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Abstract 

The Scottish Curriculum for Excellence (CfE) advocates that the learning and teaching of 

mathematical problem solving is no longer compartmentalised but is an overarching feature 

designed to improve higher order thinking skills at all levels by focusing on conceptual 

understanding. Comitantly, a growing body of literature acknowledges the interrelated 

educational benefits of mathematical problem posing within classrooms. Teachersô beliefs are 

considered powerful indicators of professional practice and can articulate the positionality of 

teachers with regards to curricula reform. Despite their significance, research into the 

implementation of mathematical problem solving and mathematical problem posing is, as yet, 

under-researched particularly in Scotland. The main purpose of this study was to investigate 

Scottish teachersô beliefs and espoused instructional practices of mathematical problem 

solving and mathematical problem posing. More prosaically, it explored beliefs regarding the 

nature of mathematics, the learning of mathematics and the teaching of mathematics. 

  

 

A mixed methods explanatory design consisting of an online questionnaire followed by semi-

structured interviews was selected as the instruments to measure and capture espoused beliefs 

and reported practices. This study involved a representative sample of 478 participants (229 

primary and 249 secondary mathematics practitioners respectively) generated from 21 local 

education authorities in Scotland. A supplementary feature of the online questionnaire, which 

harvested 87 volunteered comments, augmented the data collection process. Descriptive and 

inferential statistics were employed to analyse quantitative data with thematic coding used to 

organise and interrogate qualitative data. 

  

  

Factor analysis identified three distinct belief systems consistent with a dominant learner-

centred approach (i.e. social constructivist, problem solving and collaborative orientation), 

mainly learner-centred approach (i.e. social constructivist, problem solving and static 

transmission orientation) and dominant teacher-centred approach (i.e. static and mechanistic 

transmission orientation). In other words, teachersô deep-rooted beliefs do not align to one 

particular group of belief systems but are embedded mutually within a cluster. A mixture of 

positive, negative and inconsistent beliefs is reported. Significant dissonance exists between 

the sectors. Characteristics impacting on beliefs include grade and highest level of 

qualification in the field of education. 
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This study suggests that the conceptualisation and operationalisation of mathematical problem 

solving and problem posing may be circumscribed in practice and that primary teachers hold 

stronger mathematical beliefs than secondary mathematics teachers. Several reasons help to 

illuminate these findings including a lack of pedagogical content knowledge, ineffective 

manifestations of mathematical creativity, low mathematics teaching self-efficacy and an over 

dominant national assessment culture. Implications and recommendations for policy and ITE 

are discussed. 
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CHAPTER ONE 

 
 

Introduction 
 

 

In this preliminary chapter, I introduce a background to the study, comprising together my 

own personal interest in the subject field before moving on to the educational and theoretical 

justification for the work. This is followed by the presentation of research questions and an 

overview of the thesis structure. 

 

 

1.1 A personal journey 

The content and arguments submitted in this thesis matured as a result of widespread 

educational experience gained as a mathematics teacher. Over the years, I have practised 

within the state and independent sector, obtained promotion to principal teacher, and prepared 

pupils for a range of Scottish, English and International Baccalaureate qualifications. Much of 

my time has been consumed thinking about the locus of problem solving and problem posing 

within the domain of mathematics education. I have conjectured if the policymakers of 

Curriculum for Excellence have created a paragon of autonomous education that empowers 

practitioners to flourish at the ultimate didactic level and without undue political interference. 

My thoughts often deliberate upon the position of Scotland and our teachers from an 

international perspective. Concomitantly, I have shared classroom experiences and beliefs of 

problem solving through the production of various publications (e.g. McDonald, 2006, 2013, 

2014).  

 
 

A decision to enter the teaching profession arose after a lengthy period of working in industry 

within Scotland, other parts of the UK and Europe. Coupled with engineering knowledge 

acquired from previous employers, I have been able to contextualise mathematical concepts 

and appreciate the importance of possessing analytical skills, deductive reasoning and logic, 

which I have applied to enhance learning within the classroom.  

 

 

Shortly after completing a Masterôs degree, I was awarded Chartered Mathematician status 

which acted as a catalyst for my own professional development. Inspired to improve my 
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pedagogical knowledge, I surveyed numerous empirical studies involving teachersô 

mathematical beliefs of problem solving and problem posing. The impetus for engaging in 

such enquiry was to address diverse and often enigmatic pedagogical viewpoints expressed by 

both primary and secondary colleagues during multiple professional collaborations. 

Curiously, encompassed within the nucleus of teachers, included an eclectic fusion of grades, 

age and experience from both sectors. In short, it concerned me that dissonance existed with 

approaches to the learning and teaching of mathematics. Furthermore, I was surprised to 

discover a paucity of empirical research investigating Scottish teachers compared to other 

countries. With this in mind and after careful deliberation, I enlisted as a part-time PhD 

candidate whilst continuing my career as a full -time practitioner, for three reasons. Firstly, in 

order to fulfil an intellectual challenge; secondly, to critically inform my professional 

practice; thirdly, to accomplish a long term ambition to become an independent researcher. 

This has been a decision which has resulted in a doctoral experience awash with feelings of 

loneliness, isolation, anxiety, frustration and immense satisfaction. 

 

 

The role of teachers as researchers is nothing new (e.g. Elliot, 1991; McNiff & Whitehead, 

2011; Kincheloe, 2012). By connecting to a research learning community, my previously held 

entrenched views and fragmented philosophies on fundamental constructs have been 

transformed, empowering me to operationalise a wider range of educational perspectives. I 

have explored the interface between research and practice, experiencing and augmenting 

contemporary dimensions to my teaching. In a paper which addresses the synthesis of theory 

and practice, Beattie (1997) writes: 

 
 It seems a little incongruous to suggest that teachers who have not experienced inquiry in  their 

 own lives will be able to create classroom settings which encourage students to question, to 
 pose and solve problems, and to be self-directed learners (p. 114). 

 

Much time and energy has been engaged in reading, thinking, debating, analysing, discussing, 

arguing, evaluating, writing, assessing and reflecting on learning and teaching of 

mathematical problem solving and problem posing. Audiences have included pupils, 

colleagues, probationers, students, parents, academics, strangers, family and friends. My 

reason for undertaking this study rests on my professional interactions with a range of learners 

with an assortment of abilities who reported feeling disconnected and ill-equipped in problem 

posing and problem solving. These feelings of disconnection and lack of skills and knowledge 

often influenced their choices of employment and higher education.  
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Monitoring the mathematical progress of my own children, as they shuffled through primary 

and secondary levels, furnished me with an additional insight into other teachersô espoused 

views and enacted practices. Significantly, this underpinned my speculative assessment that 

the implementation of mathematical problem solving and problem posing may be influenced 

by individual teachersô beliefs.  

 

 

1.2 Background to the research 

Throughout my teaching career, irrespective of curricula requirements, I have exercised the 

freedom to engage and motivate young people with a repertoire of classic and unfamiliar 

mathematical problems. Regardless of ability, problems can be differentiated or reformulated 

to address the mathematical needs of all learners. I have found that mentoring pupils for 

individual and team competitions has provided me with a powerful mechanism to enrich 

thinking, inspire creativity and reinforce the mastery of deep conceptual understanding. 

Various echelons of ingenuity and complexity are packed into problems, demanding 

increasing levels of mathematical sophistication, and act as a breeding ground for developing 

flexible, strategic and independent thinking.  

 

 

It is in sharp contrast to the common emphasis on procedural skills that is encapsulated within 

memorised driven algorithmic approaches, rooted in traditional mathematics lessons. In my 

professional experience, the delivery of problem solving and problem posing is not a 

dichotomy shared by all practitioners. I consider the beliefs of the teacher instrumental to the 

embodiment of such processes. Hersh (1986, p. 13) argues that ñoneôs conception of what 

mathematics is affects oneôs conception of how it should be presented and oneôs manner of 

presenting it is an indication of what ones believes to be the most essential in itò. I have 

theorised that the positioning of Scottish teachers appear to be inconsistent with the enactment 

of policy objectives and research literature available to them. Likewise, probing friends and 

colleagues to elicit the reasons behind their incongruence to mathematical problem solving 

and problem posing produced unexpected results. It is on this basis that my enthusiasm 

regarding the mathematical beliefs of teachers has grown, which energised me to suspect that 

this notable topic needed further exploration.  
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1.3 Educational justification for my research 

All of this research has been conducted using current teachers within the domain of state 

schools in Scotland. It is necessary for me to contextualise my research prior to presenting the 

rational of my study.  

 

The Scottish perspective 

Historically, Scotland has always enjoyed an independent educational system and has never 

been part of what is erroneously but commonly referred to as the óUK Curriculumô. For 

example, Boaler (2015a, p. 1), unfittingly used this designate (since it does not exist) when 

implying that the UK education secretary, a position with a solitary remit for England, has the 

additional authority to amend the separate education systems which are controlled by the 

devolved governments of Scotland, Wales and Northern Ireland respectively. In fact, Humes 

& Bryce (2013, p. 138) point out that ñEducation has traditionally been identified as one of 

the three institutions which mark the social and cultural life of Scotland as distinctive, 

especially when compared to Englandò. Likewise, Menter (2014) asserts: 

 
 We know that Scotland has had a very distinctive education system throughout the history of 

 the Union - that is since 1707. And today we can see much that is strong, innovative and 
 imaginative within Scottish education, especially when contrasted with England (p. 29). 

 

Paradoxically, participants from Scotland, England, Wales and Northern Ireland are integrated 

in the UK sample for PISA, an international survey that measures young peoplesô 

performance in reading, mathematics and science. Critical proponents of Scottish pupilsô 

mathematical performances (Table 1.1) in such global assessments may wish to accentuate a 

recent decline of national standards, although this has to be set against limitations of the 

survey such as issues involving culture, methodology, political influence and interference. 

Though, the scale of underachievement cannot be overlooked as indicated by inspection 

reports carried out by Education Scotland. According to OECD (2015, p. 10): ñTrends since 

2003 in Scotland show a growing proportion of low achievers in maths and a shrinking 

proportion of high achieversò. 

 

Table 1.1 Scottish PISA mathematics performances 

Year 2000 2003 2006 2009 2012 2015 

Mathematics  533 524 506 500 498 491 

 

Moreover, in a brief analysis of pupils achieving selection to represent the UK team at 

International Mathematical Olympiads, McDonald (2013) highlights the prolonged 
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conspicuous absenteeism of a Caledonian presence. This prestigious competition demands 

independent higher order thinking together with formidable problem solving skills. Is it 

conjectured by me that a decline in the implementation of mathematical problem solving in 

schools may help to illuminate this phenomenon.   

 

 

A solitary examination board exists to administer the nationôs qualifications, ensuring fairness 

that all candidates undertake identical external assessments. Unlike other countries, teachersô 

registration and professional standards are regulated by a teaching council uncontrolled by 

government. Not only is the GTCS one of the oldest in the world, it is the first independent 

self-regulating body for teaching (Humes & Bryce, 2013). 

 

1.3.1 Curriculum for Excellence  

During the last half century, Scottish teachers have been on the receiving end of an avalanche 

of curriculum reports and policy reforms but nothing as radical as CfE. Implemented in 2010, 

this new curriculum has been heralded by its architects, Scottish Government (2008, p. 8), as 

ñone of the most ambitious programmes of education change ever undertaken in Scotlandò. 

Cremin & Arthur (2014) claim that it has the potential to engage teachers and to capitalise on 

the good practice and emotional investment that already exists in schools.  

 

 

However, it has attracted much criticism for its vagueness in terms of content, design, 

conceptual clarity and lack of articulated theoretical underpinnings. For example, Priestley 

(2010, p. 27) maintains that the ñcurriculum model adapted for CfE is problematic, and 

symptomatic of a general amnesia in respect of curriculum theory that arguably underpinned 

earlier developmentsò. Similarly, there is an absence of any coherent reference to what 

Priestley & Humes (2010, p. 346) describe as the ñrich vein of literature in the field of 

curriculum developmentò or without due regard to ñthe insights of research into the 

curriculum, whether from a philosophical, sociological or psychological standpointò. More 

recently, Priestley & Sinnema (2014) underline ambiguity with its curricular documentation. 

Likewise, in their overview of existing Scottish research, Priestley, Minty & Eager (2014) 

opine that the implementation of the new curriculum depicts an often confused picture, 

pointing to issues such as teacher anxiety about assessment and a misalignment between 

teachersô implicit theories about knowledge and learning and the new curriculum. 
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Nevertheless, CfE has introduced distinctive trajectories underpinning its philosophy, three of 

which are salient.  

 

 

Firstly, and possibly the most ambitious design feature is a new expanded curriculum that 

caters for all young people between three and eighteen. Excluding the early years, the need to 

support such a coherent mathematics syllabus rests exclusively with primary and secondary 

mathematics teachers. This accountability has been implemented despite the diversities in 

entry and training requirements, classroom practice, ethos and values inherent within both 

professions. It is theorised by me that to provide effective levels of continuity and progression 

across this continuum, it will be dependent on the outcome of any cross-sector partnership. 

Despite the laudable existence of primary-secondary transition arrangements, many teachers 

have limited knowledge of the structures, principles and philosophies of a sector they have 

not worked in (Corrigan, 2013). 

 

 

Secondly, it is more strongly predicated than the 5-14 curriculum guidelines on a shift in 

classroom practices towards more pupil centred approaches to education (Priestley & Minty , 

2013). Enshrined within its philosophy is an inherent constructivist view of learning, in 

contrast with some teachers who perceive knowledge and learning as the transmission of 

content. MacLellan & Soden (2008) explain that: 

 This, in a constructivist perspective, is the basis of all subsequent learning and teachers 
 cannot, therefore, assume that one size fits all. In order to manage the sheer range of learner 

 variability, it is necessary for learners to determine and pursue their own purposes and 
 processes of learning through collaborative work, and accept the constructivist assumption 

 that the locus of intellectual authority resides not in the teacher nor in the resources, but in 

 the discourse facilitated by both teachers and learners (p. 35). 

 

It is regarding the nature of pedagogy that requires a radical change in orientation to practice 

on the part of many, and in my view, particularly secondary mathematics practitioners, since 

it calls into question entrenched traditional assumptions of education. In her paper on quality 

assurance in Scottish schools, Reeves (2008, p. 10) maintains: ñThe move to privilege 

constructivist/social constructivist frameworks as opposed to transmissive and behaviourist 

approaches to teaching alters the role of teachers and hence the assumptions, skills, 

knowledge and tools that they need to employ in their practiceò. In fact, Maclellan & Soden 

(2008, p. 29) contend that ñwithout understanding of how learners construct knowledge bases 
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through thinking and reasoning, and the teachersô role in facilitating such processes, it is 

unlikely that the intentions of Curriculum for Excellence can be fully realisedò.  

 

 

Thirdly, there is a focus of intent on repositioning teachers as agents of change which 

according to Priestley, Biesta & Robinson (2013, p. 203) attempt ñto reverse a trend of 

ongoing de-professionalization through regimes of testing and inspection and the 

establishment of wider cultures of performativityò. Teachers are actively encouraged to 

embark on a crusade of independent professional discourse to support their critical thinking 

and reflection of everyday curricular practices. During the design phase, the Scottish 

Executive (2006a, p. 4) emphasised the quintessential role of teachers in shaping classroom 

practices by aiming ñto engage teachers in thinking from first principles about their 

educational aims and values and their classroom practiceò and ñthrough a climate in which 

reflective practitioners share and develop ideasò.  

 

 

With proposed increased malleability, it is anticipated that schools and teachers can take 

account of local needs when constructing programmes of education, in order to put learning at 

the heart of the curriculum. This explicit move away from central prescription towards, as 

Priestley & Humes (2010, p. 346) express, ña model that relies upon professional capacity to 

adapt curriculum guidance to meet the needs of local school communitiesò is a distinctive 

feature of the new curriculum. Though, in terms of the enactment of experiences and 

outcomes, Priestly (2010, p. 34) insists that ñthese should remain as slaves rather than masters 

of the main purpose of the changeò. This last point is particularly critical in promoting a focus 

on a holistic understanding of the subject matter.  

 

1.3.2 Current position 

A dilemma faced by some practitioners is their willingness to create classroom environments 

which are consistent with the universal principles of constructivism and collaborative learning 

and teaching. However, resistance to change is evident throughout the country. The latest 

SSLN (Scottish Government, 2016a, p. 25) reported the activities in which the highest 

percentage of pupils testified that the methods in which they participated óvery oftenô were to 

ólisten to the class teacher talk to the class about a topicô (64% in P4, 68% in P7 and 66% in 

S2 respectively) and to ówork on your ownô (59% in P4, 56% in P7 and 59% in S2). These 

findings are comparable with previous research (Scottish Government, 2014) and continue to 
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suggest a teacher-centred approach which typifies classrooms where mastery of content and 

basic skills is emphasised and knowledge is transferred by lecture and repetition.  

 

 

The autonomous vision of the new curriculum policy empowers what is delivered to pupils 

and how teachers implement it. Within daily practices, a dynamic continuum exists between 

exercising flexible judgment of teachersô views and rigid adherence to institutional school or 

local education authority policies. Perhaps accountability for professional learning will further 

seek to impact on the ongoing tension that exists between the relationship between teachersô 

beliefs and practice. From my own experience, teachersô mathematical beliefs play a critical 

role in the selection of pedagogical classroom approaches. A number of researchers endorse 

this view (e.g. Thompson, 1984, 1985, 1992; Schoenfeld, 1985, 1992, 2011; Ernest, 1989a, 

1991; Cross, 2009; Cai & Wang, 2010; Beswick, 2012) while others report on inconsistencies 

between beliefs and practices (e.g. Cooney, 1985; Raymond, 1997; Skott, 2001).  

 

 

Regrettably, within the literature I was unable to detect any previous research explicitly 

involving mathematical problem solving and problem posing beliefs of both Scottish current 

primary and secondary mathematics teachers. Although, a small quantity of Scottish studies 

exist that examine student primary teachersô mathematical beliefs (e.g. Macnab & Payne, 

2003; Henderson & Hudson, 2011; Henderson, 2012a), newly qualified secondary 

mathematics teachers beliefs about the learning and teaching of mathematics (e.g. Forrester, 

2008), primary teachersô mathematical beliefs (e.g. Hudson, Henderson & Hudson, 2012, 

2015), primary and secondary teachersô beliefs about professional development (e.g. Wallace 

& Priestley, 2011; Biesta, Priestley & Robinson, 2015), primary and secondary teachersô 

beliefs on the arts (e.g. Wilson et. al, 2008) and secondary science and religious education 

teachersô collaboration beliefs (e.g. Hall et. al, 2014). Collectively, these miscellaneous 

studies suggest within Scottish education, the investigation of teachersô beliefs is of interest, 

all be it on a small scale.   

 

 

Consequently, in order to afford this research immediate focus, I offer an unconditional 

definition of teachersô beliefs (I discuss this theme in more detail within chapter four). I refer 

to Kagan (1992), who expressed: 
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 Teacher belief is a particular provocative form of personal knowledge that is generally 

 defined as pre- or inservice teachersô implicit assumptions about students, learning, 
 classrooms, and the subject matter to be taught (p. 65-66). 

 

For more than half a century, educational researchers have explored teachersô beliefs in their 

workplace. Several comprehensive reviews of this literature exist which reflect various 

approaches to understanding the multiple perspectives and theoretical nature of teachersô 

specific beliefs and their influences on practice (e.g. Kagan, 1992; Pajares, 1992; Thompson, 

1992; Fang, 1996; Richardson, 1996; Phillip, 2007; Fives & Buehl, 2012).  

 

 

It is important to consider, in the absence of available research, the operationalisation of 

mathematical problem solving and problem posing within Scottish classrooms. The OECD 

(2015, p. 11) argues that professional knowledge must be balanced by research or evaluation 

projects and emphatically state: ñThere is a clear need to know how CfE is actually being 

implemented in schools and communities across Scotlandò. Accordingly, I am postulating 

that by exploring the nature of Scottish teachersô mathematical beliefs, empirical evidence 

will be gathered that can stimulate our understanding of current professional practice of CfE 

within primary and secondary schools. Thus, a worthwhile opportunity exists to ameliorate 

mathematics educational policy, which may lead to enhanced future classroom experiences 

for all learners.   

 

1.3.3 Learning theories 

In this section, I offer a short review of constructivism and collaborative learning, 

individually which are driving forces of CfE. In my professional experience, both 

multidimensional child-centred approaches collectively offer rich learning environments to 

promote the teaching of mathematical problem solving and problem posing.  

 

 

However, I begin by justifying the need to engage in such a pedagogical discourse. First, I am 

charged with a professional obligation to demonstrate a secure knowledge and detailed 

understanding of learning theories (GTCS, 2012), which has been intensified by political and 

societal rhetoric to cater for the diversity of learner variability within an ever changing pupil 

population. Simultaneously interwoven into this requirement is overt curricula awareness 

resonating with a constructivist view of schooling (Drew & Mackie, 2011). This is in contrast 

to the entrenched belief held by some teachers that perceived knowledge and learning is the 
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transmission of content (Priestley & Minty, 2012) or at best, restricted to a superficial 

catchphrase alluded to by Cobb (1994, p. 4) that ñstudents construct their own knowledgeò. In 

rejecting the assumption that óone size fits allô, Marton (2007, p. 20) underlines that 

practitioners must think critically about interpretations of learning by utilising ñtheoretical 

tools available for analysing the extent to which the necessary conditions for achieving 

specific aims for learning are present in certain situationsò. Second, the overarching 

infrastructure of education is underpinned by the presence of theorisations of learning which 

help to facilitate and shape classroom practice. Moreover, it is logical to posit that 

explorations of teachersô beliefs about teaching must concomitantly consider teachersô beliefs 

about learning.  

 

  

Learning theories are conceptual frameworks that describe how individuals learn, often by 

reference to a particular model of human cognition or development (Illeris, 2009). There are 

many diverse and in some cases opposing philosophies of how humans acquire knowledge. 

For example, behaviourism has been intrinsically linked with education for many years and 

until a few decades ago was the dominant philosophy in multiple classrooms. Based on the 

model developed by Skinner, it attempts to apply the methods of science to the study of 

human learning. It is concerned with observable changes in behaviour that results from 

stimulus-response associations made by the learner. Behaviourism draws on the common 

practice of reinforcement through reward and punishment such as gold stars for good work 

and punishment exercises for unsatisfactory behaviour (Lerman, 2014). While practitioners 

possess a theoretical awareness of various learning styles, this must be reinforced by a 

pragmatic perspective that encourages all pupils to think metacognitively in order to take 

responsibility for their own learning. Hiebert & Grouws (2007, p. 373) add a caveat within 

mathematics education: ñAlthough theories of learning provide some guidance for research on 

teaching, they do not translate directly into theories of teaching.ò  

 

 

The theory of constructivism is at the core of the revised mathematics curriculum in Scotland. 

Influenced principally by the seminal contributions of Piaget and Vygotsky, it is an 

epistemological position which is concerned with how learners construct their own 

understanding and knowledge of an intellectual world, through experiencing events and 

reflecting on those experiences. Centred on the learner, Simon (1995, p. 115) asserts that ñwe 

construct our knowledge of our world from our perceptions and experiences, which are 
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themselves mediated through our previous knowledgeò. It differs from behaviourism in that it 

questions the origin of knowledge where knowledge is seen as created rather than received, 

mediated by discourse rather than transferred by teacher talk. While there are various forms of 

constructivism, within education and specifically relevant to this thesis, two branches are 

most relevant, namely cognitive constructivism and social constructivism.  

 

Cognitive constructivism 

Within the conceptualisation of cognitive constructivism, Piaget developed a theory centred 

on how children pass through stages of intellectual development as a result of biological 

maturation and environmental experience. The goal of his theory is to explain the mechanisms 

and processes by which the infant, and then the child, develops into an individual who can 

reason and think using hypotheses. Piaget (1997) advanced the view that the learnerôs 

construction of knowledge is a self-regulating process and that knowledge is not passively 

received from the world but created as individuals (and groups) adapt to make sense of their 

experiential worlds. In other words, knowledge is actively built up by a cognising human who 

needs to adapt to what is fit and viable but that an individualôs knowledge is in a constant 

state of change because humans are subject to an ever fluctuating reality (Von Glasersfeld, 

1991, 1995). Maclellan & Soden (2003) articulate Piagetian theory thus: 

 
 Individualsô cognitive schemes allow them to establish an orderliness and predictability in 
 their experiential worlds. When experience does not fit with the individualôs schemas, a 

 cognitive disequilibrium results, which triggers the learning process. This disequilibrium 

 leads to adaptation. Reflection on successful adaptive operations (reflection abstraction) leads 

 to new or modified concepts (accommodation), contributing to re-equilibration (p. 111).  
 

   

The implication for the classroom is that pupils learn through interaction with peers and it is 

this process of collaboration which results in their existing beliefs and assumptions being 

challenged, thus initiating change. The role of the teacher is to create stimulating and 

resourceful learning environments to facilitate appropriate activities to bring about the 

challenge. Two points are noteworthy here. One is that the classroom culture contributes to 

learning while the child contributes to the culture of the classroom (Yackel & Cobb, 1996). 

Second, during disequilibrium a pupil can often feel confused and uncomfortable as they 

grapple with new concepts for the first time but this can be harnessed positively by the teacher 

to support learning (Carter, 2008). 
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An exponent of cognitive constructivism that is promulgated within CfE is active learning. 

Though there is a lack of conceptual clarity surrounding this construct within national policy 

documents (Drew & Mackie, 2011), it is delineated on two occasions. Initially, the Scottish 

Executive (2007, p. 5) define active learning from an early years perspective as ñlearning 

which engages and challenges childrenôs thinking using real-life and imaginary situationsò. 

Later, to acknowledge secondary education, the Scottish Government (2008, p. 30) express 

that active learning should ñbuild upon childrenôs enthusiasm, inventiveness and creativityò 

and ñpromote the development of logical and creative thinking and encourage a problem-

solving approachò. A search of the literature suggests that active learning can be said to 

encompass four dimensions such as behavioural, cognitive, social and affective (Watkins, 

Carnell & Lodge, 2007; Drew & Mackie, 2011). Within such topography, Rosenthal (1995) 

argues that most mathematicians concur the best way to learn mathematics is by actively 

doing mathematics, which includes discussing it with others and by synthesizing fundamental 

ideas. Likewise, Ellerton (2013) encourages the active involvement of learners in posing 

problems during mathematics in order to demonstrate conceptual understanding and to furnish 

individuals the opportunity to solve, critique and reflect on their own mathematical problems 

including those of other peers. 

 

 

Inside a constructivist setting, to allow for the greater participation of pupils, the teacher is 

someone who promotes and orchestrates classroom discussions. Viewed through the lens of 

CfE, Reeves & Drew (2013, p. 38) draw attention to the functionality of the teacher ñwho 

must relinquish her central position in the classroom; as a source of knowledge, as the most 

dominant speaker and as the evaluator and assessor of childrenôs workò. Reeves & Drew 

(2013) allude that this shift in emphasis has connotations for teacher professional identity and 

classroom control. Questioning is of paramount importance and can generate fertile learner 

experiences. Such rich interactions force pupils to communicate their thought processes to 

represent and reflect on their encounters. The necessity to convey and answer questions 

verbally forces them to examine and even revise their concepts of reality (Vygotsky, 1978). 

However, teachers must be openly receptive to the notion that a child might regard a 

mathematical concept in quite a different way than it is perceived and that this dissonance is 

not simply reducible to missing pieces or absent techniques or methods (Confrey, 1990). 

During this communication process, Confrey (1990, p. 109) insists ñthe teacher must form an 

adequate model of the studentsô ways of viewing an idea and s/he then must assist the student 

in restructuring those views to be more adequate from the studentsô and from the teacherôs 
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perspectiveò. It may be deliberated that pupilsô levels of participation in the learning process 

are inextricably linked to their teachersô levels of participation in the cognitive learning 

process. Practitioners require a high degree of conceptual expertise and pedagogical 

knowledge fashioned by a culture of critical reflection.  

 

 

Within mathematics classrooms, pupils are actively involved in constructing their own 

mathematical knowledge opposed to memorising algorithmic procedures or endlessly 

practising a litany of similar examples. Lerman (1993) whilst contending that constructivism 

offers a justification for mixed ability classes and individualised learning makes a parallel 

between a powerful metaphor of children developing mathematical structures and the 

processes involved during mathematical thinking, particularly during problem solving. 

Another influential contribution on this theme is articulated by Ernest (1991) who makes 

explicit reference to problem solving and problem posing. He argues that the aim of teaching 

mathematics is to empower learners to create their own mathematical knowledge and to 

develop confident and autonomous problem solvers and problem posers.  

