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Abstract 

The Scottish Curriculum for Excellence (CfE) advocates that the learning and teaching of 

mathematical problem solving is no longer compartmentalised but is an overarching feature 

designed to improve higher order thinking skills at all levels by focusing on conceptual 

understanding. Comitantly, a growing body of literature acknowledges the interrelated 

educational benefits of mathematical problem posing within classrooms. Teachers’ beliefs are 

considered powerful indicators of professional practice and can articulate the positionality of 

teachers with regards to curricula reform. Despite their significance, research into the 

implementation of mathematical problem solving and mathematical problem posing is, as yet, 

under-researched particularly in Scotland. The main purpose of this study was to investigate 

Scottish teachers’ beliefs and espoused instructional practices of mathematical problem 

solving and mathematical problem posing. More prosaically, it explored beliefs regarding the 

nature of mathematics, the learning of mathematics and the teaching of mathematics. 

  

 

A mixed methods explanatory design consisting of an online questionnaire followed by semi-

structured interviews was selected as the instruments to measure and capture espoused beliefs 

and reported practices. This study involved a representative sample of 478 participants (229 

primary and 249 secondary mathematics practitioners respectively) generated from 21 local 

education authorities in Scotland. A supplementary feature of the online questionnaire, which 

harvested 87 volunteered comments, augmented the data collection process. Descriptive and 

inferential statistics were employed to analyse quantitative data with thematic coding used to 

organise and interrogate qualitative data. 

  

  

Factor analysis identified three distinct belief systems consistent with a dominant learner-

centred approach (i.e. social constructivist, problem solving and collaborative orientation), 

mainly learner-centred approach (i.e. social constructivist, problem solving and static 

transmission orientation) and dominant teacher-centred approach (i.e. static and mechanistic 

transmission orientation). In other words, teachers’ deep-rooted beliefs do not align to one 

particular group of belief systems but are embedded mutually within a cluster. A mixture of 

positive, negative and inconsistent beliefs is reported. Significant dissonance exists between 

the sectors. Characteristics impacting on beliefs include grade and highest level of 

qualification in the field of education. 
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This study suggests that the conceptualisation and operationalisation of mathematical problem 

solving and problem posing may be circumscribed in practice and that primary teachers hold 

stronger mathematical beliefs than secondary mathematics teachers. Several reasons help to 

illuminate these findings including a lack of pedagogical content knowledge, ineffective 

manifestations of mathematical creativity, low mathematics teaching self-efficacy and an over 

dominant national assessment culture. Implications and recommendations for policy and ITE 

are discussed. 
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CHAPTER ONE 

 
 

Introduction 
 

 

In this preliminary chapter, I introduce a background to the study, comprising together my 

own personal interest in the subject field before moving on to the educational and theoretical 

justification for the work. This is followed by the presentation of research questions and an 

overview of the thesis structure. 

 

 

1.1 A personal journey 

The content and arguments submitted in this thesis matured as a result of widespread 

educational experience gained as a mathematics teacher. Over the years, I have practised 

within the state and independent sector, obtained promotion to principal teacher, and prepared 

pupils for a range of Scottish, English and International Baccalaureate qualifications. Much of 

my time has been consumed thinking about the locus of problem solving and problem posing 

within the domain of mathematics education. I have conjectured if the policymakers of 

Curriculum for Excellence have created a paragon of autonomous education that empowers 

practitioners to flourish at the ultimate didactic level and without undue political interference. 

My thoughts often deliberate upon the position of Scotland and our teachers from an 

international perspective. Concomitantly, I have shared classroom experiences and beliefs of 

problem solving through the production of various publications (e.g. McDonald, 2006, 2013, 

2014).  

 
 

A decision to enter the teaching profession arose after a lengthy period of working in industry 

within Scotland, other parts of the UK and Europe. Coupled with engineering knowledge 

acquired from previous employers, I have been able to contextualise mathematical concepts 

and appreciate the importance of possessing analytical skills, deductive reasoning and logic, 

which I have applied to enhance learning within the classroom.  

 

 

Shortly after completing a Master’s degree, I was awarded Chartered Mathematician status 

which acted as a catalyst for my own professional development. Inspired to improve my 
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pedagogical knowledge, I surveyed numerous empirical studies involving teachers’ 

mathematical beliefs of problem solving and problem posing. The impetus for engaging in 

such enquiry was to address diverse and often enigmatic pedagogical viewpoints expressed by 

both primary and secondary colleagues during multiple professional collaborations. 

Curiously, encompassed within the nucleus of teachers, included an eclectic fusion of grades, 

age and experience from both sectors. In short, it concerned me that dissonance existed with 

approaches to the learning and teaching of mathematics. Furthermore, I was surprised to 

discover a paucity of empirical research investigating Scottish teachers compared to other 

countries. With this in mind and after careful deliberation, I enlisted as a part-time PhD 

candidate whilst continuing my career as a full-time practitioner, for three reasons. Firstly, in 

order to fulfil an intellectual challenge; secondly, to critically inform my professional 

practice; thirdly, to accomplish a long term ambition to become an independent researcher. 

This has been a decision which has resulted in a doctoral experience awash with feelings of 

loneliness, isolation, anxiety, frustration and immense satisfaction. 

 

 

The role of teachers as researchers is nothing new (e.g. Elliot, 1991; McNiff & Whitehead, 

2011; Kincheloe, 2012). By connecting to a research learning community, my previously held 

entrenched views and fragmented philosophies on fundamental constructs have been 

transformed, empowering me to operationalise a wider range of educational perspectives. I 

have explored the interface between research and practice, experiencing and augmenting 

contemporary dimensions to my teaching. In a paper which addresses the synthesis of theory 

and practice, Beattie (1997) writes: 

 
 It seems a little incongruous to suggest that teachers who have not experienced inquiry in  their 

 own lives will be able to create classroom settings which encourage students to question, to 
 pose and solve problems, and to be self-directed learners (p. 114). 

 

Much time and energy has been engaged in reading, thinking, debating, analysing, discussing, 

arguing, evaluating, writing, assessing and reflecting on learning and teaching of 

mathematical problem solving and problem posing. Audiences have included pupils, 

colleagues, probationers, students, parents, academics, strangers, family and friends. My 

reason for undertaking this study rests on my professional interactions with a range of learners 

with an assortment of abilities who reported feeling disconnected and ill-equipped in problem 

posing and problem solving. These feelings of disconnection and lack of skills and knowledge 

often influenced their choices of employment and higher education.  
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Monitoring the mathematical progress of my own children, as they shuffled through primary 

and secondary levels, furnished me with an additional insight into other teachers’ espoused 

views and enacted practices. Significantly, this underpinned my speculative assessment that 

the implementation of mathematical problem solving and problem posing may be influenced 

by individual teachers’ beliefs.  

 

 

1.2 Background to the research 

Throughout my teaching career, irrespective of curricula requirements, I have exercised the 

freedom to engage and motivate young people with a repertoire of classic and unfamiliar 

mathematical problems. Regardless of ability, problems can be differentiated or reformulated 

to address the mathematical needs of all learners. I have found that mentoring pupils for 

individual and team competitions has provided me with a powerful mechanism to enrich 

thinking, inspire creativity and reinforce the mastery of deep conceptual understanding. 

