

competing in warmer environments. For example, although 0.4 L·hr−1 is

adequate for a small (45 kg) and slower (16.9 km·hr−1) individual competing

in a cold (7.3 ◦C) environment to maintain body mass loss < 3 % and prevent

body mass gain, a large (75 kg) and fast (20.4 km·hr−1) individual competing

in a warm (24.8 ◦C) environment consuming 0.8 L·hr−1 may have a body

mass loss of 3.1 %. The larger, faster individual running in warm ambient

conditions will require, albeit marginally, more fluid per hour (i.e., 0.9 L·hr−1)

to prevent body mass loss > 3 %. Therefore, as can be seen in Table 4.1, the

range of fluid intake rates predicted to limit body mass loss to < 3 % and

prevent body mass gains across all conditions is wide. For example at 7.3
◦C, running at (hr:min:sec) 2:04:00 marathon pace, a 75 kg runner drinking

1.6 L·hr−1 is estimated to result in body mass loss of 0 %, whereas a 45

kg runner drinking at the same fluid intake rate is estimated to gain 3.9 %

of body mass which is almost certainly undesirable (Almond et al., 2005).

Therefore, in contrast to the theoretical study by Montain et al. (2006)

and the ACSM (American College of Sports Medicine, 2007) and IMMDA

(Noakes & Martin, 2002) recommendations that suggest drinking ad libitum

0.4-0.8 L·hr−1 during exercise for the general population (Noakes & Martin,

2002), the present study is unable to propose a practical fluid range for

elite runners given the wide range demonstrated (Table 4.1); the drinking

behaviours of the winners of the 2006 and 2007 London Marathons reported

in the present study (Figure 4.1) corroborate this contention as the estimated

fluid intake rate is dissimilar to that which is recommended (0.9-1.5 vs. 0.4-
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4.4. DISCUSSION

0.8 L·hr−1, respectively). Nor is it practical to introduce a caveat similar to

that proposed by the ACSM (American College of Sports Medicine, 2007)

and IMMDA (Noakes & Martin, 2002) as this would require a large number

of iterations to satisfy all the possible combinations and situations. Given

this, it is only sensible to suggest drinking fluid ad libitum in order to prevent

body mass loss < 3 % for elite marathon runners. Of course a pre-planned

strategy to limit body mass to < 3 % is desirable but as can be seen from

Table 4.1, sweat rate is dependant on ambient conditions and race pace

which cannot always be predetermined. For example, ambient conditions at

the New York City Marathon has been reported to change by as much as 17
◦C from start to finish in the same race (Cheuvront & Haymes, 2001b) and

clearly marathon racing at the elite level can vary in pace throughout.

Conclusions

This study aimed to assess the efficacy of prevailing fluid intake recommen-

dations, which propose drinking ad libitum 0.4-0.8 L·hr−1 during exercise,

for elite marathon running. The estimated fluid intake rates (i.e., L·hr−1)

of the winning male and female runners during the 2006 and 2007 London

Marathons were varied and out with the prevailing fluid intake recommen-

dations. The mathematical model applied in the present study supports this

pattern of fluid intake as it predicts drinking ad libitum 0.4-0.8 L·hr−1 is

insufficient to maintain body mass < 3 % and prevent body mass gain. The

present analysis suggests that the best strategy for competitive marathon

running in temperate conditions is to drink ad libitum as long as body mass

loss is kept within acceptable limits, possibly < 3 %.
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5
Accelerometry and heart rate to

measure V̇ O2

5.1 Introduction

Chapter 2 used acclerometry and PAR to assess physical activity patterns

in elite Kenyan endurance runners. Unfortunately the precise quantification

of physical activity and or energy expenditure using PAR and accelerometry

can be erroneous. PAR is an indirect method whereas a major limitation

of accelerometry is the failure to quantify net external work such as uphill

walking, cycling, swimming, or load bearing activities (Strath et al., 2005).

A further commonly used tool for measuring physical activity is heart rate

monitoring (Strath et al., 2005); however, the precise quantification of phys-

ical activity and energy expenditure at the population level using heart rate

is also difficult and prone to errors (Livingstone et al., 1990; Luke et al.,

1997; Strath et al., 2005). For example, heart rate can be affected by factors

other than physical activity (e.g., age, gender, training status, emotional

state etc.) especially at low exercise intensities (Livingstone et al., 1990;

Luke et al., 1997). However, combining methodologies of accelerometry and

heart rate may to a large extent overcome some of these limitations and in

doing so improve the assessment accuracy of physical activity and energy

expenditure (Strath et al., 2000; Treuth & Welk, 2002; Brage et al., 2004;

Plasqui & Westerterp, 2005; Strath et al., 2005).
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5.1. INTRODUCTION

A number of studies have reported improved accuracy to predict physical

activity and energy expenditure when combining accelerometry and heart

rate compared to their respective individual methods (Avons et al., 1988;

Haskell et al., 1993; Moon & Butte, 1996; Luke et al., 1997; Eston et al.,

1998). For example, Heskell et al. (1993) reported an R2 value improved

from 0.69 to 0.82 when arm motion, as assessed by accelerometry, was com-

bined with heart rate monitoring during arm ergometer exercise. Subsequent

studies have therefore explored various calibration methods utilising the com-

bined methodologies (Treuth et al., 1998; Rennie et al., 2000; Strath et al.,

2001; Strath et al., 2002; Brage et al., 2003; Brage et al., 2004). Combin-

ing methodologies thus seems promising, but it remains to be determined

whether laboratory defined relationships between heart rate, accelerometer

counts and V̇ O2 will also apply in free-living situations (Strath et al., 2005).

Indeed, studies have reported that despite increased energy demands as a re-

sult of increasingly faster running speeds, output from some motion sensors

plateau (Haymes & Byrnes, 1993; Nichols et al., 2000; Brage et al., 2003).

For instance, Brage et al. (2003) investigated whether a commonly used

accelerometer (Nichols et al., 2000; Strath et al., 2001; Strath et al., 2002;

Brage et al., 2003; Brage et al., 2004; Chapter 2), the Computer Science

Applications (CSA) Model 7164 (now also known as the MTI accelerometer;

Manufacturing Technology Inc., Fort Walton beach, FL, USA), could predict

V̇ O2 during walking (3-6 km·hr−1) and running (8-20 km·hr−1) on a mo-

torised treadmill and in the field. It was found that CSA output rose linearly

(R2 = 0.92, p < 0.001) with increasing speed until 9 km·hr−1 but levelled-off

at ∼10 000 counts·min−1 during running (8-20 km·hr−1). This phenomenon

will render it impossible for regression models to accurately predict during

vigorous exercise, and hence may not exploit the full benefits of combining

these methodologies. Brage et al. (2003) hypothesized that this limitation

may be due to biomechanical factors such as a reduced vertical component

with increasing speed. However, device dynamics to a certain degree may

also be a limiting factor. The Nyquist-Shannon sampling theorem (Nyquist,

1928; Shannon, 1949), also known as the Whittaker-Shannon theorem (Jerri,

1977), states that the sampling frequency (of the device) must be greater
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5.1. INTRODUCTION

than twice the frequency of the input signal to allow reconstruction of the

original signal from the sampled version. Once data have been sampled using

a standard accelerometer, the output is filtered so as to eliminate external

artefacts such as electrical noise and vibrations; this is generally termed band

pass filtering. Hence, the frequency range of band pass filtering must include

the maximum frequency elicited during running, and the sampling frequency

must be twice this frequency. In considering the requirements for mechanical

properties of accelerometers for measuring activity during running, it is note-

worthy that vertical frequencies can be as high as, but are generally, below

10 Hz at the centre of mass (Kram et al., 1998). A further consideration for

the mechanical properties of accelerometers is the amplitude of accelerations

that can be sampled. For example, Bhattacharya et al. (1980) reported ver-

tical peak accelerations ranging from 0.9-5.0 g measured at the lower back

during running (8.1-11.3 km·hr−1). Considering the CSA accelerometer has

a sampling frequency of 10 Hz, band pass filtering of 0.21-2.28 Hz, and can

measure ± 2.13 g the device may not be adequate for fast running. Bouten

et al. (1997) have suggested accelerometers must be able to measure up to

± 6 g at the waist and between 0 and 20 Hz. However, to date no study has

investigated the outputs from a number of different accelerometers with var-

ious sampling frequencies, band pass filtering ranges and peak acceleration

amplitudes during fast running.

The main aim of the present investigation therefore, was to assess whether

biomechanical and/or device limitations cause the observed levelling off of

accelerometer counts during running. This was achieved by investigating the

outputs from a number of accelerometers, uni- and tri-axial, with various

sampling frequencies, band pass filtering ranges and peak acceleration am-

plitudes. It was hypothesised that accelerometers with device dynamics that

more closely satisfied the sampling frequency, band pass filtering, and peak

acceleration amplitude required for fast running, would yield the greatest

relationship between running speed and accelerometry output. A secondary

aim of this investigation was to assess the feasibility of generating prediction

equations from the combined use of accelerometry and heart rate that could

be employed during fast running up to world record marathon running pace.
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5.2. METHODS

Table 5.1: Physical characteristics of the subjects (n = 16) who participated
in the present study. Mean ± SD is shown.

Mean SD Range
Age (y) 23 3 19-31
Height (cm) 182.9 5.7 170.5-192.0
BM (kg) 76.3 8.0 68.5-100.0
BMI (kg·m−2) 23 2 20-28
V(TH) (mL·kg−1·min−1) 38.1 4.0 30.1-43.4

V̇ O2peak (mL·kg−1·min−1) 60.3 4.2 55.0-67.8

5.2 Methods

5.2.1 Subjects

Sixteen endurance-trained males (Table 5.1) gave their written informed con-

sent to take part in the present study that was approved by the local Ethics

Committee (Appendix 2) and was performed according to the code of ethics

of the World Medical Association (Declaration of Helsinki).

5.2.2 Experimental design

All subjects completed two incremental exercise tests on a motorised tread-

mill (Woodway PPS55 Med, Weil am Rhein, Germany) at standard room

temperature (20-21 ◦C) with at least one week separating each test. The

first test was a continuous incremental test to volitional exhaustion in or-

der to determine the ventilatory threshold (V(TH)) and V̇ O2peak. The sec-

ond assessment involved a discontinuous incremental exercise test to voli-

tional exhaustion to assess the relationships between accelerometry counts

and walking and running speeds, accelerometry counts and heart rate, and

accelerometry counts and V̇ O2.
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5.2.3 Experimental procedures

Subjects reported to the laboratory on the day of testing following a 3 h fast

and having refrained from alcohol, caffeine and strenuous exercise the day

before. Upon arrival at the laboratory, body mass (Avery Berkel 33/448,

W&T Ltd, UK) and height (Leicester height measure, Invicta Plastics Ltd,

UK) were measured prior to each test.

Heart Rate and Gas Exchange Measurements

Heart rate and gas exchange measurements were obtained in the same manner

for both tests. A heart rate transmitter belt (Suunto t6, Suunto Oy, Vantaa,

Finland) was attached to the chest to record heart rate continuously. Sub-

jects were equipped with a head-set, which supported the mouthpiece, and

a nose clip. Gas exchange variables were determined breath-by-breath using

algorithms developed by Beaver et al. (1986). Respired volumes were mea-

sured with a bi-directional turbine transducer (VMM; Alpha Technologies,

Laguna Niguel, CA, U.S.A.) calibrated with a 3 L syringe using a range of

different flow profiles (Hans Rudolph, Kansas City, MO, U.S.A.). Respired

gas concentrations were measured every 20 ms by a quadruple mass spec-

trometer (QP9000; Morgan Medical, Gillingham, Kent, U.K.) which was

calibrated against precision-analysed gas mixtures. Barometric pressure was

measured using a standard mercury barometer.

Accelerometry

The four accelerometer devices used for the present study were: 1) a uni-axial

Computer Science Applications (CSA) 7164 model (now also known as the

MTI accelerometer; Manufacturing Technology Inc., Fort Walton beach, FL,

USA) sensitive to body accelerations in the vertical direction; 2) a uni-axial

ActiGraph GT1M model (Manufacturing Technology, Inc., Florida, USA)

sensitive to body accelerations in the vertical direction; 3) a tri-axial 3dNXTM

model (BioTel Ltd., Bristol, UK) sensitive to body accelerations in the ver-

tical, anterior-posterior and medial-lateral directions; and 4) a uni-axial Ac-
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Table 5.2: Technical specifications of the accelerometers used in the present
study.

Sampling Frequency Band Pass Filtering Amplitude
Accelerometer (Hz) (Hz) (± g)

CSA 10.00 0.21-2.28 2.13
ActiGraph GT1M 30.00 0.25-2.50 2.00

3dNXTM 100.00 0.20-10.00 10.00
ActiHeart 32.00 1.00-7.00 2.50

tiHeart model (Cambridge Neurotechnology Ltd., Papworth, UK) sensitive

to body accelerations in the vertical direction. The CSA, ActiGraph GT1M,

and 3dNXTM devices were secured to the subject’s waist by means of an elas-

tic belt. The CSA and ActiGraph GT1M devices were placed on the right

hip and the 3dNXTM device was placed on the left hip. Finally, the Acti-

Heart device was placed on the subject’s upper left chest. Placement of the

ActiHeart device required light preparation of the skin in order to apply two

standard ECG electrodes (Blue Sensor, Medicotest, Ølstykke, Denmark) to

the chest, onto which the unit was clipped. The medial electrode was placed

at the level of the third intercostals space on the sternum and the lateral

electrode placed on the same horizontal level and as lateral as possible on

the major pectoral muscle. The technical specifications of each accelerometer

are listed in Table 5.2.