 

 

Towards the end of the last century, Ernest (1998) built his theory of social constructivism by 

arguing that the learning and teaching of mathematics is indelibly linked to a philosophy of 

mathematics. However, being furnished with a new set of theoretical or conceptual ñlensesò 

can be empowering for teachers (Prawat, 1992) but may serve to complicate an already 

overloaded working life. More prosaically, constructivism is open to interpretation. As Cobb 

(1988, p. 87) cautions: ñAlthough constructivism theory is attractive when the use of learning 

is considered, deep-rooted problems arise when attempts are made to apply it to instructionò. I 

believe that issues of intersubjectivity can be enhanced by robust pedagogical knowledge. 

Cobb (1988) highlights two essential criteria for teachers which includes acceptance of the 

responsibility to facilitate profound cognitive restructuring and conceptual reorganisation 

along with transference in the belief of what constitutes a successful learning outcome. 

Regarding the latter aspect, he avows that constructivism does not assume a one-to-one 

correspondence between pupilsô observable behaviours and the underlying conceptual 

structures. In other words, it is feasible for pupils to use the prescribed methods to solve a 

particular sets of tasks on which they have received instruction without having developed the 

desired conceptual structures (Cobb, 1988). 

 



25 

 

 
 

In my professional view, teachersô beliefs are a factor in establishing constructivist 

environments for mathematical learning. Pirie & Kieren (1992) resonate with this perspective: 

- drawing upon extensive empirical data, the authors argue that the creation of constructivist 

environments can produce improvements in the mathematical understanding of pupils. Such 

claims are supported by other researchers (e.g. Fraser, 2001; Webster & Fisher, 2003). 

Another critical theme of constructivism that has challenged teachersô beliefs is the important 

topic of assessment. Reflecting on the contributions of previous researchers, Confrey & 

Kazak (2006) maintain that providing teachers direct access to artefacts of pupilsô work can 

engage them in examining their own beliefs and in looking more deeply into pupil thinking 

and reasoning.  

 

Social constructivism  

In a similar way that the contribution of Piaget relates to cognitive constructivism, the work of 

Vygotsky has greatly influenced social constructivism. Grounded on the premise that 

development cannot be separated from its social and cultural context, social constructivism is 

a theory of knowledge that examines the knowledge and understandings of the world that are 

developed in harmonisation with human beings. A major theme of Vygotskyôs theoretical 

framework is that he believed everything is internalised on two levels. Initially, cognitive 

growth occurs through interaction with others, and then integrated into the individualôs mental 

structure. According to Vygotsky (1978):  

 
 Every function in the childôs cultural development appears twice: first, on the social level, 

 and later, on the individual level; first, between people (interpsychological) and then inside 

 the child (intrapsychological). This applies equally to voluntary attention, to logical memory, 
 and to the formation of concepts. All the higher functions originate as actual relationships 

 between individuals (p. 57). 

 

From a mathematics education perspective, social constructivism considers knowledge to be 

driven by human interactions and cultivated by learning communities composed of individual 

mathematicians. Wood, Cobb & Yackel (1995, p. 402) note: ñIt is useful to see mathematics 

as both cognitive activity constrained by social and cultural processes, and as a social and 

cultural phenomenon that is constituted by a community of actively cognizing individualsò. 

Such a process furnishes teachers with a conceptual framework to understand childrenôs 

development of knowledge. It requires them to formulate a practice that corresponds with 

their pupilsô method of learning and challenges them to reconstruct what it means to know, do 

and teach mathematics (Wood, Cobb & Yackel, 1995). Ernest (1991) introduced the notion of 

mathematical objectivity by linking subjective and objective knowledge in a cycle in which 

each contributes to the renewal of the other. A practical illustration of this concept can be 
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located during assessment. For instance, approaches which evaluate mathematical creativity, 

posing problems and reasoning ability are subjective, while traditional methods that focus on 

computational skills and procedural fluency are objective. 

 

 

A major doctrine of Vygotskyôs (1978) theory is the concept that the potential for cognitive 

development is limited to a óZone of Proximal Developmentô (ZPD). It is defined by him as 

ñthe distance between the actual developmental level as determined by independent problem 

solving and the level of potential development as determined through problem solving under 

adult guidance, or in collaboration with more capable peersò (p. 86). In simple terms, it refers 

to a range of internal knowledge that may be out of reach for a pupil working independently 

but is accessible if the pupil has support from a teacher or more capable peer (Figure 1.1). 

Goos (2004, p. 262) points out that the ZPD ñis not a physical space, but a symbolic space 

created through the interaction of learners with more knowledgeable others and the culture 

that precedes themò. Emblematic interactions infuse semiotic mediation (i.e. words, symbols, 

graphs, diagrams, etc.) and the culture within and beyond the classroom.  

 

Figure 1.1 Zone of Proximal Development (Vygotsky, 1978) 

 

 

 

From a Vygotskian perspective, teachers aid intellectual development in pupils by providing 

them with information and temporary structural support in carrying out a task, which is 

gradually reduced as pupil competency increases. This instructional technique is universally 

Independent problem solving 

Problem solving outside  
the individual's ability. Level  
of problem solving that cannot 
be accomplished independently nor 
under teacher guidance or with the 
help of a more capable peer 
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Proximal 
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known as óscaffoldingô and has been characterised as a way of operationalising Vygotskyôs 

concept of working in the ZPD (Wells, 1999). From my professional experience, many 

practitioners endorse this position as according to Hammond (2002), it naturally resonates 

with their own intuitive ideas of what it means to intervene successfully in young peopleôs 

learning. 

 

Collaborative learning  

The Scottish Government (2008, 2009) emphasises that collaborative learning will encourage 

children to reason logically and creatively through discussion of mathematical ideas and 

concepts. Vygotskyôs theories permeate collaborative learning suggesting that group members 

should have different levels of ability so more advanced peers can help less capable members 

operate within their ZPD. In its elementary form, Roschelle & Teasley (1995, p. 70) describe 

this approach as ña coordinated synchronous activity that is the result of a continued attempt 

to construct and maintain a shared conception of a problemò. It is based on the model that 

knowledge can be created within a population where members actively interact by sharing 

experiences and taking on asymmetry roles. During successful collaboration, the agent of 

inquiry is not the individual, but the knowledge-constructing group; pupils take responsibility 

for knowing what needs to be known and for ensuring that others know what needs to be 

known (Hargreaves, 2007).  

 

 

The majority of studies on collaborative learning adopt constructivism, especially theories 

from Piaget and Vygotsky, as the theoretical underpinning of peer collaborative learning (e.g. 

Fawcett & Garton, 2005) because they focus on building meaning through social interactions 

(John-Steiner & Mahn, 1996). McCrone (2005, p. 111) claims that group interplay can ñallow 

students to test ideas, to hear and incorporate the ideas of others, to consolidate their thinking 

by putting their ideas into words, and hence, to build a deeper understanding of key 

conceptsò. Discussions invite learners to justify their reasoning which can expose common 

misconceptions and lead to stronger connections between mathematical topics.  

 

 

Orchestrating collaborative learning to accommodate multiple perspectives requires teachers 

to cultivate positive interdependence, be less controlling and pupils to be autonomous 

individuals who take more responsibility for their own learning (and that of their peers). It is 

essential for teachers to derogate from a procedural driven agenda and embrace a concept 
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focused culture that promotes critical thinking and reflection. Importantly, teachers must be 

able to explore meaning and mathematical relationships through non-linear dialogue. In my 

opinion, collaborative learning is exemplified when presenting opportunities for pupils to 

tackle challenging mathematical problems prior to offering them guidance and support. This 

encourages learners to apply pre-existing knowledge that can be used to organise a method or 

a solution, prior to any intervention. Such an approach is buttressed by extensive empirical 

research evidence (Swan, 2006).  

 

 

However, preparing formative and summative assessment information is problematic. In a 

study of Scottish primary teachersô views of the assessment of collaborative learning, 

McKechan & Ellis (2014) found that practitioners are challenged to accumulate and collate 

assessment evidence while simultaneously supporting the learning. The researchers suggest 

that this tension could be reduced by the use of technology to store data spontaneously.  

 

1.3.4 Mathematical problem solving  

Mathematics as a leading subject within Scottish education has been revitalised by the 

development of a pronounced emphasis and increased cognisance of mathematics within 

learning. It has been proclaimed by the Scottish Executive (2006b, p. 18) that ñto face the 

challenges of the 21
st
 century, each young person needs to have confidence in using 

mathematical skills, and Scotland needs both specialist mathematicians and a highly numerate 

populationò. On the theme of developing effective contributors, they declare:  

 

 Mathematics offers a host of different contexts to apply skills and understanding creatively 

 and logically to solve problems. Working on suitably challenging problems individually and 

 in groups helps to develop resilience and gives opportunities to communicate solutions. The 

 future prosperity of Scotland within a competitive global economy will depend upon high 
 levels of numeracy across the population and significant numbers of our young people with 

 the mathematical competence to operate in specialist contexts such as research and 

 development environments (p. 19). 

 

The conceptualisation of mathematical problem solving is no longer considered a separate 

component but has been emphasised as fundamental to effective learning and teaching in all 

aspects of mathematics, and its assimilation is ñaddressed within all lines of development 

rather than appearing as a separate elementò (p. 20).  
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It is recognised that pupils need support in improving their mathematical problem solving 

competencies. Shortly after the implementation of CfE, evidence provided by Education 

Scotland (2012, p. 10) acknowledged in the 2011 SSLN that ñit is evident from children and 

young peopleôs responses, that there is a need to strengthen their capacity to solve problemsò. 

Teachers have a shared responsibility to ensure they address this pedagogical requirement. 

Halmos (1980, p. 523) warns that ñit is the duty of all teachers, and of course teachers of 

mathematics in particular, to expose their students to problems much more so than factsò. 

Mathematical problem solving is pivotal to doing, learning and teaching mathematics 

(Schoenfeld, 1992) and is a central goal of CfE. The Scottish Government (2010c, p. 8) 

asserts that a ñproblem solving approach is at the heart of effective learning and teaching of 

mathematicsò. Furthermore, guidelines offered to practitioners (Scottish Government, 2010b, 

p. 8) instruct teachers to ñembody problem solving as an intrinsic element of mathematical 

approachesò. Halmos (1985, p. 322) highlights that: ñA teacher who is not always thinking 

about solving problems ï ones he does not know the answer to ï is psychologically simply 

not prepared to teach problem solving to his studentsò.  

 

 

In spite of a wealth of international literature being readily available for the learning and 

teaching of mathematical problem solving (e.g. Polya, 1957; Schoenfeld, 1985; Silver, 1985; 

Schroeder & Lester, 1989; Stanic & Kilpatrick, 1989; Lester & Charles, 2003; Schoen & 

Charles, 2003; Posamentier & Krulik, 2008; Mason, Burton & Stacey, 2010; Lester & Cai, 

2016), no manifestation of this theoretical influence has been articulated within any 

mathematics curricula documentation. For example, no effort has been made to define the 

construct of a mathematical problem. In his analysis of American research, Lester (1994, p. 

661) professed that ñproblem solving has been the most written about, but possibly the least 

understood, topic in the mathematics curriculumò. At present, it is unknown to what extent 

mathematical problem solving is mobilised within Scottish schools. 

 

1.3.5 Mathematical problem posing  

On review of CfE mathematical framework, no explicit pedagogical provision is specified for 

the conceptualisation and operationalisation of mathematical problem posing. Nevertheless, it 

is widely accepted within the mathematics education research community that problem posing 

is regarded as a vehicle for promoting conceptual understanding, problem solving and 

creativity (Cai et al., 2015). I reject the purported notion that problem posing is considered 

implicit or tacit mathematical knowledge enacted by all teachers but instead argue that it is 
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deemed a field in its own right. Consequently, I posit that mathematical problem posing 

requires to be embedded within CfE and present a rational for its formal inclusion in this 

thesis. An illustration of where mathematical problem posing may assimilate within CfE is 

displayed in Figure 1.2. 

 

Figure 1.2 Proposed location of mathematical problem posing within CfE experiences and  
  outcomes  
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As in the case of mathematical problem solving, it is unknown to what extent mathematical 

problem posing is being currently mobilised in Scottish schools.  

 

 

1.4 Aims of the research 

Within the structure of CfE, responsibility for the learning and teaching of mathematics is 

shared reciprocally between primary and secondary establishments. This cross-sector 

accountability transmits to primary and secondary mathematics teachers respectively, despite 

the diversities in entry requirements and training required for both interrelated professions. 

There are two primary aims of this study: Firstly, to critically examine a reconceptualization 

of the existing mathematics curriculum by addressing a policy gap initiated by the omission of 

mathematical problem posing. Secondly, to provide empirical evidence of Scottish teachersô 

beliefs and espoused classroom practices of mathematical problem solving and problem 

posing. It is suggested that the evidence gathered can help to illuminate current professional 

practice and shape future policy. Some of the variables that impinge upon the optimisation of 

integrating mathematical problem solving and problem posing are identified. 

 

 

In order to attempt to highlight some of the dynamics that may indirectly impact on teachersô 

mathematical beliefs in Scotland, I have provided a simplistic schematic overview illustrating 

the conventional position of a teacher within the national framework of CfE (Figure 1.3). It 
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may be observed within this hierarchical structure, both mathematical problem solving and 

problem posing are not included as national assessment components by the SQA.  

 

Figure 1.3 Overview of teacher within the national framework of CfE    
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1.5 Research questions 

This study sought to answer the following specific research questions: 

 

Question 1  

To what extent should mathematical problem posing be embedded within the mathematical 

framework of Curriculum for Excellence? 

Sub questions: 

(a) What would be the value for learners of emphasising mathematical problem posing in 

 the curriculum? 

(b) What would be the implications for teachersô professional practice of implementing 

 mathematical problem posing in their pedagogy? 
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Question 2  

Are there any differences in the mathematical beliefs of Scottish primary and secondary 

mathematics teachers? 

Sub questions: 

(a) What is the importance of learning theory of shaping teachersô mathematical beliefs? 

(b) What are teachersô beliefs about mathematical problem solving?   

 

Question 3  

What factors impact on the mathematical beliefs of primary and secondary mathematics 

teachers?  

Sub question: 

(a) What are the practical characteristics that support or constrain the development of 

 teachersô beliefs? 

 

 

In order to address these research questions, I initially conducted a literature review of 

mathematical problem solving, mathematical problem posing and teachersô beliefs. This 

served to provide several theoretical frameworks for this research.  

 

 

1.6 Methodology  

This study involved two strategies. First, a systematic literature review was undertaken to 

search for empirical evidence of the educational benefits of mathematical problem posing. 

Second, a mixed methods explanatory design was employed using questionnaires and semi-

structured interviews as the instruments to measure mathematical beliefs and capture levels of 

current professional practices. Descriptive and inferential statistics (e.g. bar graphs, 

histograms, factor analysis, independent samples t-tests and ANOVA) were utilised to analyse 

quantitative data. Thematic analysis was used for the interrogation of qualitative data.  

 

 

1.7 Outline of the thesis  

Prior to providing an outline of the structure of the thesis, it is necessary for me to clarify the 

nature of the research contained herein. This research is twofold. First, it seeks to address a 

legitimate gap in knowledge generated by the mathematics policy of CfE which failed to 

encapsulate changes in contemporary knowledge and emerging research from the 
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mathematics education community. The contribution to knowledge will be a compelling 

argument for the inclusion of mathematical problem posing within CfE. Second, this research 

is anchored on the premise that teachersô beliefs are powerful cognitive agents which are 

intertwined with their professional practice. It seeks to explore an important gap in knowledge 

in Scottish education by capturing Scottish teachersô mathematical beliefs and espoused 

professional practices. The contribution to knowledge will be to provide empirical evidence 

that can serve as importance indicators of current levels of classroom practices of 

mathematical problem solving and problem posing. Interpretation of findings from the data 

collection process will be evaluated against existing policy including previous research, from 

which, it is anticipated that recommendations will emerge that will improve the standard of 

Scottish education. Following on from this introductory chapter, this thesis is organised thus: 

 

 

Chapter Two provides a literature review of mathematical problem solving. It addresses the 

conceptualisation of problem solving making reference to the theoretical work of Polya 

(1957) and Schoenfeld (1985, 1992), among others. It examines the relationship between 

heuristics and pupil performance, the use of multiple solutions and factors contributing to 

successful problem solving. Included is a discussion of the three types of teaching approaches 

to problem solving described by Stanic & Kilpatrick (1989) and consideration of assessment.   

 

 

The third chapter focusses on introducing the reader to the conceptualisation of mathematical 

problem posing. Building on the early work of Kilpatrick (1987) and Brown & Walter (2005), 

it discusses the importance of problem posing in school mathematics and illustrates multiple 

theoretical perspectives and frameworks. Incorporated is an examination of the advantages 

and limitations of problem posing and justification of why it is a rich area for research. 

 

 

Chapter Four contains a literature review of the construct of teachersô beliefs. An assortment 

of theoretical perspectives is offered that emphasise the profound influence of this critical 

dimension. Discussion of the impact of teachersô beliefs and the relationship between 

practices is presented. 
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The fifth chapter is concerned with methodology and methods. I have attempted to illuminate 

the core components of research such as ontology and epistemology that have afforded my 

research objectivity. Documented is a narrative of my research position and assessment of the 

interdisciplinarity of this study. Previous empirical studies measuring teachersô beliefs are 

listed. Justification of the methods selected for each research question including results of a 

systematic literature review is provided. Information on design, development and piloting are 

integrated. Ethical considerations are explained in detail.  

 

 

Chapter Six analyses the data gathered from the questionnaires and addresses the second and 

third research questions. It presents the statistical results of phase one of the mixed methods 

explanatory design. Encompassed is validation of the parametric tests and a brief description 

of volunteered participantsô comments. 

 

 

Chapter Seven analyses the results of interviews undertaken and addresses the second and 

third research questions. It presents the qualitative results of phase two of the mixed methods 

explanatory design. Participant information and emergent themes are depicted.   

 

 

The eighth chapter presents the findings of the research, focusing on each of the three 

research questions. I discuss the lessons from previous research to make comparisons.   

 

 

In the final chapter, I draw together the various strands of the thesis in order to tender my 

conclusions. This consists of limitations of the study as well as implications for policy and 

practice. Recommendations and suggestions for further research are proposed. The ultimate 

section is devoted to a synopsis of what I have learned as a doctoral student.  

 

 

In summary, this chapter has laid the foundations for this thesis. The following chapter 

provides a literature review of mathematical problem solving.  
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CHAPTER TWO 

 
Mathematical Problem Solving 

 

 
During the last fifty years or so, a considerable amount of literature has been published on 

mathematical problem solving. In this chapter, I attempt to outline the key ideas and theories. 

In the first section, it is necessary to offer a background in order to contextualise my research.  

 

 

2.1 Introduction 

For more than two thousand years, mathematics has provided a powerful universal language 

which has acted as an essential ingredient of the anthropological search for knowledge and 

understanding. It is underpinned by patterns, rigorous proofs and beautiful theorems which 

postulate truths of mathematical statements, conjectures and by intellectual and logical 

arguments. During the last century, the accumulation of mathematics and its applications has 

accelerated resulting in the emergence of contemporary branches of mathematics such as 

game theory, quantum mechanics, computational mathematics, operational research and graph 

theory. Intriguingly, mathematics has been portrayed by Carl Frederick Gauss as the queen of 

sciences, opined as an art (Lockhart, 2009) and paradoxically, by Bertrand Russell, as cited by 

Garnier & Taylor (2010, p. 52), being ñthe subject in which we never know what we are 

talking about, or whether what we are saying is trueò. Devlin (2003) eloquently captures the 

essence of what mathematics is all about: 

 

 As the science of abstract patterns, there is scarcely any aspect of our lives that is not 
 affected, to a greater or lesser extent, by mathematics; for abstract patterns are the very 

 essence of thought, of communication, of computation, of society, and of life itself (p. 7). 

 

Mathematical advances have derived both from the attempt to explain the natural world and 

from the desire to arrive at a form of inescapable truth from careful reasoning. These remain 

rich and influential motivations for mathematical thinking. Mathematics has been successfully 

applied to solve numerous complex and profound aspects of the human and societal domain. 

Archetypal illustrations include biologistôs trying to understand the genetic code, 

development of the internet, predicting population growths, synthesis of new materials, 

warfare systems design, analysis of traffic patterns, forecasting earthquakes and modelling of 

social phenomena. Skemp (1987) emphasises the importance of mathematics to society and 

draws attention to practical applications: 
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 Mathematics is the most abstract, and so the most powerful, of all theoretical systems. It is 

 therefore potentially the most useful; scientists in particular, but also economists and 
 navigators, businessmen and communications engineers, find it an indispensable ótoolô (data-

 processing system) for their work (p. 17-18).  

 

Today, mathematics remains as a crucial device for shaping the future of mankind, whilst 

maintaining a prevalent influence on daily life. More prominently, it is perceived to be a 

major factor which contributes to the wealth of a nation. Napoleon, as cited by Boyer & 

Merzbach (2011, p. 423) famously proclaimed: ñThe advancement and perfection of 

mathematics are intimately connected with the prosperity of the state.ò Indigenously, in 

attempting to raise national awareness of mathematics, The Scottish Government (2016b) 

warn: ñIt is essential that our workforce is confident and fluent in maths if Scotlandôs 

economy is to continue to compete internationallyò (p. 26). Conversely, the same 

administration recognises the grave intrinsic challenges that remain by acknowledging our 

dismal public image of mathematics. They warn that ñScotland has a maths problem. Too 

many of us are happy to label ourselves as ñno good with numbers.ò This attitude is deep-

rooted and is holding our country back educationally and economicallyò (p. 3). 

 

 

The responsibility of mathematics education is designed towards tackling contemporary 

problems, nurturing creative and critical thinking skills and cultivating productive methods of 

acquiring and retaining new facets of analytical information within a constantly changing 

dynamic environment. In schools, pupils need to develop more than tangible mathematical 

knowledge;  transferrable skills such as the ability to reason logically, in order to prepare for a 

fluctuating competitive market place, particularly as the exponential growth of technology is 

making larger quantities of information more accessible. On leaving school, young people 

need to adapt further to unfamiliar or capricious situations (compared to their counterparts in 

the past) and be equipped with the ability to provide innovative and resourceful solutions to a 

wide range of challenges. Therefore, schools have an obligation to empower learners to 

become creative and critical thinkers as well as mathematically literate citizens. Naturally, 

such a desired outcome is only plausible if pupils are furnished with a myriad of mathematical 

problem solving skills.  

 

 

 

 



37 

 

 
 

2.2 Problem solving and mathematics education 

It is important to consider the position of problem solving within mathematics education. 

Castaneda, Gibb & McDermit (1982, p. 22) contend that: ñA significant proportion of human 

progress can be attributed to the unique ability of people to solve problems. Not only 

problem-solving ability critical to human progress and even to survival itself, but is one of the 

most important aspects of mathematicsò. Gagne (1985) in classifying the cognitive process 

expresses the view that problem solving is the highest form of mathematical learning.  

 

 

In the same vein, Krulik & Rudlik (1993, p. 9) assert that problem solving is a lifetime 

activity and that all other activities are subordinate by arguing that the ñteaching of problem 

solving should be continuous. Discussion of problems, proposed solutions, methods of 

attacking, etc. should be considered at all timesò. The authors underline that primary 

practitioners have the responsibility for initiating this process ñand thus laying the foundation 

for building the childôs capacity to deal successfully with his or her future problem-solving 

encountersò. Likewise, Lester & Lambdin (2004, p. 192) believe ñthe primary goals of 

mathematics learning are understanding and problem solving, and that these goals are 

inextricably related because learning mathematics with understanding is best supported by 

engaging in problem solvingò. Similarly, prominent mathematician Paul Halmos emphasises 

the significance of problem solving in schools and argues that it is the responsibility of both 

sectors to promote. Halmos (1980) maintains:  

 

 The major part of every meaningful life is the solution of problems; a considerable part of the 
 professional life of technicians, engineers, scientists, etc., is the solution of mathematical 

 problems. It is the duty of all teachers and of teachers of mathematics in particular, to expose 

 their students to problems much more than to facts (p. 523).  

 

However, it is essential to distinguish between problem solving as a separate activity and as 

an approach to mathematics (Schoenfeld, 1992). Consequently, it is of no surprise that for 

educational systems throughout the world, the conceptualisation and operationalisation of 

mathematical problem solving is a foremost pedagogical curriculum objective. For example, 

Xenofontos & Andrews (2012, p. 70) maintain that: ñIn many European countries, problem-

solving and its related skills form key expectations of the intended curriculum for students of 

all agesò. In England, the Cockcroft Report (1982, p. 71) advocated that ñmathematics 

teaching at all levels should include opportunities for problem solvingò. Both Australia 

(Australian Education Council and Curriculum, 1991) and America (NCTM, 1980, 1989, 

2000, 2010, 2014) have strongly recommended that the learning and teaching of school 
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mathematics should be centred on problem solving. The NCTM (2000) postulates ñunless 

students can solve problems, the facts, concepts, and procedures they know are of little useò 

(p. 182). Significantly, they articulate that problem solving is an ñintegral part of all 

mathematics learning, not an isolated part of the mathematics programò and that 

ñInstructional programs should enable all students to build new mathematical knowledge 

through problem solvingò (p. 52).   

 

 

Similarly, in Singapore, problem solving is the overarching approach to primary and 

secondary mathematics education and at the heart of learning and teaching (Figure 2.1). As 

explicitly outlined in the Ministry of Education (MOE, 2007, p. 3): ñProblem solving is 

central to mathematics learning. It involves the acquisition and application of mathematical 

concepts in a wide range of situations, including non-routine, open-ended and real-world 

problems.ò The intimate relationship between mathematics and problem solving was further 

strengthened in 2011 with the introduction of a research project known as MProSE. Its vision 

is to integrate problem solving into the everyday teaching of mathematics in all Singaporean 

schools, regardless of ability or sector.  

 

Figure 2.1 Singapore mathematics curriculum framework (Ministry of Education, 2007) 

 

 

 

2.3 Conceptualisation 

Whilst the portrayal of mathematics is universally known to all, many researchers and 

educationalists have described an assortment of different representations of mathematical 
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problem solving without agreeing on a conceptual definition (Lesh & Zawojewski, 2007; 

English & Sriraman, 2010; Lester, 2013; Schoenfeld, 2013). Critics such as Mamona-Downs 

& Downs (2005) maintain that the formation of an undisputed description of mathematical 

problem solving may be elusive whilst others believe that some explanations are outdated 

(e.g. Lesh, Zawojewski & Carmona, 2003) or have different inferences (e.g. Wilson, 

Fernandez & Hallaway, 1993). Given innumerable meanings already in use, Grugnetti & 

Jaquet (2005), as cited by Chamberlin (2008, p. 2), ñsuggest that a common definition of 

mathematical problem solving cannot be providedò.   

 

 

The research so far has tended to focus on expanding a collection of illustrations. For 

example, mathematical problem solving is engaging in a task for which a solution is not 

known in advance (NCTM, 2000). Schoenfeld (1983, p. 41) declares that a ñproblem is only a 

problem (as mathematicians use the word) if you donôt know how to go about solving it. A 

problem that has no ósurprisesô in store, and can be solved comfortably by routine or familiar 

procedures (no matter how difficult!) is an exerciseò. Interestingly, Schoenfeld (1985, p. 71) 

provides an alternative vision of problem solving as ña particular relationship between the 

individual and the task that makes the task a problem for that personò. Similarly, Orton & 

Frobisher (2005, p. 25) proclaim that ña mathematical problem for one learner may be an 

exercise for anotherò. What is distinctive about the previous two definitions is that they 

recognise the person experiencing problematicity, which raises an obvious question from a 

teachersô perspective about how to classify such a task. Polya (1981) conveys problem 

solving as a feature of human endeavour, by stating that: 

 

 Solving a problem means finding a way out of a difficulty, a way around an obstacle, 

 attaining an aim which was not immediately attainable. Solving problems is the specific 

 achievement of intelligence, and intelligence is the specific gift of mankind: problem solving 

 can be regarded as the most characteristically human activity (p. ix). 

 

Alternatively, Mayer (1985, p. 123) succinctly states that: ñA problem occurs when you are 

confronted with a given situation ï letôs call it the given state ï and you want another 

situation ï letôs call that the goal state ï but there is no obvious way of accomplishing your 

goalò. According to Cai & Lester (2005, p. 221), problem solving ñis an activity requiring the 

individual to engage in a variety of cognitive actions, each of which requires some knowledge 

and skill, and some of which are not routineò. McLeod (1988, p. 135) outlines mathematical 

problems as ñthose tasks where the situation or goal is not immediately attainable and there is 

no obvious algorithm for the student to useò. Likewise, Posamentier & Krulik (2008, p. 1) 
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asserts that ña problem is a situation that confronts a person, that requires resolution, and for 

which the path to the solution is not immediately knownò.   