Various echelons of ingenuity and complexity are packed into problems, demanding 

increasing levels of mathematical sophistication, and act as a breeding ground for developing 

flexible, strategic and independent thinking.  

 

 

It is in sharp contrast to the common emphasis on procedural skills that is encapsulated within 

memorised driven algorithmic approaches, rooted in traditional mathematics lessons. In my 

professional experience, the delivery of problem solving and problem posing is not a 

dichotomy shared by all practitioners. I consider the beliefs of the teacher instrumental to the 

embodiment of such processes. Hersh (1986, p. 13) argues that “one’s conception of what 

mathematics is affects one’s conception of how it should be presented and one’s manner of 

presenting it is an indication of what ones believes to be the most essential in it”. I have 

theorised that the positioning of Scottish teachers appear to be inconsistent with the enactment 

of policy objectives and research literature available to them. Likewise, probing friends and 

colleagues to elicit the reasons behind their incongruence to mathematical problem solving 

and problem posing produced unexpected results. It is on this basis that my enthusiasm 

regarding the mathematical beliefs of teachers has grown, which energised me to suspect that 

this notable topic needed further exploration.  
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1.3 Educational justification for my research 

All of this research has been conducted using current teachers within the domain of state 

schools in Scotland. It is necessary for me to contextualise my research prior to presenting the 

rational of my study.  

 

The Scottish perspective 

Historically, Scotland has always enjoyed an independent educational system and has never 

been part of what is erroneously but commonly referred to as the ‘UK Curriculum’. For 

example, Boaler (2015a, p. 1), unfittingly used this designate (since it does not exist) when 

implying that the UK education secretary, a position with a solitary remit for England, has the 

additional authority to amend the separate education systems which are controlled by the 

devolved governments of Scotland, Wales and Northern Ireland respectively. In fact, Humes 

& Bryce (2013, p. 138) point out that “Education has traditionally been identified as one of 

the three institutions which mark the social and cultural life of Scotland as distinctive, 

especially when compared to England”. Likewise, Menter (2014) asserts: 

 
 We know that Scotland has had a very distinctive education system throughout the history of 

 the Union - that is since 1707. And today we can see much that is strong, innovative and 
 imaginative within Scottish education, especially when contrasted with England (p. 29). 

 

Paradoxically, participants from Scotland, England, Wales and Northern Ireland are integrated 

in the UK sample for PISA, an international survey that measures young peoples’ 

performance in reading, mathematics and science. Critical proponents of Scottish pupils’ 

mathematical performances (Table 1.1) in such global assessments may wish to accentuate a 

recent decline of national standards, although this has to be set against limitations of the 

survey such as issues involving culture, methodology, political influence and interference. 

Though, the scale of underachievement cannot be overlooked as indicated by inspection 

reports carried out by Education Scotland. According to OECD (2015, p. 10): “Trends since 

2003 in Scotland show a growing proportion of low achievers in maths and a shrinking 

proportion of high achievers”. 

 

Table 1.1 Scottish PISA mathematics performances 

Year 2000 2003 2006 2009 2012 2015 

Mathematics  533 524 506 500 498 491 

 

Moreover, in a brief analysis of pupils achieving selection to represent the UK team at 

International Mathematical Olympiads, McDonald (2013) highlights the prolonged 
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conspicuous absenteeism of a Caledonian presence. This prestigious competition demands 

independent higher order thinking together with formidable problem solving skills. Is it 

conjectured by me that a decline in the implementation of mathematical problem solving in 

schools may help to illuminate this phenomenon.   

 

 

A solitary examination board exists to administer the nation’s qualifications, ensuring fairness 

that all candidates undertake identical external assessments. Unlike other countries, teachers’ 

registration and professional standards are regulated by a teaching council uncontrolled by 

government. Not only is the GTCS one of the oldest in the world, it is the first independent 

self-regulating body for teaching (Humes & Bryce, 2013). 

 

1.3.1 Curriculum for Excellence  

During the last half century, Scottish teachers have been on the receiving end of an avalanche 

of curriculum reports and policy reforms but nothing as radical as CfE. Implemented in 2010, 

this new curriculum has been heralded by its architects, Scottish Government (2008, p. 8), as 

“one of the most ambitious programmes of education change ever undertaken in Scotland”. 

Cremin & Arthur (2014) claim that it has the potential to engage teachers and to capitalise on 

the good practice and emotional investment that already exists in schools.  

 

 

However, it has attracted much criticism for its vagueness in terms of content, design, 

conceptual clarity and lack of articulated theoretical underpinnings. For example, Priestley 

(2010, p. 27) maintains that the “curriculum model adapted for CfE is problematic, and 

symptomatic of a general amnesia in respect of curriculum theory that arguably underpinned 

earlier developments”. Similarly, there is an absence of any coherent reference to what 

Priestley & Humes (2010, p. 346) describe as the “rich vein of literature in the field of 

curriculum development” or without due regard to “the insights of research into the 

curriculum, whether from a philosophical, sociological or psychological standpoint”. More 

recently, Priestley & Sinnema (2014) underline ambiguity with its curricular documentation. 

Likewise, in their overview of existing Scottish research, Priestley, Minty & Eager (2014) 

opine that the implementation of the new curriculum depicts an often confused picture, 

pointing to issues such as teacher anxiety about assessment and a misalignment between 

teachers’ implicit theories about knowledge and learning and the new curriculum. 
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Nevertheless, CfE has introduced distinctive trajectories underpinning its philosophy, three of 

which are salient.  

 

 

Firstly, and possibly the most ambitious design feature is a new expanded curriculum that 

caters for all young people between three and eighteen. Excluding the early years, the need to 

support such a coherent mathematics syllabus rests exclusively with primary and secondary 

mathematics teachers. This accountability has been implemented despite the diversities in 

entry and training requirements, classroom practice, ethos and values inherent within both 

professions. It is theorised by me that to provide effective levels of continuity and progression 

across this continuum, it will be dependent on the outcome of any cross-sector partnership. 

Despite the laudable existence of primary-secondary transition arrangements, many teachers 

have limited knowledge of the structures, principles and philosophies of a sector they have 

not worked in (Corrigan, 2013). 

 

 

Secondly, it is more strongly predicated than the 5-14 curriculum guidelines on a shift in 

classroom practices towards more pupil centred approaches to education (Priestley & Minty, 

2013). Enshrined within its philosophy is an inherent constructivist view of learning, in 

contrast with some teachers who perceive knowledge and learning as the transmission of 

content. MacLellan & Soden (2008) explain that: 

 This, in a constructivist perspective, is the basis of all subsequent learning and teachers 
 cannot, therefore, assume that one size fits all. In order to manage the sheer range of learner 

 variability, it is necessary for learners to determine and pursue their own purposes and 
 processes of learning through collaborative work, and accept the constructivist assumption 

 that the locus of intellectual authority resides not in the teacher nor in the resources, but in 

 the discourse facilitated by both teachers and learners (p. 35). 