Continuous incremental exercise test to volitional exhaustion

During this test, the subjects were asked to complete a 5 min warm-up at

8 km·hr−1 that was immediately followed by the incremental test. Initially,

the speed was continually increased by 1 km·hr−1 every min until the V(TH)

had been passed. The V(TH) was determined as the V̇ O2 at which: a) the

break point in the relationship between V̇ O2 and V̇ CO2 occurred (“V-slope

technique”; (Beaver et al., 1986)) and b) the ventilatory equivalent for O2

(V̇ E/V̇ O2) started to increase systematically without a concomitant increase

in the ventilatory equivalent for CO2 (V̇ E/V̇ CO2) (Whipp et al., 1986). The

treadmill gradient was subsequently elevated at a rate of 1 % every min (while
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speed was maintained at the supra V(TH) pace) in order to ensure a work-

rate which would elicit exhaustion (Kranenburg & Smith, 1996). V̇ O2peak

was defined as the highest V̇ O2 value achieved during the last 30 sec of the

test. Following this point, the treadmill speed was reduced to 4 km·hr−1 and

the gradient was returned to 0 % to allow the subject to actively recover for

at least 5 min.

Incremental exercise test to volitional exhaustion

The second test was an incremental exercise test to volitional exhaustion that

involved a continuous walking phase (3, 5 and 7 km·hr−1) and a discontinu-

ous running phase (8, 10, 12, 14, 16, 18, and 20 km·hr−1 or until volitional

exhaustion). The treadmill gradient remained at 0 % and the velocity was

increased at a constant rate for each 3 min bout (see Figure 5.1 for a full

explanation of the protocol). The running phase was discontinuous to allow

adequate rest (4 km·hr−1 for 3-5 min) between bouts so that subjects could

complete the high velocity running bouts. V̇ O2 and heart rate for each 3

min exercise bout were determined as the mean of the last 30 sec to ensure

steady state values were achieved. All movement data from the accelerome-

ters are expressed in counts·min−1 and are the mean of 3 min at each speed,

disregarding the periods corresponding to changes in speed (i.e., ∼1 min).

Once volitional exhaustion was reached, the treadmill speed was reduced to

4 km·hr−1 to allow the subject to actively recover for at least 5 min.

5.2.4 Data analysis

Data are expressed as the mean ± SD or median (range) as appropriate

following a test for the normality of distribution. The Pearson product mo-

ment correlation coefficient (r) was used to assess the relationship between

accelerometer counts from each device and speed, speed and V̇ O2, speed and

heart rate, accelerometer counts and V̇ O2, and accelerometer counts and

heart rate following statistical power calculations (80 % power). Prediction

of V̇ O2 from accelerometer counts and heart rate was completed by linear

regression. Similarly, prediction of V̇ O2 from a combination of accelerometer
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Figure 5.1: Exercise protocol consisting of a continuous walking phase (3
km·hr−1to 7 km·hr−1) with 3 min bouts, and a discontinuous running phase
(8 km·hr−1 to 20 km·hr−1 or until voluntary exhaustion) with 3 min bouts
(3-5 min rest between bouts).

counts and heart rate was completed by multiple linear regression (Brage et

al., 2003). Multiple linear regression was also completed with the subject’s in-

dividual data in order to generate individually calibrated equations to predict

V̇ O2. Normality of regression residuals was explored by agreement of their

frequency distributions with the superimposed normality curve. Statistical

significance was set at p < 0.05. All statistical analysis was completed using

the software package SPSS, version 11.0 (SPSS, Inc., Chicago, IL, USA).

5.3 Results

Relationships between accelerometer counts, speed, heart rate, and

V̇ O2

The relationships between accelerometer counts and speed are reported up

to and including 20 km·hr−1, while the relationships between accelerometer

counts, V̇ O2 and heart rate are reported up to and including 18 km·hr−1
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since most subjects did not complete the full three minutes at 20 km·hr−1.

Accelerometry outputs from the ActiGraph GT1M, 3dNXTM, ActiHeart,

and CSA increased linearly with walking speed (r = 0.954, p < 0.001; r =

0.968, p < 0.001; and r = 0.960, p < 0.001; r = 0.956, p < 0.001, respec-

tively). Tri-axial 3dNXTM output during running rose in a linear manner

with speed up to and including 20 km·hr−1 (r = 0.892, p < 0.001). How-

ever, ActiGraph GT1M and ActiHeart output plateaued at a running speed

corresponding to ∼14-16 km·hr−1. CSA output also levelled off, but at a

running speed corresponding to ∼10-12 km·hr−1. These relationships are

illustrated in Figure 5.2. The individual relationships between speed and

3dNXTM output for body accelerations in the vertical, anterior-posterior and

medial-lateral directions are presented in Figure 5.3. V̇ O2 (mL·kg−1·min−1)

and heart rate also rose linearly with speed during walking (r = 0.906, p <

0.001; r = 0.644, p < 0.001, respectively) and running (i.e., up to and includ-

ing 18 km·hr−1) (r = 0.906, p < 0.001; r = 0.644, p < 0.001, respectively).

ActiGraph GT1M, 3dNXTM, ActiHeart, and CSA accelerometer counts

rose linearly with V̇ O2 (mL·kg−1·min−1) during walking (r = 0.906, p <

0.001; r = 0.913, p < 0.001; r = 0.901, p < 0.001; and r = 0.704, p < 0.001,

respectively). During running 3dNXTM accelerometer output rose linearly

with V̇ O2 (mL·kg−1·min−1) up to and including 18 km·hr−1(r = 0.873, p <

0.001). Conversely, the relationships between ActiGraph GT1M, ActiHeart,

and CSA outputs with V̇ O2 (mL·kg−1·min−1) during running increased in a

non-linear manner. These relationships are illustrated in Figure 5.4. Heart

rate rose linearly with V̇ O2 (mL·kg−1·min−1) during walking (r = 0.648, p

< 0.001) and running (r = 0.663, p < 0.001).

ActiGraph GT1M, 3dNXTM, ActiHeart, and CSA accelerometer counts

rose linearly with heart rate during walking (r = 0.490, p < 0.001; r =

0.589, p < 0.001; r = 0.568, p < 0.001; and r = 0.541, p < 0.001, respec-

tively). 3dNXTM accelerometer output rose linearly with heart rate (r =

0.722, p < 0.001) during running. In contrast, the relationships between

ActiGraph GT1M, ActiHeart, and CSA outputs with heart rate during run-

ning increased in a non-linear manner. These relationships are illustrated in

Figure 5.4.
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5.3. RESULTS

Figure 5.2: ActiGraph GT1M (graph A; n = 11, unless otherwise stated),
3dNXTM (graph B; n = 16 unless otherwise stated), ActiHeart (graph C; n
= 12, unless otherwise stated), and CSA (graph D; n = 16, unless otherwise
stated) outputs plotted against treadmill speed. Mean ± SD is shown.
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5.4. DISCUSSION

V̇ O2 prediction models

The linear regression models for heart rate and accelerometer outputs are

presented in Table 5.3. The relationships between ActiGraph GT1M, Ac-

tiHeart, and CSA accelerometer outputs and V̇ O2 (mL·kg−1·min−1) were

non-linear during running. As a result only walking models are presented for

these devices. Regression residuals were normally distributed for all models

presented.

5.4 Discussion

The present investigation was the first to investigate the outputs from a num-

ber of accelerometers with various sampling frequencies, band pass filtering

ranges and peak acceleration amplitudes during fast running. It was found

that accelerometers with device characteristics that more closely satisfied the

sampling frequency, band pass filtering, and peak acceleration amplitude re-

quired to track acceleration during fast running, yielded a better relationship

between running speed and accelerometry output. Furthermore, uni-axial ac-

celerometer output plateaus at fast running speeds due to the biomechanics

of running (i.e., a plateau in vertical acceleration at high running speeds) in

contrast to tri-axial 3dNXTM accelerometer output that has a linear relation-

ship with speed up to and including world record marathon pace.

Relationships between accelerometer counts, speed, heart rate, and

V̇ O2

All devices used in the present investigation (Table 5.2) had an output that

rose linearly over the walking speed range (i.e., 3-7 km·hr−1) (Figure 5.2).

However, three out of the four devices investigated had outputs that had

a tendency to plateau at fast running speeds (Figure 5.2). Our results are

consistent with previous studies that used the CSA activity monitor dur-

ing walking and running (Nichols et al., 2000; Brage et al., 2003). That

is, CSA output was linear during walking but not during running when ac-

celerometer output levelled off at ∼10 000 counts·min−1 at a speed corre-

94



5.4. DISCUSSION

T
ab

le
5.

3:
V̇

O
2

p
re

d
ic

ti
on

m
o
d
el

s
w

it
h

ac
ce

le
ro

m
et

er
ou

tp
u
ts

an
d

h
ea

rt
ra

te
as

p
re

d
ic

to
rs

d
u
ri

n
g

w
al

k
in

g
an

d
ru

n
n
in

g.
K

ey
:

M
ea

n
of

p
re

d
ic

ti
on

eq
u
at

io
n
s

ca
li
b
ra

te
d

w
it

h
in

d
iv

id
u
al

su
b

je
ct

d
at

a
(M

I)
;

A
cc

el
er

om
et

ry
ou

tp
u
t

(C
P

M
(c

ou
n
ts
·m

in
−

1
))

.

V̇
O

2
P

re
d
ic

ti
on

M
o
d
el

s
R

2
S
E

E
W

al
k
in

g
(3

-7
k
m
·h

r−
1
)

H
R

V̇
O

2
=

-5
.6

14
+

0.
24

4
×

H
R

0.
42

4.
02

C
S
A

V̇
O

2
=

10
.6

24
+

0.
00

1.
88

1
×

C
P

M
0.

48
3.

86

C
S
A

+
H

R
V̇

O
2

=
1.

12
0

+
0.

12
1
×

H
R

+
0.

00
14

17
×

C
P

M
0.

54
3.

62
C

S
A

+
H

R
M

I
-

0.
99

0.
18

A
ct

iG
ra

p
h

G
T

1M
V̇

O
2

=
7.

84
7

+
0.

00
02

64
6
×

C
P

M
0.

81
2.

17

A
ct

iG
ra

p
h

G
T

1M
+

H
R

V̇
O

2
=

1.
82

5
+

0.
07

83
9
×

H
R

+
0.

00
02

31
7
×

C
P

M
0.

85
1.

94
A

ct
iG

ra
p
h

G
T

1M
+

H
R

M
I

-
1.

00
0.

00

3d
N

X
T

M
V̇

O
2

=
5.

25
8

+
0.

02
31

5
×

C
P

M
0.

83
2.

20

3d
N

X
T

M
+

H
R

V̇
O

2
=

0.
16

1
+

0.
07

10
5
×

H
R

+
0.

02
02

7
×

C
P

M
0.

85
2.

06
3d

N
X

T
M

+
H

R
M

I
-

1.
00

0.
00

A
ct

iH
ea

rt
V̇

O
2

=
9.

20
7

+
0.

01
25

7
×

C
P

M
0.

81
2.

17

A
ct

iH
ea

rt
+

H
R

V̇
O

2
=

4.
02

8
+

0.
06

64
9
×

H
R

+
0.

01
11

8
×

C
P

M
0.

82
2.

07
A

ct
iH

ea
rt

+
H

R
M

I
-

1.
00

0.
00

R
u
n
n
in

g
(8

-1
8

k
k
m
·h

r−
1
)

H
R

V̇
O

2
=

-6
.3

87
+

0.
32

1
×

H
R

0.
59

6.
35

3d
N

X
T

M
V̇

O
2

=
-1

.0
14

+
0.

02
57

3
×

C
P

M
0.

76
4.

88

3d
N

X
T

M
+

H
R

V̇
O

2
=

-9
.3

71
+

0.
12

3
×

H
R

+
0.

01
94

2
×

C
P

M
0.

80
4.