 

 

In contrast, Verschaffel, Greer & De Corte (2000, p. ix) highlight a common misconception 

amongst teachers that word problems are ñverbal descriptions of problem situations which 

one of more questions are raised for which the answer(s) can be obtained by the application of 

one or more mathematical operations to the numerical data available in the problem 

statementò. What is troubling about this definition is that it does not refer to cognitive 

thinking and presumes that a solution is easily achieved by applying a standard procedure. 

Previously, Smith (1986, p. 16) warns practitioners to exercise better judgment in interpreting 

ña set of words which are wrapped around some computational exerciseò.  

 

 

Cai & Nie (2007, p. 471) argue that problem solving activities are viewed as a goal to achieve 

and as an instructional approach supported by experience: ñThe purpose of teaching problem 

solving in the classroom is to develop studentsô problem solving skills, help them acquire 

ways of thinking, form habits of persistence, and build their confidence with dealing with 

unfamiliar situationsò. However, Orton (2004, p. 35) takes into account the cognitive 

processes involved and contends that ñsuccessful solutions of problems are dependent on the 

learner not only having the knowledge and skills required but also being able to tap into the 

relevant networks and structures in the mindò. Whilst, Lester & Kehle (2003) include 

reference to earlier experiences, knowledge and cognitive actions:  

 
 Successful problem solving involves coordinating previous experiences, knowledge, familiar 
 representations and patterns of inference, and intuition in an effort to generate new 

 representations and related patterns of inference that resolve the tension or ambiguity (i.e. 

 lack of meaningful representations and supportive inferential moves) that promoted the 
 original problem-solving activity (p. 510).  

 

This definition is inadequate since it only serves to account for effective problem solving. 

Provocatively, Stanic & Kilpatrick (1989, p. 1) caution that ñproblem solving has become a 

slogan, encompassing different views of what education is, of what schooling is, of what 

mathematics is, and why we should teach mathematics in general and problem solving in 

particularò. Understandably, with the diversity of operational definitions, Schoenfeld (1992) 

strongly recommends that clarification is required. He writes: 

 The term [problem solving] has served as an umbrella under which radically different types 

 of research have been conducted. At minimum there should be a de facto requirement (now 
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 the exception rather than the rule) that every study or discussion of problem solving be 

 accompanied by an operational definition of the term and examples of what the author 
 means... Great confusion arises when the same term refers to a multiple of sometimes 

 contradictory and typically underspecified behaviors (p. 363-364).  

 

It has been established that problem solving encompasses more than a special importance in 

mathematics education and is generally accepted as a means of advancing critical thinking 

skills (Schoenfeld, 1985). It is the heart and soul of the work of mathematicians, engineers, 

scientists, economists, computer programmers, including all other professions that require the 

utilisation of higher-order cognitive processes. Sakshaug, Ollson & Olson (2002) portray the 

mathematical problem solving process experience as a mission that:  

 
 encompasses the acts of exploring, reasoning, strategising, estimating, conjecturing, testing, 

 explaining and proving. It is a very active process for those involved. Through the problem 
 solving, we are challenged to think beyond the point where we were when we started, we are 

 challenged to think differently. We are challenged to extend our thinking about a situation in 

 a way that is new or different (p. vi). 

 

What is appealing about this definition is that it acknowledges many mathematical functions. 

In contrast, the following definition offered by Lesh & Zawojewski (2007, p. 782) is intended 

to embrace creative thinking: ñA task, or goal-directed activity, becomes a problem (or 

problematic) when the ñproblem solverò (which may be a collaborating group of specialists) 

needs to develop a more productive way of thinking about a given situationò. While a 

multiplicity of definitions of mathematical problem solving have been suggested, this thesis 

will use the definition submitted by PISA who saw it as: 

 
 is an individualôs capacity to engage in cognitive processing to understand and resolve 

 problem situations where a method of solution is not immediately obvious. It includes the 
 willingness to engage with such situations in order to achieve oneôs potential as a constructive 

 and reflective citizen (OCED, 2014, p. 30).  

 

This delineation captures a number of important features such as the employment of a 

strategy, the non-algorithmic nature of the solution and the need for perseverance. 

 

2.3.1 History of mathematical problems 

Mathematical problems have existed for thousands of years and have been enriched by 

various contributions from the likes of Babylonian, Egyptian, Greek and Islamic sources. 

Euclidôs Data, which is considered the pedagogical strand of Euclid, is a collection of 

geometrical problems. During the Medieval European mathematics period, Fibonacci posed: 
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 A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many 

 pairs of rabbits can be produced from that pair in a year if it is supposed that every month 
 each pair begets a new pair, which from the second month on becomes productive? 

 

This famous problem directed Fibonacci to the introduction of the Fibonacci sequence, which 

has been subsequently applied to the curvature of naturally occurring spirals, combinatorics 

and stock market analysis. One of my favourite mathematical problems involving the 

transcendental number Ὡ was posed during the scientific revolution. Joseph Fourier proved 

that Ὡ was irrational by using contradiction. In modern times, at the beginning of the twentieth 

century, David Hilbert, outlined twenty three unsolved mathematical problems to the 

International Congress of Mathematicians in Paris. Several of his problems have since been 

solved (such as Fermatôs last theorem by Andrew Wiles), partially disentangled or remain 

unanswered (e.g. Riemann hypothesis). Today, many problems remain unsolved in 

mathematics, mainly attributed to the continuous formation of new problems. 

 

 

Interestingly, countless historical examples exist where observation and intuition have 

directed mathematicians to offer logical and accurate solutions to problems. However, there 

are cases where it has navigated to wrong suppositions or incomplete or erroneous 

mathematical proofs. For example, Euler once conjectured that the Diophantine equation, 

ὃ  ὄ  ὅ  Ὀ , has no solution in positive integers. Remarkably, it took more than two 

hundred years for this statement to be disproved (Elkies, 1988).   

 

 

It is disingenuous to suggest that inaccurate solutions to mathematical problems are of no 

intrinsic educational value. On the contrary, they can stimulate rich classroom interactions in 

order to strengthen deep conceptual understandings. Within my own professional practice, I 

have regularly posed the fashionable division by zero fallacy: óIs 1 + 1 = 1 a true statement?ô 

It has generated a positive learning experience whilst anticipating pupils recognising the 

invalidity of line five, as follows:  
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It is essential to consider if this previous task can be classified as a legitimate mathematical 

problem. By undertaking such a deliberation, it focusses attention on the generic structure of 

mathematical problems. Unequivocally, it is a genuine mathematical problem since it can 

foster reason, communication, interest and curiosity, while developing a positive disposition 

towards mathematics.  

 

 

Furthermore, unsuccessful attempts at solving such a problem or in fact any historical 

problem is not unproductive. In a study of 25 American undergraduates conducted by Moser 

et al. (2011), it was found that individuals with a growth mind-set had a greater awareness of 

errors than individuals with a fixed mind-set and thus were able to rebound better from 

mistakes. Exhibiting such a tendency during mathematical problem solving can help to 

promote higher order thinking skills. In describing mathematical thinking processes, Mason 

(1999) professes that: 

 
 Failure can be more useful than success. One challenging problem teaches you far more than 

 many easy problems. Getting stuck gives you an opportunity to learn - when ideas come too 
 readily, you have no marker to return to, no peg from which to extend your network of cues 

 and triggers (p. ix).   

 

 

2.4 Fundamental characteristics 

It is imperative that a worthwhile mathematical problem should offer a suitable challenge 

while simultaneously providing an opportunity to learn important mathematics. Such a task 

should initiate disequilibrium and perplexity (Lambdin, 2003), be intriguing, invite hard work 

and direct pupils to investigate mathematical ideas and methods of thinking towards the 

learning goal (Lester & Cai, 2016). In endorsing the mandatory necessity of challenge, 

Schoenfeld (1985) contends that the task should be an intellectual impasse rather than a 

computational one. 

 

 



44 

 

 
 

However, not all mathematical problems are germane for classroom use. Some are 

contextualised within artificial situations which erroneously promote the employment of 

algorithmic exercises. Pupils are constrained to implement trivial procedures and manifest the 

false expectation that a readily available solution exists for every problem. The resulting 

vulnerability of learners is being ill-equipped in confronting authentic real life mathematical 

problems, where the solution method is not immediately obvious (Schoenfeld, 1992). 

Practitioners must consider the needs of all learners before implementing any task. Orton 

(2004) cautions that sensible attention be afforded when selecting a mathematical task for 

instruction. He argues that:  

 
 One aspect of problem-solving in mathematics is that often the problems are divorced both 
 from the mainstream subject matter and also from the real world. Such puzzles may contain 

 great interest for some children, but others may not see the point and be demotivated. Such 

 puzzles are unlikely to produce knowledge or rules which are useful or applicable elsewhere 
 (p. 26).     

 

Nonetheless, in order to nurture a community of learners, primary and secondary mathematics 

teachers should follow the wisdom of Polya (1957), who advocates a great opportunity that 

awaits: 

 

 If he [teacher] fills his allotted time with drilling his students in routine operations, he kills 
 their interest, hampers their intellectual  development, and misuses his opportunity. But if he 

 challenges the curiosity of his students by setting them problems proportionate to their 

 knowledge and helps them to solve their problems with stimulating questions, he may give 

 them a taste for, and some independent means of, independent thinking (p. xxxi). 

 

Selecting an interesting and challenging problem that can stimulate mathematical learning is a 

fundamental skill for any teacher. Too often, young people are presented with the exclusive 

drudgery of following ódrill and practiceô routines which only serve to augment computational 

skills whilst instantaneously disengaging learners. Schoenfeld (1994a, p. 60) forewarns all 

teachers of this danger: ñWhen mathematics is taught as dry, disembodied, knowledge to be 

received, it is learned (and forgotten or not used) in that wayò. It has been thought that a good 

problem can be justified by successfully applying the augmentation and proof strategy of 

óconvince yourself, convince a friend, convince an enemyô (Mason, Burton & Stacey, 2010). 

 

 

By directing attention to the type of suitable mathematical problems, focus is drawn to the 

subjective views of teachers. In short, this places more emphasis on the role of the teacher to 

select and develop worthwhile mathematical tasks that create opportunities for pupils to 

develop mathematical understandings, competence, interest and dispositions (NCTM, 1991). 
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In searching for a definitive set of criteria for defining the characteristics of a worthwhile 

problem, the NCTM (2010) refer to the work of Lappan & Phillips (1998). The authors offer 

excellent guidelines in the shape of ten criteria although they emphasise that it is not 

reasonable to expect that every problem selected satisfies all the criteria but should be 

dependent on a practitioners instructional goals:  

 
1. The problem has important, useful mathematics embedded in it. 
2. The problem requires higher-level thinking and problem solving. 

3. The problem contributes to the conceptual development of students. 

4. The problem creates an opportunity for the teacher to access what his or her students are 
learning and where they are experiencing difficulty. 

5. The problem can be approached by students in multiple ways using different solution 

strategies. 

6. The problem has various solutions or allows different decisions or positions to be taken and 
defended. 

7. The problem encourages student engagement and discourse. 

8. The problem connects to other important mathematical ideas. 
9. The problem promotes the skillful use of mathematics. 

10. The problem provides an opportunity to practice important skills (p. 1-2). 

 

The NTCM (2010) highlight that the first four criteria should be considered essential in the 

selection of all mathematical problems. Nevertheless, an important caveat to acknowledge is 

that an appropriate choice of problem does not guarantee that successful mathematical 

learning will occur (Lester & Cai, 2016). In my professional experience, this will depend on a 

number of interrelated dimensions but in particular, the kind of classroom discourse and 

intervention that normally takes place during mathematics lessons between teacher and pupil. 

For example, some teachers do not share the belief or have the patience to allow pupils to 

struggle with challenging mathematical problems, thereby eliminating the requirement to 

stimulate independent and higher level thinking (Stillman et al., 2010).   

 

 

In her informative analysis of problem based learning, Sockalingam (2015) provides a 

valuable insight into the structural elements of a problem. She draws on a previous study of 

34 Singaporean biomedical undergraduates which identified eleven characteristics grouped by 

ófeatureô and ófunctionô (Figure 2.2). However, her conclusions would have been more 

persuasive if she had considered studies involving mathematics problems.    
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Figure 2.2 Function and feature characteristics of problems (Adapted from Sockalingam, 2015) 

 

 

2.4.1 Classification  

One of my satisfying childhood memories was solving the classic puzzle involving a man 

who has to transport a fox, a chicken and a sack of corn across a river using a rowing boat, 

which can only carry him and one other object. The circumstances dictated that if the fox and 

the chicken are left together, the fox will eat the chicken and if the chicken and the corn are 

left together, the chicken will eat the corn. How does the man do it? While such puzzles are 

designed to manifest reasoning and thinking processes (Joanssen, 1997), it is debatable if their 

content neutral and decontextualized nature, evident in many cases, are relevant to the 

promotion of mathematical problem solving.  
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Nevertheless, it is important to understand the classification of mathematical problems that 

can be presented to learners in order to identify the type of solution required (Polya, 1981). 

Thus far, a number of studies have classified mathematical problem types used in schools. 

The three most cited studies refer to óroutine and non-routineô problems (McLeod, 1994), 

óopen and closedô problems (Boaler, 1998) and ówell and ill-structuredô problems (Jonassen, 

1997). Arguably, all mathematical problems serve a valuable purpose but different categories 

of problems will accomplish different learning objectives. Specific problems require an 

element of recall and formulae, some stimulate the need for divergent strategies, others 

depend on logic and reasoning, selected have multiple solutions or demand decision making 

and creativity (Jonassen, 1997).   

 

2.4.1.1 Routine and non-routine 

Critically, teachers must be able to distinguish between routine mechanical algorithmic tasks 

accentuated by facts or procedures and unfamiliar activities designed to help pupils construct 

a deeper understanding of mathematical ideas (e.g. Polya, 1957; Schoenfeld, 1985; Stanic & 

Kilpatrick, 1989; Krulik & Rudnick, 1993; Mayer, 2003; Orton & Frobisher, 2005; Mason, 

Burton & Stacey, 2010). Schoenfeld (1988) makes a valuable contribution to this argument. 

Based on his American case study of secondary pupils, he found that although learning and 

teaching was successful from a curriculum perspective, learners developed a fragmented 

conceptual understanding including flawed beliefs about mathematics. For example, 

participants believed that mathematical problems can be solved within minutes and that it is 

acceptable to give up quickly. If an activity is reduced to replicating the technique imposed by 

the educator, it can create an illusion of mathematical competence by simple memorising and 

reproducing the correct method to manipulate symbols, and may even come to promote the 

believe that obtaining the correct answer exceeds the need for understanding (Goos, Galbraith 

& Renshaw, 2004). As Yeo (2007) reminds us: 

 

 If a teacher does not know the differences between the types of mathematical tasks, how is he 

 or she to use them to cultivate different types of skills and thinking? If a teacher refers to 

 standard mathematics textbook tasks as óproblemsô that the students should ósolveô, then he or 
 she may not realise that practising this type of task is not mathematical problem solving (p.1). 

 

If by poor judgement or otherwise, practitioners restrict pupils to repetitive and computational 

tasks, many will be unprepared to solve genuine mathematical problems whilst 

simultaneously extinguishing their motivation and natural curiosity.  
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Before proceeding to examine other classifications, it is necessary to provide illustrations of 

archetypal tasks found within mathematics textbooks active within Scottish primary and 

secondary schools (Figure 2.3). The provision of a real life context is emblematic but 

surveyed as a solitary feature; its inclusion does not impact on the level of challenge 

implanted within the parameters aligned to a mathematical task.  

 

 

Evaluation of the six mathematical tasks illustrated in Figure 2.3, reveal that in spite of the 

varying levels of complexity, a shared commonality exists with each solution in that a 

standard procedure can be applied to obtain a correct answer. Such routine tasks resonate with 

the objective articulated by Lester (1980, p. 31) to ñprovide students with practice in using 

standard mathematical procedures, for example, computational algorithms, and use of 

formulasò. The first task is found by multiplying the area of the grass lawn by the unit cost 

per square meter to obtain £990. The next task requires knowledge of rounding and awareness 

that the numbers must be whole numbers i.e. 85 and 94. The third task can be answered by the 

summation of (18 x £0.45) + (6 x £0.30) + £3.99 = £13.89. The fourth task is a recurrence 

relation which begins with the sequence ό  = 0.75ό + 20, where ό = 160 ml. The amount 

of drug remaining is calculated by finding ό (105 ml). The fifth task employs a standard 

integration formula for volume of solid of revolution to obtain 2570 cm
3
. The final task may 

appear sophisticated since proofs tend to extend mathematical thinking due to an array of 

theorems, axioms and inferences which are required to construct a rigorous argument. 

However, in this standard case, ὲ = 1 is initially proved and an óinduction ruleô applied to 

establish any arbitrary value. Logically, the degree of challenge within a proof question will 

determine the nature of classification, although evaluation may be subjective. Proofs that 

require the creation of new mathematical concepts or derive novel theorems are obvious 

exemplars of mathematical problems (Powell et al., 2009).  

 

Figure 2.3 Examples of mathematics textbook tasks 
 

 

Task 1  The plan of a rectangular grass lawn is shown below. Find the total cost of the lawn 

  given that the cost per square metre of grass lawn is £13.75.  [Third level] 
 

 

 
          4m  

        4.50m 

 

 

                18m  
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Task 2  Write down the lower and upper bounds of a crowd of people estimated at 90 to the 

  nearest 10 people.  [Second level] 
 

Task 3  An Isle of Lewis photographer charges the following rates: 

 
  Å 45p per photograph for the first 18 photographs printed 

  Å 30p per photograph for any further photographs printed 

  Å Ã3·99 for a CD of the photographs 

 
  How much will it cost to have 24 photographs printed plus a CD?  [Fourth level] 
 

Task 4  A patient is injected with 160 ml of a drug. Every six hours 25% of the drug passes 

  out of her bloodstream. To compensate, a further 20ml dose is given every 6 hours. 
  Calculate the amount of drug remains after 24 hours.  [Higher] 

 

Task 5  A plastic bowl is modelled by rotating the curve ώ  Ὡ  between ὼ = 15 and ὼ = 30 

  through 2“ radians about the ὼ-axis as shown in the diagram. Find the volume of the 

  bowl.  [Advanced Higher] 

 

 
        
Task 6  Prove by mathematical induction,  

       

ὶ
ὲὲ ρ

ς
  ᶅὲᶰὤ  

      [Advanced Higher]  

 

Notwithstanding the actuality that any standard mathematical textbook task may be 

considered ósophisticatedô if viewed through the lens of a less experienced individual or 

someone lacking confidence with performing routine procedures (Schoenfeld, 1985; Orton & 

Frobisher, 2005), I will proceed with a trajectory to establish additional boundaries between 

familiar constructs associated with mathematical problem solving. Justification for doing so is 

further underlined by the misappropriation of terminology such as task, problem, activity and 

investigation engrained within various CfE narratives (e.g. Scottish Government, 2009, 

2010a, 2011a, 2014). For example, in a professional learning resource for practitioners, 

Education Scotland (2015, p. 2) reiterate their conceptualisation of numeracy by expressing 

its detachment from mathematics followed by an inference that numerical skills are 

exclusively associated with solving mathematical problems: ñNumeracy is not only a subset 



50 

 

 
 

of mathematics... We are numerate if we have developed: The confidence and competence in 

using number which will allow individuals to solve problemsò. Such contradictory language 

only serves to confuse teachers and highlights urgency for conceptual clarity. Furthermore, 

this issue is compounded by the fact that no universally accepted definition exists for each 

term (Powell et al., 2009).  

 

 

As explained earlier, word problems are not mathematical problems but are more accurately 

compartmentalized as routine mathematical tasks. In her study of Australian primary and 

secondary mathematics teachers, Anderson (2005) found that many participants believed they 

were implementing mathematical problem solving based on curriculum guidelines. However, 

it transpired that many of the examples provided to her required lower level thinking. 

Education Scotland (2015) offers the following strategies for practitioners, which help to 

promote the use of word problems and thus impede the implementation of problem solving: 

 

 Learnersô skills in, and application of, estimating and rounding should be a regular feature of 

 learning. Progression in estimation should involve learners taking account of the impact of 
 real life contexts and using this knowledge when communicating their understanding. For 

 example, when solving word problems, such as those involving division, where the 

 interpretation of the context is required to gain a reasonable answer (p. 8). 

 

2.4.1.2 Open and closed 

In her case studies of two English secondary schools, Boaler (1998) draws our attention to 

alternative pedagogical mathematical methodologies. Phoenix Park implemented open-ended 

projects such as: óThe volume of a shape is 216, what can it be?ô Pupils were encouraged to 

search out multiple solution methods and answers. This approach accommodates diverse 

learning styles and can help to promote rich and deep conceptual understanding (Becker & 

Shimada, 1997; Hiebert et al., 1997). Conversely, in Amber Hill, pupils followed traditional 

practices which focussed on routine tasks featuring one correct answer, which is characterised 

as óclosedô (Becker & Shimada, 1997).  

 

 

However, an interesting dilemma arises when a question contains multiple correct responses. 

For example: óSolve the equation ὼ = 7ὼô; By factorising we can obtain ὼ = 0 or  ὼ χ. 

Both values of ὼ are required to formulate the correct answer. Similar cases will occur when 

polynomials, inequalities, trigonometric functions or complex numbers are involved. Yeo 
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(2017) argues that such cases are considered óclosedô since all multiple correct answers can be 

determined. 

 

2.4.1.3 Well- and ill-structured  

Much controversy has surrounded well-structured and ill-structured problems. Simon (1973) 

found it impossible to construct a formal definition of well-structured problems and opted for 

a collection of potential characteristics. In the same vein but with less detail, Jonassen (1997) 

offers similar characteristics, as listed in Table 2.1. 

 

Table 2.1 Characteristics of well-structured problems (Adapted from Jonassen, 1997) 

¶ Present all elements of the problem. 

¶ Are well-defined with a known solution 

¶ Engage the application of a limited number of rules and principles that are organized in a predictive and 

prescriptive arrangement with well-defined, constrained parameters. 

¶ Involve concepts and rules that appear regular and well-structured in a domain of knowledge that also 

appears well-structured and predictable. 

¶ Possess correct, convergent answers.  

¶ Possess knowable, comprehensible solutions where the relationship between decision choices and all 

problem states is known or probabilistic. 

¶ Have a preferred, prescribed solution process. 

 

Other authors point to a clearly specified initial state, goal state and set of operations (e.g. 

Mayer, 2003). Kilpatrick (1987, p. 134) argues that such problems ñcan be solved by the 

application of a known algorithm, and have criteria available for testing the correctness of a 

solutionò. Well-structured problems can be characterised as routine mathematical tasks. 

Examples include finding the mean number of goals scored in a football competition, length 

of an unknown side of a triangle, distance travelled by a projected object, surface area of a 

cuboid, roots of a polynomial function, lines of symmetry of a rhombus and exterior angles of 

a polygon. 

 

1. There is a definite criterion for testing any proposed solution, and a 

In contrast, ill-structured problems have vaguely defined goals, incomplete or ambiguous 

information, generate multiple solutions or no solution at all and possess uncertainty about 

which concepts, rules and principles are necessary for resolution (Simon, 1973; Jonassen, 

1997, Mayer, 2003). Typically, they resemble real world situations and in which the solver 

may not know when they have obtained a final solution (Kilpatrick, 1987). Examples include 
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building a swimming pool using a budget of less than £30,000 and designing a 10 metre long 

bridge that can hold a 200 kg weight. 

 

 

Let us now consider mathematical problems that can be employed to engage pupils in higher-

order thinking. I present six examples from my own professional practice (Figure 2.4) that I 

have used extensively across a continuum of ages and abilities. From a didactical perspective, 

each problem can be successfully attempted by any pupil as no specific background is 

required. Such an intrinsic feature is essential if teachers want to promote inclusion, as many 

practitioners hold the common view that only high achieving pupils can participate in this 

form of mathematical instruction. The initial problem is well-structured and open-ended since 

it contains multiple answers. The second and fourth problems are well-structured and closed 

since they contain a unique answer. In the third problem, the sum of any five odd numbers is 

odd and therefore cannot be solved; irrespectively, it offers an excellent platform to launch 

basic number theory, which can be developed to define odd and even numbers in terms of any 

integer. More critically, as a learning objective, it skilfully alerts pupils to the possibility in 

mathematics that we can legitimately obtain óno solutionsô. Such an early growth mind-set is 

helpful when discussing future linear equations of the form:  

υὼ ρπ  ωὼ ρ τὼ  

which produces a false statement (i.e. 10 = 9) or explaining roots of quadratic equations 

where Â τÁÃ πȢ  In sum, this problem is defined as an ill-structured problem. The fifth 

and sixth problems are well-structured and closed since they contain a unique answer; 

multiple solutions are possible. 

 

Figure 2.4 Examples of mathematical problems 

 
Problem 1 Is it possible to put the numbers 1, 2, 3, 4, 5, 6 in the circles so that the sums of the 

  three numbers on either side of the triangle are the same? 
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Problem 2 A palindromic number is one which reads the same when its digits are reversed, for 

  example 19391. What is the largest six-digit palindromic number which is exactly 
  divisible by 15?  

 

Problem 3 Find five odd numbers whose sum is 100. 
 

Problem 4 Identify the value of the letters in the equation  #2/33  2/!$3  $!.'%2 

 

Problem 5 Four straight lines intersect as shown. What is the value of  ςὴ ςή  ςὶ ςίȩ 
 

 
 
Problem 6 In a classroom with 10 people, everyone shakes hands with everyone else exactly 

  once. Find the total number of handshakes.  

 

 

2.4.2 Problems and investigations 

Whilst the conceptualisation of problems has penetrated deep into mathematics educational 

discourse, the relationship between problems and investigations highlight inconsistencies in 

the literature. Orton (2004, p. 85) argues that the ñexact distinction between an investigation 

and a problem has rarely been clarified by advocates of their inclusion in the curriculum, and 

it still not always clear what is meant when either is being discussed todayò and ñit is clear 

that either or both may be developed from the same basic idea or situationò. Frobisher (1994) 

asserts ñthere is no doubt that a great deal of overlap existsò (p. 152) but that ña distinction 

should be made between (problem solving) tasks which lead to investigations, and... 

investigations which have their own existenceò (p. 158). Alternatively, some scholars claim 

that nothing can be gained from establishing any differences. Pirie (1987, p. 2) as cited in Yeo 

& Yeap (2009) maintains that ñno fruitful service will be performed by indulging in the 

'investigation' versus óproblem-solvingô debateò. On the other hand, considerable support 

exists for associating investigations with having no clear specified goal in the statement. 

Orton & Frobisher (2005, p. 32) claim that ñan open problem is another name for an 

investigation whilst an open problem is a process problem which gives rise to further 

problemsò. The implication of problem posing as an integral component of investigations is 

reinforced by others (e.g. Cai & Cifarelli, 2005; Yeo & Yeap, 2009; Yeo, 2012). Yeo & Yeap 
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(2009) illustrates the relationship between mathematical investigation as an activity, 

mathematical investigation as a process and problem solving as a process (Figure 2.5). 

 

Figure 2.5  Investigative activity for open investigative tasks (Adapted from Yeo & Yeap, 2009) 

 

 

In practice, many primary and secondary mathematics teachers have a propensity to view 

problems and investigations as one of the same (Orton & Frobisher, 2005). Nationally, this 

situation is exacerbated by the Scottish Government (2009, p. 3) who do not advocate any 

dissonance between the two activities by encouraging practitioners to promote learners to 

ñinvestigate mathematical problemsò. 

  

 

However, I firmly believe that problems and investigations are distinct activities due to the 

unrestricted nature embedded within investigations. Orton & Frobisher (2005, p. 32) opine 

that: ñAn investigation provides learners with the freedom to determine the goals they wish to 

attain. This independence and autonomy is not possible in problems having a precise and 

unambiguous goal with a known and well-established method of solutionò. Frobisher (1994) 

fosters the disparity between problem solving as a convergent activity based on unique 

solutions and an investigation deemed a divergent activity characterised by multiple solutions 

and outcomes. He emphasises that both pedagogical approaches to learning mathematics 

should be welcomed by pupils and ñnot just something which occurs when the routine of the 

normal curriculum becomes dreary and tiresomeò (p. 169).  

 

 

Around ten years ago, I successfully introduced a prominent mathematical investigation into 

my professional practice of which I have shared with many colleagues (McDonald, 2006):  
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Investigate how many squares are on a chessboard (the answer is not 64!) 

 

The first goal is clearly defined and on obtaining the desired 204 (i.e. ρ ς  σ τ

 υ φ  χ  ψ  squares, pupils can extend their mathematical thinking by posing a 

different problem which involves finding a general rule for any ὲ  ὲ chessboard [i.e. 