 

It is regarding the nature of pedagogy that requires a radical change in orientation to practice 

on the part of many, and in my view, particularly secondary mathematics practitioners, since 

it calls into question entrenched traditional assumptions of education. In her paper on quality 

assurance in Scottish schools, Reeves (2008, p. 10) maintains: “The move to privilege 

constructivist/social constructivist frameworks as opposed to transmissive and behaviourist 

approaches to teaching alters the role of teachers and hence the assumptions, skills, 

knowledge and tools that they need to employ in their practice”. In fact, Maclellan & Soden 

(2008, p. 29) contend that “without understanding of how learners construct knowledge bases 
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through thinking and reasoning, and the teachers’ role in facilitating such processes, it is 

unlikely that the intentions of Curriculum for Excellence can be fully realised”.  

 

 

Thirdly, there is a focus of intent on repositioning teachers as agents of change which 

according to Priestley, Biesta & Robinson (2013, p. 203) attempt “to reverse a trend of 

ongoing de-professionalization through regimes of testing and inspection and the 

establishment of wider cultures of performativity”. Teachers are actively encouraged to 

embark on a crusade of independent professional discourse to support their critical thinking 

and reflection of everyday curricular practices. During the design phase, the Scottish 

Executive (2006a, p. 4) emphasised the quintessential role of teachers in shaping classroom 

practices by aiming “to engage teachers in thinking from first principles about their 

educational aims and values and their classroom practice” and “through a climate in which 

reflective practitioners share and develop ideas”.  

 

 

With proposed increased malleability, it is anticipated that schools and teachers can take 

account of local needs when constructing programmes of education, in order to put learning at 

the heart of the curriculum. This explicit move away from central prescription towards, as 

Priestley & Humes (2010, p. 346) express, “a model that relies upon professional capacity to 

adapt curriculum guidance to meet the needs of local school communities” is a distinctive 

feature of the new curriculum. Though, in terms of the enactment of experiences and 

outcomes, Priestly (2010, p. 34) insists that “these should remain as slaves rather than masters 

of the main purpose of the change”. This last point is particularly critical in promoting a focus 

on a holistic understanding of the subject matter.  

 

1.3.2 Current position 

A dilemma faced by some practitioners is their willingness to create classroom environments 

which are consistent with the universal principles of constructivism and collaborative learning 

and teaching. However, resistance to change is evident throughout the country. The latest 

SSLN (Scottish Government, 2016a, p. 25) reported the activities in which the highest 

percentage of pupils testified that the methods in which they participated ‘very often’ were to 

‘listen to the class teacher talk to the class about a topic’ (64% in P4, 68% in P7 and 66% in 

S2 respectively) and to ‘work on your own’ (59% in P4, 56% in P7 and 59% in S2). These 

findings are comparable with previous research (Scottish Government, 2014) and continue to 
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suggest a teacher-centred approach which typifies classrooms where mastery of content and 

basic skills is emphasised and knowledge is transferred by lecture and repetition.  

 

 

The autonomous vision of the new curriculum policy empowers what is delivered to pupils 

and how teachers implement it. Within daily practices, a dynamic continuum exists between 

exercising flexible judgment of teachers’ views and rigid adherence to institutional school or 

local education authority policies. Perhaps accountability for professional learning will further 

seek to impact on the ongoing tension that exists between the relationship between teachers’ 

beliefs and practice. From my own experience, teachers’ mathematical beliefs play a critical 

role in the selection of pedagogical classroom approaches. A number of researchers endorse 

this view (e.g. Thompson, 1984, 1985, 1992; Schoenfeld, 1985, 1992, 2011; Ernest, 1989a, 

1991; Cross, 2009; Cai & Wang, 2010; Beswick, 2012) while others report on inconsistencies 

between beliefs and practices (e.g. Cooney, 1985; Raymond, 1997; Skott, 2001).  

 

 

Regrettably, within the literature I was unable to detect any previous research explicitly 

involving mathematical problem solving and problem posing beliefs of both Scottish current 

primary and secondary mathematics teachers. Although, a small quantity of Scottish studies 

exist that examine student primary teachers’ mathematical beliefs (e.g. Macnab & Payne, 

2003; Henderson & Hudson, 2011; Henderson, 2012a), newly qualified secondary 

mathematics teachers beliefs about the learning and teaching of mathematics (e.g. Forrester, 

2008), primary teachers’ mathematical beliefs (e.g. Hudson, Henderson & Hudson, 2012, 

2015), primary and secondary teachers’ beliefs about professional development (e.g. Wallace 

& Priestley, 2011; Biesta, Priestley & Robinson, 2015), primary and secondary teachers’ 

beliefs on the arts (e.g. Wilson et. al, 2008) and secondary science and religious education 

teachers’ collaboration beliefs (e.g. Hall et. al, 2014). Collectively, these miscellaneous 

studies suggest within Scottish education, the investigation of teachers’ beliefs is of interest, 

all be it on a small scale.   

 

 

Consequently, in order to afford this research immediate focus, I offer an unconditional 

definition of teachers’ beliefs (I discuss this theme in more detail within chapter four). I refer 

to Kagan (1992), who expressed: 
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 Teacher belief is a particular provocative form of personal knowledge that is generally 

 defined as pre- or inservice teachers’ implicit assumptions about students, learning, 
 classrooms, and the subject matter to be taught (p. 65-66). 

 

For more than half a century, educational researchers have explored teachers’ beliefs in their 

workplace. Several comprehensive reviews of this literature exist which reflect various 

approaches to understanding the multiple perspectives and theoretical nature of teachers’ 

specific beliefs and their influences on practice (e.g. Kagan, 1992; Pajares, 1992; Thompson, 

1992; Fang, 1996; Richardson, 1996; Phillip, 2007; Fives & Buehl, 2012).  

 

 

It is important to consider, in the absence of available research, the operationalisation of 

mathematical problem solving and problem posing within Scottish classrooms. The OECD 

(2015, p. 11) argues that professional knowledge must be balanced by research or evaluation 

projects and emphatically state: “There is a clear need to know how CfE is actually being 

implemented in schools and communities across Scotland”. Accordingly, I am postulating 

that by exploring the nature of Scottish teachers’ mathematical beliefs, empirical evidence 

will be gathered that can stimulate our understanding of current professional practice of CfE 

within primary and secondary schools. Thus, a worthwhile opportunity exists to ameliorate 

mathematics educational policy, which may lead to enhanced future classroom experiences 

for all learners.   

 

1.3.3 Learning theories 

In this section, I offer a short review of constructivism and collaborative learning, 

individually which are driving forces of CfE. In my professional experience, both 

multidimensional child-centred approaches collectively offer rich learning environments to 

promote the teaching of mathematical problem solving and problem posing.  