45
3d

N
X

T
M

+
H

R
M

I
-

0.
99

1.
28

95



5.4. DISCUSSION

sponding to 10-12 km·hr−1. Brage et al. (2003) attribute this observation

to biomechanical limitations. In particular, below 4 km·hr−1, vertical power

predominates during walking, however, at faster running speeds, vertical ac-

celeration becomes constant while horizontal power increases (Cavagna et

al., 1976). Those authors argue that without a concomitant increase in ver-

tical acceleration during increasingly faster running speeds, there will not

be an increase in CSA output since it measures only in the vertical plane;

hence the plateau. Our data are consistent with this hypothesis as outputs

from the other uni-axial accelerometers, ActiGraph GT1M and ActiHeart,

also plateaued, albeit at higher speeds corresponding to 14-16 km·hr−1. A

possible explanation may be superior device electronics (Table 5.2). That is,

these devices may to a greater degree fulfill the sampling rate and band pass

filtering range required for running (i.e., the frequency range of band pass

filtering must include the maximum frequency observed during running, and

the sampling frequency must be twice this frequency to allow reconstruction

of the original signal from the sampled version). The maximum frequency

observed during running is less than 10 Hz (Kram et al., 1998); therefore

accelerometers intended for measuring physical activity during running must

have a sampling frequency of at least 20 Hz and band pass filtering of at

least 10 Hz. The electronic properties of both the ActiGraph GT1M and

ActiHeart accelerometers fulfill these criteria better than the CSA (Table

5.2). A further consideration for the electronic properties of accelerome-

ters is the amplitude of accelerations that can be sampled. The ActiGraph

GT1M, ActiHeart, and CSA may be limited as Bhattacharya et al. (1980)

reported vertical peak accelerations ranging from 0.9-5.0 g measured at the

lower back during running. However, this is unlikely to be a major factor

in the levelling-off of accelerometer outputs during fast running since output

from the vertical axis of the 3dNXTM accelerometer also plateaued (Figure

5.3) despite an acceleration range of ± 10.0 g (Table 5.2). Regardless of a

plateau in the vertical axis, the compound tri-axial 3dNXTM accelerometer

output (i.e., the sum of vertical, anterior-posterior and medial-lateral accel-

erations) did have a linear relationship between output and running speed up

to world record marathon pace (i.e., up to and including 20 km·hr−1) (Figure
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5.2). A previous investigation (Cavagna et al., 1976) reported that despite

running from 7 to 32 km·hr−1, vertical power is almost constant whereas

horizontal power increases by a factor of > 10. Our data corroborates this

as Figure 5.3 suggests that a reduction in vertical acceleration at ∼14-16

km·hr−1 was compensated for by a concomitant increase in accelerations in

the anterior-posterior and medial-lateral directions. This likely explains why

3dNXTM accelerometer output has a linear relationship with speed up to and

including 20 km·hr−1. Thus, for metabolic assessment of walking and slow

running/jogging, when using only acceleration counts and not heart rate,

the ActiGraph GT1M and ActiHeart devices are adequate, and are therefore

probably sufficient for use in most epidemiological studies for which they are

intended. However, for the assessment of fast running (i.e., > 16 km·hr−1),

a tri-axial accelerometer, such as the 3dNXTM device, is necessary (Plasqui

et al., 2005).

V̇ O2 prediction models

The relationships between heart rate and accelerometer outputs, and V̇ O2

and accelerometer outputs followed a similar pattern observed in the rela-

tionships between accelerometer outputs and speed (Figure 5.3). All devices

had a linear relationship over the walking speed range, whereas only ac-

celerometer output from the 3dNXTM device had a linear relationship during

running. As expected heart rate also rose linearly with V̇ O2 during walking

and running. However, the relationship between heart rate and V̇ O2 yielded

the lowest R2 value during walking (Table 5.3), a finding consistent with

previous investigations that reported a limitation of heart rate as a predic-

tor of V̇ O2, especially during low intensity exercise (Livingstone et al., 1990;

Luke et al., 1997). However, including heart rate as a co-predictor for V̇ O2

during both walking and running yielded greater R2 values and lower SEE

than single-measure models that use accelerometer outputs alone (Table 5.3).

The CSA accelerometer yielded the lowest predictive power when combined

with heart rate during walking, with little difference between the remaining

three devices. However, for an indirect estimation of V̇ O2 during running,

97



5.4. DISCUSSION

the 3dNXTM accelerometer, in combination with heart rate, was the most

accurate.

The V̇ O2 prediction models presented here are not intended for use at

the population level. Rather, this investigation was designed to 1) explore

the levelling-off phenomenon of accelerometer counts with increasing speed

during running and 2) examine the feasibility and accuracy of combining

heart rate and accelerometer counts to estimate V̇ O2 during walking and

running. Indeed, prediction models calibrated with subject’s individual data

further improve V̇ O2 estimation compared to population prediction models,

as evidenced by greater mean R2 values and lower SEE (Table 5.3). The

possible reasons for this may be variations in biomechanical characteristics

of locomotion and the different heart rate vs. speed relationships between

individuals. Differences in movement (e.g., vertical oscillations) between in-

dividuals would undoubtedly result in under/over estimation of metabolic

cost if measured by accelerometry. With this in mind, and the concept that

vertical (Kram & Taylor, 1990; Heise & Martin, 2001) and horizontal (Chang

& Kram, 1999) forces are major determinants of metabolic cost during run-

ning, a further application of accelerometry may be a discriminatory role for

differences between individuals in running economy or changes in running

economy within individuals. It follows that excessive changes in momen-

tum in the vertical, anterior-posterior and medial-lateral directions may be

wasteful in terms of metabolic energy consumption (Heise & Martin, 2001).

Indeed, Heise and Martin (2001) reported less economical runners (i.e., those

with a higher V̇ O2 for a given speed) demonstrated higher total and net ver-

tical impulses. This may be reflected in a larger accelerometer output for a

given speed in less economical runners. However, although promising, this is

yet to be determined.

Conclusions

In summary, both uni- and tri- axial accelerometer outputs have a linear rela-

tionship with speed during walking. However, during fast running, uni-axial

accelerometer output plateaus due to biomechanical and device limitations.
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In contrast, the tri-axial 3dNXTM accelerometer output has a linear rela-

tionship with speed up to and including world record marathon pace. The

combined methodologies of heart rate and accelerometry predict V̇ O2 bet-

ter than either predictor alone. Moreover, prediction models calibrated with

subject’s individual data further improve V̇ O2 estimation compared to pop-

ulation prediction models.
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6
General Discussion

6.1 Energy balance and diet composition

A number of studies have reported the energy balance status of Kenyan

runners (Mukeshi & Thairu, 1993; Christensen et al., 2002; Onywera et al.,

2004). Chapter 3 is the only investigation to have used the gold-standard dou-

bly labelled water method to measure energy expenditure. It is acknowledged

however that at present there is no gold-standard method for measuring en-

ergy intake; in the present series of studies food was prepared, cooked and

eaten in front of the research team at the training camp in order to reduce

errors in underrecoding. Indeed underreporting was 13 % and was almost en-

tirely accounted for by undereating (9 %) suggesting athletes had accurately

recorded all food and water consumed. It was found that the athletes studied

were, on average, in negative energy balance prior to Athens Olympic trials.

These results corroborate the findings of Onywera et al. (2004), Mukeshi and

Thairu (1993) and anecdotal observations in elite Kenyan endurance athletes.

For example, the Kenyan winner of the women’s 2004 London Marathon, for-

mer marathon world-record holder Margaret Okayo weighed only 39 kg at

the time of the race although her usual body mass is 43 kg. Similarly, the

winner of the 2005 Chicago marathon, Felix Limo also from Kenya, had a

starting weight of 59 kg but has a typical body mass of 64 kg. Concerns

have been raised however with regard to the health and future performance

implications of over-frequent body mass cycles in elite athletes before and
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after competition (Onywera et al., 2004). The ACSM and the American Di-

etetic Association and the Dieticians of Canada (American College of Sports

Medicine, 2000) state that periods of negative energy balance can promote

lethargy, increase risk of injury and illness, prolong recovery from strenuous

exercise, and reduce exercise performance. Onywera et al. (2004) suggested

that this mechanism might explain the high incidence of world class athletes

in Kenya who initially do well on the international racing scene but then

disappear from athletics prematurely, presumably through injury or “burn-

out”. This reasoning lacks solid experimental data and remains speculative.

At present there is a lack of well controlled investigations on the effect of

negative energy balance on long term health of elite runners; mainly because

of the difficulty involved in designing and conducting such studies.

Body mass reduction induced by a hypo-caloric diet in training athletes

does not seem to reduce performance, V̇ O2max, strength, or endurance as

long as dietary intake provides sufficient carbohydrate and protein to main-

tain glycogen stores and muscle mass, respectively (McMurray et al., 1985;

Fogelholm et al., 1989; Horswill et al., 1990). For example, McMurray et

al. (1985) reported that 7 days of 1000 kcal·d−1 dietary deficit induced by

exercise did not reduce exercise capacity in six endurance-trained males con-

suming a diet sufficient in carbohydrate and protein. Furthermore, it was

found that subjects were not as glycogen-depleted due to the negative energy

balance as may have been expected. These authors suggested this was due

to the subjects utilising twice as much fat during sub-maximal exercise com-

pared to the controls as evidenced by indirect calorimetry. Therefore, in the

short term, it may be that the benefits of being as light as possible before rac-

ing outweigh the potential negative consequences providing that athletes are

consuming a diet high in carbohydrate with sufficient protein as is typically

the case in Kenya (as demonstrated in chapters 2-3). This is in contrast to

what appears to be the case in athletes from industrialised countries where

carbohydrate intake can be at the lower end of the range recommended for

endurance athletes (e.g., 6.1 g·kg−1BM·d−1, Moses et al., 1991), especially

when a typically western diet of 55-58 % carbohydrate (American College of

Sports Medicine, 2000) is consumed. Costill and Miller (1980) reported that
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runners consuming a diet high in carbohydrate (70 %) training two hours per

day for three days compared to runners consuming a normal diet (40-60 %)

were better able to maintain muscle glycogen. In addition to the favourable

diet composition of the Kenyan elite runners demonstrated in chapters 2

and 3 the timing of their post-training meal was always within 60 min of

exercise, i.e., in line with current recommendations for maximising glycogen

re-synthesis rates after exercise (American College of Sports Medicine, 2000).

The ability of the Kenyan athletes apparently spontaneously: 1) to consume

the correct amount of carbohydrate; and 2) to do this at the right moment,

is striking since they are not exposed to nutritional guidelines and advice

compared to elite athletes in western countries. As a result, considering the

success of these athletes on the international racing circuit, it is conceiv-

able that their diet and lifestyle is conducive to elite performance and that

the reported loss in body mass prior to competition may be beneficial for

performance.

The concept of reducing body mass to improve endurance running per-

formance by way of reducing the energy cost of locomotion at a sub-maximal

velocity is not new (Buskirk & Bettham, 1960; Cureton et al., 1978; Cureton

& Sparling, 1980; Taylor et al., 1980; Myers & Steudel, 1985; Jones et al.,

1986; Williams & Cavanagh, 1987; Taylor, 1994; Noakes, 2000). Taylor et

al. (1980) reported that when a human or animal carries extra mass while

walking and running, the energy cost per unit distance increases in direct

proportion to the added load expressed as a percentage of body mass. For

example, when a 60 kg subject carries an extra 5 kg (i.e., about 8 % of

body mass), their metabolic rate, at a given speed of locomotion, increases

by about 8 %. Cureton et al. (1978) demonstrated that the addition of 5,

10 and 15 % respectively of body mass: 1) increased the energy requirement

of running at sub maximal speeds, without affecting absolute V̇ O2max; 2)

lowered the work rate at V̇ O2max; and 3) lowered the pace that could be

maintained for a given period of time. Any excess body fat carried by an

endurance runner can thus be expected to reduce performance because it

increases the energy required to work at any given level of physical activity

without contributing to the energy-producing capacity. Conversely, reducing
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body fat mass should enhance running performance by reducing the energy

required to run at the same sub-maximal speed. Interestingly, although an

example from road cycling rather than running, Coyle (2005b) reported that

the seven times Tour de France Grand Champion (1999-2005), Lance Arm-

strong, improved his power-to-body-mass ratio (W·kg−1) when cycling at a

given percentage of V̇ O2max (e.g., 83 %) by 18 % between 1992 and 1999

(i.e., 4.74 vs. 5.60 W·kg−1 at a V̇ O2 of 5.0 L·min−1). A major feature of

the Tour de France compared to other professional road cycling races is the

four to six high mountain stages which can comprise three or more long (>10

km) climbs (5-10 % mean gradient) that require competitors to work against

gravity (Lucia et al., 2003). As a result, a high power-to-body-mass ratio

at maximal or near to maximal intensities is an important determinant of

success for uphill cycling (Lucia et al., 2003). The reduction in body mass

by Lance Armstrong from 78.9 kg in 1992 to ∼72.0 kg during his victories

in the Tour has been suggested to account for around one-half (8-9 %) of his

improved power to body mass ratio with the remainder accounted for by im-

proved mechanical efficiency (Coyle, 2005b). Martin et al. (2005) highlight

the timing of testing may have been a limitation of this study and therefore

stress caution in interpretation of Coyle’s results (Coyle, 2005b). Accord-

ingly these authors suggested that a reduction in body mass and training

“may be equally, if not more, important to Armstrong’s performance than

the 9 % improvements in cycling efficiency”’. Indeed, in his book, Coyle

(2005a) quotes Lance Armstrong as saying “Losing weight is the single most

important thing you can do. You have to train. You have to be strong, of

course. But if you’re too heavy, it’s all over.” The book details some of his

training goals leading up to his 2004 Tour de France victory and corrobo-

rates this statement. Six-months prior to the race Armstrong weighed 79.5

kg and his goal was to be 5.5 kg lighter for racing; by the time of the race he

weighed 74.0 kg, increased his power-to-body-mass ratio to 6.6 W·kg−1 from

5.9 W·kg−1 and concurrently went on to win the Tour.

Both professional road cyclists and elite endurance runners may benefit

from a reduction in body mass prior to major competition, but due to the

differing nature of the respective sports (i.e., uphill cyclists must overcome
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gravity in a body-mass-supported sport) the effect on performance may be

dissimilar due to mass distribution within the body. For example, a limita-

tion in some of the energy cost of locomotion studies (e.g., see Cureton et al.,

1978) is that the extra mass was added only to the trunk and not distributed

between trunk and limbs, as would be expected when gaining weight. Indeed,

the handicap effect is larger on running when extra mass is added distally;

Myers and Steudel (1985) compared adding weight proximally to the centre

of mass (i.e., the waist) and distally on the limbs (i.e., foot/ankle) during

running and reported that the energy cost was increased by a factor of 1.5-

5.5 by the latter. Similarly, Jones et al. (1986) measured the energy cost of

wearing shoes of varying weight during running and walking and reported an

average increment in V̇ O2 cost of 1% per 100 g of weight added. In his 2003

review, Larsen (2003) has postulated the low BMI of elite Kenyan endurance

runners combined with the fact the majority of their body fat is distributed

proximally, with the mass of the lower limbs being kept to a minimum, es-

pecially in the calf and thigh area, may result in superior running economy.