ρ  ς  σ  ȣ  ὲ   ὲ ὲ ρ ςὲ ρȟὲ ρȟὲᶰ. Ȣ Nevertheless, this is not 

obvious to all pupils since it is not explicitly specified in the statement. It is an important 

characteristic that demonstrates that an investigation does not depend on whether the activity 

has a closed or open goal (Yeo & Yeap, 2009). 

 

 

2.5 Heuristics 

As highlighted in chapter one, Curriculum for Excellence advocates that problem solving is 

no longer compartmentalised as a detached entity but integrated into all levels of learning and 

teaching of mathematics. However, inextricably absent from this explicit directive are 

guidelines for practitioners on how to orchestrate this pedagogical approach into practice. In 

this section, the role of heuristics is introduced followed by a brief discussion of two seminal 

theoretical frameworks and a brief summary of whether teaching heuristics improves pupil 

performance. 

 

 

The conceptualisation of heuristics has been synthesised over the years with many conflicting 

descriptions available. For example, according to Polya (1957, p. 112): ñThe aim of heuristics 

is to study the methods and rules of discovery and inventionò. Verschaffel (1999, p. 217) 

defines heuristic methods as ñsystematic search strategies for problem analysis and 

transformationò. De Bono (1984, p. 10) suggests that the idea of heuristics ñincludes all those 
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aspects of thinking that cannot be fitted into mathematical formulationsò. Martinez (1998, p. 

606) claims that ñHeuristics are crucial because they are the tools by which problems are 

solvedò. Wilson, Fernandez & Hadaway (1993, p. 63) consider heuristics as ñkinds of 

information, available to students in making decisions during problem solving, that are aids to 

the generation of a solution, plausible in nature rather than perspective, seldom providing 

infallible guidance, and variable in resultsò. Whilst a more contemporary perspective is 

presented by Lesh & Zawojewski (2007) who argue that heuristics involve strategies:  

 
 intended to help problem solvers think about, reflect on, and interpret a problem solving 

 situation more than they are intended to help them decide what to do when óstuckô during a 
 solution attempt (p. 768). 

 
 

2.5.1 Polya (1957) 

Mathematician and educationalist, George Polya, is universally famous for his work on 

mathematical problem solving. The emphasis of Polya's work focussed on the elements of 

plausible reasoning that lead to the discovery of mathematical assertions to which he referred 

to this type of reasoning óheuristicsô, otherwise known as the mental operations typically 

useful in the process of solving mathematical problems. In his pioneering book, óHow To 

Solve Itô, (Polya, 1957) proposed four explicit phases to provide a more systematic or planned 

process approach to mathematical problem solving (Figure 2.6) and which relies on a 

repertoire of past experiences. A myriad of academics have grounded their research on this 

book, which Schoenfeld (1987, p. 17) eloquently proclaims as ña charming exposition of the 

problem-solving introspectionò.   

 

 

Worldwide, many countries have woven inextricably together the influential works of Polya 

within their educational systems. For example, in the USA, the NCTM (2000, p. 53) advocate 

that: ñOf the many descriptions of problem-solving strategies, some of the best known can be 

found in the work of Polya (1957)ò. Interestingly, his influence is not confined to 

mathematics education. For example, within the field of artificial intelligence (amongst other 

disciplines) his contribution to heuristics is well regarded. Minsky (1961, p. 28) articulates 

that ñeveryone should know the work of Polya on how to solve problemsò.   

 

I will examine Polyaôs (1957) four phase model in more detail: 
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First Step - Understanding the problem 

It may be obvious but this initial operation is crucial to fully understand the given information 

and the ultimate goal (Lesh & Jawojewski, 2007). Polya (1957, p. 6) maintains that: ñIt is 

foolish to answer a question that you do not understandò. Therefore, it is essential to 

appreciate what a problem is asking. For example, what are the unknown, available data and 

conditions? This may require becoming more óacquaintedô with the problem statement and in 

some cases, drawing a sketch or a diagram to show connections and relationships, making a 

table, using a model, working backwards or using a variable. Polya (1957, p. 33) suggests 

ñattention bestowed on the problem may also stimulate your memory and prepare for the 

recollection of relevant pointsò. More specifically, he recommends teachers to select problems 

which are challenging but accessible.  

 

Figure 2.6 Steps to follow when solving a mathematical problem (Adapted from Polya,1957)  

Understand the 
problem

Devising a 
plan

Carrying out 
the plan

Looking back

 

 

Second step - Devising a plan  

Many different strategic approaches are available at this stage such as a guess, searching for a 

pattern or connection between the data and the unknown or recalling a similar solved 

problem. On the theme of a guess and check strategy, Polya (1957, p. 99) posits that ñmany a 

guess has turned out to be wrong but nevertheless useful in leading to a better oneò. 

Conversely, Malloy & Jones (1998, p. 149) argue ñif a student guessed but could not explain 
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the solution or did not use the guess to verify the solution, the guess was not considered a 

strategyò. Polya (1957, p. 8) states that a suitable plan is devised ñwhen we know, or know at 

least in outline, which calculations, computations, or constructions we have to perform in 

order to obtain the unknownò. However, it may be apparent that the selected strategy needs 

modifying or to be discarded entirely. The application of past experiences may help to relate a 

similar problem that can be solved (Mayer, 2003). The mechanism to transfer knowledge of 

related problems requires analogical reasoning. A beautiful illustration of analogical 

reasoning is presented by Polya (1957) in his solution to solving the centre of gravity of a 

homogenous tetrahedron by forming a solution using a triangle. Thus, a constant review of the 

chosen plan is necessary during implementation of this phase. 

 

Third Step - Carrying out the plan 

Considered to be the most challenging component of the solution. Pupils must be prepared to 

validate each stage of the plan and modify any element of the strategy when it is obvious that 

it will not advance the desired outcome. Polya (1957) states that: 

 
 To devise a plan, to conceive the idea of the solution is not easy. It takes so much to succeed; 

 formerly acquired knowledge, good mental habits, concentration upon the purpose, and one 
 more thing: good luck. To carry out the plan is much easier; what we need is mainly patience 

 (p. 12).  

 

Polya (1957, p. 13) counsels practitioners to insist that the learner should examine each part 

of the process and in certain cases demonstrate ñif they can prove that the step is correct?ò  

Such attention to detail requires perseverance and an awareness that modifications to the plan 

may result in the abandonment of the original strategy and the creation of a new approach. 

 

Fourth Step - Looking back  

This is deemed the most critical stage and extends beyond checking the answer. Detailed 

examination of the solution will reveal if the argument can be verified, generalised, enhanced, 

derived differently or applied to another problem. Polya (1957) warns that pupils have a 

tendency to stop when they have obtained a result and ñmiss an important and instructive 

phase of the workò (p. 14). He advises teachers to impress on their students the notion that no 

problem whatsoever is completely exhausted as there remains always something to do and 

believes that ñwe could improve any solution, and, in any case, we can always improve our 

understanding of the solutionò (p. 15). This viewpoint is shared by Watson & Mason (2005, p. 

xiii -xiv) who advocate that: ñNo matter how profoundly one thinks one understands it is 

always possible to probe more deeply and to discover more connections and complexitiesò. In 
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other words, reflection is fundamental to the process in order to solidify mathematical 

understanding. Lesh & Zawojewski (2007, p. 770) note that: ñBy describing their own 

processes, students can use their reflections to develop flexible prototypes of experiences that 

can be drawn on in future problem solvingò. The knowledge gained in looking back nurtures 

an investment in long time memory that can facilitate forthcoming problem solving 

encounters (Silver, 1982).   

 

 

One of the common misunderstandings of Polyaôs model is that it is a linear procedure that 

can be memorised, practiced and habituated. More accurately, it should be designated as 

dynamic, cyclic and iterative. However, Schoenfeld (1992, p. 353) whilst accepting the 

validity of Polyaôs work maintains that it ñdid not provide the amount of detail that would 

enable people who were not already familiar with the strategies to be able to implement themò 

and suggests they are ñdescriptive rather than prescriptiveò, which according to English & 

Sriraman (2010, p. 264-265) are mostly ñjust names for large categories of processes rather 

than being well-defined processes in themselvesò. Lesh & Zawojewski (2007, p. 769) offer a 

broader perspective on Polyaôs heuristics ñas not only prompting ways of selecting and 

carrying out procedures and rules (i.e. ñdoingò mathematics), but also as a means of 

developing systems for interpreting and describing situations (i.e. ñseeingò mathematically)ò.   

 

 

Although Polya did not include the term ómetacognitiveô in any of his work, each phase of his 

four step model of mathematical problem solving are metacognitive in nature. At this point in 

this thesis, I feel it pertinent to provide a definition of metacognition and refer to Flavell 

(1976):  

 

 Metacognition refers to oneôs knowledge concerning oneôs own cognitive processes and 
 products or anything related to them, e.g., the learning relevant properties of information or 

 data... Metacognition refers, among other things, to active monitoring and consequent 

 regulation and orchestration of these [cognitive] processes in relation to the cognitive objects 
 or data on which they bear, usually in the service of some concrete goal or objective (p. 232). 

 

Silver (1982, p. 21) reinforces this viewpoint when he declares that: ñIf we adopt a 

metacognitive perspective, we can view many of Polyaôs heuristic suggestions as 

metacognitive promptsò.     
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2.5.2 Schoenfeld (1985) 

In his book, óMathematical Problem Solvingô, Schoenfeld (1985) offers a comprehensive 

overview of his framework and methodological approach to the exploration of undergraduate 

mathematical problem solving of which can be respectively applied to school mathematics. 

On reflection, Schoenfeld (2013, p. 10) describes this publication as ña framework for the 

analysis of the success of failure problem solving attempts, in mathematics and hypothetically 

in all problem solving domainsò.   

 

 

Schoenfeld (1985) proposes a model grounded on the theory that a learnerôs ability to solve 

problems is determined by their individual functioning cognitive and emotional characteristics 

and identifies four categories of knowledge and behaviour fundamental for mathematical 

problem solving performance (Figure 2.7). In essence, he argues that it is possible to explain 

an individualôs success or failure in trying to solve a problem on the basis of four categories: 

 

Figure 2.7 Framework for solving mathematical problems (Adapted from Schoenfeld, 1985) 

 

Resources Heuristics Control Beliefs Systems

Mathematical 
knowledge possessed 

by the individual 

Strategies and 
techniques for making 
progress on unfamiliar 

or non-standard 
problems; rules of 
thumb for effective 

problem solving

Decisions regarding 
the selection and 

implementation of 
resources and 

strategies

hƴŜΩǎ άƳŀǘƘŜƳŀǘƛŎŀƭ 
ǿƻǊƭŘ ǾƛŜǿέ, the set 
of (not necessarily 

conscious) 
determinants of an 
ƛƴŘƛǾƛŘǳŀƭΩǎ ōŜƘŀǾƛƻǳǊ

Problem Solving 
Performance

 

Resources  

According to Schoenfeld (1985, p. 17), these refer to ñan inventory of all the facts, 

procedures, and skills ï in short, the mathematical knowledgeò that the individual is capable 

of bringing to bear on a particular problemò. Examples include intuitions, informal 

knowledge, algorithmic procedures, non-algorithmic procedures and understandings about the 

agreed-upon on rules for working in the domain.  
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Heuristics 

Much development work is based on promoting these types of strategic processes. Exemplars 

include ñexploiting analogies, introducing auxiliary elements in a problem or working 

auxiliary problems, arguing by contradiction, working forward from the data, decomposing 

and recombining, exploiting related problems, drawing figures, generalizingò (p. 23). 

Schoenfeld discusses a series of major obstacles to the ascendancy of heuristics strategies 

such as the lack of prescriptive detail afforded to strategies by claiming ñthat their definitions 

are too vague to serve as a guide to their implementationò (p. 95). Moreover, he emphasises 

the need to have a strong general knowledge base of mathematics as ñeven a good mastery of 

heuristics cannot be expected to replace shaky mastery of subject matterò (p. 96). 

 

(Metacognitive) control 

This classification of behaviour deals ñwith the way that individuals use the information 

potentially at their disposalò (p. 27). It involves ñplanning, monitoring and assessment, 

decision-making and conscious metacognitive actsò (p. 15). Schoenfeld (1985) submits the 

view that ógoodô problem solvers metacognition differ significantly from ónovicesô in the 

efficacy of their metacognitive strategies. He reinforces the position that: ñOne of the 

hallmarks of good problem solversô control behaviour is that, while they are in the midst of 

working problems, such individuals seems to maintain an internal dialogue regarding the way 

that their solutions evolveò (p. 140). In other words, they are more skilled at managing 

different mathematical resources. Lester (1994, p. 666) argues that ñeffective metacognitive 

activity during problem solving requires knowing not only and when to monitor, but also how 

to monitorò. In sum, metacognition plays a critical role in successful problem solving (e.g. 

Lester, 2013).  

  

Belief systems 

These signify an individualôs mathematical world view and the ñperspective with which one 

approaches mathematical and mathematical tasks... Beliefs establish the context within which 

resources, heuristics and control operateò (p. 45). They shape the knowledge drawn upon and 

the mobilisation of that knowledge. Schoenfeld (1985) emphasised the need for future 

research on metacognition and beliefs. Main findings arising from his studies include: 

ñExplicit heuristic instruction does (or can) make a difference with regard to problem-solving 

performanceò (p. 215) and ñstudents in a problemïsolving course can learn to employ a 

variety of heuristic strategiesò (p. 240).    
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Schoenfeld (1985) offers a schematic outline of a problem solving strategy used with his own 

students (Figure 2.8) and makes reference to exploration which he designates as ñthe heuristic 

heart of the strategy, for it is in the exploratory phase that the majority of problem-solving 

heuristics come into playò (p. 110).  

 

Figure 2.8 Schematic outline of problem solving strategy (Adapted from Schoenfeld,1985) 
 

  

GIVEN PROBLEM

ANALYSIS
Understanding the statement

Complying the problem
Reformulating the problem

DESIGN
Structuring the argument

Hierarchical decomposition: 
global to specific

Useful formulation:
Access to principles

and mechanism

IMPLEMENTATION
Step-by-step execution

Local verification

EXPLORATION
Essentially equivalent problems

Slightly modified problems
Broadly modified problems

More accessible
Related problem

 or new information

Tentative solution

VERIFICATION
Specific test
General tests

VERIFIED SOLUTION

Schematic solution

Minor/Major difficulties

 

 

However, two limitations are notable. Firstly, the participants worked in isolation thereby 

minimising social interactions. Secondly, all of the mathematical problems were supplied by 

the researcher which constrained the potential outcome as the objectives were established in 
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advance. In short, Schoenfeld did not offer a theory of mathematical problem solving but a 

framework for analysing the success or failure of problem solving within a wide domain.  

 

 

More recently, Schoenfeld (2011) provided an updated theoretical lens from which to explain 

how and why problem solvers make decisions that shape and guide their problem solving 

behaviours. The basic structure offered is recursive where individuals orient to situations and 

decide (on the basis of beliefs and available resources) how to pursue their goals. If the 

situation is familiar, they implement familiar routines; if mechanisms are unfamiliar or 

problematic, they reconsider. An interesting characteristic of this theoretical work is that 

although mainly designed for primary and mathematics teachers, it can be applied to analyse 

and predict the behaviours of other professions. I have summarised the framework used by 

Schoenfeld (2011) in Figure 2.9.  

 

2.5.3 Does the teaching of heuristics improve pupil performance? 

In this subsection, I make two assumptions. Firstly, pupil performance is concerned with 

conceptual understanding that leads to improved problem solving rather than procedural 

knowledge. In this case, Foong (1991, p. 45) argues that to become effective problem solvers, 

instructional activity must build "a repertoire of heuristics that are likely to be useful in a 

variety of problem situation, along with meta (cognitive) knowledge about situations in which 

specific heuristics are appropriate". Secondly, pupils cannot become successful problem 

solvers overnight (Hiebert, 2003; Lambdin, 2003; Lester & Cai, 2016). Considerable 

institutional investment is required throughout primary and secondary levels.  

 

 

Whilst it may be plausible to anticipate that evidence supports the teaching of heuristics, the 

literature suggests only a weak correlation exists at best (Schoenfeld, 1979, 1985, 1992; 

Charles & Silver, 1988; Lester, 1994; Lesh & Zawojewski, 2007). According to Lester & 

Kehle (2003, p. 508): "Teaching students about problem solving strategies and heuristics and 

phases of problem-solving does little to improve students' ability to solve general mathematics 

problems". Previous reports concur with this claim. In his robust assessment of the research, 

Silver (1985) suggests that even in studies where some positive learning has been reported, 

the transfer of learning was insignificant. Likewise, Beagle (1979) noted that:  
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 A substantial amount of effort has gone into attempts to find out what strategies students use 

 in attempting to solve mathematical problems... no clear-cut directions for mathematics 
 education are provided... In fact, there are enough indications that problem solving strategies 

 are both problem and student specific often enough to suggest that hopes of finding one (or 

 few) strategies which should be taught to all (or  most) students are far too simplistic (p. 145).   

 

Figure 2.9 How things work (Adapted from Schoenfeld, 2011) 

  GOALS
Established or reinforced

ORIENTATION
 Information and 

knowledge become salient 
and are activated

DECISIONS
Direction and resources 

IMPLEMENTATION

Consciously or unconsciously

MONITORING
Whether it is effective 

or not

GIVEN PROBLEM

Initial resources, goals
and orientation

Iterative 
process

Routines aimed at particular goals have sub-routines, which have their own 

subgoals; If a subgoal is satisfied, the individual proceeds to another goal 

or subgoal; If a goal is achieved, new goals kick in via decision-making; If 

the process is interrupted or things donôt seem to be going well, decision-

making kicks into action once again. This may or may not result in a 

change of goals and/or the pathways used to try to achieve them.
 

 

However, the success of any problem solving experience is interrelated to the pedagogical 

skills of the teacher involved. Although this has to be balanced against the retrievable nature 

of the research literature on mathematical problem solving. In practical terms, this translates 

to how effectively teachers can delineate generalisations in order to impact regular 

professional practice. A major caveat for teachers to consider is the link between theory and 

practice which is unclear (Lesh & Zawojeswki, 2007; Lester, 2013; Lester & Cai, 2016).  
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Irrespectively, in a study of 20 Israeli current teachers, Koichu, Berman & Moore (2003, p. 7) 

concluded that ñheuristic training of students may be an effective tool in combination with 

heuristic training of their teachers, induced either by personal problem solving experience or 

by learning through teaching of regular curriculum with deliberate emphasis on heuristic 

approach in problem solvingò. This pedagogical perspective may be well tender the remedy to 

improving the problem solving performance of learners. Though, given that a copious amount 

of research on learning and teaching of mathematical problem solving has already been 

conducted over the last 30 years or so, it would appear unlikely that the teaching of general 

heuristics has little effect on improving problem solving skills (Lester & Cai, 2016). Still, 

Ambrus & Barczi-Veres (2016) challenge this view based on their recent study of 16 

Hungarian secondary pupils. The researchers noted that the implementation of open problems, 

questioning and cooperative techniques had a positive impact on student achievement.   

 

 

2.6 Multiple solutions  

The beauty of elegantly designed mathematical problems leads to the facilitation of an 

assortment of multiple solutions. Leikin (2013, p. 388) defines a multiple solution task as ñan 

assignment in which a student is explicitly required to solve a mathematical problem in 

different waysò. According to Leikin (2011), solutions to the same problems are considered 

different when they involve (a) different representations of concepts (b) different theorems or 

mathematical relationships to support conjectures (c) different conceptual arguments and 

reasoning. All too often, pupils embrace the misconception that there is only one precise 

method to approach and solve a problem and fail to develop flexibility in formulating, 

selecting appropriate strategies and searching for alternative solutions (Cai & Nie, 2007). For 

example, to solve a system of two linear equations, a graphical solution can be provided. 

Alternatively, we can use algebra (elimination or substitution method), matrices or trial and 

error.  

 

 

Engaging learners with problems that may be approached by employing different 

representations is widely accepted as fostering good practice (Tsamir et al., 2010) and 

entrenched within the looking back step of Polyaôs (1957) heuristic. This is an essential 

constituent of any mathematics classroom as incorporation of these problems will deliver a 

vehicle for pupils to construct rich mathematical connections. Silver et al. (2005, p. 288) 

maintain that learners profit from comparing, reflecting on and discussing multiple solution 



66 

 

 
 

methods and claim that ñdifferent solutions can facilitate connection of a problem at hand to 

different elements of knowledge with which a student may be familiar, thereby strengthening 

networks of related ideasò. When regularly exposed to problems that require multiple 

strategies, pupils learn different approaches and are more efficient in selecting appropriate 

methods to elucidate problems (Dowker, 1992) and can solve problems with greater ease and 

flexibility (Siegler, 2003). The NCTM (2000) designated that students should develop their 

ñflexibility in exploring mathematical ideas and trying alternative solutionsò (p. 21) and that 

educators should cultivate their students capacity ñto link mathematical ideas and deeper 

understanding of how more than one approach to the same problem can lead to equivalent 

results, even though the approaches might look quite differentò (p. 354). Similarly, the 

Scottish Government (2009, p. 2) assert that an important feature of effective learning and 

teaching of mathematics should ensure that primary and secondary pupils ñexplore alternative 

solutionsò and aquire opportunities ñpresenting their solutions to others in a variety of waysò.  

 

 

Not all mathematical problems offer multiple solutions but some branches present more rich 

opportunities than others. Whilst the power of algebra and calculus cannot be underestimated, 

Levav-Waynberg & Leikin (2012a) argue that geometry is a fertile ground to search for 

problems that encompass more than one solution. They maintain that ñexperience shows that 

almost any geometrical problem in a regular geometry textbook has multiple solutionsò (p. 

316) and ñgeometry contains a rich variety of problems with multiple solutions accessible to 

learnersò (p. 329). However, within my professional practice I have employed problems from 

a wide spectrum of mathematics including many originating from other national syllabuses. 

My favourite is a combination problem involving ten people where everyone shakes hands 

with everybody else exactly once, where the objective is to determine how many handshakes 

take place. One of the solutions is a practical approach ensuring that this problem is within 

reach of all secondary pupils. In order to illustrate a task which offers multiple solutions, 

consider the following problem (McDonald, 2014), which is accessible to the majority of 

secondary pupils including well able primary pupils:  

 

¶ Example 

It is projected that the worth of a lump sum investment is 5% more than its value in the previous year. 

Find in as many ways as possible, the number of years that it will take for the investment to double.   
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Solution 1 Computationally 

Since no value for the investment is specified, we can choose any number to represent this 

unknown amount. Selecting £100 and increasing by 5% each year will produce: 

Year Investment (£) 

0 100.00 

1 105.00 

2 110.25 

3 115.76 

4 121.55 

5 127.63 

6 134.01 

7 140.71 

8 147.75 

9 155.13 

10 162.89 

11 171.03 

12 179.59 

13 188.56 

14 197.99 

15 207.89 

 

Solution 2 Graphically  

In order to find an approximate solution, we must draw the function ώ ρȢπυ and ώ  ςȢ 

The intersection point is dependent on the degree of accuracy of the graph produced. 

 

For a more accurate graphical solution, we can use a GDC (e.g. TI-Nspire): 

 

By considering only complete years, our answer is 15 years  
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Solution 3 Algebraically  

Let ὼ be the initial lump sum where ὲ ÉÓ time in years,  

ᵼ ὼ ρ  πȢπυ  ςὼ 

ᵼ   ρȢπυ  ς  

ᵼ ὲ ÌÎρȢπυ Ìὲς  

ᵼ ὲ  
Ìὲς 

ÌὲρȢπυ
 

ᵼ ὲ  ρτȢςρ ÙÅÁÒÓ  

 

Solution 4 ICT (e.g. TI-Nspire) 

Whilst this approach is deemed a different strategy, it only serves to generate an algorithmic 

solution which does not augment the development of problem solving skills. Nevertheless, I 

have found this to be a valuable instrument during class discussions when comparing other 

solutions. 
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Solution 5 Trial and error 

If we let ρȢπυ ς, where ὲ is the number of years, then we can determine the value of ὲ by 

continually improving our guess, something like this: 

 
ὲ ρȢπυ Comment 

20 2.653 Too big 

10 1.639 Too small 

15 2.079 Too big 

14 1.980 Too small 

14.5 2.029 Too big 

14.25 2.004 Too big 

14.22 2.001 Too big 

14.21 2.000 Solution 

 

2.6.1 Teachers and multiple solutions 

Whilst there is a growing body of evidence that suggests that the engagement of multiple 

solutions can improve pupil learning (e.g. Stein & Lane, 1996; Silver et al., 2005; Rittle 

Johnson & Star, 2007; Star & Rittle-Johnson, 2008), considerably fewer studies exist that 

have examined the impact on teachers regarding the instructional process. For example, Ma 

(1999) found that Chinese teachers enhanced their mathematical curriculum knowledge while 

Stigler & Hiebert (1999) noted in their international comparative analysis of practitioners 

from America, Germany and Japan, the quality of teaching improved. Intriguingly, from a 

primary perspective, Shimizu (2003, p. 206) reports that ñJapanese teachers in elementary 

schools often organize an entire mathematics lesson around multiple solutions to a single 

problem in a whole-class instructional mode. This organization is particularly useful when 

introducing a new concept or a new procedure during the initial phase of a teaching unitò. 

This pedagogical approach is common in other PISA high performing countries such as China 

and Hong Kong (Stigler & Hiebert, 1999; Cai & Nie, 2007). 

 

 

In contrast, other studies have identified concerns from practitioners which have impacted on 

their engagement of multiple solutions. In their study of 12 American middle and secondary 

mathematics teachers, Silver et al. (2005) reported uncertainties regarding perceived time 

constraints and that more than one approach may coalesce to confuse less able learners. 

Equally, Leikin & Levav-Waynberg (2007) discovered that in their study of the professional 

development of 12 Israeli mathematics teachers, participantsô limited domain expertise 

coupled with weak pedagogical content knowledge prevented them from using multiple 



70 

 

 
 

strategies. Based on a study of 92 American teachersô views about teaching with multiple 

strategies, Lynch & Star (2014) argue that a divide exists between the views of primary 

teachers and that of middle and secondary mathematics teachers. The researchers hypothesise 

there may be several contributing factors including different amounts of contact time with 

pupils in the sectors.  

 

  

Solving mathematical problems using different methods can also serve as a didactical tool and 

as a diagnostic assessment technique (Levav-Waynberg & Leikin, 2009). Nevertheless, 

teachers are only too aware of the general apathy for some learners to disengage after securing 

a solitary outcome to a given problem. This disengagement may possibly be as a result of 

practitioners failing to encourage the habit of searching for multiple solutions or simply not 

regularly employing a variety of methods or approaches in the classroom. We are reminded 

by Polya (1957, p. 173) that ñit should not be forgotten that a teacher of mathematics should 

know some mathematics and that a teacher wishing to impart the right attitude of mind 

towards problems to his students should have acquired that attitude himselfò. In offering his 

own experience, Schoenfeld (1994b) advocates that he prefers problems that can be solved, or 

at least approached, in a number of ways because: 

 
 It's good for students to see multiple solutions, since they tend to think, on the basis of prior 
 experience, that there is only one way to solve any given problem (which is usually the 

 method the teacher has just demonstrated in class). I need for them to understand that the 

 "bottom line" is not just getting an answer, but seeing connections. Moreover, on the process 
 level, the possibility of multiple approaches lays open issues of executive decisions ï what 

 directions or approaches should we pursue when solving problems, and why? (p. 69). 

 

However, in a study involving Turkish primary teachers, Bingolbali (2011) found that many 

participants during the implementation of a new mathematical curriculum did not value 

alternative solutions and reported experiencing difficulties in evaluating pupilôs alternative 

solutions. His findings reveal a significant variation in the grading of different solutions 

resulting in practitioners conveying mixed messages to their pupils by promoting effort at the 

expense of mathematical accuracy. Many valid reasons may exist to explain why teacher 

nuances exist in this regard. One possible reason could be that some teachers do not share the 

same mathematical beliefs about problem solving as others do. Burton (1984, p. 23) warns 

that ñif your pupils never see you engaged in problem solving, they will learn that despite 

what goes on in your classroom, it is not an activity which is important to youò. Alternatively, 

some teachers may not support the notion that promoting multiple solutions in geometry is an 
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effective use of their time in order to provide a benefit to their pupils learning of mathematics 

(Levav-Waynberg & Leikin, 2012a).  