 

 

However, I begin by justifying the need to engage in such a pedagogical discourse. First, I am 

charged with a professional obligation to demonstrate a secure knowledge and detailed 

understanding of learning theories (GTCS, 2012), which has been intensified by political and 

societal rhetoric to cater for the diversity of learner variability within an ever changing pupil 

population. Simultaneously interwoven into this requirement is overt curricula awareness 

resonating with a constructivist view of schooling (Drew & Mackie, 2011). This is in contrast 

to the entrenched belief held by some teachers that perceived knowledge and learning is the 
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transmission of content (Priestley & Minty, 2012) or at best, restricted to a superficial 

catchphrase alluded to by Cobb (1994, p. 4) that “students construct their own knowledge”. In 

rejecting the assumption that ‘one size fits all’, Marton (2007, p. 20) underlines that 

practitioners must think critically about interpretations of learning by utilising “theoretical 

tools available for analysing the extent to which the necessary conditions for achieving 

specific aims for learning are present in certain situations”. Second, the overarching 

infrastructure of education is underpinned by the presence of theorisations of learning which 

help to facilitate and shape classroom practice. Moreover, it is logical to posit that 

explorations of teachers’ beliefs about teaching must concomitantly consider teachers’ beliefs 

about learning.  

 

  

Learning theories are conceptual frameworks that describe how individuals learn, often by 

reference to a particular model of human cognition or development (Illeris, 2009). There are 

many diverse and in some cases opposing philosophies of how humans acquire knowledge. 

For example, behaviourism has been intrinsically linked with education for many years and 

until a few decades ago was the dominant philosophy in multiple classrooms. Based on the 

model developed by Skinner, it attempts to apply the methods of science to the study of 

human learning. It is concerned with observable changes in behaviour that results from 

stimulus-response associations made by the learner. Behaviourism draws on the common 

practice of reinforcement through reward and punishment such as gold stars for good work 

and punishment exercises for unsatisfactory behaviour (Lerman, 2014). While practitioners 

possess a theoretical awareness of various learning styles, this must be reinforced by a 

pragmatic perspective that encourages all pupils to think metacognitively in order to take 

responsibility for their own learning. Hiebert & Grouws (2007, p. 373) add a caveat within 

mathematics education: “Although theories of learning provide some guidance for research on 

teaching, they do not translate directly into theories of teaching.”  

 

 

The theory of constructivism is at the core of the revised mathematics curriculum in Scotland. 

Influenced principally by the seminal contributions of Piaget and Vygotsky, it is an 

epistemological position which is concerned with how learners construct their own 

understanding and knowledge of an intellectual world, through experiencing events and 

reflecting on those experiences. Centred on the learner, Simon (1995, p. 115) asserts that “we 

construct our knowledge of our world from our perceptions and experiences, which are 
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themselves mediated through our previous knowledge”. It differs from behaviourism in that it 

questions the origin of knowledge where knowledge is seen as created rather than received, 

mediated by discourse rather than transferred by teacher talk. While there are various forms of 

constructivism, within education and specifically relevant to this thesis, two branches are 

most relevant, namely cognitive constructivism and social constructivism.  

 

Cognitive constructivism 

Within the conceptualisation of cognitive constructivism, Piaget developed a theory centred 

on how children pass through stages of intellectual development as a result of biological 

maturation and environmental experience. The goal of his theory is to explain the mechanisms 

and processes by which the infant, and then the child, develops into an individual who can 

reason and think using hypotheses. Piaget (1997) advanced the view that the learner’s 

construction of knowledge is a self-regulating process and that knowledge is not passively 

received from the world but created as individuals (and groups) adapt to make sense of their 

experiential worlds. In other words, knowledge is actively built up by a cognising human who 

needs to adapt to what is fit and viable but that an individual’s knowledge is in a constant 

state of change because humans are subject to an ever fluctuating reality (Von Glasersfeld, 

1991, 1995). Maclellan & Soden (2003) articulate Piagetian theory thus: 

 
 Individuals’ cognitive schemes allow them to establish an orderliness and predictability in 
 their experiential worlds. When experience does not fit with the individual’s schemas, a 

 cognitive disequilibrium results, which triggers the learning process. This disequilibrium 

 leads to adaptation. Reflection on successful adaptive operations (reflection abstraction) leads 

 to new or modified concepts (accommodation), contributing to re-equilibration (p. 111).  
 

   

The implication for the classroom is that pupils learn through interaction with peers and it is 

this process of collaboration which results in their existing beliefs and assumptions being 

challenged, thus initiating change. The role of the teacher is to create stimulating and 

resourceful learning environments to facilitate appropriate activities to bring about the 

challenge. Two points are noteworthy here. One is that the classroom culture contributes to 

learning while the child contributes to the culture of the classroom (Yackel & Cobb, 1996). 

Second, during disequilibrium a pupil can often feel confused and uncomfortable as they 

grapple with new concepts for the first time but this can be harnessed positively by the teacher 

to support learning (Carter, 2008). 
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An exponent of cognitive constructivism that is promulgated within CfE is active learning. 

Though there is a lack of conceptual clarity surrounding this construct within national policy 

documents (Drew & Mackie, 2011), it is delineated on two occasions. Initially, the Scottish 

Executive (2007, p. 5) define active learning from an early years perspective as “learning 

which engages and challenges children’s thinking using real-life and imaginary situations”. 

Later, to acknowledge secondary education, the Scottish Government (2008, p. 30) express 

that active learning should “build upon children’s enthusiasm, inventiveness and creativity” 

and “promote the development of logical and creative thinking and encourage a problem-

solving approach”. A search of the literature suggests that active learning can be said to 

encompass four dimensions such as behavioural, cognitive, social and affective (Watkins, 

Carnell & Lodge, 2007; Drew & Mackie, 2011). Within such topography, Rosenthal (1995) 

argues that most mathematicians concur the best way to learn mathematics is by actively 

doing mathematics, which includes discussing it with others and by synthesizing fundamental 

ideas. Likewise, Ellerton (2013) encourages the active involvement of learners in posing 

problems during mathematics in order to demonstrate conceptual understanding and to furnish 

individuals the opportunity to solve, critique and reflect on their own mathematical problems 

including those of other peers. 

 

 

Inside a constructivist setting, to allow for the greater participation of pupils, the teacher is 

someone who promotes and orchestrates classroom discussions. Viewed through the lens of 

CfE, Reeves & Drew (2013, p. 38) draw attention to the functionality of the teacher “who 

must relinquish her central position in the classroom; as a source of knowledge, as the most 

dominant speaker and as the evaluator and assessor of children’s work”. Reeves & Drew 

(2013) allude that this shift in emphasis has connotations for teacher professional identity and 

classroom control. Questioning is of paramount importance and can generate fertile learner 

experiences. Such rich interactions force pupils to communicate their thought processes to 

represent and reflect on their encounters. The necessity to convey and answer questions 

verbally forces them to examine and even revise their concepts of reality (Vygotsky, 1978). 

However, teachers must be openly receptive to the notion that a child might regard a 

mathematical concept in quite a different way than it is perceived and that this dissonance is 

not simply reducible to missing pieces or absent techniques or methods (Confrey, 1990). 

During this communication process, Confrey (1990, p. 109) insists “the teacher must form an 

adequate model of the students’ ways of viewing an idea and s/he then must assist the student 

in restructuring those views to be more adequate from the students’ and from the teacher’s 
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perspective”. It may be deliberated that pupils’ levels of participation in the learning process 

are inextricably linked to their teachers’ levels of participation in the cognitive learning 

process. Practitioners require a high degree of conceptual expertise and pedagogical 

knowledge fashioned by a culture of critical reflection.  