Evidence favouring superior running economy in Kenyan endurance runners

compared to Caucasian athletes is presented by Saltin et al. (1995). In that

study, Kenyan runners exhibited better running economy compared to their

Scandinavian counterparts whilst running at sub-maximal running speeds

even though their absolute V̇ O2max was not different. Whether these an-

thropometric factors are indeed typical of Kenyans and responsible, in part

at least, for their outstanding running performances remains to be deter-

mined. Evidence from studies of non-elite runners however, also suggests

that running is not the exercise mode of choice for subjects with a high fat

mass. Westerterp et al. (1992) studied the effect of an increase in physical

activity on energy balance and body composition in subjects not participat-

ing in any sport before the start of the experiment and prepared to run a

half-marathon competition after 44 weeks. Of 370 respondents to an adver-

tisement in the local media, 16 women and 16 men, age 28-41 years and BMI

of 19.4-26.4 kg·m−2, were selected. Nine subjects withdrew from the study

within 20 weeks of the start of the training. Reasons for giving up were “not

enough time to join the training” (n = 3), “injuries” (n = 5) and “not able
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to keep up with the training” (n = 1). The BMI values of the subjects who

completed and who withdrew were 19.4-25.7 kg·m−2 and 23.4-26.4 kg·m−2,

respectively. All dropouts had a BMI above the group mean of 22.9 kg·m−2.

Although manifestly obese subjects were excluded by the selection criteria,

most subjects with a BMI over 24 could not cope with the training. The

body fat percentages of the drop-out women and men were higher than 24

and 35 %, respectively. These results of course support the intuitive belief

that extra fat mass may be undesirable for optimal athletic performance both

in the general population and in elite endurance athletes.

Further evidence for a possible ergogenic effect on endurance running as

a result of reducing body mass may be found by considering the evolution

of human dietary patterns and bioenergetics (for a review see Leonard &

Ulijaszek, 2002). Around 2.5 million years ago there was a dramatic change

in climate that reduced the amount of tropical forests and led to a dramatic

increase in open, drier grassland in central Africa (Foley, 1987). Undoubt-

edly this increased high quality food availability which led to grazing animals

becoming a more attractive choice for energy provision. The change from a

shaded environment, which required low levels of physical activity to obtain

food, to an open environment exposed to oppressive solar radiation, necessi-

tated hard physical exertion to run prey to thermoregulatory exhaustion or

compete with other scavengers, such as wild dogs and hyenas, for carcasses

containing marrow, brain and other tissues (Carrier, 1984; Bramble & Lieber-

man, 2004). Bramble and Lieberman (2004) have proposed that endurance

running over extended time periods is a distinct and unique characteristic

of humans. Such running prowess allowed our early human ancestors in the

Savannah environment to exploit protein rich resources and was a key step

in evolution of Homo. The genetic make up of contemporary humans has not

changed since the emergence of the anatomically modern human, Homo sapi-

ens sapiens, despite radical changes in living conditions and lifestyle during

over approximately 50 000 years since then (Vigilant et al., 1991; Wilson &

Cann, 1993). Consequently, men and women today have genes that evolved

in a hunting gathering era lasting several millions of years. Cordain et al.

(1998) suggest that today’s endurance runners may be the closest humans
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to our ancestors in terms of daily physical exertion. Although not a perfect

model, hunter-gatherer societies are the best available gauge for assessing

the physical activity levels of early Homo. Societies such as the Ache, !Kung,

Agta, Hazda, Hiwi, Efe, San, and Inuit may provide the best available snap-

shot of physical activity and eating patterns for which we are genetically

engineered (Cordain et al., 1998) and allow a good comparison with today’s

elite athletes. Jenike (2001) has suggested that seasonal variation in energy

intake may have been “a near-universal characteristic of hunter-gatherer so-

cieties”. As a result, Chakravarthy and Booth (2004) proposed that “cycling

of food stores, blood insulin, insulin sensitivity, and metabolic regulatory

proteins, driven by cycles of feast-famine and physical activity-rest, have

moulded the selection of ‘thrifty’ genes and genotype, some with functions

that are predominately for glycogen conservation and replenishment, as the

speculation is made that our ancestors were more likely to survive with these

adaptations than without them”. An example of the importance of mus-

cle glycogen to survival during evolution is the observation that complete

muscle glycogen replenishment can occur (in some circumstances at least)

within one to two hr after exhausting exercise with an adequate carbohy-

drate diet, whereas liver glycogen may only be replenished by about 50 %

after four hr (Terjung et al., 1974). Considering the importance of endurance

running in hunting and scavenging (Bramble & Lieberman, 2004), this in-

vites the intriguing possibility that Homo may have evolved to be able to

run when faced with a reduction in body mass as a result of food shortage

and possibly explains why humans as a result of training adapt to conserve

glycogen and use fat as an energy source during endurance exercise (Mole et

al., 1971). However, it is also clear that there must have been a limit to how

much body mass Homo could lose before this would affect their ability to

hunt and compete for food. Heinreich (2001) proposed that “when we need

food, having the speed and mobility to chase it down is obviously advanta-

geous”. This implies that smallness and lightness may have benefited Homo

in capturing prey. Recent investigations carried out on endurance runners

corroborate this statement (Marino et al., 2000; Marino et al., 2004). For

example, two studies by Marino et al. (2000, 2004) reported that heavier
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runners display a greater degree of heat retention than lighter individuals

and that this may be a major factor limiting the performance of physically

larger and heavier athletes in distance running events. Furthermore, it was

reported that heavier runners self-selected a slower running speed than lighter

runners when running in the heat and that this speed was inversely related

to body mass. This suggests that excess body mass would not be advanta-

geous for endurance running in the savannah environment, nor equally in an

Olympic marathon due to thermoregulatory limitations. Another example

in nature of a similar body mass “trade-off” can be seen in small birds in

which studies of flight mechanics (Blem, 1975; Hedenstrm, 1992) suggested

that extra body mass would decrease flight performance and hence increase

predation risk (Witter & Cuthil, 1993). However, these birds must build up

large fat stores in order to support migration. Hence body mass is a good

indicator of the balance between starvation and predation risk and presum-

ably this will greatly reflect the species vulnerability. Indeed, MacLeod et

al. (2005) suggest that the decline of the house sparrow in the UK by 60 %

between 1970 and 2000 (Gregary et al., 2002) may be due to mass-dependant

predation as the birds are unable to increase body mass in an attempt to

reduce their high starvation risk; house sparrows are the most frequent prey

for cats and sparrow hawk predation (MacLeod et al., 2005). Hence, the

quantity of “extra” body mass that is acceptable is intrinsically linked to

the extent of mobility required for either hunting or risk aversion in order to

survive in most animals. Elite endurance running performance today may

be regarded as the equivalent of hunting, competing, and/or scavenging for

food that has occupied most human existence on the planet (Astrand & Ro-

dahl, 1986). Therefore, it is not surprising that elite endurance runners, such

as Margaret Okayo, Felix Limo and other athletes studied (Onywera et al.,

2004; Chapters 2-3), reduce body mass prior to racing.

6.2 Hydration and electrolyte balance

Onywera et al. (2004) reported low daily fluid intake in elite Kenyan en-

durance runners that consisted of primarily water (1.1 ± 0.3 L·d−1) and
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milky tea (1.2 ± 0.3 L·d−1). This pattern of fluid intake is corroborated in

Chapter 3 as fluid intake also consisted of primarily water (0.9 ± 0.5 L·d−1)

and milky tea (0.9 ± 0.3 L·d−1). Furthermore, these elite athletes did not

consume liquids before or during training and only infrequently consumed

modest amounts of liquids after training. Such fluid intake is substantially

less than the previous recommendations of the ACSM (Convertino et al.,

1996), which were 0.4-0.6 L of fluid 2-3 hr before exercise, 0.6-1.2 L·hr−1

while exercising, aiming at total replacement of all fluid lost during exercise,

or at least up to the maximal amount tolerated; a pattern and volume of

fluid replacement similar to that recommended by the NAAT (Binkley et al.,

2002), and the US Army (Montain et al., 1999). These recommendations

evolved from investigations that established a relationship between extent of

dehydration and rise in core temperature (Wyndham & Strydom, 1969; Cos-

till et al., 1970; Gisolfi & Copping, 1974; Montain & Coyle, 1992). However,

the extrapolation of results from many of these early studies to widespread

recommendations for athletes exercising out-of-doors is inappropriate mainly

due to inadequate facing wind speed and/or high environmental temperatures

(Adams et al., 1992; Cheuvront et al., 2004; Saunders et al., 2005). Adams et

al. (1992) found that the rate of whole body cooling may be different when

exercising in the laboratory compared to outdoors. The authors reported

that subjects had higher whole body temperatures (rectal and oesophageal)

when exercising in wind-still conditions (0.75 km·hr−1) compared to a facing

wind velocity of 11.25 km·hr−1. Similarly, a previous study that compared

wind-still conditions (0.75 km·hr−1) to an air velocity of 15.5 km·hr−1 found

rectal and skin temperatures to be significantly higher in the wind-still con-

ditions (Shaffrath & Adams, 1984). More recently, Saunders et al. (2005),

compared the temperature of subjects cycling at 33.0 ± 0.4 ◦C in four dif-

ferent wind velocities: 0.2 km·hr−1 (wind-still conditions), 10 km·hr−1 (to

replicate many laboratory studies), and 100 % and 150 % of calculated road

speed facing wind velocities based on the equation of DiPrampero et al.,

(1979). At the same time, 58.8 ± 6.8 % of sweat losses were replaced with

oral liquids. The authors reported that in wind-still or low facing wind ve-

locities, excessive heat storage occurs while exercising at moderate and high
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intensities, due to a failure of the environment to absorb and dissipate heat

as evidenced by higher sweat rates during wind-still conditions. Thus the

interpretation of classic studies (Wyndham & Strydom, 1969; Costill et al.,

1970; Gisolfi & Copping, 1974; Montain and Coyle, 1992) used as evidence to

support previous specific fluid intake guidelines (e.g., Convertino et al, 1996)

is incorrect for athletes exercising outdoors. Indeed, these studies (Wynd-

ham & Strydom, 1969; Costill et al., 1970; Gisolfi & Copping, 1974; Montain

& Coyle, 1992) may have underestimated the body’s ability to adapt to mild

dehydration since they were performed on subjects exercising in unnaturally

low facing wind speeds and “High Risk” thermal loads. For example, at

least two of the studies (Gisolfi & Copping, 1974: 33 ◦C, 38 % RH; Mon-

tain and Coyle, 1992: 33 ◦C, 50 % RH) stand out as being performed in

weather conditions that would be in the “High Risk” zone for thermal injury

as suggested by the ACSM (American College of Sports Medicine, 1987).

Furthermore, the facing wind speed, the main route for heat loss via con-

vection, in three out of the four studies was well below that when actually

racing outdoors (DiPrampero et al., 1979). This may perhaps in part explain

the subsequently published excessive fluid intake guidelines (Saunders et al.,

2005).

The inadequacy of laboratory experiments to simulate out-of-doors exer-

cise is substantiated by empirical observations that elite athletes typically do

not adhere to prevailing fluid intake recommendations (for a review see refer-

ence Cheuvront & Haymes, 2001b). Indeed the drinking behaviours (i.e., ad

libitum) reported previously in elite Kenyan endurance runners (Onywera et

al., 2004) corroborate this view. Recently the ACSM has replaced their prior

Position Stand (Convertino et al., 1996) with an updated one on exercise

and fluid replacement (American College of Sports Medicine, 2007) that ad-

vocates drinking ad libitum (0.4-0.8 L·hr−1) during exercise (with the lower

value for slower, lighter individuals competing in cooler environments, and

the higher value for faster, larger individuals competing in warmer environ-

ments) in order to prevent excessive dehydration (i.e., < 2 % body mass loss).

These new recommendations (American College of Sports Medicine, 2007)

appear to be more in keeping with previous observations of elite Kenyan
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endurance runners. The purpose of Chapter 3 therefore was to investigate

whether the low daily fluid intakes reported by Onywera et al. (2004) and in

Chapter 2 are sufficient to maintain hydration balance day-to-day during a

period of important training in elite Kenyan endurance runners. Chapter 3

reported low daily fluid intake consisting mainly of water (0.7 ± 0.5 L·d−1;

18.4 %) and milky tea (1.2 ± 0.4 L·d−1; 31.6 %) with a small contribution

from the intake of other fluids such as soft drinks and milk (0.4 ± 0.2 L·d−1;

10.5 %). Hydration balance despite this relatively low fluid intake over the

5 day recording period was evidenced by similar total body water and body

mass values recorded each morning before training despite athletes incur-

ring body mass deficits due to training runs. Daily hydration balance was

further demonstrated by a similar pre training body mass in the morning

and pre training body mass in the afternoon. It was also found that there

was no significant difference in osmolality and specific gravity of the urine

supplied by the athletes in the morning when compared to the evening sam-

ple. During the 5 day recording period, mean osmolality and specific gravity

in the morning and evening were below values suggested to correctly clas-

sify dehydration in individuals (American College of Sports Medicine, 2007).