 

2.6.2 Mathematical creativity 

The literature contains numerous contrasting structural and multifaceted definitions of 

mathematical creativity (Mann, 2006; Sriraman, 2009). Leikin et al. (2013) refer to the work 

of Guilford (1967) when distinguishing between convergent and divergent thinking of 

creativity. They argue that the act of convergent thinking involves seeking a single, precise 

solution to a problem, whereas divergent thinking is the creative product that generates 

multiple solution strategies. In the same vein, Leikin (2013) in her theoretical model of 

mathematical creativity expands the connection between creativity and divergent thinking 

based on an explicit requirement to solve mathematical problems in multiple ways. In this 

thesis, I will use the definition of mathematical creativity first suggested by Silver (1997, p. 

75) who saw it as ñan orientation or disposition towards mathematical activity that can be 

fostered broadly in the general school populationò. My motive for using this definition is 

centred on a belief that every child has the potential to be creative and that schools are obliged 

to fashion an educational environment to promote independent thinking to develop creativity 

skills (Education Scotland, 2013).  

 

 

Mathematics educational research is plentiful with the influence of constructivist concepts 

that strongly value learnerôs individual knowledge building and independent development that 

perpetuate the solving of mathematical problems exercising multiple solutions (e.g. 

Schoenfeld, 1983; Silver, 1997; Leikin et al., 2006; Sriraman, 2009; Levav-Waynberg & 

Leikin, 2012a, 2012b). The significance of solving mathematical problems using multiple 

methods can promote advanced mathematical thinking amongst pupils. Krutetskii (1976) and 

Ervynck (1991) link the concept of mathematical creativity to multiple solutions. Leikin & 

Levav-Waynberg (2008, p. 234) argue that ñsolving problems in multiple ways contributes to 

the development of studentôs creativity and critical thinkingò.   

 

 

However, it is evident that the dynamic perspective surrounding mathematical creativity is not 

encouraged by the lack of formal evaluation in national examinations (e.g. Scotland). 

Chamberlin & Moon (2005, p. 42) lament that ñthe significance of creativity in school 

mathematics may be minimised because it is not formally assessed in standardized tests, 
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which purport to thoroughly measure mathematical learningò. Silver (1997, p. 75) counsels 

that whilst ñgenuine mathematical activity is intimately interwoven with creativity, schooling 

provides most students with little opportunity to experience this aspect of the domain of 

mathematicsò. Grounded on the work of Torrance (1974), he strongly advocates that teachersô 

nurture creativity through mathematical problem solving by promoting fluency, flexibility and 

novelty and illustrates (Figure 2.10) the relation of problem solving instructional activities to 

core components of mathematical creativity.  

 

 

Teachers must encourage, support and cultivate the rich development of mathematical 

creativity by engaging learners in imaginative exploration during the integration of problem 

solving. Shriki (2010, p. 161-62) warns that: ñRefraining from development of creativity in 

the classroom conveys the impression that mathematics is merely a set of skills and rules to 

memorize, and in doing so, many studentsô natural curiosity and enthusiasm for mathematics 

might vanishò. Resonating with this advice is Nickerson (2011) who asserts that to enhance 

creativity in the classroom; practitioners need to nurture their learners, especially with ideas 

that are unconventional. He makes a poignant remark that I am sure all teachers can relate to:  

 
 Failure to promote creativity in the classroom may well be due sometimes to recognition of 
 the increased challenge that creatively expressive children represent to classroom order and 

 teacher authority (p. 414).  

 

In the course of teaching mathematical problem solving, I have observed children give up 

after a period of intense effort. As a response, I normally introduce an alternative approach 

such as ótime outô or provide an unrelated activity. Occasionally, on return to the problem, it 

has stimulated a breakthrough which has produced a creative piece of work.  

 

Figure 2.10 Problem solving and creativity (Adapted from Silver, 1997) 

 

FLEXIBILITY
Student solve (or express or 

justify) in one way; then in other 
ways and discuss many solution 

methods

NOVELTY
Students examine many solution 
methods or answers (expressions 
or justifications); then generate 

another that is different

FLUENCY
Students explore open-ended 

problems, with many 
interpretations, solution methods 

or answers

Problem Solving and Creativity
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Nevertheless, I suspect that some teachers do not accept the view that every pupil has the 

potential to demonstrate mathematical creativity. In a study of primary children, Kattou et al. 

(2013) found a strong positive correlation between mathematical creativity and mathematical 

ability. The researchers suggested that mathematical creativity is a subcomponent of 

mathematical ability. Likewise, in another study involving secondary pupils, Leikin & Lev 

(2013) noted that gifted pupils (high IQ) outperformed all other pupils on every measured task 

involving mathematical creativity. More recently in a further study of secondary pupils, Lev 

& Leikin (2017) assert that expertise in mathematics is a prerequisite for an individual to be 

creative. Together, these studies indicate that the imaginative promotion of multiple solutions 

during problem solving will stimulate and develop creativity skills.  

 

2.6.3 Mathematical competence 

In this section, I focus on three critical elements of mathematical competence which are 

intrinsic to generating multiple solutions within problem solving i.e. procedural knowledge, 

conceptual knowledge and procedural flexibility. Procedural knowledge is expressed as an 

integrated and functional grasp of mathematical ideas that can be utilised as an action 

sequence for solving problems (Kilpatrick, Swafford & Findell, 2001; Rittle-Johnson, Siegler 

& Alibali , 2001). In contrast, conceptual knowledge is considered explicit or implicit 

understanding of the principles that govern a domain and the interrelationships between parts 

of knowledge in a domain (Rittle-Johnson, Siegler & Alibali, 2001). More prosaically, it 

refers to the richness of the mathematical relationships and range of connections (Hiebert & 

Leferve, 1986). Over the years, much debate has taken place regarding the significance of 

drill and practice methods versus theoretical understanding. In their impressive review of the 

literature, Hiebert & Grouws (2007) concluded that both procedural and conceptual 

knowledge were crucial for successful mathematics instruction to take place. Procedural 

flexibility incorporates knowledge of multiple approaches and a propensity to select the most 

appropriate solution based on specific problem characteristics (Kilpatrick, Swafford & 

Findell, 2001; Star, 2005). 

 

Comparing different solutions 

During mathematical problem solving, it is highly likely that multiple solutions will be 

generated and thus launches a suitable platform for pupils to compare different solutions 

(assuming that they know that mathematical problems can have more than one solution). It is 

this action of comparing different solutions that will help extend knowledge by linking new 

knowledge to prior knowledge. Goldstone, Day & Son (2010, p. 103) note that comparison is 
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one of the most fundamental components of human thought and ñresearch has demonstrated 

that the simple act of comparing two things can produce important changes in our 

knowledgeò. Gentner (2005, p. 251) maintains that: ñComparison is a general learning 

process that can promote deep relational learning and the development of theory level 

explanationsò. Rittle-Johnson, Star & Durkin (2012) evaluated 198 American pupils learning 

of multi-step equation solving. They found that whilst comparing procedures had a limited 

impact on conceptual and procedural knowledge, procedural flexibility was significantly 

improved. 

 

 

Thus far, a number of studies have explored the relationship between multiple solutions and 

mathematical competence. Rittle-Johnson & Star (2007) found that in their study of American 

children, comparing and contrasting solution methods was more effective than reflecting at 

same solution methods one at a time with respect to procedural knowledge and flexibility. 

However, the study would have been more interesting if it had incorporated non-algorithmic 

procedures. Likewise, in another experimental study, Rittle-Johnson & Star (2009) discovered 

that comparing solutions of the same problem augmented conceptual knowledge and 

procedural flexibility, than comparing solutions of similar problems with equivalent 

mathematical structure. Similar evidence suggested that presenting multiple solution 

strategies simultaneously is better than presenting them sequentially. The researchers draw 

attention to the role of prior knowledge and note that learning gains may be more beneficial 

for pupils with low prior knowledge.  

 

 

Star & Rittle-Johnson (2008) showed that encouraging American elementary learners to solve 

linear equations using different methods improved procedural flexibility in problem solving. 

Schukajlow & Krug (2014) argue that teachers should support young people in developing 

multiple solutions during problem solving. In their study of German secondary pupils, the 

researchers investigated the influence of prompting learners to construct multiple solutions for 

real-world problems with vague conditions on pupilsô interest in mathematics as well as on 

their experiences of competence and autonomy and the number of solutions developed. They 

revealed the positive influence of prompting pupils to find multiple solutions on individual 

interest in mathematics. In a further study of American pupils, Star, Rittle-Johnson & Durkin 

(2016) discovered that comparing different strategies for solving the same problem improved 

learning. Whilst the premise for this research was to simplify instructional methods for 
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teachers, the main weakness of the study was the infrequent use of materials by the 

participants.     

 

 

2.7 Problem solving as an overarching goal of mathematical learning  

In many traditional classrooms an emblematic approach to introducing a new mathematical 

concept encompasses a teacher led demonstration of a computational algorithm, supported 

with the decontextualized treatment of some worked examples, followed by the repetitive 

setting of numerous analogous exercises for pupils to develop procedural knowledge. 

Typically, through a lack of challenge many children acquire weak conceptual understanding 

and attempt to subsist by memorising mechanical techniques. Whilst the requirement to 

enhance mathematical knowledge is recognised, a powerful opportunity to present pupils with 

the tools to discover the rich conceptual mastery is lost. We are reminded by the NTCM 

(2014, p. 17) that ñlearning is greatest in classrooms where the tasks consistently encourage 

high-level thinking and reasoning and least in classrooms where the tasks are routinely 

procedural in natureò. Hiebert et al. (1997, p. 1) encourage the need for pupils to learn 

mathematics with understanding and argue that ñthings learned with understanding can be 

used flexibly, adapted to new situations, and used to learn new things. Things learned with 

understanding are the most useful things to know in a changing and unpredictable worldò. 

Grounded on research that teaching with a clear focus on understanding can cultivate the 

development of pupilsô mathematical problem solving abilities (Hiebert, 2003; Lambdin, 

2003), this section attempts to explore the instructional options for operationalising problem 

solving in schools. 

 

2.7.1 Instructional approaches  

Teachers have long been faced with a dilemma of how to coalesce mathematical problem 

solving into their professional practice. Given that problem solving is a complex and 

challenging mathematical enterprise (Lester, 2013), practitioners need to understand how to 

orchestrate an approach that will stretch and sustain the limit of pupil thinking. Various 

textbooks have óstory problemsô isolated at the end of each instructional chapter, and thus 

concomitantly serve to perpetuate the notion that problem solving is a simple voluntary add-

on task. Previous classroom encounters may remind educators of the difficulties that are 

apparent when catering for learners with an eclectic mix of mathematical abilities and 

experiences.  

 



76 

 

 
 

However, pupils must have a positive attitude towards the regular engagement of challenging 

activities (Lester & Charles, 2003; Schoen & Charles, 2003). Likewise, all primary and 

secondary mathematics teachers must be able to sustain a long-term pedagogical commitment 

to developing learnersô abilities to solve problems. Such an obligation is necessary to ensure 

that every child, regardless of stage and capability, is taught using a method that fosters 

understanding of concepts, procedures and solving problems (Lester & Cai, 2016). Crucially, 

practitioners should be experienced problem solvers and should have a firm grasp of what 

successful problem solving involves (Lester, 2013; Chapman, 2015).  

 

 

In their interesting analysis, Schroeder & Lester (1989) describe a theoretical framework 

outlining three distinct classroom instructional approaches to support teachers with 

mathematical problem solving: 

 

1. Teaching mathematics for problem solving 

In this approach, Schroeder & Lester (1989, p. 32) maintain ñthe teacher concentrates on ways 

in which the mathematics being taught can be applied in the solution of both routine and non-

routine problemsò and ñstudents are given many instances of the mathematical concepts and 

structures they are studying and many opportunities to apply that mathematics in solving 

problemsò. That is, problem solving is undertaken after new mathematical concepts and 

procedures have been mastered. For example, in calculus pupils learn the rule for 

differentiation and then apply this technique to solve optimisation problems. Although, this 

method is engrained as the conventional instructional approach to problem solving, it requires 

that all learners have the necessary prior knowledge to understand new concepts. Typically, it 

involves a teacher presenting one method to perform a procedure which may disadvantage 

pupils who possess alternative solutions. Van de Walle, Karp & Bay-Williams (2014, p. 55) 

warn that this one dimensional tactic ñcan communicate that there is only one way to solve 

the problem, a message that misrepresents the rule of mathematics and disempowers students 

who naturally may want to try to do it their own wayò. Another drawback is that pupils may 

be afforded excessive help which will eliminate any cognitive demand and the necessity to 

óstruggleô. Hiebert et al. (1997) contend rich mathematical ideas are generated as a product of 

problem solving experiences that offer challenge opposed to the execution of standard 

algorithms. Learners need to explore problem situations and invent strategies to solve 

problems (Cai & Lester, 2016).  
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Nevertheless, it is purported that this method has merit and with the colossal pressure to 

prepare pupils for high stakes examinations, will probably ensure that this approach will 

continue for some time. For example, teaching for problem solving is the desired approach 

within CfE. The Scottish Government (2009, p. 2) emphatically state that: ñMathematics is at 

its most powerful when the knowledge and understanding that have been developed are used 

to solve problemsò. Moreover, the Scottish Government (2011a, p. 4) emphasise development 

of higherȤorder thinking skills ñthat enable the learner to identify which particular 

mathematical techniques can be appropriately applied in order to progress towards a solution 

to a problemò. However, Siemon (1986, p. 35) cautions that to ñspend the majority of oneôs 

time ñdoing mathematics as it has always been doneò, with ñproblem solvingò added on as an 

interesting appendage, actively acts against encouraging a problem-solving approachò. This 

perspective resonates with Cai (2010) who warns that separating learning skills and concepts 

from problem solving does not contribute to improving pupil learning.   

 

2. Teaching about mathematical problem solving 

This process will seek to develop and encourage an awareness of mechanisms that will allow 

pupils to access a range of appropriate strategies to attempt to solve problems, at the expense 

of learning mathematics (English, Lesh, & Fennewald, 2008). For example, young people are 

taught Polya style heuristics such as draw a picture, make a table, organise a list, look for a 

pattern, write an equation, etc. Paradoxically, while this requires a significant investment of 

time to illuminate and demonstrate relevant processes, it is worthwhile as without problem 

solving skills, pupils need a prolonged period to solve problems successfully. Leong et al. 

(2016) maintain that the language of problem solving can be easily transferred and reinforced 

when solving future problems. However, Schroeder & Lester (1989, p. 34) caution that 

ñinstead of problem solving serving as a context in which mathematics is learned and applied, 

it may become just another topic, taught in isolation from the content and relationships of 

mathematicsò. In order to circumvent such an undesirable outcome, Leong et al. (2016) argue 

that teachers should employ problems containing mathematical conditions that require 

mathematical solutions. This will allow pupils to link their conceptual and procedural 

knowledge to a cycle of thinking and asking questions, as a technique to augment their 

generic ability. One method to ensure that teachers have allotted time for this intervention is 

to include a structural change to the planned mathematics curriculum through the introduction 

of a formal component (Leong et al, 2016). Though, as indicated earlier, the main limitation 

of this approach is that pupils are unable to solve all types of mathematical problems (Lester, 

1994).  
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3. Teaching mathematics through problem solving 

In this rewarding approach, problem solving and learning mathematics are interdependent 

(Lambdin, 2003; Lesh & Jawojewski, 2007). Schroeder & Lester (1989) contend that: 

 
 problems are valued not only as a purpose for learning mathematics but also as a primary 

 means of doing so. The teaching of a mathematical topic begins with a problem situation that 

 embodies key aspects of the topic, and mathematical techniques are developed as reasonable 
 responses to reasonable problems (p. 33).  

 

Similarly, individuals are forced into a state of needing to connect what they know with the 

problem at hand (Lambdin, 2003). For example, in exploring the vertex of a quadratic 

function, pupils are led to discover the procedure for completing the square and how to 

identify the axis of symmetry. 

 

 

To date, a number of studies have suggested that this approach as an important linkage 

between theoretical research and effective practice which fosters learners problem solving 

abilities, reasoning skills and mathematical conceptual understanding (Cai, 2003; Lester & 

Cai, 2016; Leong et al., 2016). Lester & Lambdin (2004) draw a parallel with constructivism 

and maintain that pupils become active participants in the creation of knowledge rather than 

passive receivers of rules and procedures. Lester & Charles (2003, p. xi) argues that as young 

children attempt to solve problems, ñthey come to understand the mathematical concepts and 

methods involved, become more adept at mathematical problem solving, and develop 

mathematical habits of mind that are useful ways to think about any mathematical situationò. 

What is consistently underpinned is the interplay between problem solving ability and 

mathematical understanding. Significantly, learners are afforded more chances to express 

their mathematical ideas and justify their answers verbally, including increased opportunit ies 

to engage in cognitively demanding tasks (Lampert, 1990; Hiebert & Wearne, 1993).  

 

 

However, in my professional experience, solving mathematical problems is not perceived by 

teachers in the same light as computational skills required to find the equation of a circle, 

simplify an expression by applying the laws of logarithms, or using integration to find the 

area of a function below the ὼ-axis. From a pedagogical perspective, teaching through 

problem solving requires a paradigm shift in the philosophical role of the teacher. Enhanced 

responsibility to select appropriate quality tasks that nurture mathematical knowledge blended 

with strategic questioning and an effective understanding of when to extend and formalise 
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pupil thinking, will place an increase on the demand of the teacher (Van de Walle, Karp & 

Bay-Williams, 2014). Coordinating classroom discourse is multifaceted and requires high 

cognitive levels while pupils are learning and validating mathematical concepts (Smith, 

Hughes & Engle, 2009; Kilic et al., 2010). In his discussion on the Japanese school approach, 

Shimizu (2009, p. 100) concludes that: ñIn order to be successful, teachers have to understand 

well the relationship between the mathematics content to be taught and studentsô thinking 

about the problem to be posed. Anticipating studentsô responses to the problem is the critical 

aspect of lesson planningò. Much encouragement and support is required for practitioners to 

learn this role which cannot be easily accomplished through attendance at training courses but 

primarily through professional interactions with colleagues and research.   

 

 

Moreover, there may be occasions where this approach is not the preferred method to teach 

mathematics. Leong et al. (2016) argues that some ódefinitionsô can be more appropriately 

introduced by stating definitions with suitable examples and thus shift the emphasis on 

utilising the knowledge of these definitions in problem solving. For example, in the following 

problem it is more pragmatic to help pupils learn the prerequisite term ómedianô which aligns 

with the first instructional approach (i.e. teaching mathematics for problem solving): 

¶ Example 

Given that the median is 5 for the data set: 2, 15, ὼ, 6, 11, 10, 1, 7, 9, state the minimum value 

of ὼȢ  

  

2.7.2 The role of problem solving in school mathematics 

In their classic critique, Stanic & Kilpatrick (1989, p. 1) state emphatically that: ñProblems 

have occupied a central place in the school mathematics curriculum since antiquity but 

problem solving has not. Only recently have mathematics educators accepted the idea that the 

development of problem solving ability deserves special attentionò. The authors highlight the 

historical limited view of learning and mathematical problem solving and challenge us to 

fully examine why we should teach problem solving. They promote the incorporation of 

problem solving as a vehicle for acquiring new mathematical knowledge by encouraging 

pupils to develop logical reasoning skills and take responsibility for their own learning. Stanic 

& Kilpatrick (1989) identify three different interactive themes about the role of problem 

solving in school mathematics. 
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In the first theme, Stanic & Kilpatrick (1989) describe problem solving as a ócontextô, when it 

is employed to reach and facilitate other valuable ends. In such cases, problem solving can be 

used to justify the teaching of mathematics, to motivate pupils and capture  their interest in 

mathematics, to stimulate further this gained interest; problem solving can also be used as 

recreation to have fun with and even as a vehicle ñthrough which a new concept or skill might 

be learnedò (p. 14). Problem solving as a practice is included in this theme to describe 

situations in which problem solving is used to reinforce and practice previously taught 

concepts and skills. Schoenfeld (1992) maintains that problem solving itself is not usually 

seen as a goal but solving problems is seen as facilitating the achieving of other goals. 

 

 

As a second theme, Stanic & Kilpatrick (1989) represent problem solving as a óskillô. The 

authors warn that employing problem solving in a hierarchy of competences to be gained by 

pupilôs leads to certain consequences for the role of problem solving in the mathematics 

curriculum. Stanic & Kilpatrick (1989) contend that: 

 
 One consequence is that within the general skill of problem solving, hierarchical distinctions 

 are made between solving routine and non-routine problems. That is, non-routine problem 

 solving is characterized as a higher level skill to be acquired after skill at solving routine 
 problems (which, in turn, is to be acquired after students learn basic mathematical concepts 

 and skills) (p. 15).   

 

As was mentioned in the previous section, this should be learned explicitly as part of the 

curriculum. Translating this into teaching terms, problem solving should be promoted as a set 

of explicit thinking routines, such as drawing a diagram, finding a pattern, logical reasoning, 

etc., which should be part of the repertoire of instructional practices. 

 

 

In the final theme, Stanic & Kilpatrick (1989) refer to the rich work of Polya in portraying 

problem solving as a óhighly creative processô. The authors express ñproblem solving as art as 

the most defensible, the most fair, and the most promising. But at the same time it is the most 

problematic theme because it is the most difficult to operationalize in textbooks and 

classroomsò (p. 17). Stanic & Kilpatrick (1989) underline the challenges for teachers to 

develop a practical artistic ability in pupils and cite Polyaôs (1981, p. xi) comparison that 

problem solving should be deemed a practical art like ñlike swimming, or skiing, or playing 

the pianoò. Though, it is necessary to point out that creative skills are often presented as 
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separate entities to be learned didactically and applied without any theoretical justification 

(Lesh & Zawojewski, 2007; English & Sriraman, 2010; Lester, 2013).  

 

 

In short, within an ever changing world, the function of mathematical problem solving is to 

empower pupils to manage the complexities and non-routine cognitive real life challenges that 

await them within the future workplace. Independent critical and creative thinking skills will 

help generate solutions to novel mathematical problems that cannot be solved by selecting 

previously learned concepts and rules. The OCED (2014) assert that: 

 
 For students to be prepared for tomorrowôs world, they need more than the mastery of a 
 repertoire of facts and procedures; studentsô need to become lifelong learners who can handle 

 unfamiliar situations where the effect on their intervention is not  predictable. When asked to 

 solve problems for which they have no ready-made strategy, they need to be able to think 
 flexibly and creatively about how to overcome the barriers that stand in the way of a solution 

 (p. 26).        

 

In a study of Swedish primary teachers, Van Bommel & Palmer (2015) report that a 

collaborative professional development initiative influenced participantsô awareness of the 

problem solving themes introduced by Stanic & Kilpatrick (1989), evidenced by the quality of 

produced lesson plans.  

 

 

2.8 Assessment  

There is a growing demand from employers and universities for school leavers to be able to 

apply their mathematical knowledge to problem solving in varied and unfamiliar contexts 

(Lesh & Zawojewski, 2007; English & Sriraman, 2010; OCED, 2014; Jones, Swan & Pollitt, 

2014; ACME, 2016; English & Gainsburg, 2016). Assessment will impact on what is taught 

in the classroom and should be driven by mathematics that is valued and expected of a 

modern mathematics education (Suurtamm et al., 2016). Silver (2013, p. 273) reminds 

practitioners that ñfor students to become convinced of the importance of the sort of behaviors 

that a good problem-solving program promotes, it is necessary to use assessment techniques 

that reward such behaviorsò. Viewed in this way, the assessment of problem solving is 

essential in order to ensure the effective learning and teaching of problem solving throughout 

primary and secondary education (ACME, 2016). Lesh & Zawojewski (2007, p. 794) posit 

that ñthere is a growing recognition that a series mismatch (and is growing) between the low-

level skills emphasized in test-driven curriculum materials and the kind of understanding and 

abilities that are needed for success beyond schoolò. However, school mathematics 
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examination instruments are typically dominated by short, structured questions that fail to 

assess problem solving (Kilpatrick, 1992; Jones & Inglis, 2015).  

 

 

In Scotland, the centrality of problem solving is recognised as an intrinsic feature within the 

learning and teaching of mathematics (Scottish Government, 2009) although, illogically, 

discharged from any form of assessment accountability. Ironically, this delineated position 

was implicitly bolstered during a recent report established to transform the status of 

mathematics in Scotland by not appearing in any of the ten recommendations highlighted for 

change (Scottish Government, 2016b). It is important to consider how to interpret the 

common theme to emerge from narratives emphasising the indispensable role of problem 

solving along with the current assessment arrangements that are integral to CfE. As a 

practising teacher, I am cognisant of the issues of bureaucracy and lack of clarity which 

undermines our national assessment system but refuse to supplement any rhetoric to this 

topic. Instead, I will focus my attention briefly on exploring how mathematical problem 

solving can be evaluated within a suitable framework.  

 

 

Kilpatrick (1992) suggested that to assess mathematical problem solving effectively, the 

narrowing effects of current testing practice and the continued pressure for efficient 

measurement must be addressed. Since this proposition, multinational comparative 

assessments such as TIMMS and PISA have influenced policy makers throughout the world 

leading to political agendas fueled with neoliberal ideologies. Increasing operation is being 

made of external assessments to gauge mathematical knowledge and continue to serve 

different purposes to the design goals enshrined within the multidimensionality of classroom 

assessments (Suutamm et al., 2016). In Scotland, I believe the functionality of data from 

external assessments ultimately serves to encourage practitioners to óteach to the testô to the 

detriment of assessment for learning (Hodgen & Wiliam, 2006). Still, this scenario would not 

exist if national assessments aligned with curriculum goals and ironically may be held as a 

positive practice (Swan & Burkhart, 2012).     

 

 

Notwithstanding the nuances that arise from assessing complex processes involved in solving 

mathematical problems, Szetela & Nicol (1992) present four categories that teachers can use 

as a marking rubric; answers, answer statements, strategy selection and strategy 
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implementation. Though, it is argued that this method is unable to reliably capture the level of 

divergent thinking involved since thinking is not easily communicated to produce clearly 

formulated responses. Polya (1954, p. 154) highlights that: ñThe final form of the solution 

may be recorded, yet the changing plans and the arguments for and against them are mostly or 

entirely forgottenò. Since authentic problem solving tasks require an extended time period 

(since they are not suited to a timed examination) and observation to access evidence of 

process, the challenge is to design suitable mathematical problems that can be assessed within 

a controlled time.  

 

 

Monaghan et al. (2009) argue that open-start mathematical problems offer a practical means 

to achieve this objective and encapsulate the type of problems involved: 

 

¶ The mathematical knowledge needed to solve the problem must already be known securely: 
this is not about assessing curriculum content ï it is about assessing the ability to deploy such 

knowledge. 

¶ The problem-solver must not be familiar with a similar problem ï the essence of óopen-startô 

is that it is not clear where to start and recall of a similar siltation would compromise this. 

¶ It would not be clear at the outset whether the strategy will work, and it will have to be 

accepted by the problem-solver that further attempts may be needed (p. 26). 

 

The authors suggest that much development work is required to implement this form of 

assessment. While no marking scheme can circumscribe all conceivable answers that 

examination candidates might offer, Monaghan et al. (2009) anticipate that this would not 

pose an issue for open-start problems. In my view, their contribution would have been more 

convincing if they had provided some empirical evidence.  

 

 

In their study involving the design of a problem solving examination paper, Jones & Inglis 

(2015) administered a test to 750 English secondary pupils of varying mathematical ability. 

The participants work was assessed by experts using comparative judgement in addition to a 

specially designed resource intensive marking procedure. The construct of comparative 

judgment has an underlying theoretical basis grounded within a well-established 

psychological principle that people are more reliable when comparing outputs concurrently 

than when they are asked to judge something in isolation. In another English study, Jones, 

Swan & Pollitt (2014) demonstrated that comparative judgement was not a barrier to 

assessing mathematical problem solving. Results obtained from a review of a sample of 

examination scripts derived its validity from what is valued and expected by mathematics 
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professionals, rather than what can be precisely captured in scoring rubrics. Both Jones & 

Inglis (2015) and Jones, Swan & Pollitt (2014) found that comparative judgment was 

successful and raise the possibility of a richer diet of mathematical assessments anchored on 

holistic relatively unstructured tasks being available to future Scottish pupils. However, if the 

goal of developing proficiently in mathematical problem solving is to be realised, its 

importance must be communicated to pupils, teachers and the general public through the 

assessments that are offered (Silver & Kilpatrick, 1989). Moreover, the main summative 

assessment challenge for stakeholders in Scotland is not novel planning or peripheral 

methodology concerns but a deviation from traditional measurements fixated by the recall of 

facts and fluency of procedural knowledge.      

 

 

2.9 Factors contributing to successful mathematical problem solving 

I commence this section by referring to the social construct of óattitudeô. McLeod (1992) 

identified attitude along with beliefs and emotions as one of three key affective paradigms in 

mathematics education. All practitioners can relate to classroom experiences where pupils 

display a range of different behaviourisms towards mathematical problem solving which are 

generally construed across a continuum of positive and negative dispositions. They can have 

an affective and emotional character, while on the other hand, are of cognitive origin. For 

many years, this phenomenon was surprisingly neglected by a lack of a theoretical framework 

and new methods of inquiry.   