 

 

Within mathematics classrooms, pupils are actively involved in constructing their own 

mathematical knowledge opposed to memorising algorithmic procedures or endlessly 

practising a litany of similar examples. Lerman (1993) whilst contending that constructivism 

offers a justification for mixed ability classes and individualised learning makes a parallel 

between a powerful metaphor of children developing mathematical structures and the 

processes involved during mathematical thinking, particularly during problem solving. 

Another influential contribution on this theme is articulated by Ernest (1991) who makes 

explicit reference to problem solving and problem posing. He argues that the aim of teaching 

mathematics is to empower learners to create their own mathematical knowledge and to 

develop confident and autonomous problem solvers and problem posers.  

 

 

Towards the end of the last century, Ernest (1998) built his theory of social constructivism by 

arguing that the learning and teaching of mathematics is indelibly linked to a philosophy of 

mathematics. However, being furnished with a new set of theoretical or conceptual “lenses” 

can be empowering for teachers (Prawat, 1992) but may serve to complicate an already 

overloaded working life. More prosaically, constructivism is open to interpretation. As Cobb 

(1988, p. 87) cautions: “Although constructivism theory is attractive when the use of learning 

is considered, deep-rooted problems arise when attempts are made to apply it to instruction”. I 

believe that issues of intersubjectivity can be enhanced by robust pedagogical knowledge. 

Cobb (1988) highlights two essential criteria for teachers which includes acceptance of the 

responsibility to facilitate profound cognitive restructuring and conceptual reorganisation 

along with transference in the belief of what constitutes a successful learning outcome. 

Regarding the latter aspect, he avows that constructivism does not assume a one-to-one 

correspondence between pupils’ observable behaviours and the underlying conceptual 

structures. In other words, it is feasible for pupils to use the prescribed methods to solve a 

particular sets of tasks on which they have received instruction without having developed the 

desired conceptual structures (Cobb, 1988). 
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In my professional view, teachers’ beliefs are a factor in establishing constructivist 

environments for mathematical learning. Pirie & Kieren (1992) resonate with this perspective: 

- drawing upon extensive empirical data, the authors argue that the creation of constructivist 

environments can produce improvements in the mathematical understanding of pupils. Such 

claims are supported by other researchers (e.g. Fraser, 2001; Webster & Fisher, 2003). 

Another critical theme of constructivism that has challenged teachers’ beliefs is the important 

topic of assessment. Reflecting on the contributions of previous researchers, Confrey & 

Kazak (2006) maintain that providing teachers direct access to artefacts of pupils’ work can 

engage them in examining their own beliefs and in looking more deeply into pupil thinking 

and reasoning.  

 

Social constructivism  

In a similar way that the contribution of Piaget relates to cognitive constructivism, the work of 

Vygotsky has greatly influenced social constructivism. Grounded on the premise that 

development cannot be separated from its social and cultural context, social constructivism is 

a theory of knowledge that examines the knowledge and understandings of the world that are 

developed in harmonisation with human beings. A major theme of Vygotsky’s theoretical 

framework is that he believed everything is internalised on two levels. Initially, cognitive 

growth occurs through interaction with others, and then integrated into the individual’s mental 

structure. According to Vygotsky (1978):  

 
 Every function in the child’s cultural development appears twice: first, on the social level, 

 and later, on the individual level; first, between people (interpsychological) and then inside 

 the child (intrapsychological). This applies equally to voluntary attention, to logical memory, 
 and to the formation of concepts. All the higher functions originate as actual relationships 

 between individuals (p. 57). 

 

From a mathematics education perspective, social constructivism considers knowledge to be 

driven by human interactions and cultivated by learning communities composed of individual 

mathematicians. Wood, Cobb & Yackel (1995, p. 402) note: “It is useful to see mathematics 

as both cognitive activity constrained by social and cultural processes, and as a social and 

cultural phenomenon that is constituted by a community of actively cognizing individuals”. 

Such a process furnishes teachers with a conceptual framework to understand children’s 

development of knowledge. It requires them to formulate a practice that corresponds with 

their pupils’ method of learning and challenges them to reconstruct what it means to know, do 

and teach mathematics (Wood, Cobb & Yackel, 1995). Ernest (1991) introduced the notion of 

mathematical objectivity by linking subjective and objective knowledge in a cycle in which 

each contributes to the renewal of the other. A practical illustration of this concept can be 
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located during assessment. For instance, approaches which evaluate mathematical creativity, 

posing problems and reasoning ability are subjective, while traditional methods that focus on 

computational skills and procedural fluency are objective. 

 

 

A major doctrine of Vygotsky’s (1978) theory is the concept that the potential for cognitive 

development is limited to a ‘Zone of Proximal Development’ (ZPD). It is defined by him as 

“the distance between the actual developmental level as determined by independent problem 

solving and the level of potential development as determined through problem solving under 

adult guidance, or in collaboration with more capable peers” (p. 86). In simple terms, it refers 

to a range of internal knowledge that may be out of reach for a pupil working independently 

but is accessible if the pupil has support from a teacher or more capable peer (Figure 1.1). 

Goos (2004, p. 262) points out that the ZPD “is not a physical space, but a symbolic space 

created through the interaction of learners with more knowledgeable others and the culture 

that precedes them”. Emblematic interactions infuse semiotic mediation (i.e. words, symbols, 

graphs, diagrams, etc.) and the culture within and beyond the classroom.  

 

Figure 1.1 Zone of Proximal Development (Vygotsky, 1978) 

 

 

 

From a Vygotskian perspective, teachers aid intellectual development in pupils by providing 

them with information and temporary structural support in carrying out a task, which is 

gradually reduced as pupil competency increases. This instructional technique is universally 

Independent problem solving 

Problem solving outside  
the individual's ability. Level  
of problem solving that cannot 
be accomplished independently nor 
under teacher guidance or with the 
help of a more capable peer 
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Proximal 
Development 
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known as ‘scaffolding’ and has been characterised as a way of operationalising Vygotsky’s 

concept of working in the ZPD (Wells, 1999). From my professional experience, many 

practitioners endorse this position as according to Hammond (2002), it naturally resonates 

with their own intuitive ideas of what it means to intervene successfully in young people’s 

learning. 

 

Collaborative learning  

The Scottish Government (2008, 2009) emphasises that collaborative learning will encourage 

children to reason logically and creatively through discussion of mathematical ideas and 

concepts. Vygotsky’s theories permeate collaborative learning suggesting that group members 

should have different levels of ability so more advanced peers can help less capable members 

operate within their ZPD. In its elementary form, Roschelle & Teasley (1995, p. 70) describe 

this approach as “a coordinated synchronous activity that is the result of a continued attempt 

to construct and maintain a shared conception of a problem”. It is based on the model that 

knowledge can be created within a population where members actively interact by sharing 

experiences and taking on asymmetry roles. During successful collaboration, the agent of 

inquiry is not the individual, but the knowledge-constructing group; pupils take responsibility 

for knowing what needs to be known and for ensuring that others know what needs to be 

known (Hargreaves, 2007).  

 

 

The majority of studies on collaborative learning adopt constructivism, especially theories 

from Piaget and Vygotsky, as the theoretical underpinning of peer collaborative learning (e.g. 