Maintenance of hydration status, despite athletes loosing body water dur-

ing training, was achieved by water gained from the diet and fluid ingested

throughout the day ad libitum. This is in keeping with the new ACSM fluid

intake recommendations that advocates drinking ad libitum (0.4-0.8 L·hr−1)

during exercise.

The efficacy of proposing a specific fluid intake range (i.e., 0.4-0.8 L·hr−1)

during exercise has been investigated in a study that modelled parameters

that influence sweating rate (Montain et al., 2006). Montain et al. (2006)

found that this rate (i.e., 0.4-0.8 L·hr−1) of fluid intake was sufficient to main-

tain body mass loss within 3 % and to prevent body mass gain in 50-90 kg

subjects running a marathon at 8.5-15 km·hr−1 in cool and warm ambient

conditions (i.e., 18 ◦C and 28 ◦C, respectively). These authors suggested that

factors that influence sweat rate such as body mass, running speed and ambi-

ent conditions be considered prior to adopting this specific fluid intake range,

and where necessary adapting the strategy to suit the individual (Montain et
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al., 2006). Therefore Chapter 4 uses a mathematical model, similar to that

used by Montain et al. (2006), to predict the effect of varying fluid intake

rates on hydration status when body mass, running speed and environmental

conditions are systematically varied so that they are more in keeping with

present day elite endurance runners. To supplement this analysis, a retro-

spective video analysis was used to determine the actual drinking behaviours

of the winning male and female elite runners in the 2006 and 2007 London

Marathons as there is almost no information on what the best marathoners

drink when racing (for a review of the marathon running literature see refer-

ence Cheuvront & Haymes, 2001b). The mathematical model demonstrated

that drinking ad libitum 0.4-0.8 L·hr−1 for elite marathon runners is inade-

quate to limit body mass loss < 3 % and prevent body mass gain in 45-75

kg subjects running in cold (7.3 ◦C) and warm (24.8 ◦C) ambient conditions

at (hr:min:sec) 2:04:00 and 2:30:00 marathon pace. This was corroborated

by the derived total drinking durations of the winning male and female elite

runners in the 2006 and 2007 London Marathons that were 56, 38, 43 and

31 sec that equate to fluid intake rates of approximately 1.5, 1.1, 1.1 and

0.9 L·hr−1, respectively. These fluid intake rates are greater than prevailing

fluid intake recommendations of ad libitum 0.4-0.8 L·hr−1. These findings and

analysis suggest that the best strategy for competitive marathon running in

temperate conditions is to drink ad libitum. An important consequence of

drinking ad libitum however is that it typically results in modest dehydration.

A review (Cheuvront & Haymes, 2001b) of the endurance running literature

reported no effect of dehydration on core temperature for losses of body mass

up to 3.1 % (mean: < 2.5 %), whereas a positive relationship was found be-

tween the level of dehydration and rise in core temperature when losses were

greater than 3 % body mass. Coyle (2004) suggests that a range of 1-2 %

may be tolerable in temperate conditions and that > 2 % may be tolerated

in colder environments. The above reasoning poses the interesting possibility

that there may exist a tolerable range for dehydration that will not impact

negatively on running performance, but which may even confer an advantage

by preventing the increases in body mass due to consumption of large vol-

umes of fluid (Armstrong et al., 1985; Sawka & Montain, 2000; Coyle, 2004).
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Indeed, the simple concept of reducing body mass while keeping power con-

stant, and thereby reducing the energy cost of running, is certainly valid.

In fact, Wyndham and Strydom (1969) reported no correlation with percent

dehydration and core temperature until a 3 % weight deficit had occurred.

Similarly, Ladell (1955) found a linear correlation between percent dehydra-

tion and an increase in core temperature only beyond 2.5 kg of body mass

loss. Figure 6.1 depicts a theoretical model to highlight the potential effects

of no fluid intake, ad libitum intake, and total fluid replacement on perfor-

mance. Here ad libitum fluid intake may present a balance between drinking

enough fluid to maintain an optimal zone of tolerable dehydration and re-

ducing the absolute energy cost of movement by reducing the athlete’s body

mass. Once beyond a tolerable range of dehydration or due to extreme thirst,

the gradient of the curve flattens; in this situation there may be a more pro-

gressive decline in performance. To test whether modest dehydration towards

the end of a race may confer any performance advantage, Armstrong et al.

(1985) induced dehydration via diuretic administration leading to a signifi-

cantly reduced plasma volume. However, diuretic-induced dehydration may

be an ineffective method for replicating exercise-induced dehydration, as it

typically produces an iso-osmotic hypovolaemia, resulting in a much greater

ratio of plasma to body water loss (Sawka & Montain, 2000). In addition,

the direct effect of the diuretic on the brain was not considered. A further

study by Armstrong et al. (2006) ran 10 endurance runners four times for 10

min, twice each at 70 and 85 % of their V̇ O2max. At each intensity, subjects

ran once euhdyrated and once dehydrated (by 5.5 and 5.7 % relative body

mass loss, respectively). They found that V̇ O2 (expressed relative to body

mass) was not significantly different and concluded that a reduction in body

mass had no effect on running economy and thus no performance gain. How-

ever, Armstrong et al. (2006) may have wrongly interpreted their findings.

Reducing body mass will in turn reduce the energy cost per unit distance,

so the finding that running economy expressed in mL·kg−1·min−1 is not sig-

nificantly improved when hypohydrated is not surprising as the reduction in

body mass will be cancelled out by the reduction in energy cost per unit dis-

tance. What is more pertinent is the absolute V̇ O2 cost at the same relative
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speed. At 85 % V̇ O2max the fractional utilisation of V̇ O2max was 3.2 % lower

when hypohydrated compared to euhydration (i.e., 86.6 vs. 89.8 % V̇ O2max,

respectively). This difference was not found to be statistically significant but

in terms of a performance effect for an elite runner completing the last part

of a marathon race, this may well have a performance impact (Hopkins et al.,

1999). Thus, further well controlled studies are required to test the validity,

the performance, and the health implications of runners completing the last

part of a race mildly dehydrated, but with a reduced energy cost of running.

A further recommendation in the new ACSM Position Stand (American

College of Sports Medicine, 2007) is to only aggressively consume electrolytes

after exercise if time does not permit consumption of normal meals and bev-

erages to replace exercise induced electrolyte losses. Chapter 3 therefore

assessed electrolyte balance status in elite Kenyan endurance runners during

an important training period as athletes regularly trained at least twice a

day. It was found that mean dietary K+ intake was significantly greater than

mean K+ loss in sweat and urine over a 24 hr recording period equivalent

to a mean difference of 1466 ± 846 mg·d−1 that was likely accounted for by

faecal losses. Na+ intake on the other hand was not significantly different

from Na+ loss. This suggests that elite Kenyan endurance runners consume

a diet sufficient in electrolytes and thus do not require additional supplemen-

tation corroborating the recommendation of the new ACSM Position Stand

(American College of Sports Medicine, 2007). This is perhaps not surprising

as the sweat [Na+] and [K+] in Chapter 3 are comparable to values reported

in heat acclimatised individuals (Dill et al., 1938; Sawka & Montain, 2000).

Heat acclimatised individuals loose less Na+ and K+ in sweat and therefore

require relatively less in their diet to replenish relatively small losses in body

stores as a result of sweating.

6.3 Lifestyle and training

Factors of elite Kenyan endurance runner’s lifestyle that are optimal for re-

covery are demonstrated in Chapters 2 and 3. For example Chapter 3 re-

ported that elite Kenyan endurance runners: 1) consumed sufficient fluid
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to maintain hydration balance day-to-day (Convertino et al., 1996); 2) con-

sumed sufficient electrolytes to maintain electrolyte balance day-to-day (Amer-

ican College of Sports Medicine, 2000); and 3) timing of their post-training

meal was always within 60 min of exercise which is considered optimal to re-

plenish post-exercise glycogen stores (American College of Sports Medicine,

2000). Another factor, that is sometimes overlooked, is rest. Rest is im-

portant as lack of recovery may result in the athlete being unable to train

at the required intensity at the next training session or indeed perform op-

timally during subsequent competition. Chapter 1 used accelerometry and

PAR (Ainsworth et al., 2000) to determine the physical activity patterns

of elite Kenyan endurance runners during an important training period (1

week before the Kenyan Olympic trials and 5 months before the Athens 2004

Olympics). To the present authors knowledge there are no comparable data

in elite western endurance runners, but it is fair to say that the time spent

in light activity as assessed by accelerometry and the time spent relaxing as

assessed by accelerometry is high. Taking these measures together it may

be suggested then that rest is an additional important facet of elite Kenyan

endurance runner’s typical training practices.

Unfortunately the precise quantification of physical activity or energy

expenditure using PAR and accelerometry can be erroneous. PAR is an in-

direct method hence why Chapter 2 used the gold standard doubly labeled

water method to measure energy expenditure. In the case of accelerometry,

studies have reported that despite increased energy demands as a result of

increasingly faster running speeds, output from some motion sensors plateau

(Haymes & Byrnes, 1993; Nichols et al., 2000; Brage et al., 2003). In particu-

lar, Brage et al. (2003) investigated whether the Computer Science Applica-

tions (CSA) Model 7164 which was used in Chapter 2 and is also a commonly

used accelerometer in general (Nichols et al., 2000; Strath et al., 2001; Strath

et al., 2002; Brage et al., 2003; Brage et al., 2004), could predict V̇ O2 during

walking (3-6 km·hr−1) and running (8-20 km·hr−1) on a motorised treadmill

and in the field. It was found that CSA output rose linearly (R2 = 0.92, p

< 0.001) with increasing speed until 9 km·hr−1 but levelled-off at ∼10 000

counts·min−1 during running (8-20 km·hr−1). This phenomenon will ren-

115



6.3. LIFESTYLE AND TRAINING

der it impossible to accurately predict V̇ O2 during vigorous exercise, such

as fast running, using accelerometry. Another commonly used method for

measuring physical activity is heart rate. However the precise quantification

of energy expenditure at the population level is also difficult and prone to

errors. For example heart rate can be affected by factors other than physical

activity (e.g., age, gender, training status, emotional state etc.) especially

at low intensities (Livingstone et al., 1990; Luke et al., 1997). Combining

methodologies may to a large extent overcome some of these limitations and

in doing so improve the assessment accuracy of physical activity and en-

ergy expenditure (Strath et al., 2000; Treuth & Welk, 2002; Brage et al.,

2004; Plasqui & Westerterp, 2005; Strath et al., 2005). Chapter 6 addresses

these issues by assessing whether biomechanical and/or device limitations

cause the observed levelling off of accelerometer counts during running. This

was achieved by investigating the outputs from a number of accelerome-

ters, uni- and tri-axial, with various sampling frequencies, band pass filtering

ranges and peak acceleration amplitudes. A secondary aim was to assess

the feasibility of generating prediction equations from the combined use of

accelerometry and heart rate that could be employed during fast running up

to world record marathon running pace. It was found that during running,

uni-axial accelerometer outputs plateau due to the biomechanics of running,

whereas, tri-axial accelerometer output has a linear relationship up to and

including 20 km·hr−1. It was also found the combined methodologies predict

better than either predictor alone; subject’s individually calibrated data fur-

ther improves estimation. These findings invite the intriguing possibility that

combining tri-axial accelerometry with heart rate may be a viable tool for

training monitoring and assessing physical activity patterns of elite runners

on a day-to-day basis.

Training distance achieved in Chapter 2 was greater than that recorded in

Chapter 3 (> 117 km vs. 82 km, respectively) although the later consisted of

only 5 days whereas Chapter 2 was 7 days. Noakes (2001) reported athletes

who were preparing for major competition prior to the cross-country season

in Kenya completed on average 80-100 km·wk−1. Training schedules typi-

cally incorporated up to 2 variable distance-training sessions per day (i.e.,
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a morning run and a non-compulsory afternoon run) and 2 interval-training

sessions per week (i.e., mid-morning run). Chapter 3 reports in detail what

these sessions consist of (i.e., distance, time and speed) but essentially the

morning run typically served as either a warm up (for interval training), a

recovery run that usually compromised periods of slow and fast running with

hopping and bouncing exercises or lastly a long run. The afternoon run was

optional and usually served as an easy/recovery session. The track session

are the athletes “quality sessions” and consist of high intensity running. For

example, a typical interval training sessions included 4 times 600 m at 1 min

30 sec pace and 6 times 400 m at 58 sec pace for the middle distance runners

or 6 times 600 m at 1 min 33 sec pace and 6 times 400 m at 59 sec pace

for the long distance runners. Similarly Noakes (2001) reported that elite

Kenyan endurance runners typically ran an easy run (30 min) each morn-

ing, with the final 800-1600 m being run at race pace, two interval training

sessions per week and two long runs (60 min). This resulted in ∼25 % of

the training volume run at race pace or greater; this value is comparable to

the weekly training load reported in Chapter 3 (i.e., 26 % of total weekly

training time spent > 80 % HRpeak). These findings corroborate previous

investigations that indicate low to moderate intensity training accounts for

the majority of training time in endurance athletes (e.g., Esteve-Lanao et

al., 2005). The findings in Chapters 2 and 3 provide a snapshot of train-

ing practices of elite Kenyan endurance runners during an important taper

phase prior to major competition. However, to fully recognize the contri-

bution the training process makes towards world class performance in elite

Kenyan endurance runners a longitudinal investigation of training practices

that consists of many training phases is required, perhaps the further devel-

opment of combining technologies such as heart rate and accelerometery will

aid this analysis due to their ease of use, wear ability and low cost.