 

 

A seminal study in this area is the work of Di Martino & Zan (2010) who collected and 

analysed autobiographical narratives written by 1,662 Italian pupils whose school levels 

ranged from early primary to the end of secondary. The results of the study showed that 

almost all of the participants describe their relationship with mathematics along at least one of 

the following three trajectories: 

 

¶ emotional disposition towards mathematics 

¶ vision of mathematics 

¶ perceived competence in mathematics 

 

Di Martino & Zan (2010) present a multidimensional model characterised by three strictly 

interconnected dimensions that pupils recognise as crucial in their development of their 

relationships with mathematics (Figure 2.11). 
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Figure 2.11 The three dimensional model for attitude (Adapted from Di Martino & Zan, 2010) 
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Di Martino & Zan (2010) suggest the need for a new approach about the positive/negative 

portrayal of attitude and offer a definition of ónegative attitudeô aimed at supporting teachers: 

 

 The multidimensionality of the model underlines the inadequacy of the positive/negative 

 dichotomy for attitude referred to only to the emotional dimension (like/dislike), and 
 rather suggests considering an attitude as negative, when at least one of the dimensions is 

 negative. In this way, we can outline profiles of negative attitude, depending on the 

 dimension that appears to be negative (p. 44). 
 

 

In a study of 16 Belgium secondary children, Opôt Eynde, De Corte & Vershaffel (2006) 

examined the relationship between mathematical related beliefs, emotions and problem 

solving behaviour. They found that the nature and intensity of emotion experienced during 

problem solving fluctuated between participants. One significant aspect to emerge from the 

results was the level of confidence. Guven & Cabakor (2013) investigated factors influencing 

mathematical problem solving achievement of 115 Turkish secondary pupils. The researchers 

discovered that self-efficacy, beliefs and mathematical anxiety were noteworthy. However, 

the study suffers from poor external validity. In a study of 20 Israeli primary children, Prusak, 

Hershkowitz & Schwarz (2013) explored the culture of problem solving. They noted the 

success of their findings heavily relied on five principles such as encouragement to produce 

multiple solutions, creating collaborative situations; social-cognitive conflicts, providing tools 

for checking hypothesis and inviting students to reflect on solutions.  

 

 

In a review of the locus of problem solving within mathematics curriculums of Australia, UK, 

USA and Singapore, Stacey (2005) asserts that successful mathematical problem solving 

depends upon many factors which have distinctly different characters, illustrated in Figure 

2.12. A more comprehensive paper would include Scotland (since a UK curriculum does not 

exist) and non-English speaking countries. A number of scholars argue that pupils should 
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solve a wide range of types of problems and be regularly exposed systematically to planned 

problem solving instruction (e.g. Lester, Garafolo & Kroll, 1989; Lester, 1994, 2013; Boaler, 

1998, Cai, 2003; Lesh & Zawojeswski, 2007). Schoenfeld (2011, 2013) maintains that 

learners require deep mathematical domain knowledge, heuristic strategies, metacognitive 

skills and relevant beliefs. Likewise, Goldin (1998) opines that beliefs systems are powerful 

facilitators of problem solving success, or otherwise, as obstacles to it. Finally, Lester (2013) 

points to the importance of intuition while Boaler (2016) advocates a growth mind set.  

 

Figure 2.12 Factors contributing to successful problem solving (Adapted from Stacey, 2005) 
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I now turn my attention to the multifaceted role of the teacher (Lortie, 1975). From my 

professional experience, the selection of a mathematical problem is critical to the successful 

outcome of any lesson. To ensure equitable engagement of all levels of ability, suitable 

problems must present opportunities to be solved or at least partly attempted by low confident 

learners. Accessible problems should integrate enabling prompts for pupils experiencing 

difficulty and extending prompts for pupils who have completed the tasks (Hiebert et al., 

1997; Sullivan, 2011; Van de Walle, Karp & Bay-Williams, 2014). An overarching ability to 

choose appropriate problems is interrelated to content knowledge and proficiency of solving 
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mathematical problems including an understanding of how young people think about problem 

solving (Chapman, 2015). If teachers are unable to relate first hand to the tension and triumph 

of discovery engendered by solving problems, they are unlikely to be adept at fostering 

mathematical problem solving. During classroom discourse, practitioners should solicit 

questions that unpack pupilsô thinking and press for them to explain their reasoning behind 

the process (Rigelman, 2007). Similarly, a resilient dexterity to identify common 

misconceptions is essential. Schoenfeld (1992) encapsulates widely recognised pupil beliefs 

about mathematics which without approach, form a barrier to the effective learning of 

mathematical problem solving: 

 

¶ Mathematics problems have only one and only one right answer. 

¶ There is only one correct way to solve any mathematics problems ï usually the rule the 

teacher has most recently demonstrated to the class. 

¶ Ordinary students cannot expect to understand mathematics; they expect simply to memorize 

it, and apply what they have learned mechanically and without understanding. 

¶ Students who have understood the mathematics they have studied will be able to solve any 

assigned problem in five minutes or less. 

¶ The mathematics learned in school has little or nothing to do with the real world. 

¶ Formal proof is irrelevant to processes of discovery or invention (p. 359). 

 

 

2.10 Summary  

The centrality of problem solving in mathematics is incontrovertible. It can promote deep 

conceptual understanding, critical and independent thinking, habits of persistence and 

curiosity, confidence in unfamiliar situations that will serve pupils greatly in everyday life and 

in the future workplace (Lester, 1985; NCTM, 2000, Cai, 2010). No universally accepted 

definition of mathematical problem solving exists or the imminent prospect of a construct 

being agreed (English & Gainsburg, 2016). Mathematical problems encompass many 

characteristics and are classified in different ways. The learning of problem solving is 

extremely complex and multidimensional with much interplay rooted in the field of cognitive 

science. It can nurture creativity, flexibility and mental fluency (Silver, 1997; Guberman & 

Leikin, 2013). Considerable research has focussed around the theoretical framework 

introduced by Polya (1957). Schoenfeld (1985) established that resources, heuristics, 

metacognitive control and beliefs systems are fundamental mechanisms of successful 

mathematical problem solving.  

 

 

The role of the teacher is instrumental in supporting learners to develop higher order thinking 

skills through generating multiple solutions and providing rich opportunities for comparing 



88 

 

 
 

and reflection. Continued support exists for teaching mathematics using problem solving as a 

vehicle (Lester & Cai, 2016). There is little evidence to suggest that demonstrating heuristics 

to pupils leads to greater success in solving problems (Lester, 2013) although some strategies 

have merit. Although there is no obligation for practitioners to be expert problem solvers, a 

degree of mathematical proficiency blended with skilful pedagogical knowledge is required 

(Lester, 2013; Chapman, 2015). Concomitantly, tension of high-stakes national mathematics 

examinations which exclusively concentrate on assessing basic skills place educators in an 

undesirable position inconsistent with curriculum objectives (English & Sriraman, 2010). 

Such a misalignment with classroom practice suggests that a review of the philosophy of 

external assessment within CfE may be desirable. 

 

 

New directions and perspectives emerging from the literature (e.g. English & Gainsburg, 

2016) has proposed that future mathematical problem solving research be converged on 

modelling. Whilst I welcome such a move, it is debateable if modelling is a division of 

problem solving or a separate entity that requires a diverse set of skills. Likewise, there is a 

request for the recontextualisation of school mathematical problems so as to offer more 

cognitively challenging dynamic tasks that authentically simulate demands of 21
st
 century 

work and life.  

 

 

However, I believe that in order to advance the mathematical problem solving skills of all of 

our young people, research has to coalesce within two interrelated domains. Firstly, that of 

mathematical problem posing due to the valuable learning benefits that subsist. Secondly, 

teachersô beliefs since they appear to significantly impact on what takes place in classrooms. 

 

 

The next chapter offers an introductory literature review of mathematical problem posing.  
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CHAPTER THREE 

 
Mathematical Problem Posing 

 

 

The aim of this chapter is to provide an introductory review of the interrelated multiple 

perspectives surrounding mathematical problem posing. First, it is useful to familiarise the 

reader since problem posing is not encompassed within the mathematical domain of 

Curriculum for Excellence. Second, an appropriate background is helpful in advance of the 

systematic literature review of mathematical problem posing arranged for chapter five.  

 

 

3.1 Nature and definition  

In Kilpatrickôs (1987) landmark paper, he provides a valuable insight into our perception of 

the origin of good mathematical problems. More recently, Brown & Walter (2005) state that 

mathematical problems appear during schooling, predominantly from textbooks and to a 

much lesser extent from teachers, highlighting an issue with existing classroom practice. The 

authors encourage us to shift our thinking from solving predetermined problems to 

constructing and designing our own problems and argue that without engaging with this 

powerful form of mathematical inquiry, pupils will be unprepared in adapting to future 

workplace challenges. Unequivocally, without posed problems, there would be no 

mathematical problems to solve (Singer et al., 2011; Ellerton, 2013). As highlighted in 

chapter three, mathematical problems can be described as well-structured, structured, or ill-

structured. Drawing on the work of Fredericksen (1984), Kilpatrick (1987) distinguishes 

between the categories as follows: Well-structured problems are clearly formulated, can be 

solved by the application of a known algorithm and have criteria available for testing the 

correctness of a solution; structured problems are similar to well-structured problems but 

require the solver to contribute in some way to the solution; ill -structured problems lack a 

clear formulation, a procedure that will guarantee a solution and criteria for determining when 

a solution has been achieved.  

 

 

A number of researchers have reported that problem posing is a cognitive activity which 

encompasses both the generation of new problems and the reformulation of given problems 

(e.g. Silver, 1994; Silver & Cai, 1996; English, 2004; Whitin, 2006). Silver (1994) suggests 



90 

 

 
 

that the generation of new problems can occur before or after the problem solving process and 

that reformulation follows when the original mathematical problem is formulated or 

transformed into a different version. Kilpatrick, Swafford & Findell (2001, p. 124) associate 

problem posing with strategic competence and express this as ñthe ability to formulate 

mathematical problems, represent them, and solve themò. Pirie (2002, p. 929) includes a 

classification of a problem type when she describes problem posing as ñthe creation of 

questions in a mathematical context and ... the formulation, for solution, of ill-structured 

existing problemsò. This delineation is inadequate since is does not provide clarity on 

previous knowledge.  

 

 

In this thesis, I will adopt the definition offered by Stoyanova & Ellerton (1996, p. 518) who 

refer to the practice of problem posing as ñthe process by which, on the basis of mathematical 

experience, students construct personal interpretations of concrete situations and formulate 

them as meaningful mathematical problemsò. What is appealing about this definition is that it 

clearly links constructivism to problem posing. The researchers offer a theoretical framework 

by classifying three categories of problem posing situations; free, semi-structured and 

structured. In free situations, pupils design problems from a real life context without 

restrictions (see Example 1 below). Semi-structured problem posing occurs when pupils are 

ñgiven an open situation and are invited to explore the structure and to complete it by 

applying knowledge, skills, concepts and relationships from their previous mathematical 

experiencesò (p. 520). I believe that this situation has the potential to maximise creative 

thinking (see Example 2 below). Finally, structured problem posing activities are centred on a 

specific problem that requires completion or reformulation (see Example 3 below). This 

approach resonates with Brown & Walter (2005) who introduced the ñWhat-If-Notò strategy. 

All three examples are taken from my professional practice. 

 

¶ Example 1 

Heather has 145 marbles, Ruairidh has 114 marbles and Wallace has 220 marbles. Write and 

solve as many problems as you can using this information. 

 

¶ Example 2 

In the following diagram, there is an equilateral triangle and its inscribed circle. Make up as 

many problems as you can that are in some way related to this diagram.   
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¶ Example 3 

The gradient of a straight line is ½ and passes through the point A (4, 12). Write and solve as 

many problems as you can using this information. 

 

 

Nevertheless, problem posing is not an original concept. Eminent physicist, Albert Einstein 

(Einstein & Infeld, 1938) championed the notion when he famously stated: 

 
 The formulation of a problem is often more essential that its solution, which may be merely a 
 matter of mathematical or experimental skill. To raise new questions, a new possibility, to 

 regard old problems from a new angle, requires creative imagination and marks real advances 

 in sciences (p. 92).     

 

Historically, this view has been shared by many others who have placed greater emphasis on 

the value of posing meaningful questions than on attempts to solve them. For example,  

Singer, Ellerton & Cai (2013, p. 2) reminds us that Socrates (470-399BC) ñestablished an 

efficient method of learning through a continuous dialogue based on posing and answering 

questions to stimulate critical thinking and illuminate ideasò.   

 

 

In recent times, a focus on the idiosyncratic nature of critical thinking has continued, 

establishing this intrinsic feature as a highly desired characteristic. Prominent mathematicians 

and mathematics educationalists (e.g. Polya, 1954; Freudenthal, 1973, 1981; Halmos, 1980; 

Kilpatrick, 1987; Moses, Bjork & Goldenberg, 1990; Silver, 1994; Brown & Walter, 2005; 

Cai et al., 2015; Ellerton, Singer & Cai, 2015) consider problem posing to be an essential 

mathematical curriculum component and advocate that pupils are afforded extensive problem 

posing opportunities.  
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During the last three decades, research of mathematical problem posing has gained increasing 

awareness, although a lack of breadth may limit its future development. It has been suggested 

that problem posing as an emerging paradigm has been marginalised by the mathematics 

education community (English, 1998; Crespo, 2003; Leung, 2013) and be afforded similar 

research status as mathematical problem solving (Silver, Kilpatrick & Schlesinger, 1990; 

Pirie, 2002; Stoyanova, 2003; Silver & Cai, 2005). Concerns have been raised with the lack of 

opportunities provided to pupils (e.g. Ellerton, 1986; Silver et. al, 1996; Leung, 2013). 

However, recent studies have attempted to bestow further evidenced based strategies for 

classroom integration and within initial teacher education (e.g. Singer, Ellerton & Cai, 2015).   

 

 

3.2 The role of problem posing in school mathematics 

The literature has emphasised the importance of problem posing to the learning and teaching 

of school mathematics. For example, Polya (1957, p. 68) posited that ñthe mathematical 

experience of the student is incomplete if he never had an opportunity to solve a problem 

invented by himself.ò Similarly, Kilpatrick (1987, p. 123) argued that problem posing should 

be a fundamental mathematical curriculum objective and stated that ñthe experience of 

discovering and creating oneôs own mathematics problems ought to be a part of every 

studentôs educationò. Interestingly, both expressed views do not specify gender, age or ability 

which suggests this activity is accessible to all learners. Consequently, pupils at any stage 

may feel encouraged to develop their mathematical curiosity which can act as a motivational 

catalyst for further learning.  

 

 

It has been established from a variety of sources that problem posing can offer valuable 

benefits for both teachers and pupils alike. Practitioners are able to create interesting problems 

for children which can shape and cultivate mathematical learning and help them develop into 

stronger problem posers (Crespo, 2003; Olson & Knott, 2013). The operationalisation of 

problem posing provides a lens through which teachers are able to assess learnerôs conceptual 

understanding, problem solving and creativity (e.g. Ellerton, 1986; Kilpatrick, 1987; Silver & 

Cai, 1996; English, 1997a, 1997b; Silver, 1997; Cai & Hwang, 2002; Lowrie, 2002). It 

supplies rich opportunities for pupils to connect their own interest with all facets of 

mathematical education. Teachers can challenge learners to think deeply about what they are 

doing rather than mechanically respond to a set of questions with a prepared technique or 

algorithm. Other authors highlight the empowering aspect of problem posing which 
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encourages pupils to construct knowledge (e.g. Ernest, 1991, English, 1997a) and decide on 

questions to be solved thus rejecting the assumption that there is only one method to solve a 

problem and that all problems have one correct answer (Fox & Surtees, 2010).  

 

 

Based on fostering mathematics as a cognitive activity and grounded on a constructivist 

perspective (Silver & Cai, 1996; Cai, 1998), initiatives have recommended that problem 

posing play a pivotal role within the learning and teaching of school mathematics. This view 

is supported by Silver (1994, p. 19) who notes that ñcontemporary constructivist theories of 

teaching and learning require that we acknowledge the importance of student generated 

problem posing as a component of instructional activityò. Within my own professional 

practice, problem posing has created a dynamic learning environment where children are 

inspired to take more risks and are less afraid to make mistakes. Whitin (2004, p. 129) asserts 

that it can enhance the atmosphere of every mathematics classroom and portrays it as ña 

strategy that builds a spirit of intellectual excitement and adventure by legitimizing asking 

questions and freeing learners from the one-answer syndromeò.  

 

 

Given its potential to augment the learning and teaching of mathematics, it is unsurprisingly 

that problem posing has featured within many curriculum reforms around the world. It has 

been shown that curriculum reform is a powerful driver for implementing instructional change 

within educational systems (e.g. Cai & Howson, 2013). For example, the NCTM (1989, p. 

138) promulgate the importance of having secondary pupils immerse themselves in some of 

the problem posing aspects involved in the work of professional mathematicians by 

advocating that ñstudents in grade 9-12 should also have some experience recognising and 

formulating their own problems, an activity that is at the heart of doing mathematicsò. During 

a later reform, the NCTM (2000) declared that the function of the classroom teacher is to 

orchestrate opportunities for all learners to construct their own mathematical knowledge, 

emphasising that the formulation and modification of problems be within and outside 

mathematics.  

 

 

Stoyanova & Ellerton (1996) reported that the Australian Education Council (1991) offers 

strong support for the use of open-ended problems in mathematics classrooms. In Asia, 

assimilating problem solving within Chinese schools has a long history and continues to be 
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part of contemporary mathematical thinking (Cai & Nie, 2007). Since the start of the twenty 

first century, China has witnessed the development of using open-ended or real life problems 

and accordingly, of paying further attention to problem posing activities opposed to problem 

solving activities (e.g. Cai & Nie, 2007). The standards for problem solving in the Chinese 

National Curriculum Standards on Mathematics (Ministry of Education of Peoples Republic 

of China, 2001, p. 7) emphasise that pupils must be able to ñpose and understand problems 

mathematically, apply basic knowledge and skills to solve problems and develop application 

awarenessò (as cited by Chen et al., 2011). Within the Singapore Mathematics Curriculum 

Framework, pupils are explicitly encouraged to extend and generate problems (e.g. Ministry 

of Education, 2007). Leung (2013) testifies that curriculum standards and instruction in 

Taiwan emphasise the importance of problem posing. However, Leung (2013, p. 105) warns 

that in ñthe mathematics curriculum reform occurring in Taiwan, teachers are facing 

unprecedented challenges to change the way they teach, including incorporating problem 

solving and posing by childrenò. She refers to previous research which highlights the 

inexperience of practitioners in posing activities and that such mathematical activities are 

difficult to implement (e.g. Leung, 1994) and counsels for the provision of problem posing 

training and access to suitable resources for teachers. 

 

 

Various countries including Italy (e.g. Bonotto & Del Santo, 2015) and Turkey (e.g. Kilic , 

2013) have introduced curriculum reforms to embed problem posing activities that develop 

conceptual understanding within different levels of mathematics education. This has 

challenged the capability of teachers to pose valid and interesting tasks for pupils, including 

refining their ability to pose better problems. Research has investigated the problem posing 

performance of prospective and current primary and secondary mathematics teachers (e.g. 

Crespo, 2003; Koichu & Kontorovich, 2013). Whilst, in general, it was found that 

practitioners are capable of posing worthy and quality problems, it appears that this may be 

connected to problem solving experience. Moreover, due to workload demands, teachers 

require accessible classroom resources such as sample problems in order to implement in 

practice. Though, it is possible for reliable problems to be generated from other sources. In 

their study of 70 Portuguese prospective primary teachers, Barbosa & Vale (2016) explored 

authentic contexts outside the classroom contributing to the posing of mathematical problems. 

Drawing on the work of Silver (1997) and Stoyanova (1998), the researchers analysed 

personal interpretations and formulations of real situations inspired by the local environment. 

They found that participants displayed a more positive attitude towards learning and teaching 
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of mathematics by acquiring a wider view of the possible connections between the natural 

worlds. It is anticipated that this pedagogical change will help promote conditions for young 

children to discover and construct their own knowledge.  

 

 

3.3 Relationship between problem posing and problem solving 

Whilst it is acknowledged that problem posing and problem solving are not entirely diverse 

cognitive behaviours, they are nevertheless closely related (Lowrie, 2002). Fox & Surtees 

(2010) maintain that the two are ñinextricably linkedò whilst some scholars argue that 

problem posing is a ñspecial caseò (Kontorovich et al., 2012) or ñimportant companionò 

(Kilpatrick, 1987; Bonotto, 2010) of problem solving. Brown & Walter (2005) illuminate the 

overarching connection by asserting that problem posing is deeply embedded in the activity of 

problem solving in two contrasting ways. Firstly, it is impossible to solve a new problem 

without reconstructing the task and secondly, understanding a solution is typically enhanced 

after the generation and analysis of a new problem. Regarding this latter point, Brown & 

Walter (2005, p. 122) highlight that ñwe need not wait until after we have solved a problem to 

generate new questions; rather, we may be logically obligated to generate a new question or 

pose a new problem in order to be able to solve a problem in the first placeò. The authors 

skilfully illustrate the power of ñWhat-If-Notò thinking by selecting a special case of the 

quadratic equation (ὼ ὼ ρ π and solving it by an unorthodox method to generate a 

continued fraction.  

 

 

It may be reasoned that within the domain of problem posing, individuals have to 

productively engage in a higher level of intellectual or creative thought process. Appraised 

from a physics perspective, Mestre (2002, p. 15) contends that as a cognitively challenging 

undertaking, ñit would not be very difficult to argue that posing meaningful, interesting 

problems is intellectually a more demanding task than solving problemsò. Moreover, research 

suggests that problem posing activities help to diminish pupilsô mathematical anxiety while 

simultaneously foster a more positive disposition towards mathematics and may also improve 

learnerôs conceptual understanding and problem solving ability (Silver, 1994; English, 1997a; 

NCTM, 2000; Brown & Walter, 2005). 
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In chapter two of this thesis, I refer to the problem solving framework offered by Polya 

(1957), which connects a journey back and forth through four phases. Leung (2013) presents a 

similar four phase cycle to incorporate problem posing and problem solving and argues that 

the decisions and actions of posing and solving can be interrelated (Figure 3.1). If an 

individual is solving their own generated problem, the initial óUnderstandô phase is 

considered a óPoseô phase. Consequently, problem posing can emerge at any time, before or 

after solving. A broader perspective has been adopted by Gonzalez (1998) who describes 

problem posing as the fifth phase of Polyaôs model and is dependent on practitioners 

providing worthwhile problems. However, it may be argued that the interaction between 

problem posing and problem solving is strongly influenced by the teachersô perception of 

what constitutes a suitable problem.    

 

Figure 3.1 Four phases in problem posing and problem solving (Adapted from Leung, 2013) 

 

Understand 
(POSE)

Look Back Plan

Carry Out

 

 

Several studies have probed the interactions between problem posing and problem solving 

with mixed results (e.g. Ellerton, 1986; Silver & Mamona, 1989; Silver & Cai, 1996; Cai, 

1998; Crespo, 2003; Chen et al., 2007). In this remainder of this section, centred on a 

theoretical argument presented by Kilpatrick (1987) that the quality of posed problems is 

directly linked to individual mathematical problem solving ability, I examine two famous 

studies involving pupils. In this first study, the problem posing and problem solving tasks are 

mostly unrelated. Whilst the tasks in the second study are considered to be identical in 

mathematical and contextual structure.    

 

Silver & Cai (1996) 

In this study, the researchers analysed the responses of 509 American secondary pupils who 

were asked to complete a problem posing task which consisted of generating three questions 

based on a driving situation. Posed problems were analysed by type, solvability and 

complexity. This outcome was compared with the results from eight open-ended problem 
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solving tasks involving fractions, geometry, number theory, patterns and relationships, 

ratio/proportion and statistics. Silver & Cai (1996) discovered that pupilsô problem solving 

performance was highly correlated with their problem posing performance. Moreover, 

compared to less successful problem solvers, good problem solvers generated more problems, 

and their problems were more mathematically complex. What is interesting about the study is 

that the participants were not selected on the basis of obvious mathematical ability. 

 

Cai & Hwang (2002) 

This cross-national comparative study examined American and Chinese primary pupilsô 

mathematical performances. A total of 98 American and 155 Chinese children participated in 

the research which involved three pairs of problem solving and problem posing tasks. The 

results ñshowed differential relationships between problem posing and problem solving for 

US and Chinese studentsò (p. 419). The disparities appear to be related to learnerôs use of 

differing strategies. Chinese pupils tend to choose abstract and symbolic representations while 

American students favour concrete strategies and drawing images. In short, there was a 

stronger connection between problem posing and problem solving for the Chinese sample. 

Overall, the findings of this study are similar to Cai (1998) which located a positive 

correlation between problem posing and problem solving from a cross-national perspective.  

 

 

Whilst both the studies of Silver & Cai (1996) and Cai & Hwang (2002) provide some 

evidence that a linkage exists between problem posing and problem solving, further research 

is required to explore this complex and multidimensional relationship in more detail. 

Recently, Silver (2013, p. 160) in his observation of previous research in the field, asserted 

that ñprogress has been stymied by the lack of an explicit, theoretically based explanation of 

the relationship between problem posing and problem solving that is consistent with existing 

evidence and that could be tested in new investigationsò. In particular, there is scarcity of 

research involving practising teachers (e.g. Silver & Mamoma, 1989; Silver et al., 1996; Chen 

et al., 2011).  

 

 

3.4 Creativity  

The operationalisation of creativity is a desired outcome within any mathematical educational 

setting. Sriraman (2009, p. 13) emphatically states that ñmathematical creativity ensures the 

growth of the field of mathematics as a wholeò. No one can dispute technological innovations 
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in modern society have been owed to the inspirational creativity of scientists and professional 

mathematicians (Nadjafikhan, Yaftian & Bakhshalizadeh, 2012). In Scotland, creativity has a 

high profile in education and fits very well within the broad framework of CfE, although 

ironically, the vast majority of pupils would not associate the domain of mathematics with 

creativity. 

 

 

Nevertheless, numerous pupilsô classroom experiences of mathematics entail working with 

practitioner-driven material and sequential tasks or being passive observers of mathematics 

(Boaler, 1997). Based on her ethnographic case studies of teaching approaches at two 

different English secondary schools, Boaler (1998, p. 59) cautions against the stereotypical 

limitations of using only standard mathematical methods when she warns ñstudents developed 

an inert, procedural knowledge that was of limited use to them in anything other than 

textbook situationsò. Often, the creative side of mathematics education is neglected, as 

instruction normally has an imitative and reproductive character since it is focussed on 

rudimentary activities with a dependency on routine skills, where pupils are encouraged to 

think in narrow domains (Haylock, 1987). 

 

 

It is important to reflect on what is epitomised by mathematical creativity. Previous research 

has suggested that it may be confined to the employment of professional mathematicians 

when they formulate a problem that has not been solved before (Hadamard, 1945; Poincare, 

1948). However, the conceptualisation of creative learning fluctuates due to the diversity of 

perspectives of creativity. Ervynck (1991) deems that mathematical creativity cannot occur in 

a vacuum and needs a context in which the individual moves forward through previous 

experiences which provide a suitable environment for creative development. Ervynck (1991) 

asserts that creativity plays a vital role in the full cycle of advanced mathematical thinking: 

  
 It contributes in the first stages of development of a mathematical theory when possible 

 conjectures are found as a result of individual experiences of the mathematical connects; it 

 also plays a part in the formulation of the final edifice of mathematics as a deductive system 

 with clearly defined axioms and formally constructed proofs (p. 42).  

 

Silver (1997) views creativity as an orientation or disposition towards mathematical activity 

that can be fostered in the general school population. He proclaims the ñconnection to 

creativity lies not so much in problem posing itself, but rather the interplay between problem 

posing and problem solving. It is in this interplay of formulating, attempting to solve, 
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reformulating, and eventually solving a problem that one sees creative activityò (p. 76). Silver 

discusses previous research by Getzels & Jackson (1962), Balka (1974) and Skinner (1991) 

amongst others which demonstrate valuable samples of problem posing. He proposes a 

didactical paradigm in which classroom practitioners can relate to three practical core 

assessment components of creativity i.e. fluency, flexibility and originality (novelty) as 

displayed in Figure 3.2. However, Kontorovich et al. (2011) argues that these indicators do 

not fully capture the essence of pupilsô creativity and suggest that aptness be included as an 

additional quantitative evaluation. Silver (1997) presents a task which requires showing that 

the product of any four consecutive integers is divisible by 24. Whist this particular 

illustration is more emblematic of problem solving, it can be easily adapted to provide a 

problem posing activity. For example, generate as many problems as you can using the terms 

ófourô, óconsecutive integersô, ódivisibleô and ó24ô. Silver (1997, p. 79) claims through the use 

of an inquiry based approach, ñteachers can assist students to develop greater representational 

and strategic fluency and flexibility and more creative approaches to their mathematical 

activityò.  