Fawcett & Garton, 2005) because they focus on building meaning through social interactions 

(John-Steiner & Mahn, 1996). McCrone (2005, p. 111) claims that group interplay can “allow 

students to test ideas, to hear and incorporate the ideas of others, to consolidate their thinking 

by putting their ideas into words, and hence, to build a deeper understanding of key 

concepts”. Discussions invite learners to justify their reasoning which can expose common 

misconceptions and lead to stronger connections between mathematical topics.  

 

 

Orchestrating collaborative learning to accommodate multiple perspectives requires teachers 

to cultivate positive interdependence, be less controlling and pupils to be autonomous 

individuals who take more responsibility for their own learning (and that of their peers). It is 

essential for teachers to derogate from a procedural driven agenda and embrace a concept 
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focused culture that promotes critical thinking and reflection. Importantly, teachers must be 

able to explore meaning and mathematical relationships through non-linear dialogue. In my 

opinion, collaborative learning is exemplified when presenting opportunities for pupils to 

tackle challenging mathematical problems prior to offering them guidance and support. This 

encourages learners to apply pre-existing knowledge that can be used to organise a method or 

a solution, prior to any intervention. Such an approach is buttressed by extensive empirical 

research evidence (Swan, 2006).  

 

 

However, preparing formative and summative assessment information is problematic. In a 

study of Scottish primary teachers’ views of the assessment of collaborative learning, 

McKechan & Ellis (2014) found that practitioners are challenged to accumulate and collate 

assessment evidence while simultaneously supporting the learning. The researchers suggest 

that this tension could be reduced by the use of technology to store data spontaneously.  

 

1.3.4 Mathematical problem solving  

Mathematics as a leading subject within Scottish education has been revitalised by the 

development of a pronounced emphasis and increased cognisance of mathematics within 

learning. It has been proclaimed by the Scottish Executive (2006b, p. 18) that “to face the 

challenges of the 21
st
 century, each young person needs to have confidence in using 

mathematical skills, and Scotland needs both specialist mathematicians and a highly numerate 

population”. On the theme of developing effective contributors, they declare:  

 

 Mathematics offers a host of different contexts to apply skills and understanding creatively 

 and logically to solve problems. Working on suitably challenging problems individually and 

 in groups helps to develop resilience and gives opportunities to communicate solutions. The 

 future prosperity of Scotland within a competitive global economy will depend upon high 
 levels of numeracy across the population and significant numbers of our young people with 

 the mathematical competence to operate in specialist contexts such as research and 

 development environments (p. 19). 

 

The conceptualisation of mathematical problem solving is no longer considered a separate 

component but has been emphasised as fundamental to effective learning and teaching in all 

aspects of mathematics, and its assimilation is “addressed within all lines of development 

rather than appearing as a separate element” (p. 20).  
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It is recognised that pupils need support in improving their mathematical problem solving 

competencies. Shortly after the implementation of CfE, evidence provided by Education 

Scotland (2012, p. 10) acknowledged in the 2011 SSLN that “it is evident from children and 

young people’s responses, that there is a need to strengthen their capacity to solve problems”. 

Teachers have a shared responsibility to ensure they address this pedagogical requirement. 

Halmos (1980, p. 523) warns that “it is the duty of all teachers, and of course teachers of 

mathematics in particular, to expose their students to problems much more so than facts”. 

Mathematical problem solving is pivotal to doing, learning and teaching mathematics 

(Schoenfeld, 1992) and is a central goal of CfE. The Scottish Government (2010c, p. 8) 

asserts that a “problem solving approach is at the heart of effective learning and teaching of 

mathematics”. Furthermore, guidelines offered to practitioners (Scottish Government, 2010b, 

p. 8) instruct teachers to “embody problem solving as an intrinsic element of mathematical 

approaches”. Halmos (1985, p. 322) highlights that: “A teacher who is not always thinking 

about solving problems – ones he does not know the answer to – is psychologically simply 

not prepared to teach problem solving to his students”.  

 

 

In spite of a wealth of international literature being readily available for the learning and 

teaching of mathematical problem solving (e.g. Polya, 1957; Schoenfeld, 1985; Silver, 1985; 

Schroeder & Lester, 1989; Stanic & Kilpatrick, 1989; Lester & Charles, 2003; Schoen & 

Charles, 2003; Posamentier & Krulik, 2008; Mason, Burton & Stacey, 2010; Lester & Cai, 

2016), no manifestation of this theoretical influence has been articulated within any 

mathematics curricula documentation. For example, no effort has been made to define the 

construct of a mathematical problem. In his analysis of American research, Lester (1994, p. 

661) professed that “problem solving has been the most written about, but possibly the least 

understood, topic in the mathematics curriculum”. At present, it is unknown to what extent 

mathematical problem solving is mobilised within Scottish schools. 

 

1.3.5 Mathematical problem posing  

On review of CfE mathematical framework, no explicit pedagogical provision is specified for 

the conceptualisation and operationalisation of mathematical problem posing. Nevertheless, it 

is widely accepted within the mathematics education research community that problem posing 

is regarded as a vehicle for promoting conceptual understanding, problem solving and 

creativity (Cai et al., 2015). I reject the purported notion that problem posing is considered 

implicit or tacit mathematical knowledge enacted by all teachers but instead argue that it is 
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deemed a field in its own right. Consequently, I posit that mathematical problem posing 

requires to be embedded within CfE and present a rational for its formal inclusion in this 

thesis. An illustration of where mathematical problem posing may assimilate within CfE is 

displayed in Figure 1.2. 

 

Figure 1.2 Proposed location of mathematical problem posing within CfE experiences and  
  outcomes  
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As in the case of mathematical problem solving, it is unknown to what extent mathematical 

problem posing is being currently mobilised in Scottish schools.  

 

 

1.4 Aims of the research 

Within the structure of CfE, responsibility for the learning and teaching of mathematics is 

shared reciprocally between primary and secondary establishments. This cross-sector 

accountability transmits to primary and secondary mathematics teachers respectively, despite 

the diversities in entry requirements and training required for both interrelated professions. 

There are two primary aims of this study: Firstly, to critically examine a reconceptualization 

of the existing mathematics curriculum by addressing a policy gap initiated by the omission of 

mathematical problem posing. Secondly, to provide empirical evidence of Scottish teachers’ 

beliefs and espoused classroom practices of mathematical problem solving and problem 

posing. It is suggested that the evidence gathered can help to illuminate current professional 

practice and shape future policy. Some of the variables that impinge upon the optimisation of 

integrating mathematical problem solving and problem posing are identified. 

 

 

In order to attempt to highlight some of the dynamics that may indirectly impact on teachers’ 

mathematical beliefs in Scotland, I have provided a simplistic schematic overview illustrating 

the conventional position of a teacher within the national framework of CfE (Figure 1.3). It 
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may be observed within this hierarchical structure, both mathematical problem solving and 

problem posing are not included as national assessment components by the SQA.  

 

Figure 1.3 Overview of teacher within the national framework of CfE    
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1.5 Research questions 

This study sought to answer the following specific research questions: 

 

Question 1  

To what extent should mathematical problem posing be embedded within the mathematical 

framework of Curriculum for Excellence? 