6.4 Future directions

Chapter 6 demonstrated variations in biomechanical characteristics of loco-

motion and different heart rate vs. speed relationships between individuals.
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With this in mind, and the concept that vertical (Kram & Taylor, 1990;

Heise & Martin, 2001) and horizontal (Chang & Kram, 1999) forces are ma-

jor determinants of metabolic cost during running, a further application of

accelerometry may be a discriminatory role for differences between individu-

als in running economy or changes in running economy within individuals. It

follows that excessive changes in momentum in the vertical, anterior-posterior

and medial-lateral directions may be wasteful in terms of metabolic energy

consumption (Heise & Martin, 2001). Indeed, Heise and Martin (2001) re-

ported less economical runners (i.e., those with a higher for a given speed)

demonstrated higher total and net vertical impulses. This is a promising area

for research as less economical runners may reflect larger accelerometer out-

put for a given speed. Future studies should therefore focus on elucidating

the role individual movement patterns have on energy consumption.

Chapter 2 and 3 reported elite Kenyan endurance runners consume com-

paratively large volumes of milky tea (0.9 ± 0.3; 1.2 ± 0.4 L·d−1, respec-

tively). The tea consumed by the runners is isotonic (mean osmolality 281 ±
55 mOsmol·kg−1) and contains a considerable amount of sugar (8.28 g·100g−1

carbohydrate). This suggests that the milky tea consumed by the Kenyan

athletes may act as a replacement for a conventional sports drink (e.g.,

Gatorade Thirst Quencher: osmolality 280-340 mOsmol·kg−1, 5.83 g·100g−1

carbohydrate). A further advantage from drinking large volumes of tea is

highlighted in the study by Murase et al. (2005). Those authors reported

that supplementation with green tea extract improved time to exhaustion in

mice during swimming (8-24 %; this was dose dependant). It was hypothe-

sised this was due to increased lipid oxidation during exercise which spared

muscle glycogen. This is a similar mechanism proposed for the ergogenic

effect of caffeine (Graham & Spriet, 1991) and suggests tea may improve

endurance capacity. Furthermore, tea in general contains a large amount

of catechins, a group of very active flavonoids which possess considerable

antioxidant power and have been shown to impede the actions of free rad-

icals (Dufresne & Farnworth, 2001). These radicals have the potential to

cause oxidative damage to a wide range of molecular structures and can be

produced during exercise such as endurance running. Therefore future inves-
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tigation could assess the effects of large volumes of Kenyan tea on oxidative

stress following exhaustive running whilst also assess its effectiveness as an

ergogenic aid for endurance running capacity. Lastly further work should

focus on assessing the viability of using Kenyan milky tea as an effective

conventional sports drink replacement.

In Chapters 2 and 3 it was reported that on days when athletes completed

high intensity training this was immediately preceded by an easy morning

run lasting around 30 min and a warm up lasting approximately 15-20 min.

Before the morning run after waking and between the morning run and the

track session athletes did not consume any fluid or food. This may suggest

that athletes entered their track session (i.e., their “quality session”) with, at

best, modestly depleted glycogen stores (Gollnick et al., 1974). Considering

there is no doubt that endurance performance is enhanced if muscle glycogen

is fully replenished (Jeukendrup, 2004) it is not surprising that completing

training in a glycogen replenished state will allow the athlete to train harder

and longer and thus may even achieve a superior training response. Indeed, it

is well established that training must stress the athlete in order to stimulate

adaptation. Adaptation essentially occurs as a consequence of accumulation

of specific proteins that is in turn the result of expression of specific genes.

Interestingly it has been shown that muscle glycogen is a determining factor

for the transcription of some genes. But contrary to the above hypothesis

that proposes carbohydrate intake may result in longer and harder training

sessions and thus a greater training stimulus, it has been demonstrated that

low glycogen actually results in greater transcriptional activation of a num-

ber of genes that are important for exercise adaptation (Keller et al., 2001;

Febbraio et al., 2002; Pilegaard et al., 2002). To test whether training with

low muscle glycogen concentrations have a performance implication, Hansen

et al. (2005) performed a study in which 7 untrained subjects completed

10 weeks of knee extensor training where one leg trained in a low glyco-

gen state and the other in a high glycogen state. It was found that the leg

that was trained with low glycogen resulted in a two-fold increase in exercise

time to fatigue without any loss in power. It was also reported that the leg

trained with low glycogen had a more pronounced increase in resting muscle
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glycogen content and the activity of fatty acid oxidation citrate synthase and

3-hydroxyacyl-CoA dehydrogenase, reaching significance for citrate synthase.

Rauch et al (2005) have suggested that a confounding factor of that study

(Hansen et al., 2005) was that the workload was identical for the two legs

despite the rate of perceived exertion being greater in the glycogen-depleted

state. This may suggest the low glycogen leg trained at a relatively higher

intensity than the high glycogen leg resulting in improved adaptation, this

remains to be determined though. Nevertheless it may be suggested that

training with low glycogen at the same absolute intensity provides a greater

stimulus for skeletal muscle adaptation than training with normal glycogen

concentrations. This invites the intriguing possibility that the training and

nutritional practices of elite Kenyan endurance runners investigated in Chap-

ters 2 and 3 may act synergistically to enhance the training stimulus leading

to skeletal muscle adaptation and hence enhanced endurance performance.

What is unclear at present is whether an athlete training with lower glycogen

concentrations resulting in greater acute adaptations is at any advantage over

an athlete training with normal glycogen concentrations who can train harder

for longer. Thus well-controlled studies are required to determine whether

training with low muscle glycogen concentrations provides any further ad-

vantage compared to training with normal muscle glycogen concentrations,

particularly in elite endurance runners.

Finally there is perhaps one country in the world that does compete

with Kenya in endurance running and that is their close neighbour Ethiopia.

For example Ethiopian Kenenisa Bekele is the World record holder, World

champion and Olympic champion for 5000 m and 10000 m and is also the

current World Cross-Country champion. His compatriot Haile Gebrselassie

is the current marathon World record holder. As a result of their staggering

success, Ethiopia has also received substantial attention from the scientific

community. Similar to Kenya however, there is no conclusive genetic ex-

planation for their success (Moran et al., 2004; Scott et al., 2005; Yang et

al., 2007) but environmental factors do seem to play a significant role (Scott

et al., 2003). For example, Scott et al. (2003) found that elite Ethiopian

endurance athletes (n = 114) are of a distinct environmental background in
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terms of geographical distribution compared to the Ethiopian general pop-

ulation (n = 111). Indeed parallels may be drawn with the Kenyans as it

appears many of the Ethiopian athletes studied are also form an altitudi-

nous area on the Rift Valley called Arsi and Sherwa. Another interesting

finding of that study was that many athletes also travelled large distance to

school and that the majority (70 %) of them ran to school and back every-

day. However in contrast to Kenya, the diet, hydration, lifestyle and training

practices remain to be determined. Further insights in to the process leading

to world-class endurance running performance would undoubtedly be gained

form studying the Ethiopians and should therefore be a future priority for

research in the exercise physiology field.

6.5 General conclusions

There are many explanations typically given for the Kenyan running phe-

nomenon. Heavily cited arguments for the Kenyan’s staggering success on

the international road and track racing circuits over the last several decades

are genetic superiority and environmental factors. Despite a number of inves-

tigations, genetic superiority remains to be determined, what is clear though

is that the environmental factors that interact with genes to produce world-

class performance are incredibly important. Therefore Chapters 2 and 3

detailed extensively the diet, hydration, lifestyle and training practices of

a group of highly successful elite Kenyan endurance runners during impor-

tant training periods. Chapter 4 explores the significance of the hydration

practices reported in Chapters 2 and 3 (i.e., ad libitum fluid intake) have on

marathon running performance and the wider implications for fluid intake

recommendations for elite marathon running. Chapter 5 investigates novel

technology that may further enhance our understanding of the physical ac-

tivity patterns and training practices of elite Kenyan endurance runners on

a day-to-day basis. The main findings of the research do not point to one

single explanation for the Kenyan running phenomenon. The results suggest

the explanation is likely to be complex in origin and that many individual

factors may well aggregate to produce world class performance. The main
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findings are as follows:

It was found elite Kenyan endurance runners maintain energy balance during

a taper phase but are in negative energy balance prior to major competition

as assessed by the gold standard doubly labeled water method. Considering

the relatively high carbohydrate content of their diet it is hypothesised the

caloric deficit may not have a direct impact on their training performance.

In fact the performance implications of reducing body mass as a result of

energy deficiency is that the athletes will be lighter for competition and may

thus be at an advantage as the energy cost per unit distance increases in

direct proportion to the added load expressed as a percentage of body mass.

A further finding was that despite relatively low daily fluid intake that con-

sisted of primarily milky tea and water, athletes remained hydrated day-to-

day drinking ad libitum; a pattern of fluid intake that corroborates prevail-

ing fluid intake recommendations. For elite marathon racing it was however

found that drinking prevailing fluid intake recommendations that suggest a

specific drinking range of ad libitum 0.4-0.8 L·hr−1 are insufficient. It is

therefore proposed the best strategy for competitive marathon running in

temperate conditions is to simply drink to thirst (i.e. ad libitum) as long as

body mass loss is kept within acceptable limits, possibly < 3 %.

It was also found that athletes remained in electrolyte balance day-to-day as

a result of their diet, negating the need for further supplementation.

Measured physical activity patterns of elite Kenyan endurance runners strongly

suggest rest between running training sessions is an important lifestyle factor.

The training load analysis supports the contention that elite endurance ath-

letes spend the majority of their training time at low intensity with periods

of high intensity work interspersed.

Chapter 5 is the first study to report an accelerometer that can operate up

to and including 20 km·hr−1. It was also found the combined use of tri-

axial accelerometry and heart rate predict V̇ O2 better than either predictor

alone and that subject’s individually calibrated data further improves V̇ O2

estimation.
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It is proposed that future studies should focus on developing combined tech-

nologies such as accelerometry and heart rate in order to better understand

physical activity patterns and energy expenditure of elite Kenyan endurance

runners on a day-to-day basis over an extended period of time that incor-

porates multiple training cycles. Furthermore, future work should aim to

elucidate the effect of training glycogen depleted may have on long term

training adaptations particularly in elite endurance runners. Lastly further

examination of the properties of the milky tea regularly consumed by the ath-

letes in Chapters 2 and 3 may provide further clues to the Kenyan running

phenomenon. In terms of progressing knowledge in to the training process

leading to world-class performance it is suggested that similar studies to

those presented here in Chapters 2-3 are conducted in Ethiopia due to their

recent staggering success in endurance running.
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1. Describe the basic purposes of the research proposed. 

Background of investigation

Kenyan middle- and long-distance runners have dominated the athletics world since the 1960s, particularly
males. Some attempts at explaining this extraordinary success have included genetic endowment (e.g. Bale
and Sang,  1998),  a  sociological  aspect  (e.g.  Manners,  1997) and environmental  conditions  that  could
potentially enhance the physiological characteristics of the athlete (e.g. Scott et al, 2003). At present there
appears to be no one individual factor to explain the astonishing success of the east African athletes;
however, until recently diet and nutrition had not been comprehensively investigated. 

Several studies have evaluated the nutritional approach by Kenyan athletes (Fudge et al, In press; Onywera
et al, In press; Christensen et al, 2002; Mukeshi and Thairu, 1993). In particular, two recent studies from
this laboratory (Fudge et al, In press; Onywera et al, In press) investigated the food and macronutrient
intake of 10 elite Kenyan athletes over a seven day period. A noticeable finding was that fluid intake by the
athletes in both studies was low and mainly in the form of water (Fudge et al, In press: 948 ± 542 ml;
Onywera et al, In press: 1113  ± 269 ml) and tea (894 ± 307 ml; 1243  ± 348 ml, respectively). Indeed
Noakes (2003) suggests that elite marathon runners may only consume about 200 mlּhr-1 during racing.
This figure and the daily fluid intakes reported by the above mentioned studies are substantially less than
that recommended by the American College of Sports Medicine (ACSM, 1996), typically 1.2 – 2 L ּhr-1

during exercise. The rationale for recommending large volumes of water stems from laboratory research
that  reported  a  relationship  between  the  extent  of  dehydration  and  a  rise  in  rectal  temperature  (e.g.
Galloway and Maughan, 2000). A progressive increase in core temperature may result in increased effort
perception, reduced exercise performance and even heat stroke and death. Noakes (2003) however cautions
against drinking copious volumes of fluid as potentially this may render the individual athlete susceptible
to hyponatraemia and suggests that athletes should consume fluid  ad libitum,  in particular recreational
runners as the risk is  greater  in those athletes who take longer to complete a race that may result  in
consumption of vast volumes of water. 

Therefore purpose of this study is to determine whether drinking enough fluid to satisfy the ACSM and
other major sporting governing bodies’ guidelines is advantageous to elite Kenyan endurance runners. The
study will be conducted in the field at the athletes normal training camp; it will last for two weeks and will
compare consuming enough fluid to comply with recommendations as described by the ACSM (1996) with
the habitual fluid intake of the athletes such that they are allowed ad libitum access to fluids. 
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2. Outline the design and methodology of the project.  Please include in this section details of the proposed
sample size.

Plan of Investigation

We propose to:

Compare directly the effects of the ACSM recommended hydration strategy on running performance in
elite Kenyan runners with the fluid replacement strategies currently adopted.