 

 

At school level, Jenson (1973) maintains that mathematically creative pupils should be able to 

pose mathematical questions that extend and deepen the original problem as well as solve the 

problem using multiple methods. Likewise, Krutetskii (1976) portrayed creativity in the 

context of problem formation, invention, independence, originality and associates 

mathematical creativity with giftedness. In a study of 359 Cypriot pupils (aged 9-12 years) by 

Kattou et al. (2013), the researchers found a strong positive correlation between mathematical 

creativity and mathematical ability. In contrast, Skemp (1987, p. 64) argues that all learners 

have the ability to demonstrate mathematical creativity ñsince all new learning in mathematics 

by the method of concept-building consists of the formation by individuals of new ideas in 

their own minds, it is creative from their point of viewò. In the same vein, Mann (2006) warns 

that without providing for creativity in teaching mathematics, all learners are denied the 

option to appreciate the beauty of mathematics.  
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Figure 3.2 Core indicators of creativity (Adapted from Silver, 1997) 
 

Problem Solving

Mathematical 
Creativity

Problem Posing

Students explore 
open-ended 

problems, with 
many 

interpretations, 
solution methods or 

answers

Students solve (or 
express or justify) in 

one way, then in 
other ways

Students discuss 
many solution 

methods

Students examine 
many solution 

methods or answers 
(expressions or 

justifications); then 
generate another 
that is different

Students generate 
many problems to 

be solved

Students share their 
posed problems

Students pose 
problems that are 

solved in many 
different ways. 

{ǘǳŘŜƴǘǎ ǳǎŜ ά²Ƙŀǘ 
if not?έ ŀǇǇǊƻŀŎƘ ǘƻ 

pose problems

Students examine 
several posed 

problems; then 
pose a problem that 

is different

Fluency

Flexibility

Novelty

 

 

Logically, in order to cultivate mathematical creativity, teachers should select contexts that 

offer pupils opportunities to pose their own problems. Singer & Voica (2015) found that 

within the context of problem posing, mathematical creativity is a special type requiring 

abstraction and generalization. Jay & Perkins (1997, p. 257) maintain ñthe act of finding and 

formulating a problem is a key aspect of creative thinking and creative performance in many 

fields, an act that is distinct from and perhaps more important than problem solvingò. Another 

illustration of creativity is found in the work of Runco (1994, p. ix) when he expressed 

creativity as a multifaceted construct involving both ñdivergent and convergent thinking, 

problem finding and problem solving, self-expression, intrinsic motivation, a questioning 

attitude, and self-confidenceò. Alternatively, Torrance (1988) proclaimed that creativity is 

almost limitless and occurs whenever a solver has no learned solution for an existing problem.  
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While a number of researchers (e.g. Cai & Cifarelli, 2005; Singer et al., 2011; Siswono, 2011) 

have endorsed the connection between creativity and problem posing, this perspective is not 

universally shared (e.g. Haylock, 1997; Leung, 1997). Yuan & Sriraman (2011, p. 25) note 

ñthere might not be consistent correlations between creativity and mathematical problem-

posing abilities or at least that the correlations between creativity and mathematical problem 

posing abilities are complexò.  

 

 

Within my professional practice, I have adapted two problem posing activities (Figure 3.3) 

from Christou et al. (2005b) that have stimulated the developmental growth of mathematical 

creativity between S1 and S2 pupils. Whilst I cannot verify the impact of such creativity on 

achievement, these tasks have promoted deep critical thinking and have generated many 

interesting and enjoyable learning experiences.   

 

Figure 3.3 Examples of problem posing activities (Adapted from Christou et al., 2005b) 

 

(a) Write a question to the following story so that the answer to the problem is ó75 poundsô:  

 Lachlann had 150 pounds. His mother gave him some more. After buying a book for 25 

 pounds he had 200 pounds. 

 

(b) Write an appropriate problem for the following: 

 (2300 + 1100) ï 790 = n 

 

 

3.5 Technology  

The integration of technology has a long and prominent history in mathematics education. 

Since the introduction of basic calculators in the 1970s, computers equipped with increasingly 

sophisticated software, graphics calculators that have morphed into óall-purposeô hand-held 

devices assimilating graphical, symbolic manipulation, statistical and dynamic geometry 

packages, and web-based applications offering virtual learning environments have 

transformed the learning and teaching landscape (Goos, 2010). Concrete and virtual 

manipulatives reinforce mathematical concepts and can enhance mathematical sense making, 

communication, problem solving, reasoning and facilitate the tangible emergence of complex 

and abstract ideas. 
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The application of technology provides a range of rich and profound problem posing 

opportunities that allow learners to make conjectures, design their own explorations and 

create reinterpretations of existing concepts. More importantly, it can reliably provoke the 

stimulation of mathematical thinking due to the extensive assortment of ideas that can be 

instantaneously generated. Kilpatrick (1987) helped champion the future use of computers in 

problem formulation. However, the role of technology in problem posing has yielded few 

secondary studies, and even less involving primary pupils (Abramovich & Cho, 2015). 

Research has focussed on electronic spreadsheets (e.g. Abramovich, 2006; Abramovich & 

Cho, 2008), graphing software (e.g. Christou et al., 2005a; Lavy & Shriki, 2010; Leikin, 

2012), computer algebra systems (e.g. Abramovich & Norton, 2006) and modelling (e.g. 

Abramovich & Cho, 2012).  

 

 

Engagement in problem posing activities using dynamic geometry software can produce 

powerful learning environments where problems or relationships can be generalised or the 

validity of a new problem can be examined. This technology produces unique interactions 

between the softwareôs interface and the usersô actions and understandings, resulting from 

visual reasoning enhanced by dragging facilities (Lavy, 2015). In a study using this software, 

Contreras (2003) claimed that all mathematical problems contain some known information, 

some unknown information and sometimes explicit or implicit restrictions. By illustrating 

with parallelograms and angle bisectors, Contreras describes how to generate multiple 

geometric problems by varying the type of problem information and considering other types 

of problems. He maintains that such technology can show ñnot only how we can help students 

become better problem posers but also how the teacher can use a problem posing approach as 

an instructional tool to help students specialize, generalize, and extend problemsò (p. 275).  

 

 

Class discussions of problem posing activities using dynamic geometry software serve as a 

valuable mechanism for evaluating accurateness of generalisations. The exchange of ideas 

regarding the attributes and interrelations of mathematical objects under inspection may also 

stimulate the development of individual reflection by both teacher and pupil (Lavy, 2015).   

 

 

In a later study using dynamic geometry software, Contreras (2007) advocated that all pupils 

should have extensive experiences posing proof problems. Proving is an essential feature 
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intrinsic to understanding mathematics and provides the quintessential method of establishing 

propositions as results. Greeno (1994, p. 274) argues that ñfor students to learn mathematics 

without coming to appreciate the role of proof seems as impoverished as it would be for a 

student to learn science without coming to appreciate the role of empirical evidenceò. 

Contreras (2007) underlined that reformulating a problem as a proof problem involves more 

than altering the syntactic structure of the problem. It requires an assumed degree of 

mathematical knowledge, since we either know that a proof exists or we can develop such a 

proof. In her study of 22 prospective Israeli mathematics teachers, Leikin (2015) highlighted 

the effectiveness of problem posing investigations in a dynamic geometry environment as a 

pedagogical instrument. She found that the majority of text book problems lead to performing 

mathematics fertile in surprises, discoveries and proofs. Nevertheless, Leikin (2015) cautions 

that the operationalisation of problem posing is dependent on the nature of teachersô beliefs 

aligning with the suitability of such approaches and the critical provision of rich tasks. In the 

same vein, Abramovich & Cho (2015) illustrate the importance of future practitioners being 

equipped with conceptual understanding of didactic issues related to problem posing with 

technology.  

 

 

3.6 Assessment  

Although assessment is conducted for different reasons, it may be argued that its central 

purpose should be to support and enhance learning. Based on this premise, problem posing 

has been meaningfully employed to assess multiple mathematical constructs generated by 

pupils (e.g. Kantorovich et al. 2011; Van Harpen & Presmeg, 2013; Singer & Voica, 2015, 

Munroe, 2016) and prospective teachers (e.g. Crespo & Sinclair, 2008; Osana & Royea, 2011; 

Tisha & Hospesova, 2013; Singer, Voica & Pelczer, 2017). Pelczer & Rodriguez (2011) 

formulated criteria for assessing levels of creativity generated by a problem posing task on the 

topic of sequences. The lowest level was based on the application of a domain specific 

algorithm. A middle level was similar to the lowest level but was combined with some other 

form of knowledge. The highest level was categorised as using innovative knowledge from 

outside the topic. Kilic (2015) used semi-structured problem posing activities to determine 

prospective Turkish primary teachersô knowledge structures of fractions.  

 

 

Other researchers have designed frameworks or performance rubrics to support teachers in 

their assessment of problem posing tasks (e.g. Stoyanova & Ellerton, 1996; Leung, 1996; 
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Leung & Silver, 1997; Lowrie, 2002; Lin, 2004). Few studies exist that have focussed 

specifically on the assessment of childrenôs problem posing skills (Cankoy & Ozder, 2017). 

Moreover, an extensive range of curriculum assessments remain underdeveloped for school 

mathematics (Rosli, Goldsby & Capraro, 2013). In this next section, I draw on two 

assessment tools to stimulate a discussion of characteristics and didactic competences. 

 

    

Whilst promoting creative, flexible and higher-order thinking, it may be argued that a degree 

of subjectivity exists due to the open-ended nature of problem posing tasks. Shriki (2013) 

points out that creativity is dependent on a teacherôs interpretation and is influenced by the 

mathematical abilities of a group. Likewise, Silver & Cai (2005, p. 131) warn that although 

considerable variability is common in the responses that pupils generate, ñit can often present 

challenges from an assessment perspectiveò. While the researchers make a valid point, it 

cannot be underestimated the significance of obtaining a diversity of problems from pupils.  

 

 

Problem posing represents an essential form of authentic mathematical inquiry of which the 

basic tenet is the reformulation or generation of new problems. I believe that the main thrust 

of assessment should include early deduction of ill-structured and unsolvable problems, in 

addition to evaluating different levels of mathematical sophistication. Silver & Cai (2005) 

propose three criteria that can be coalesced for assessing problem posing ability within a 

classroom setting; quantity, originality and complexity. Quantity relates to the number of 

valid responses and fluency of generated problems can help to establish creativity. Originality 

is an obvious measure of creativity and a welcomed attribute. However, the emergence of 

originality may depend on working with large groups of pupils so as to distinguish between 

atypical responses. The complexity of pupils posed problems is a feature that is likely to be of 

interest to all teachers. Silver & Cai (2005) provide a good illustration of a problem posing 

task employed in a previous study (Silver & Cai, 1996) which can be used to evaluate 

complexity of pupil responses (Figure 3.4). 

 

Figure 3.4 Task for evaluating pupil response (Adapted from Silver & Cai, 2005)  

 

Write three different problems with the given situation: 
 

Donald, Coinneach and Eilidh took turns driving home from a trip. Eilidh drove 80 miles more than 

Coinneach. Coinneach drove twice as many miles as Donald. Donald drove 50 miles.      
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Silver & Cai (2005) draw our attention to the aspect of linguistic complexity and suggest that 

this may be judged by focusing on linguistic structures, such as the presence of assignment, 

relational and conditional propositions in mathematical problem statements. The researchers 

extend this perspective to consider fundamental semantic structural relations in order to 

analyse complexity in more detail and offer a framework for assessing the complexity of pupil 

generated problems (Figure 3.5).      

 

Figure 3.5 Framework for assessing complexity of pupil generated problems (Adapted from  
  Silver & Cai, 2005) 
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In another study, Kwek (2015) explored the use of problem posing tasks as a formative 

assessment tool to examine thinking processes, understandings and competencies of 

secondary pupils. Her specific focus was on the cognitive demands of mathematical 

complexity which included aspects of knowing and doing mathematics, such as reasoning, 

performing procedures, understanding concepts or solving problems. Kwek employed a rubric 

(Table 3.1) to categorise three levels (low, moderate and high) of complexity of posed 

problems. Low complexity problems are usually solved by recalling and recognising facts or 

having a one-step solution. Problems that are categorised with moderate levels of complexity 

generally demand a combination of mathematics skills and knowledge. High complexity 

problems emphasise resourceful thinking by engaging solvers in a multitude of demands.  
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Table 3.1 Rubric for evaluating the complexity of posed problems (Adapted from Kwek, 2015)  

 Low complexity Moderate Complexity High Complexity 

D
e
s
c
ri
p
ti
o
n 

This category relies heavily on the 
recall and recognition of previouslyï
learned concepts. Items typically 
specify what the solver is to do, 
which is often to carry out some 
procedure that can be performed 
mechanically. It leaves little room for 
creative solutions. The following are 
some, but not all, of the demands 
that items in the lowïcomplexity 
category might make: 
 

 

Items in the moderateï complexity 
category involve more flexibility of 
thinking and choice among 
alternatives than do those in the 
lowïcomplexity category. They 
require responses that may go 
beyond the conventional approach, 
or require multiple steps. The solver 
is expected to decide what to do, 
using informal methods of reasoning 
and problemïsolving strategies. The 
following illustrate some of the 
demands that items of moderate 
complexity might make: 

Highïcomplexity items make heavy 
demands on solver, who must 
engage in more abstract reasoning, 
planning, analysis, judgment, and 
creative thought. A satisfactory 
response to the item requires that 
the solver think in an abstract and 
sophisticated way. The following 
illustrate some of the demands that 
items of high complexity might 
make: 

C
o
g
n
it
iv

e
 d

e
m

a
n
d

 

Å Recall or recognize a fact, term, or 
property 
Å Compute a sum, difference, 
product, or quotient 
Å Perform a specified procedure 
Å Solve a oneïstep word problem 
Å Retrieve information from a graph, 
table, or figure 

Å Represent a situation 
mathematically in more than one 
way 
Å Provide a justification for steps in a 
solution process 
Å Interpret a visual representation 
Å Solve a multiple-step problem 
Å Extend a pattern 
Å Retrieve information from a graph, 
table, or figure and use it to solve a 
problem 
Å Interpret a simple argument 

Å Describe how different 
representations can be used to 
solve the problem 
Å Perform a procedure having 
multiple steps and multiple decision 
points 
Å Generalize a pattern 
Å Solve a problem in more than one 
way 
Å Explain and justify a solution to a 
problem 
Å Describe, compare, and contrast 
solution methods 
Å Analyse the assumptions made in 
solution 
Å Provide a mathematical 
justification 

 

 

3.7 Theoretical frameworks 

During the last twenty years, a number of theoretical frameworks have emerged that 

conceptualise problem posing from an array of perspectives. For example, cognitive processes 

(e.g. Silver et al., 1996; Pittalis et al., 2004; Christou et al., 2005b; Chua & Wong, 2012; 

Kontorovich et al., 2012), assessment of problems posed (e.g. Silver & Cai, 2005; Kwek, 

2015), strategic approaches (e.g. Silver, et al., 1996; Brown & Walter, 2005; Contreras, 

2007), complexity in small groups (e.g. Kontorovich et al., 2012), connection to problem 

solving (English, 1997a, 1997b), learning opportunities (e.g. Lowrie, 2002; Crespo & 

Sinclair, 2008), mathematical modelling (e.g. Bonotto, 2010), creativity (e.g. Leung, 1997; 

Silver, 1997; Siswono, 2011), and situations of problems posed (e.g. Stoyanova & Ellerton, 

1996). 
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My main curiosity in problem posing rests with the professional development of teachers. In 

order for problem posing to be mobilised within classrooms, I believe that it is essential for 

practitioners to appreciate the pedagogical nature of problem posing and are competent in 

demonstrating the mathematical processes that define it. Although some research has 

highlighted teachersô difficulties with problem posing (e.g. Silver et al., 1996; Koichu, Harel 

& Manaster, 2013; Singer & Voica, 2015), several studies have noted that with intervention, 

teachers can lead to improved problem posing performances (e.g. Abu-Elwan, 2002; Crespo 

& Sinclair, 2008; Chapman, 2012).  

 

 

In my personal view, the Active Learning Framework introduced by Ellerton (2013) aligns 

exactly with a constructivist orientation of learning and teaching mathematics. Central to this 

framework is the active engagement of pupils posing problems in parallel with corresponding 

problem solving activities (Figure 3.6). It is this seamless positioning of problem posing that 

Ellerton argues if excluded from school curricula, will deprive children of rich mathematical 

experiences. For problem posing to be introduced consistently into classrooms, teachers must 

acquire skills and confidence, which may be achieved by conceptualisation of problem posing 

within primary and secondary mathematics initial teacher education programmes or 

embedded within professional learning opportunities.  

 

 

In a recent study employing the same framework, Ellerton (2015) derived that time consumed 

on posing mathematical problems should not be isolated from time expended on mathematics. 

She insists that ñit should be seen by all stakeholders as time well spent on learning 

mathematics, and should not be seen as an imposition or an extra that somehow needs to be 

included in an already-busy curriculumò (p. 527). 

 

 

Teachers are continually required to engage learners in worthwhile mathematical experiences 

but such provision is influenced by the efficiency to select, create or pose appropriate 

problems. In a study of 40 Canadian student primary teachers, Chapman (2012) investigated 

methods of making sense of problem posing. By providing the participants with a range of 

assignments, she was able to analyse problem posing behaviour by task type. Chapman 

identified five perceptions on problem posing held by the teachers. Firstly, the paradigmatic 

perspective emphasises ñcreating a problem with a universal interpretation, a particular 
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solution and an independent existence from the problem solverò (p. 140). Secondly, the 

objectivist perspective illustrates working backwards by beginning with a mathematical fact 

(e.g. 5 x 10 = 50) and then constructing a problem by providing context. Thirdly, the 

phenomenological perspective characterises problem posing that is meaningful from the 

individualsô point of view and which contains personalised interpretations and solutions. 

Fourthly, the humanistic perspective is similar to the phenomenological perspective but the 

context reflects the individualsô personal interests or experiences. (e.g. If the individual is 

interested in tennis, they might pose the following problem: A badminton club has 31 playing 

members. 27 play singles and 15 play doubles. How many play both singles and doubles?). 

Finally, the utilitarian perspective emphasises problem posing as an instrument to focus 

attention on the mechanics of mathematical thinking. Chapman states that the perspectives 

ñprovide a basis to compare and unpack their ways of problem posing. All five need to be 

explored in order to allow the teachers to understand how each could support or inhibit 

studentsô mathematical understanding and mathematical thinkingò (p. 144).  

 
 
Figure 3.6 Framework for locating problem posing in mathematics classrooms (Adapted from 
  Ellerton, 2013) 
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I believe that, collectively, the frameworks offered by Ellerton (2013) and Chapman (2012) 

offer both primary and secondary mathematics teachers a suitable starting point in their 
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development of problem posing knowledge. Kontorovich et al. (2012) present an insightful 

analysis of collaborative problem posing consisting of a framework which integrates five 

operationally defined facets (Figure 3.7) such as task organisation, knowledge base, problem 

posing heuristics and schemes, group dynamics and interactions, and individual 

considerations of aptness.  

 

Figure 3.7 A confluence framework for handing the complexity of problem posing (Adapted from 
  Kontorovich et al., 2012)   
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Kontorovich et al. (2012, p. 153) define considerations of aptness as ñthe posers 

comprehensions of explicit and implicit requirements of a problemïposing task within a 

particular context; they also reflect his or her assumptions about the relative importance of 

these requirementsò. Interestingly, the researchers describe different types of individual 

considerations of aptness in problem posing such as aptness to potential evaluators, i.e. the 

poserôs assumptions about how other individuals would evaluate the problem poserôs skills 

and performance including aptness to group members i.e. oneôs opinion about whether or not 

the idea suggested by the poser would be acknowledged by members of the group.  
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Kontorovich et al. (2012, p. 160) maintain that teachers should provide pupils with an 

opportunity to employ considerations of aptness to potential solvers, as this many lead to 

improving the quality of the problem posing product and suggest that ñpedagogical effort 

should probably be invested in designing such situations, in which considerations of aptness 

will be addressed explicitlyò. In practical terms, teachers can attempt to evaluate 

considerations of aptness based on observation of the interactions that takes place within 

groups and judge the quality of the problem posing ideas and resulting problems.  

 

 

3.8 Professional reflection 

This chapter has attempted to provide a summary of the works relating to mathematical 

problem posing from both a teacher and learner perspective. In doing so, it has presented a 

rationale for the conceptualisation and operationalisation of mathematical problem posing. In 

sum, it advocates the view that problem posing is of central importance in the domain of 

mathematics and to the nature of critical thinking (Silver & Cai, 1996; Silver et al., 1996) and 

endorses the stance from Ernest (1991, p. 265) that ñschool mathematics for all should be 

centrally concerned with human mathematical problem posing and solvingò. According to 

Christou et al. (2005b, p. 149): ñProblem posing is an important aspect of both pure and 

applied mathematics and an integral part of modelling cycles which require the mathematical 

idealization of real-world phenomenaò.   

 

 

Intertwined with problem solving, the reformulation of existing problems and the generation 

of new problems have the dynamic capability to increase conceptual mathematical 

understanding and to empower children to nurture their own innate creativity. Authentic 

problem posing activities can unleash a powerful connection between school mathematics and 

the real world, including being accessible to all learners irrespective of ability. In essence, 

problem posing with all its complexities, has the potential to redefine in a radical manner, 

independent learning, where pupils are energised to take a more active role in their 

mathematical development (Brown & Walter, 2005).  

 

One criticism of much of the literature on problem posing is that it does not help to explain 

the dynamics of how teachers can support young people who reject or resist inquiry based 

pedagogy. Whilst problem posing activities promote autonomous learning and can empower 

pupils to interact more with mathematics, some children do not have the desire or motivation 
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to engage with the cognitive demands of this instructional approach (Silver & Mamona, 1989; 

Silver, 1994). Characteristically, such pupils are products of previous mathematical success 

through the medium of teacher centred learning, which delimits the enactment of higher order 

thinking.      

 

 

However, while problem posing is recognised as fundamental to the learning and teaching of 

mathematics, it remains on the periphery of school curricula (Ellerton, Singer & Cai, 2015). 

Arguably, without an official mandate, the injection of problem posing into classrooms 

appears to be fragmented. More concerning may be that all practitioners are not fully 

equipped to pose worthwhile problems (e.g. Koichu, Harel & Manaster, 2013; Singer & 

Voica, 2013).  

 

 

I believe that if problem posing is to be interwoven within the fabric of mathematical 

instruction, the critical role of teachers needs to be examined. Since the enactment of any 

didactic vision is influenced by the beliefs of those charged with its implementation, 

practitioners must be robustly convinced of the theoretical merits and educational benefits of 

problem posing. Likewise, teachers need sufficient training to acquire the vital pedagogical 

skills to allow them to cultivate problem posing in practice. Crespo & Sinclair (2008, p. 412) 

contend ñthat in order for teachers to support student problem posing, they need to gain 

problem posing experience themselvesò. Abu-Elwan (2007) suggests that through technology 

guidance, it is possible to change the beliefs of teachers towards the role of problem posing in 

mathematics education. 

 

 

Recently, as part of practitioner enquiry towards professional learning, I examined a rich 

problem posing activity known as the óBilliard Taskô, with two experienced primary 

colleagues. Both individuals claimed no previous experience in mathematical posing problem 

and indicated a desire to collaborate in order to develop pedagogical knowledge of an 

innovative approach to teaching mathematics. The Billiard task has been utilised in previous 

studies involving prospective and practising mathematics teachers (Silver et al., 1996; 

Cifarelli & Cai, 2005; Koichu & Kontorovich, 2013) and can stimulate the generation of 

interesting problems and conjectures. Our interactions focused on considerations of aptness 

relating to individual understanding of an interesting problem and which problems would be 
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suitable for potential learners (Kontorovich & Koichu, 2009; Kontorovich et al., 2012). 

Crucially, the outcome of the discourse prompted me to search studies reporting an element of 

ill -structured or cognitively undemanding problems created by teachers (e.g. Silver et al., 

1996; Crespo & Sinclair, 2008). It is useful to consider what factors may inhibit the capability 

of teachers to pose authentic problems (e.g. poor conceptual knowledge of the underlying 

construct) and correspondingly, how to prepare teachers to produce interesting and 

challenging problems to cater for multiple levels of pupil abilities. Regarding this last point, 

in the absence of any recognised LEA mandate and within a climate of political and education 

insecurity, it is difficult  to envisage a provision of learning opportunities for primary and 

secondary mathematics teachers to develop problem posing skills.  

 

 

A more realistic window for achieving the future integration of problem posing in Scottish 

schools may have its origin in the education of new recruits, since the persistence of 

classroom norms operate against many teachers attempting to improve their professional 

practice. Ellerton (2013) maintains that: 

 
 Perhaps the only way that problem posing has a chance of being seriously introduced into school 

 mathematics curricula and classroom practices would be for young teachers to acquire problem-posing 

 skills and confidence in problem posing themselves to the point where they would be capable and 

 willing to help their students to pose problems. The simplest way to move towards achieving this 

 would be to focus attention on this issue in early childhood, primary, and secondary mathematics 

 teacher education programs (p. 100).  

 

Naturally, the overarching goal for the international research community is to generate 

empirical evidence of improved pupil mathematical learning (e.g. English, 1997b, 1998) 

alongside other benefits such as nurturing creativity. The mandate for such evidence is 

similarly pertinent for engaging prospective and current teachers in order to strengthen 

knowledge and understanding that can be applied to raise professional standards. Harvesting 

empirical evidence of problem posing will help prompt relevant stakeholders and policy 

makers to take notice given that Scottish education is committed to drive forward 

improvements utilising evidence based research as an approach to classroom practice and 

curricula reform. Building on this professional reflection it seems important to move to a 

researcherôs interrogation of the ideas.  

The next chapter of this thesis presents a literature review of teachersô beliefs, which are at the 

epicentre of this research.  
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CHAPTER FOUR 

 
 

Teachersô Beliefs 
 

 

4.1 Introduction 

Much societal and political rhetoric has positioned teachers as the critical variable in the 

successful development of learning of all children. Since I began researching my own 

practice, I have become increasingly aware of the richness attached to critiques of 

mathematics education by colleagues. Though, what continues to resonate is the diversity of 

beliefs held regarding mathematical problem solving and mathematical problem posing.   

 

 

Over thirty years ago, Thompson (1985) highlighted the disproportionately small amount of 

attention that researchers had bestowed to the role of the teacher. Similarly, Grouws (1985) 

emphasised his concern with the lack of research on how practitioners conceptualise 

mathematical problem solving and how they attempt to teach it. In recent years, there has 

been an increasing interest in the potential of research to inform classroom practice. Pajares 

(1992, p. 307) asserts that ñthe beliefs of teachers should be a focus of educational research 

and can inform educational practice in ways that prevailing research agendas have not and 

cannotò.  

 

 

It is the premise of this thesis that individual teachersô deep rooted beliefs are a major 

influential factor in the concentration of learning and teaching of mathematical problem 

solving and mathematical problem posing. In other words, how a teacher conceptualises the 

nature of mathematics has a direct impact on what is delivered to pupils and therefore any 

changes will require an analysis of professed beliefs, actual beliefs and current practices. 

However, Forrester (2008, p. 25) points out that: ñWhether or not a teacherôs beliefs are 

successfully translated into practice, they give an important indication of the teacherôs 

intentions for the futureò.    
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Within CfE, the mantra of increased autonomy to teachers as agents of change has been well 

broadcasted. Castle (2006) contends that autonomous practitioners learn to make enhanced 

instructional decisions by undertaking their own critical thinking about educational matters 

and opines that teachers, who are not autonomous, depend on others to communicate what to 

do. Scottish teachers theoretically enjoy the dynamic pedagogical freedom to exercise, reflect, 

research and develop their own perspectives on the learning and teaching of mathematics, 

thus connecting beliefs to professional practice. As was pointed out in chapter one, with no 

available empirical data to analyse it is unknown what the nature of this relationship is.  

 

 

In this chapter, I will briefly review key theoretical perspectives and important contributions 

that have advanced research on teachersô beliefs. In doing so, I will provide a rational for the 

importance of teachersô beliefs with reference to recent educational policy reform in Scotland. 