Sub questions: 

(a) What would be the value for learners of emphasising mathematical problem posing in 

 the curriculum? 

(b) What would be the implications for teachers’ professional practice of implementing 

 mathematical problem posing in their pedagogy? 
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Question 2  

Are there any differences in the mathematical beliefs of Scottish primary and secondary 

mathematics teachers? 

Sub questions: 

(a) What is the importance of learning theory of shaping teachers’ mathematical beliefs? 

(b) What are teachers’ beliefs about mathematical problem solving?   

 

Question 3  

What factors impact on the mathematical beliefs of primary and secondary mathematics 

teachers?  

Sub question: 

(a) What are the practical characteristics that support or constrain the development of 

 teachers’ beliefs? 

 

 

In order to address these research questions, I initially conducted a literature review of 

mathematical problem solving, mathematical problem posing and teachers’ beliefs. This 

served to provide several theoretical frameworks for this research.  

 

 

1.6 Methodology  

This study involved two strategies. First, a systematic literature review was undertaken to 

search for empirical evidence of the educational benefits of mathematical problem posing. 

Second, a mixed methods explanatory design was employed using questionnaires and semi-

structured interviews as the instruments to measure mathematical beliefs and capture levels of 

current professional practices. Descriptive and inferential statistics (e.g. bar graphs, 

histograms, factor analysis, independent samples t-tests and ANOVA) were utilised to analyse 

quantitative data. Thematic analysis was used for the interrogation of qualitative data.  

 

 

1.7 Outline of the thesis  

Prior to providing an outline of the structure of the thesis, it is necessary for me to clarify the 

nature of the research contained herein. This research is twofold. First, it seeks to address a 

legitimate gap in knowledge generated by the mathematics policy of CfE which failed to 

encapsulate changes in contemporary knowledge and emerging research from the 
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mathematics education community. The contribution to knowledge will be a compelling 

argument for the inclusion of mathematical problem posing within CfE. Second, this research 

is anchored on the premise that teachers’ beliefs are powerful cognitive agents which are 

intertwined with their professional practice. It seeks to explore an important gap in knowledge 

in Scottish education by capturing Scottish teachers’ mathematical beliefs and espoused 

professional practices. The contribution to knowledge will be to provide empirical evidence 

that can serve as importance indicators of current levels of classroom practices of 

mathematical problem solving and problem posing. Interpretation of findings from the data 

collection process will be evaluated against existing policy including previous research, from 

which, it is anticipated that recommendations will emerge that will improve the standard of 

Scottish education. Following on from this introductory chapter, this thesis is organised thus: 

 

 

Chapter Two provides a literature review of mathematical problem solving. It addresses the 

conceptualisation of problem solving making reference to the theoretical work of Polya 

(1957) and Schoenfeld (1985, 1992), among others. It examines the relationship between 

heuristics and pupil performance, the use of multiple solutions and factors contributing to 

successful problem solving. Included is a discussion of the three types of teaching approaches 

to problem solving described by Stanic & Kilpatrick (1989) and consideration of assessment.   

 

 

The third chapter focusses on introducing the reader to the conceptualisation of mathematical 

problem posing. Building on the early work of Kilpatrick (1987) and Brown & Walter (2005), 

it discusses the importance of problem posing in school mathematics and illustrates multiple 

theoretical perspectives and frameworks. Incorporated is an examination of the advantages 

and limitations of problem posing and justification of why it is a rich area for research. 

 

 

Chapter Four contains a literature review of the construct of teachers’ beliefs. An assortment 

of theoretical perspectives is offered that emphasise the profound influence of this critical 

dimension. Discussion of the impact of teachers’ beliefs and the relationship between 

practices is presented. 
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The fifth chapter is concerned with methodology and methods. I have attempted to illuminate 

the core components of research such as ontology and epistemology that have afforded my 

research objectivity. Documented is a narrative of my research position and assessment of the 

interdisciplinarity of this study. Previous empirical studies measuring teachers’ beliefs are 

listed. Justification of the methods selected for each research question including results of a 

systematic literature review is provided. Information on design, development and piloting are 

integrated. Ethical considerations are explained in detail.  

 

 

Chapter Six analyses the data gathered from the questionnaires and addresses the second and 

third research questions. It presents the statistical results of phase one of the mixed methods 

explanatory design. Encompassed is validation of the parametric tests and a brief description 

of volunteered participants’ comments. 

 

 

Chapter Seven analyses the results of interviews undertaken and addresses the second and 

third research questions. It presents the qualitative results of phase two of the mixed methods 

explanatory design. Participant information and emergent themes are depicted.   

 

 

The eighth chapter presents the findings of the research, focusing on each of the three 

research questions. I discuss the lessons from previous research to make comparisons.   

 

 

In the final chapter, I draw together the various strands of the thesis in order to tender my 

conclusions. This consists of limitations of the study as well as implications for policy and 

practice. Recommendations and suggestions for further research are proposed. The ultimate 

section is devoted to a synopsis of what I have learned as a doctoral student.  

 

 

In summary, this chapter has laid the foundations for this thesis. The following chapter 

provides a literature review of mathematical problem solving.  
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CHAPTER TWO 

 
Mathematical Problem Solving 

 

 
During the last fifty years or so, a considerable amount of literature has been published on 

mathematical problem solving. In this chapter, I attempt to outline the key ideas and theories. 

In the first section, it is necessary to offer a background in order to contextualise my research.  

 

 

2.1 Introduction 

For more than two thousand years, mathematics has provided a powerful universal language 

which has acted as an essential ingredient of the anthropological search for knowledge and 

understanding. It is underpinned by patterns, rigorous proofs and beautiful theorems which 

postulate truths of mathematical statements, conjectures and by intellectual and logical 

arguments. During the last century, the accumulation of mathematics and its applications has 

accelerated resulting in the emergence of contemporary branches of mathematics such as 

game theory, quantum mechanics, computational mathematics, operational research and graph 

theory. Intriguingly, mathematics has been portrayed by Carl Frederick Gauss as the queen of 

sciences, opined as an art (Lockhart, 2009) and paradoxically, by Bertrand Russell, as cited by 

Garnier & Taylor (2010, p. 52), being “the subject in which we never know what we are 

talking about, or whether what we are saying is true”. Devlin (2003) eloquently captures the 

essence of what mathematics is all about: 

 

 As the science of abstract patterns, there is scarcely any aspect of our lives that is not 
 affected, to a greater or lesser extent, by mathematics; for abstract patterns are the very 

 essence of thought, of communication, of computation, of society, and of life itself (p. 7). 

 

Mathematical advances have derived both from the attempt to explain the natural world and 

from the desire to arrive at a form of inescapable truth from careful reasoning. These remain 

rich and influential motivations for mathematical thinking. Mathematics has been successfully 

applied to solve numerous complex and profound aspects of the human and societal domain. 