Methods/Design of investigation

Approximately 10 members of the Kenyan athletic national team will be invited to take part in this study.
Subjects will be required to read and sign the enclosed information sheet. Testing will take place at the
Kaptagat High Altitude Training Camp, Eldoret, Kenya. A series of assessments will be carried out. These
will  include the following: extra-cellular  water and total  body water using multifrequency biolectrical
impedance,  heart  rate  using  a  standard  polar  heart  rate  monitor,  core  temperature  using  a  telemetric
physiological  monitoring system (HQInc.,  Palmetto,  Florida,  USA), food diaries  and questionnaires to
assess energy intake and physical activity diaries to assess energy expenditure. Daily urine collections will
also be carried out to assess hydration status (Shirreffs, 2000) using urine osmolality and specific gravity.
Subjects will be monitored daily over a two week training period. Subjects will be randomly assigned to
either a ‘sports  drink’ group or a control group for the first  7 days before crossing over to the other
condition for a further 7 days. For the control week, athletes will be required to carry out their normal fluid
replacement strategies accompanying training while during the intervention week athletes will be required
to consume 500ml of water 1 hour prior to each training session and 300ml of carbohydrate/electrolyte
drink for every 15 minutes of exercise immediately after exercise. Subjects will be instructed to carry out a
weighted intake of food and fluid and an activity diary during each 7 day period.

Protocols
Training session analysis:  Subjects  will  be monitored throughout  the two week study periods.  Extra-
cellular  water  and  total  body  water  will  be  measured  prior  to  each  training  session  multifrequency
biolectrical impedance (Bodystat Multiscan 500). This non-invasive method involves placing two current-
inducing electrodes and two detector electrodes on the dorsal surfaces of the right hand and foot and a
small  (and  imperceptible)  electrical  current  (500 Micro-Amps)  introduced  between  these  (Ross  et  al,
1989). Each athlete will be required to swallow a CorTemp Ingestible Temperature Sensor, or “pill” before
training on selected training days (e.g. day 1 and day 6 of each training week). The pill is a small electronic
device, which senses the body’s temperature and transmits it through a radio wave signal to an external
receiver (Rav-Acha et al, 2003). Heart rate and core temperature will be measured throughout exercise.
Each athlete will be asked to complete a questionnaire immediately after each training session.

3. Describe the research procedures as they affect the research subject and any other parties involved.

All experiments will take place at the Kaptagat High Altitude Training Camp, Eldoret, Kenya. Dr Yannis
Pitsiladis or a qualified (CPR-trained) and experienced colleague will be present at all tests. 

Potential participants will be selected from the athletes training at the Kaptagat High Altitude Training
Camp and will be identified by personal contact. They will be asked to meet with the investigators to
discuss the project and whether they would be suitable as a subject. All subjects will be healthy individuals
without  a  history  of  any  significant  medical  problem(s).  All  subjects  will  be  endurance-trained  and
therefore accustomed to strenuous exercise. 

Close supervision of the subject is ensured at all times by the supervising investigator. 

The risks associated with the procedures outline are negligible.
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4. What in your opinion are the ethical considerations involved in this proposal?  (You may wish for
example to comment on issues to do with consent, confidentiality, risk to subjects, etc.)

Exercise has negligible risk in healthy adults.

The subjects will provide their written consent with the option to withdraw from training or testing at any
point.

Urine will be handled, stored and disposed of according to standard health and safety procedures. 

5. Outline the reasons which lead you to be satisfied that the possible benefits to be gained from the project justify
any risks or discomforts involved.

It is envisaged that this research will benefit the identification of the correct hydration strategy for elite Kenyan
distance runners during training and competition. The minimal risk and discomfort associated with the above
procedures are considered to be worthwhile to gain the information required.

6. Who are the investigators (including assistants) who will conduct the research and what are their qualifications
and experience?

Dr Yannis  Pitsiladis  (PhD MMedSci  BA),  Barry  Fudge and Vincent  Onywera  (Phd Students).  The principal
investigator has wide ranging experience of such procedures over periods of up to 15 years without incident.

7. Are arrangements for the provision of clinical facilities to handle emergencies necessary?  If so, briefly describe
the arrangements made.

In  the  event  of  an  untoward  incident  that  is  not  an  emergency,  the  supervising  Principal  Investigator  will
administer appropriate first aid, if necessary. The subject will not be permitted to leave the scene until he has fully
recovered. The subject will be encouraged to contact his local doctor. The subject will be told that the Principal
Investigator will conduct a follow-up by telephone at the end of the same day. The subject will also be provided
with 24-hour contact numbers for the Principal Investigator.

8. In cases where subjects are identified from information held by another party (for example, a doctor or hospital)
describe the arrangements whereby you gain access to this information.

N/A

9. Specify whether subjects will include students or others in a dependent relationship.

N/A
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10. Specify whether the research will include children or those with mental illness, disability or handicap.  If so,
please explain the necessity of using these subjects.

N/A

11. Will payment be made to any research subject?  If so, please  state the level of payment to be made, and the
source of the funds to be used to make the payment.

No

12. Describe the procedures to be used in obtaining a valid consent from the subject.  Please supply a copy of the
information sheet provided to the individual subject.

Each subject will be provided with a consent form outlining the testing procedures, which asks them for their
written consent to participate in the project with the option to withdraw at any time (see enclosed copy). A verbal
explanation will also be given and any queries answered. If there is some doubt of the subject's eligibility for the
study, the subject will be excluded.

13. Comment on any cultural, social or gender-based characteristics of the subject which have affected the design
of the project or which may affect its conduct.

All subjects are members of the Kaptagat High Altitude Training Camp, Eldoret, Kenya.

14. Give details of the measures which will be adopted to maintain the confidentiality of the research subject.

The information obtained will be anonymised and individual information will not be passed on to anyone outside
the study group. The results of the tests will not be used for selection purposes.

15. Will the information gained be anonymized?  If not, please justify.

Yes

16. Will the intended group of research subjects, to your knowledge, be involved in other research?  If so, please
justify.

No

17. Date on which the project will begin  and end 

Begin, 5/12/04. end, 18/12/05.

18. Please state location(s) where the project will be carried out.
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Kaptagat High Altitude Training Camp, Eldoret, Kenya
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International Centre for East African Running Science
Institute of Biomedical and Life Sciences

University of Glasgow

SUBJECT INFORMATION SHEET

TITLE OF INVESTIGATION: Effects of the ACSM recommended fluid replacement strategy on thermoregulation
and running performance in elite level Kenyan distance runners

We invite you to participate in an investigation that we believe to be of potential importance. In order to help you
understand what the investigation is about, we are providing you with the following information. Be sure you
understand it before you formally agree to participate. Ask any questions you have about the information that
follows. We will do our best to explain and to provide any further information you require.

A team of University researchers will be staying at your training camp for approximately two weeks. The aim of
the study is to determine whether implementing water intake guidelines suggested by major sporting governing
bodies will improve the performance of elite Kenyan endurance runners. This will involve one week of training
with your normal diet and fluid intake, while the second week consuming enough fluid to satisfy the guidelines
including consumption of  a sports drink at regular intervals. Training will follow your general schedule and will
be exactly the same for both weeks. All food and water intake will be recorded for the duration of the study. In
order to obtain results and to not interfere with your training, you will be required to swallow a harmless recording
device, a small pill like object, that will enable the research team to monitor body temperature and heart rate; there
is no risk involved in swallowing the pill. Your percentage body water will also be measured on each day of the
study period. Your body water will be estimated by a bioelectrical impedance technique, which involves placing
slightly  adhesive  small  patches  (“electrodes”)  on your  right  hand and foot  and introducing a  very  small  and
imperceptible electrical current between these. You will be required to collect urine (in containers to be provided)
throughout the supplementation period.  The urine  will  be analysed for  colour  and  particle  concentration (i.e.
osmolality). We plan to use this information to determine your hydration status at various points during each day.

Your compliance with all aspects of the study is fundamental to the outcome of the research and will be strictly
monitored. All information collected will be dealt with in the strictest confidence and will be subject to the Data
Protection Act. The research group will not pass any details on to any other organisation, and the data will not be
used for any purpose other than those stated.

We would respect your concerns and your decision should you not wish to participate in this research. 

If you have concerns about any of the above procedures you should contact:

Dr Yannis Pitsiladis
Lecturer, Institute of Biomedical and Life Sciences
West Medical Building
University of Glasgow
Glasgow, G12 8QQ 
Phone: +44 141 330 3858
Fax: +44 141 330 2915
E-mail: Y.Pitsiladis@bio.gla.ac.uk
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Consent Form

I ........................................................... 

give my consent to the research procedures that are outlined above; the aim, procedures
and possible consequences of which have been outlined to me

Signature ………………………………………

Date ………………………………………
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Signed _________________________________________  Date ________________
 (Proposer of research)
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1. Describe the basic purposes of the research proposed.  
 
Background of investigation 
 
Physical fitness testing is common in health related situations for preventative and rehabilitative exercise 
programmes. Furthermore measurement of fitness is a key part in monitoring the progress of recreational 
and elite athletes as well as helping in identifying future sporting talent. Laboratory testing is the “gold 
standard” method for assessing cardiovascular fitness, such as maximal oxygen consumption and lactate 
threshold estimation, and allows repeatable, reliable and accurate results to be obtained. However, this is 
usually expensive, time consuming, does not allow multiple subjects to be tested at once and is not specific 
for athletes competing out of doors. On the other hand, many coaches and exercise prescription specialists 
use field-tests to evaluate physical fitness. These tests are typically quick, inexpensive, and can be tailored 
for individual or team needs. On the downside, field-testing is not as accurate as laboratory testing and 
produces only estimations of physical fitness parameters. The aim of this study therefore is to use data from 
heart rate and accelerometry to produce a more accurate estimation of physiological predictors of fitness. In 
particular, the relationship between activity counts measured by a triaxial accelerometer (3DNX triaxial 
accelerometer, BioTel Ltd., Bristol, UK) and treadmill running at high velocities will be assessed. The 
relationship to emerge will be used to model oxygen consumption and energy expenditure at fast running 
speeds utilising the “individualised” relationship between heart rate and oxygen uptake. Furthermore, 
validation of triaxial accelerometers with high running speeds in the field will also be investigated. 
 
 
2. Outline the design and methodology of the project.  Please include in this section details of the proposed 
sample size. 
 
Methods/Design of investigation 
We propose to study 50 endurance-trained subjects (mostly runners aged 17-40 yrs). Subjects will be in 
good health at the time of testing and regularly take part in strenuous exercise. Eligibility will be assessed 
by subjects undergoing a medical examination (as previously approved by the University Ethics 
Committee). Subjects will also be required to read and sign the enclosed information sheet and a high 
intensity consent form. 
 
Testing will take place in the Laboratory of Human Physiology in the West Medical Building and an 
outdoor running track. The proposed protocol will include one visit to the laboratory and running track. 
 
Protocols 
Discontinuous Incremental Exercise Test: Each subject will perform a discontinuous incremental exercise 
test on a motorised treadmill in the laboratory.  Subjects will be required to walk at 3, 5 and 7 km⋅hr-1, for 3 
minutes at each speed. They will then be allowed a 3 minute rest period; walking at 4 km⋅hr-1.  Following 
this rest period, the subject will be instructed to run at 8, 10, 12, 14, 16, 18, and 20 km⋅hr-1 for 3 minutes at 
each speed, with a 3 minute rest interval between each bout walking at 4 km⋅hr-1. The subject will be 
required to adhere to the protocol until volitional exhaustion, eliciting peak oxygen uptake (VO2 peak).  
Subjects will be given a warm-up before the test and a warm-down after the test. The subject will wear 2 
uniaxial accelerometers (The ActiGraph activity monitor 7164 model (previously CSA) and the Actigraph 
GT1M model, Manufacturing Technology, Inc., Florida, USA) and 1 triaxial accelerometer (3DNX triaxial 
accelerometer, BioTel Ltd., Bristol, UK) to record the activity counts per minute. Heart rate (Suunto t6, 
Suunto Oy, Vantaa, Finland) and gas exchange variables (breath-by-breath using a quadrupole mass 
spectrometer, QP9000, Morgan Medical, Gillingham, Kent, UK) will be measured throughout exercise as 
previously approved by the ethics committee. 
 
Track Test: The progressive protocol (see above) will be repeated but this time applied to an indoor or 
outdoor  running track. Oxygen uptake measurements however will not be obtained. Running speed will be 
controlled and monitored using a GPS system. 
 
Validation 
Standard cardiorespiratory variables measured using breath-by-breath gas analysis during the lab test will 
be compared to the values estimated from heart rate and accelerometry data using manufacturers equations.   
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3. Describe the research procedures as they affect the research subject and any other parties involved. 
 
Dr Yannis Pitsiladis or a qualified (CPR-trained) colleague will be present at all tests. Dr Pitsiladis is 
trained in CPR and Advanced Life Support. 
 
Potential participants will be identified either by personal contact or by advertisement. They will be asked 
to meet with the investigators to discuss the project and whether they would be suitable as a subject. All 
subjects will be healthy individuals without a history of any significant medical problem(s). All subjects 
will be endurance-trained and therefore accustomed to strenuous exercise to exhaustion. The good health of 
each subject will be established prior to the study by subjects undergoing a medical examination (as 
previously approved by the University Ethics Committee), which is supported by a written assurance from 
the subject. Subjects with a history of cardiorespiratory or neurological disease will be excluded from 
participation, as will those having an acute upper respiratory tract infection. Subjects who take drugs 
(recreational or performance enhancing drugs) or who have consumed alcohol within 48 h of an experiment 
will be excluded. 
 