 

 

4.2 Defining the ñbeliefò construct 

Extensive academic debates attempting to define a precise universal conceptual definition on 

the belief construct has yet to be established within the research literature. Possibly as a result 

of researchers assuming that readers already know what beliefs are (Thompson, 1992) or the 

flexibility of the belief construct is accommodating to many (Goldin, Rosken & Torner, 

2009). Alternatively, Leder & Forgasz (2002) contend that it is not easy to produce a precise 

definition because the belief concept is not directly observable and is inferred. However, 

Fives & Buehl (2012) argue that the difficulty lies not in the definition since several authors 

have provided so but instead encouraging researchers to consistently define and use such 

terms within and across interrelated fields. Nevertheless, a mosaic of overlapping constructs 

populated within a densely and uncertain world of interchangeable conceptualisations exist. 

Though Wilson & Cooney (2002) advise that it is more germane to be acquainted with the 

influence of teacher beliefs rather than seeking harmony on a definition. McLeod & McLeod 

(2002, p. 120) propose ñthere is no single definition of the term ñbeliefò that is correct and 

true, but several types of definitions that are illuminative in different situationsò. For example, 

Pajares (1992) expresses the view that beliefs include: 

  
 attitudes, values, judgments, opinions, ideology, perceptions, conceptions, conceptual 

 systems, preconceptions, dispositions, implicit theories, explicit theories, personal theories, 
 internal mental processes, action strategies, rules of practice, practical principles,  perspectives, 

 repertoires of understanding, and social strategy (p. 309).  
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According to Hermans, van Braak & Van Keer (2008, p. 128), beliefs are ña set of conceptual 

representations which store general knowledge of objects, people and events, and their 

characteristic relationshipsò. Cross (2015, p. 175) maintains that beliefs are ñembodied 

conscious and unconscious ideas and thoughts about oneself, the world, and oneôs position in 

it developed through membership in various social groups, which are considered by the 

individual to be trueò. Tillema (1994) avows that beliefs serve as filters which screen new 

information and ultimately determine which elements are accepted and integrated in their 

knowledge base. Similarly, Clark & Peterson (1986) advocate beliefs act as a monitor which 

practitioners make their decisions rather than just relying on their pedagogical knowledge or 

curriculum guidelines. What is notable about this definition is that is recognises that teachersô 

beliefs can influence classroom practice irrespective of the written curriculum. In contrast, 

Perry, Wong & Howard (2006) warn that beliefs are rooted and constrained by the culture of 

the society and educational systems in which the teachers are living and working.  

 

 

Unsurprisingly, with so many different perspectives, Mason (2004, p. 347) calls for the 

research community ñto work out what beliefs actually are, and where they fit into an entire 

alphabet of associated termsò. Skott (2013, p. 548) notes that belief research is notorious for 

its conceptual and methodological problems and laments that the ñnotion of beliefs, however, 

is still somewhat underspecified, and the discussion continues on how to distinguish it from 

knowledge, conceptions, emotions, and valuesò. For instance, in their study of American 

primary teachersô pedagogical content beliefs, Peterson et al. (1989) describe practitioners as 

individuals who rely on their knowledge and beliefs to understand and interpret the rapid flow 

of events in a classroom, make decisions and act on their interpretations. Peterson et al. 

(1989) employ the term óknowledgeô which relates to ópedagogical content knowledgeô as 

illustrated by Shulman (1986) but appear to attempt to coalesce knowledge and beliefs into a 

common construct. While some support remains for this conception (e.g. Pajares, 1992; 

Calderhead, 1996) other researchers have at least attempted to distinguish between beliefs and 

other suppositions such as knowledge, affect, values, emotions, etc. (e.g. Nespor, 1987; 

Kagan, 1992; Thompson, 1992; Calderhead, 1996; Richardson, 1996; Handel, 2003; Philipp, 

2007). 

 

 

Beliefs have been extensively portrayed from a mathematical perspective. Goldin, Rosken & 

Torner (2009) argue that beliefs are fundamental to the discussion of problem solving 



116 

 

 
 

approaches in mathematics education and are necessary components in the psychology of how 

mathematical problems are solved. Schoenfeld (1992, p. 358) interprets beliefs ñas an 

individualôs understandings and feelings that shape the ways that the individual 

conceptualizes and engages in mathematical behaviorò. It is important to consider that the 

nature of the classroom environment that the teacher creates can shape learners beliefs about 

the nature of mathematics (Schoenfeld, 1992). Likewise, Lester, Garofalo & Kroll (1989, p. 

77) articulate that ñbeliefs constitute the individuals subjective knowledge about self, 

mathematics, problem solving, and the topics dealt with in problem statementsò. In the same 

vein, Hersh (1986, p. 13) invites us to examine our mathematical pedagogy and alludes to the 

critical nature of a philosophy of mathematics when he questions: ñThe issue, then, is not, 

what is the best way to teach? But, what is mathematics really all about?ò.  

 

 

In sum up, Skott (2015) in his analysis of the conceptualisation of teachersô beliefs concluded 

that there appears to be four key aspects. First, beliefs are used to describe individual mental 

constructs that are subjectively true for the person in question. Second, there are cognitive as 

well as affective aspects to beliefs. Third, beliefs are considered stable and may stem from 

schooling, life experiences, teacher education programmes and collaborations with 

colleagues. They tend to be resistant to change. Fourth, beliefs are expected to significantly 

influence classroom practice.  

 

 

4.3 Teachersô belief systems 

Within the literature, there is considerable agreement that teachersô beliefs are not regarded in 

isolation but consist of various substructures within a multidimensional system. Green (1971) 

identified three theoretical dimensions of belief systems, which have become fertile ground 

for researchers (e.g. Schoenfeld, 1985; Nespor, 1987; Pajares, 1992; Thompson, 1992; Cross, 

2009; Braunling & Eichler, 2015). He postulated that beliefs are not compartmentalised but 

are in fact interrelated in elaborate ways. Firstly, there is the quasi-logical relation between 

beliefs which are depicted as either primary or derivative. Thompson (1992) illustrates this 

hierarchical dimension by considering a teacher who believes that it is important to present 

mathematics ñclearlyò (primary belief) and to obtain this outcome has to plan thoroughly and 

be readily prepared to answer pupil questions (both derivative beliefs). Secondly, based on 

their psychological strength, some beliefs are considered central or peripheral. Rokeach 
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(1968), as cited in Pajares (1992), maintains beliefs vary along a central-peripheral 

continuum, where the more central a belief is situated, the more resistant it is to change.  

 

 

Thirdly, beliefs can be held in clusters and may coexist without conflict in isolation. This 

would explain why some individuals can hold incompatible or inconsistent views without any 

sense of divergence. Thus, beliefs are not considered mutually exclusive as teachers can hold 

overlapping views simultaneously and over time. Nonetheless, teachersô beliefs may change 

when they are afforded effective opportunities to reflect and challenge those beliefs (Wilson 

& Cooney, 2002). 

 

 

In her case study of five American mathematics teachers, Cross (2009) highlights the 

diversity among practitionersô beliefs by presenting three hypothesised belief models. Firstly, 

she describes the parallel belief systems of Mr. Henry, Mr. Brown and Ms. Reid, unfolding 

that these individuals deem mathematical knowledge as an absolute established set of 

concepts that are rigid and infallible, with their classroom practices reflecting those beliefs. 

Secondly, in the example of Mr. Simpson, the researcher accounts that although his 

mathematical beliefs differed considerably from the other teachers, they did cluster in similar 

ways. Cross (2009) describes Mr. Simpsonôs mathematical views from a social constructivist 

perspective, not as fragmented groups of isolated facts and concepts but as an interconnecting 

and evolving set of relationships. Finally, in the case of Ms. Jones, the researcher conveys her 

mathematical beliefs as a conglomerate of viewpoints grounded on the importance of problem 

solving and critical thinking, coupled as a vast reservoir of knowledge rooted in numbers. Ms. 

Jones believed that it was vital she possessed an information base to teach pupils how to solve 

problems, identify errors, and demonstrate how to correct them. Cross (2009) concluded that 

her participantsô beliefs were organised in a system such that theories about learning and 

teaching of mathematics were derived from their core mathematical beliefs. Furthermore, in 

the case of Ms. Jones, her opposing pedagogical views did not appear to present any internal 

conflict.      

 

 

In another study, Braunling & Eichler (2015) investigated the belief systems of six recently 

qualified German primary and secondary mathematics teachers, which focused on the 

learning and teaching of arithmetic. Based on the analysis of Mrs. A, the researchers were 
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able to distinguish her espoused central beliefs, peripheral beliefs and the assorted 

interrelationships between them. However, the study would have been more convincing if the 

authors had used a larger sample.  

 

 

From my own collaborations of working with colleagues, two classifications of belief 

structures appear to dominate the teaching of mathematics within Scottish schools. Both 

orientations sit at the opposite ends of a spectrum. The first system is where teachers have a 

direct transmissionist view of learning, where knowledge is communicated in an explicit and 

structured way, where pupils are presented with demonstrations of correct solutions together 

with a provision of unsophisticated mathematical problems. Teachers resolutely believe that a 

quiet classroom is required for effective teaching. In contrast, the second system adopts a 

constructivist view of learning which focuses on children not as passive recipients but as 

active participants in the management of acquiring knowledge. Practitioners holding this 

perspective emphasise the facilitation of pupil inquiry and provide challenging mathematical 

problems to cultivate knowledge. Individuals offer the minimum of support in order to allow 

pupils more freedom to execute an active independent role in their thinking and reasoning 

processes.  

 

 

A number of researchers have provided different classifications of teachersô mathematical 

beliefs systems (e.g. Skemp, 1987; Lerman, 1989, 1990; Askew et al, 1997; Chapman, 2002; 

Speer, 2005; Beswick, 2012). One well-known review that is often cited is Kuhs & Ball 

(1986) who draw our attention to the connection between teachersô mathematical 

conceptualisations and their instructional methods by identifying four overriding approaches 

to the teaching of mathematics. The first is a description of teaching as content focussed with 

an emphasis on performance, which has been expressed as instrumental learning (Skemp, 

1978) and calculational orientation (Thompson, et al., 1994). Here, pupils are taught to follow 

and master rules and procedures without acquiring any conceptual understanding, where 

memorisation of mathematical facts is stressed. The second approach is a description of 

teaching as content focussed with an emphasis on ensuring conceptual understanding. The 

third arrangement is focussed on context where the classroom structure and organisation 

strongly influences student learning. Finally, the last approach is learner focused and is 

underpinned by a social constructivist view of learning (Thompson, 1992). This method is 

characterised by engaging the learner with activities that explore, discover, formulate and 



119 

 

 
 

construct a wide range of mathematical ideas. This is similar to Skempôs (1978) relational 

concept of mathematics.  

 

 

In his major contribution, Ernest (1989a) suggests that acceptance of teaching mathematics 

through problem solving depends fundamentally on profound changes to a teachersô belief 

system. He argues that mathematical instruction is dependent on several key elements, but in 

particular on the practitionersô conception on the nature of mathematics, including mental 

models of learning and teaching of mathematics. A teachersô conception of the nature of 

mathematics may be considered as conscious or subconscious views, perceptions, values, 

guidelines, mental images and preferences concerning the discipline of mathematics 

(Thompson, 1992). 

 

 

Ernest (1989a) posits three distinct philosophies of the nature of mathematics that are held by 

teachers as individual beliefs systems. First, the instrumentalist view regards mathematics as 

an accumulation of facts, rules and skills in the pursuance of some external end. Thus 

mathematics is thought to be a set of unrelated but utilitarian rules and facts. Routinely, 

teachers expect pupils to listen, participate in didactic interactions and then replicate 

computational algorithms that have been demonstrated. Such a position has been the object of 

much criticism by mathematics educators (Thompson, 1992). Second, the Platonist view 

considers mathematics to be a static but unified body of certain knowledge. In this case, 

mathematics is discovered (not created) by humans through mathematical investigation. 

Third, the problem solving (or social constructivist) view deems mathematics as a dynamic, 

continually expanding field of human creation and invention, a cultural product. Mathematics 

is believed to be a process of inquiry and coming to know, not a finished product. Crucially, 

its results remain open to revision. Proficiency in mathematics is equated with autonomous 

problem solving and problem posing. The former two views assimilate within the domain of 

absolutism while the latter one within the domain of fallibilism (Thompson, 1992; Ernest, 

2014).   

 

 

Ernest (1989a) proposes three instructional models to reflect the diverse roles a teacher might 

play within a classroom, which has been encapsulated by Leatham (2002) in his doctoral 

dissertation (Table 4.1). Both instrumental and Platonist views and their respective derived 
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teaching strategies present narrow views of mathematics, compared to a problem solving 

perspective which promotes a child-centred and inquiry based approach (Schoenfeld, 1992).  

 

Table 4.1 Ernest models as summarised by Leatham (2002) 
 

Phenomena Instrumentalist   Platonist Problem Solving 
 

Nature of 
mathematics 

An accumulation of facts, rules, 
and skills 

A static but unified body of 
certain knowledge 

A dynamic continually 
expanding field of human 
creation and invention 
 

Teacherôs role Instructor Explainer Facilitator 
 

Intended outcome 
 

Skills mastery with correct 
performance 

Conceptual understanding with 
unified knowledge 
 

Confident problem posing and 
problem solving 

Use of curricular 
materials 

Strict adherence to a text or 
scheme 

Modification of the textbook 
approach,  enriched with 
additional problems and 
activities  
 

Teacher, student, or school 
construction of the 
mathematics curriculum  

 

Ernest (1989a) outlines the relationship between beliefs and their impact on classroom 

practice by illustrating how teacherôs views of the nature of mathematics provide a basis for 

mental modes of the learning and teaching of mathematics (Figure 4.1). However, the model 

proposed by Ernest (1989a) is not universally shared by all. For example, Skott (2013, p. 548) 

rejects such models and argues that this ñline of research was and still is based on the 

assumption that teachersô beliefs are a main line to educational change, and that beliefs 

research may remedy what is generally referred to as the problems of implementationò.  

 

Figure 4.1     Relationship between beliefs and their impact on practice (Adapted from Ernest, 1989a) 

 

View of 
nature of 

mathematics

Espoused model of 
learning mathematics 

Espoused model of 
teaching mathematics

Enacted model 
of learning 

mathematics

Enacted model 
of teaching 

mathematics

Constraints and opportunities provided by the social context of teaching

 

 

Ernest (1991) defines three distinctive interpretations about the role of problem solving in the 

mathematics curriculum. First, he argues that problem solving is rejected by ñIndustrial 
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trainersò as inappropriate and frivolous based on the perception that mathematics is a set of 

absolute decontextualized but utilirian truths and rules, and that its central function is to 

inculcate basic skills. Second, he suggests both ñOld humanistsò and ñTechnological 

pragmatistsò consider problem solving as additional content and implemented as mechanical 

objects of inquiry used to enrich teaching. Finally, Ernest argues that ñProgressive educatorsò 

and ñPublic educatorsò view problem solving as pedagogical approaches to the whole 

curriculum, and not just as an addition. Such ideologies arise from philosophies of 

mathematics which deem it a growing field of knowledge, if not as social constructivism and 

maintain full incorporation of these processes into the curriculum, including problem posing, 

leads to a problem solving and investigational pedagogy (Ernest, 1991).  

 

 

4.4 The importance of teachersô mathematical beliefs 

The thrust of research into mathematics related beliefs has centred on beliefs about the nature 

of mathematics and the learning and teaching of mathematics (Thompson, 1992; Beswick & 

Callingham, 2014). A growing number of empirical studies (e.g. Thompson, 1984; Cooney, 

1985; Chapman, 1999; Aguirre & Speer, 2000; Beswick, 2004; Speer, 2008) have been 

propelled by the supposition that there subsists a positive correlation between espoused 

mathematical beliefs and instructional practices. In other words, there has been a plethora of 

research on teachersô beliefs based on the presumption that what teachers believe is a 

powerful indicator in selecting what mathematics is taught, how it is delivered and what is 

learned in the classroom (Wilson & Cooney, 2002; Beswick, 2006; Skott, 2015). The research 

has advocated that beliefs are one of the major components influencing pedagogical practice 

and should not be underestimated. Kilpatrick (2003) informs us that beliefs influence the 

choice of curriculum materials and therefore affect the type of mathematical ideas and 

opportunities offered to pupils. In the same vein, Pajaras (1992, p. 325) argues that ñbeliefs 

are instrumental in defining tasks and selecting the cognitive tools with which to interpret, 

plan, and make decisions regarding such tasks; hence, they play a critical role in defining 

behaviors and organizing knowledge and informationò.  

 

 

In their research of 21 American primary teachers, Stipek et al. (2001) found a consistent 

association between mathematical beliefs and observed classroom practices. Likewise, 

Zakaria & Maat (2012) noted a positive connection between mathematical beliefs and 

reported pedagogical methods in their study of 51 Malaysian secondary mathematics teachers. 
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In her renowned case studies of three American junior high school mathematics practitioners, 

Thompson (1984) described a teacher named Kay who perceived mathematics as 

continuously expanding and changing to accommodate new developments. Kayôs espoused 

views about mathematics were consistent with her espoused views about teaching 

mathematics and with Thompsonôs observations. According to Thompson (1984), she 

employed a variety of approaches to stimulate interest including encouraging pupils to ask 

questions, guess, theorise, and be wrong; used appropriate examples and non-examples; 

provided a variety of justifications; showed applications of the topics taught; and mobilised 

games and puzzles as motivational devices. 

 

 

Other studies have been illuminating in comparable ways. For example, in an investigation of 

problem solving and problem posing ability and beliefs of 128 Chinese prospective and 

current primary teachers, Chen et al. (2011) found that their participantsô mathematical beliefs 

strongly influenced their evaluation of pupils attempts to solve and pose mathematical word 

problems. Sivunen & Pehkonen (2009) analysed the mathematical beliefs on teaching 

problem solving of 42 Finish primary teachers. The researchers learned that practitioners held 

a limited knowledge of instructional techniques and were dependent on available resources. In 

an international comparative study, Zambo & Hong (1996) found that South Korean teachers 

held stronger views than American teachers regarding the importance of being a proficient 

problem solver prior to teaching problem solving. The research alluded that South Korean 

educators did not promote multiple solutions, much preferring single solution paths in order to 

minimise learner uncertainty. However, such an adverse belief is at the expense of fostering 

creative mathematical thinking.  

 

 

By acknowledging the importance of beliefs in shaping teachers characteristic patterns of 

instructional behaviour, it is possible to formulate steps to improve the quality of mathematics 

education. Thompson (1984) forewarns that failure to recognise the role that teachersô beliefs 

might play in determining their professional practice is likely to result in misguided efforts to 

improve the standard of mathematics instruction in schools. The delivery of school 

mathematics has been compared with the work of professional mathematicians by several 

scholars (e.g. Ernest, 1991; Beswick, 2012; Boaler, 2015b). Boaler (2015b) argues that 

teachersô traditional beliefs of the nature of mathematics may adversely affect young peopleôs 

image of the subject. She suggests that for pupils to appreciate and enjoy mathematics, they 
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need to be regularly exposed to authentic ways in which mathematicians operate such as 

ñposing problems, making guesses and conjectures, exploring with and refining ideas, and 

discussing ideas with othersò (p. 31).  

 

 

4.5 Inconsistencies between teachersô beliefs and practice 

While miscellaneous studies have found consistencies between teachersô mathematical beliefs 

and instructional practices, more often research has revealed a misalignment between the two 

features (Thompson, 1992, Phillip, 2007). The correlation between mathematical beliefs and 

mathematics teaching are multifaceted, dialectical and can be influenced by a structure of 

reciprocal factors. These may be rationalised through the anxiety and unpredictability of 

classroom life, external pressures and constraints placed on teachers that compromise their 

contemporary views of education in place of more traditional methods. In clarifying such 

inconsistencies, Beswick (2006) draws on the notion of clustering, citing Green (1971). She 

maintains that ñbeliefs within a system can be held in groups that are isolated from other 

beliefsò and ña person may hold beliefs that contradict one another without being aware of the 

contradictionò.   

 

 

In her renowned case study of novice American primary teachers, Raymond (1997) described 

the case of Joanna who held traditional beliefs about mathematics but non-traditional beliefs 

about learning and teaching of mathematics. Raymond (1997) determined that this 

inconsistency arose from various factors and introduced a theoretical framework (Figure 4.2) 

towards understanding the complex nature of the interrelationship between mathematical 

beliefs and classroom practice. She warns stakeholders not to overlook multiple factors that 

teachers are frequently exposed to. Moreover, Thompson (1984, p. 124) maintains that: 

ñMany factors appear to interact with the teachersô conceptions of mathematics and its 

teaching in affecting their decisions and behavior, including beliefs about teaching that are not 

specific to mathematicsò.  
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Figure 4.2 Model of relationships between mathematics beliefs and practice (Adapted from  
  Raymond, 1997)  
 

Past school experiences Teacher education program Social teaching norms ¢ŜŀŎƘŜǊΩǎ ƭƛŦŜ ƻǳǘǎƛŘŜ ǎŎƘƻƻƭ

Early family experiences
Immediate classroom 

situation
Personality traits of the 

teacher

Mathematical beliefs
Mathematics teaching 

practices
strong influences

moderate influences
slight influences

strong influences

Students' lives outside 
school

slight influencesslight influences slight influences
strong influences 

strong influences

moderate influences

moderate influences

moderate influences

 

Mathematics beliefs: Studentsõ lifes: 

About the nature of mathematics and mathematics 

pedagogy 

Home environment, parentsô beliefs (about children, 

school and mathematics) 

Mathematics teaching practice:  Teacher education program:  

Mathematical tasks, discourse, environment and 

evaluation 

Mathematics content courses, methods courses, field 

experiences, student teaching 

Immediate classroom situation:  Past school experiences:  

Students (abilities, attitudes and behaviour), time 

constraints, the mathematics topic at hand. 

Successes in mathematics as a student, past teachers 

Social teaching norms:  Early family experiences:  

School philosophy, administrators, standardized tests, 

curriculum, textbook, other teachers, resources 

Parentsô view of mathematics, parentsô educational 

background, interaction with parents (particularly 

regarding mathematics)  

Teachers life:  Personality traits:  

Day-to-day occurrences, other sources of stress Confidence, creativity, humour, openness to change 

 

In a study of a novice Danish teacher, known as Christopher, Skott (2001) investigated the 

relationship between the beliefs of mathematics, learning and teaching of mathematics and 

that of classroom practice. He introduced the term óschool-mathematics imagesô to ñdescribe 

teachersô idiosyncratic properties in relation to mathematics, mathematics as a school subject 

and the teaching and learning of mathematics in schoolsò (p. 6). Skott (2001) found that 

Christopherôs school mathematics images were highly compatible with aspects of the reform 
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discourse but this relationship with classroom practice was very different in contrasting 

situations. However, what is distinguishing about the study is that is challenged much of the 

underlying reasoning and evidence from previous research in the field on teachersô beliefs. In 

choosing not to instinctively exploit apparent inconsistencies, Skott attempted to rationalise 

the dissonance between beliefs and practice. By reflecting on his own position as a researcher, 

he was able to acknowledge that his initial assumption that Christopherôs beliefs about 

mathematics would have been the driving force behind his pedagogical decisions. Instead, the 

more centrally held belief for Christopher was dominated by an emphasis on the individual 

learner, sometimes at the expense of his mathematical beliefs.  

 

 

The outcome of the study helped influence Philipp (2007) to propose that as researchers, we 

must assume that contradictions between teachersô beliefs and practice do not exist. Taking 

this stance, Philipp (2007, p. 276) maintained ñwhen we observe apparent contradictions, we 

would assume that the inconsistences exist only in our minds, not within the teachers, and 

would strive to understand the teachersô perspectives to resolve the inconsistenciesò. In his 

impressive analysis of teachersô beliefs, Leatham (2006, p. 92) anchored his sensible systems 

theoretical framework on the fundamental assumption that ñteachers are inherently sensible 

rather than inconsistent beingsò. Put differently, individuals beliefs are organised in systems 

that make obvious sense to them. Leatham (2006) underlined the need for researchers to 

follow a process of exploring and explaining apparent inconsistencies rather than simply 

indicating conflicts so as to facilitate a deeper understanding of the nature of beliefs and how 

they are held. 

 

 

Furinghetti & Morselli (2011) in their case studies of four Italian secondary mathematics 

teachersô treatment of proof, focussed on the detection of the reasons behind instructional 

practices. To unravel the dilemma of inconsistencies, the authors introduce the construct of 

leading beliefs which they define as ñbeliefs (whole nature may vary from teacher to teacher) 

that seem to drive the way the teachers treats proofò (p. 590).  Furinghetti & Morselli (2011) 

claim that through the construct of leading belief they were able to divert attention away from 

inconsistencies.    
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Likewise, during a case study of two American elementary teachers, Cross (2015) skilfully 

looked beyond perceived inconsistencies to gain a better understanding of the nature of 

mathematics beliefs and how they were organised. Drawing on the tenets of a sensible 

systems framework (Leatham, 2006) and utilising both contextualised and de-contextualised 

data sources, Cross (2015) found that observed practices were aligned with other sets of 

beliefs. These aligned beliefs were personal and external factors including beliefs not directly 

related to the teaching of mathematics. To ensure that researchers better understand the 

complexities of individual beliefs systems, Cross (2015, p. 198) highlights the requirement 

ñto expand the scope of their investigations to include multiple contexts, examining the role 

of macro-and mircofactors on instructionò. 

 

 

What is apparent from the case studies described in this section is the need for researchers to 

attempt to fully understand the complexities and interactions that manifest themselves within 

the context of school and classroom cultures. Teachersô espoused beliefs impact on their 

pedagogical practice but a direct causal relationship cannot be assumed. Multiple factors may 

influence both professional practice and the institutional context (Cooney, 1985; Hoyles, 

1992). 

 

 

4.6 Changing teachersô beliefs 

It is a widely held view that teachersô beliefs are slow to form but once established are highly 

resistant to change. According to Schommer-Aikins (2004, p. 22), they ñare like old clothes; 

once acquired and worn for a while, they become comfortable. It does not make any 

difference if the clothes are out of style or ragged. Letting go is painful and new clothes 

require adjustment.ò Furthermore, teachers may not be consciously aware of the underlying 

beliefs that underpin their practice (Schoenfeld, 2015).  

 

 

Though it is asserted by Liljedahl (2010) that the trajectory of change in teachersô beliefs and 

practices can also be rapid and profound. In his research study of mathematics professional 

activities set within Canada, Liljedahl (2010) identifies five distinct mechanisms of belief 

change: (1) conceptual change (2) accommodating outliers (3) reification (4) leading belief 

change (5) push-pull rhythm of change. Within this chapter, I have referred to conceptual 

change and leading belief changes. Liljedahl (2010) illustrates a leading belief change by 
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describing the case of Phil, a primary teacher and problem solving workshop participant. As a 

consequence of being deeply affected by one experience, Phil made a significant change to his 

belief system and evaluation practices. This transformation was expedited by Philôs ability to 

critically examine his professional practice.  

 

 

In another study involving practising secondary mathematics teachers, Liljedahl (2011) 

strengthens his argument surrounding teacher change as conceptual change. All of the 

participants were situated within a professional learning environment and subjected over time 

to interventions designed to promote cognitive conflict within their core beliefs about various 

aspects of mathematics education. Based on the results, Liljedahl (2011) contends that the 

theory of conceptual change may act as a framework for changing teachersô beliefs. An 

intriguing outcome of this study revealed that participants not only rejected beliefs pertaining 

to their current practice but often did so without replacement. This can be exemplified by 

reference to an assignment tasked with reviewing Boaler (1997) and her dichotomous settings 

of Amber Hill and Phoenix Park. While many of the participants were quick to reject the 

teaching practices of Amber Hill, they were reluctant to embrace the paradigm extolled in the 

descriptions of Phoenix Park, which integrated problem posing.  

 

 

I will now review two studies that feature specific mathematical domain beliefs about 

problem solving and problem posing i.e. Emenaker (1996) and Barlow & Cates (2006). 

 

 

In the first study, Emenaker (1996) analysed the impact of a problem solving based 

mathematics course on 137 American prospective elementary teachersô beliefs about 

mathematics and the teaching of mathematics. Prior to launching the course, he found 

considerable support clustered around belief misconceptions listed as: (1) If a mathematics 

problem takes more than 5-10 minutes, it is impossible to solve (2) Mathematics is mostly 

memorisation (3) All problems can be solved using a step-by-step algorithm or a single 

equation (4) Only geniuses are capable of creating or understanding formulas and equations 

(5) There is only one correct way to solve any problem. On completion of the course, 

Emenaker (1996) detected positive alterations to participants beliefs manifested primarily 

through three underlying themes. First, certain problems contain multiple solutions and 

alternative answers. Second, conceptual understanding is more important than memorising 