Close supervision of the subject is ensured at all times by the supervising investigator.  The well-being of 
the subject is established at frequent intervals throughout all tests by asking the subject "Is everything 
alright?” Subjects are instructed, prior to the test, to respond to this question with a thumbs-up sign if 
everything is fine, and a thumbs-down sign if there is problem. If a problem is indicated, the investigator 
will ask further questions to establish whether there is a technical problem that could lead to potential 
hazard or whether the subject is feeling unwell.  In either case, the test is immediately halted. All subjects 
are routinely instructed to cease exercising if they experience any discomfort or have any concern for their 
well-being.  
 
The risks associated with performing maximal exercise are minimal as long as the subject is appropriately 
instructed and familiarised with the device prior to participation and also is appropriately supervised during 
the experiment. All exercise bouts are both preceded by a 5 min "warm-up" and by a 5 min "warm-down". 
The latter is of particular importance during high-intensity exercise, when the local accumulation of 
exercise metabolites can cause an "expansion" (or vasodilatation) of the blood vessels in the lower limbs, 
which can impair the adequate return of blood to the heart – predisposing to fainting on dismounting from 
the treadmill. This risk is minimised by having the subject exercise at a mild level during recovery to "wash 
away" these metabolites and therefore to restore the capacity of the involved blood vessels to their resting 
levels. 
 
Some subjects experience difficulty swallowing while breathing through a mouthpiece and wearing a nose-
clip, due to some transient build-up of pressure in the ears.   
 
 
4. What in your opinion are the ethical considerations involved in this proposal?  (You may wish for 
example to comment on issues to do with consent, confidentiality, risk to subjects, etc.) 
 
The ethical concerns are minor. Exercise has negligible risk in healthy adults, although maximal 
exercise has a small risk of inducing myocardial ischaemia. 
 
The subjects will undergo medical screening, complete a medical questionnaire and provide their written 
consent with the option to withdraw from training or testing at any point. 
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5. Outline the reasons which lead you to be satisfied that the possible benefits to be gained from the project justify 
any risks or discomforts involved. 
 
It is envisaged that this research will identify whether the combined use of heart rate and accelerometry can be used 
to predict cardiorespiratory data from athletes during exercise in the field. The minimal risk and discomfort 
associated with the above procedures are considered to be worthwhile to gain the information required. 
 
 
 
6. Who are the investigators (including assistants) who will conduct the research and what are their qualifications 
and experience? 
 
Dr Yannis Pitsiladis PhD MMedSci BA, Chris Easton BSc, Barry Fudge BSc, Mr John Wilson, Mrs Heather Collin 
(Senior Technicians), and 3 BSc Honours Project Students; Olivia Haddow, Laura Irwin and Jonathan Clark. Dr 
Yannis Pitsiladis has wide ranging experience of exercise testing over periods of up to 10 years without incident.. 
 
 
 
7.  Are arrangements for the provision of clinical facilities to handle emergencies necessary?  If so, briefly describe 

the arrangements made. 
 
In the event of an emergency, guidelines approved by the ethics committee will be followed. 
 
In the event of an untoward incident that is not an emergency, the supervising Principal Investigator will administer 
appropriate first aid, if necessary. The subject will not be permitted to leave the laboratory until they have fully 
recovered. The subject will be encouraged to contact their local GP. The subject will be told that one of the 
principal investigators will conduct a follow-up by telephone at the end of the same day. The subject will also be 
provided with 24-hour contact numbers for both principal investigators. 
 
 
 
8. In cases where subjects are identified from information held by another party (for example, a doctor or hospital) 
describe the arrangements whereby you gain access to this information. 
 
N/A 
 
 
 
 
9. Specify whether subjects will include students or others in a dependent relationship. 
 
Some students may be recruited but will be under no pressure from staff to participate in the study. 
 
 
 
 
10. Specify whether the research will include children or those with mental illness, disability or handicap.  If so, 
please explain the necessity of using these subjects. 
 
N/A 
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11. Will payment be made to any research subject?  If so, please  state the level of payment to be made, and the 

source of the funds to be used to make the payment. 
 
NO 
 
 
 
12. Describe the procedures to be used in obtaining a valid consent from the subject.  Please supply a copy of the 

information sheet provided to the individual subject. 
 
Each subject will be provided with a consent form outlining the testing procedures, which asks them for their 
written consent to participate in the project with the option to withdraw at any time (see enclosed copy). A verbal 
explanation will also be given and any queries answered. If there is some doubt of the subject's eligibility for the 
study, the subject will be excluded. 
 
 
 
13. Comment on any cultural, social or gender-based characteristics of the subject which have affected the design of 
the project or which may affect its conduct. 
 
None 
 
 
 
 
14. Give details of the measures which will be adopted to maintain the confidentiality of the research subject. 
 
The information obtained will be anonymised and individual information will not be passed on to anyone outside 
the study group. The results of the tests will not be used for selection purposes. 
 
 
 
15. Will the information gained be anonymized?  If not, please justify. 
 
Yes 
 
 
 
 
 
16. Will the intended group of research subjects, to your knowledge, be involved in other research?  If so, please 
justify. 
 
No 
 
 
 
17. Date on which the project will begin (immediately) and end (November, 2006) 
 
 
 
 
18. Please state location(s) where the project will be carried out. 
 
Laboratory of Human Physiology (Lab 245), West Medical Building. 

Outdoor track (Scotstoun stadium) and/or indoor track (Kelvin Hall). 
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University of Glasgow 

Institute of Biomedical & Life Sciences 
 

INFORMATION SHEET 
 

Study Title: Estimation of aerobic power from accelerometers and heart rate during walking and 
running. 
 
You are being invited to take part in a research study. Before you decide whether to participate, 
it is important for you to understand why the research is being done and what it will involve. 
Please take time to read the following information carefully and discuss it with friends, relatives 
and your GP if you wish. Ask us if there is anything that is not clear or if you would like more 
information. Take time to decide whether or not you wish to take part. 
 
Thank you for reading this. 
 
What is the purpose of the study?  Physical fitness testing is common in health related 
situations for preventative and rehabilitative exercise programmes. Furthermore measurement of 
fitness is a key part in monitoring the progress of recreational and elite athletes as well as 
helping in identifying future sporting talent. Laboratory testing is the “gold standard” method for 
assessing cardiovascular fitness, such as maximal oxygen consumption.  However, the combined 
use of heart rate and accelerometry data (accelerometers are a small device attached to your 
waist that can measure movement) may allow an accurate estimation of physiological predictors 
of fitness outside the laboratory that is quick, easy and inexpensive. This investigation will 
therefore explore a way to predict oxygen consumption and energy expenditure at various 
running speeds using data generated from accelerometers and heart rate. Furthermore, validation 
of accelerometers with varying running speeds in the field will also be investigated. 
 
Why have I been chosen? You have been selected as a possible participant in this investigation 
because you regularly take part in endurance activity and you are in good health. Fifty 
volunteers are being sought. 
 
Do I have to take part? It is up to you to decide whether or not to take part. If you decide to 
take part you will be given this information sheet to keep and be asked to sign a consent form 
and fill in a lifestyle questionnaire. If you decide to take part you are still free to withdraw at any 
time and without giving reason. 
 
What will happen to me if I take part? You will be asked to visit the laboratory and outdoor 
(or indoor) running track once, where a series of assessments will be carried out. On your initial 
visit to the laboratory you will be medically examined by a qualified doctor followed by a 
discontinuous exercise test on a treadmill. You will be required to walk at 3, 5 and 7 km⋅hr-1, for 
3 minutes at each speed.  You will then be allowed a 3 minute rest period of continuous walking 
at 4 km⋅hr-1.  Following this rest period you will be instructed to run at 8, 10, 12, 14, 16, 18 and 
20 km⋅hr-1, for 3 minutes at each speed (or until volition exhaustion), with a 3 minute rest 
interval of walking at 4 km⋅hr-1 between each bout.  Expired gas and heart rate will be recorded 
throughout the test via a rubber mouthpiece (see below) and heart rate monitor, respectively.  
You will wear 3 accelerometers whilst participating in the test.  The track test will follow the 
same procedure as above, however expired gas will not be collected. 
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What are the possible disadvantages and risks of taking part? Exercise has a negligible risk 
in healthy adults, although maximal exercise has a small risk of myocardial infarction (“heart 
attack”). The primary symptom of myocardial infarction is chest pain on exertion. If you 
experience any unusual sensations in your chest during the experiment, you should cease 
exercising immediately. 
 
You will breath through a rubber mouthpiece during the tests, in order for us to collect the air 
you breath out. This is similar to the equipment used for snorkelling. You will also wear a 
noseclip. You may experience difficulty swallowing while breathing through a mouthpiece and 
wearing a noseclip, due to some pressure in the ears. In addition some subjects experience 
increased salvation when breathing through a mouthpiece. 
 
What are the possible benefits of taking part?  We hope to find out more about how your 
body responds to physical exercise. This information will help us to decide whether the 
accelerometers can predict parameters of physical fitness accurately. 
 
What if something goes wrong?  If you are harmed by taking part in this research project, there 
are no special compensation arrangements. If you are harmed due to someone’s negligence, then 
you may have grounds for a legal action but you may have to pay for it. The principal 
investigators, although not medically qualified are fully trained in Advanced Life Support. In the 
event of an untoward incident, the principal investigator(s) will provide basic life support 
including chest compressions and ventilation until emergency medical staff are on hand. You 
may want to consult your GP if you are experiencing any side effects from taking part in the 
study and should also inform the principal investigator. 
 
Will my taking part in this study be kept confidential? All information about you that is 
collected during the course of the research will be kept strictly confidential. 
 
What will happen to the results of the research study? Results will be published in a peer-
reviewed scientific journal once the study is completed. You will automatically be sent a copy of 
the full publication. You will not be identified in any publication. 
 
If you wish to find out more about this investigation, you can contact: 
 
Dr Yannis P. Pitsiladis 
Institute of Biomedical & Life Sciences 
West Medical Building 
University of Glasgow 
Glasgow, G12 8QQ 
 
Phone: 0141-330-3858 
Fax: 0141-330-2915 
E-mail: Y.Pitsiladis@bio.gla.ac.uk 
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CONSENT 
 

Title of Investigation: Estimation of aerobic power from accelerometers and heart rate during 
walking and running. 

 
 
 
I ………………………………….. 
 
Give my consent to the research procedures which are outlined above, the aim, procedures 
and possible consequences of which have been outlined to me. 
 
 
 
Signature ………….................................. 
 
 
Date ………….................................. 
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UNIVERSITY OF GLASGOW 
INSTITUTE OF BIOMEDICAL AND LIFE SCIENCES 

 
SUBJECT’S QUESTIONNAIRE AND ASSENT FORM FOR 

HIGH-INTENSITY EXERCISE TESTING 
 

If you feel unwell on the day of a proposed test, or have been feeling poorly over the 
preceding day or two, DO NOT TAKE PART in a high-intensity exercise test. 
The considerations which follow apply to people who are feeling well at the time. 

 
NAME   ______________________________________________________________ 
 
Sex (M/F) _______ Age _______ (yrs) Height _______ (m) Weight ________ (kg) 
 

Exercise Lifestyle 
 
a) What kind(s) of exercise do you regularly do (20+ min/session)?  (Please circle) 
 

Number of times per average week 
 
Walking    1 2 3 4 5 
Running    1 2 3 4 5 
Cycling    1 2 3 4 5 
Swimming    1 2 3 4 5 
Skiing     1 2 3 4 5 
Rowing    1 2 3 4 5 
Gymnastics    1 2 3 4 5 
Martial arts    1 2 3 4 5 
Tune Up    1 2 3 4 5 
Popmobility    1 2 3 4 5 
Sweat Session    1 2 3 4 5 
Weight training   1 2 3 4 5 
Field athletics    1 2 3 4 5 
Racquet sports    1 2 3 4 5 
Rugby/soccer/hockey   1 2 3 4 5 
 
Other(s) *     1 2 3 4 5 
 
* (Please specify)  ________________________________________ 
 
 
b) How long have you been exercising at least twice/week for at least 20 min/session? 

_____________________________________________________________________________ 

 
Continued Over 
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Smoking 
(Please tick one) 

Never smoked  __________ 
Not for > 6 months __________ 

Smoke <10 per day __________ 
Smoke > 10 per day __________ 

 
Illnesses 
Have you ever had …?  (Please circle Yes or No) 
 

Asthma    YES  NO 
Diabetes    YES  NO 
Epilepsy    YES  NO 
Heart Disease   YES  NO 
High Blood Pressure  YES  NO 

 
Any other illness that could affect your safety in performing maximal exercise 
 

YES  NO 
 

(If YES, please specify)  ___________________________________________ 
 
Symptoms 
Have you ever had any of the following symptoms to a significant degree? 
i.e.  have you had to consult a physician relating to any of the following? 
(Please circle Yes or No) 
 

Breathlessness    YES  NO 
Chest Pain    YES  NO 
Dizzy fits / Fainting  YES  NO 
Heart Murmurs    YES  NO 
Palpitations    YES  NO 

 
Muscle or joint injury 
Do you have / or have had any muscle or joint injury which could affect your safety in 
performing maximal exercise or strength testing or strength training? 
 

YES  NO 
 
Medication 
Are you currently taking any medication? YES  NO 
(Please circle Yes or No) 
 
(If Yes, please specify)  ______________________________________ 
 
 
Signature ____________________________________________ 
 
Date  ____________________________________________ 