Archetypal illustrations include biologist’s trying to understand the genetic code, 

development of the internet, predicting population growths, synthesis of new materials, 

warfare systems design, analysis of traffic patterns, forecasting earthquakes and modelling of 

social phenomena. Skemp (1987) emphasises the importance of mathematics to society and 

draws attention to practical applications: 
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 Mathematics is the most abstract, and so the most powerful, of all theoretical systems. It is 

 therefore potentially the most useful; scientists in particular, but also economists and 
 navigators, businessmen and communications engineers, find it an indispensable ‘tool’ (data-

 processing system) for their work (p. 17-18).  

 

Today, mathematics remains as a crucial device for shaping the future of mankind, whilst 

maintaining a prevalent influence on daily life. More prominently, it is perceived to be a 

major factor which contributes to the wealth of a nation. Napoleon, as cited by Boyer & 

Merzbach (2011, p. 423) famously proclaimed: “The advancement and perfection of 

mathematics are intimately connected with the prosperity of the state.” Indigenously, in 

attempting to raise national awareness of mathematics, The Scottish Government (2016b) 

warn: “It is essential that our workforce is confident and fluent in maths if Scotland’s 

economy is to continue to compete internationally” (p. 26). Conversely, the same 

administration recognises the grave intrinsic challenges that remain by acknowledging our 

dismal public image of mathematics. They warn that “Scotland has a maths problem. Too 

many of us are happy to label ourselves as “no good with numbers.” This attitude is deep-

rooted and is holding our country back educationally and economically” (p. 3). 

 

 

The responsibility of mathematics education is designed towards tackling contemporary 

problems, nurturing creative and critical thinking skills and cultivating productive methods of 

acquiring and retaining new facets of analytical information within a constantly changing 

dynamic environment. In schools, pupils need to develop more than tangible mathematical 

knowledge;  transferrable skills such as the ability to reason logically, in order to prepare for a 

fluctuating competitive market place, particularly as the exponential growth of technology is 

making larger quantities of information more accessible. On leaving school, young people 

need to adapt further to unfamiliar or capricious situations (compared to their counterparts in 

the past) and be equipped with the ability to provide innovative and resourceful solutions to a 

wide range of challenges. Therefore, schools have an obligation to empower learners to 

become creative and critical thinkers as well as mathematically literate citizens. Naturally, 

such a desired outcome is only plausible if pupils are furnished with a myriad of mathematical 

problem solving skills.  
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2.2 Problem solving and mathematics education 

It is important to consider the position of problem solving within mathematics education. 

Castaneda, Gibb & McDermit (1982, p. 22) contend that: “A significant proportion of human 

progress can be attributed to the unique ability of people to solve problems. Not only 

problem-solving ability critical to human progress and even to survival itself, but is one of the 

most important aspects of mathematics”. Gagne (1985) in classifying the cognitive process 

expresses the view that problem solving is the highest form of mathematical learning.  

 

 

In the same vein, Krulik & Rudlik (1993, p. 9) assert that problem solving is a lifetime 

activity and that all other activities are subordinate by arguing that the “teaching of problem 

solving should be continuous. Discussion of problems, proposed solutions, methods of 

attacking, etc. should be considered at all times”. The authors underline that primary 

practitioners have the responsibility for initiating this process “and thus laying the foundation 

for building the child’s capacity to deal successfully with his or her future problem-solving 

encounters”. Likewise, Lester & Lambdin (2004, p. 192) believe “the primary goals of 

mathematics learning are understanding and problem solving, and that these goals are 

inextricably related because learning mathematics with understanding is best supported by 

engaging in problem solving”. Similarly, prominent mathematician Paul Halmos emphasises 

the significance of problem solving in schools and argues that it is the responsibility of both 

sectors to promote. Halmos (1980) maintains:  

 

 The major part of every meaningful life is the solution of problems; a considerable part of the 
 professional life of technicians, engineers, scientists, etc., is the solution of mathematical 

 problems. It is the duty of all teachers and of teachers of mathematics in particular, to expose 

 their students to problems much more than to facts (p. 523).  

 

However, it is essential to distinguish between problem solving as a separate activity and as 

an approach to mathematics (Schoenfeld, 1992). Consequently, it is of no surprise that for 

educational systems throughout the world, the conceptualisation and operationalisation of 

mathematical problem solving is a foremost pedagogical curriculum objective. For example, 

Xenofontos & Andrews (2012, p. 70) maintain that: “In many European countries, problem-

solving and its related skills form key expectations of the intended curriculum for students of 

all ages”. In England, the Cockcroft Report (1982, p. 71) advocated that “mathematics 

teaching at all levels should include opportunities for problem solving”. Both Australia 

(Australian Education Council and Curriculum, 1991) and America (NCTM, 1980, 1989, 

2000, 2010, 2014) have strongly recommended that the learning and teaching of school 
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mathematics should be centred on problem solving. The NCTM (2000) postulates “unless 

students can solve problems, the facts, concepts, and procedures they know are of little use” 

(p. 182). Significantly, they articulate that problem solving is an “integral part of all 

mathematics learning, not an isolated part of the mathematics program” and that 

“Instructional programs should enable all students to build new mathematical knowledge 

through problem solving” (p. 52).   

 

 

Similarly, in Singapore, problem solving is the overarching approach to primary and 

secondary mathematics education and at the heart of learning and teaching (Figure 2.1). As 

explicitly outlined in the Ministry of Education (MOE, 2007, p. 3): “Problem solving is 

central to mathematics learning. It involves the acquisition and application of mathematical 

concepts in a wide range of situations, including non-routine, open-ended and real-world 

problems.” The intimate relationship between mathematics and problem solving was further 

strengthened in 2011 with the introduction of a research project known as MProSE. Its vision 

is to integrate problem solving into the everyday teaching of mathematics in all Singaporean 

schools, regardless of ability or sector.  

 

Figure 2.1 Singapore mathematics curriculum framework (Ministry of Education, 2007) 

 

 

 

2.3 Conceptualisation 

Whilst the portrayal of mathematics is universally known to all, many researchers and 

educationalists have described an assortment of different representations of mathematical 
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problem solving without agreeing on a conceptual definition (Lesh & Zawojewski, 2007; 

English & Sriraman, 2010; Lester, 2013; Schoenfeld, 2013). Critics such as Mamona-Downs 

& Downs (2005) maintain that the formation of an undisputed description of mathematical 

problem solving may be elusive whilst others believe that some explanations are outdated 

(e.g. Lesh, Zawojewski & Carmona, 2003) or have different inferences (e.g. Wilson, 

Fernandez & Hallaway, 1993). Given innumerable meanings already in use, Grugnetti & 

Jaquet (2005), as cited by Chamberlin (2008, p. 2), “suggest that a common definition of 

mathematical problem solving cannot be provided”.   

 

 

The research so far has tended to focus on expanding a collection of illustrations. For 

example, mathematical problem solving is engaging in a task for which a solution is not 

known in advance (NCTM, 2000). Schoenfeld (1983, p. 41) declares that a “problem is only a 

problem (as mathematicians use the word) if you don’t know how to go about solving it. A 

problem that has no ‘surprises’ in store, and can be solved comfortably by routine or familiar 

procedures (no matter how difficult!) is an exercise”. Interestingly, Schoenfeld (1985, p. 71) 

provides an alternative vision of problem solving as “a particular relationship between the 

individual and the task that makes the task a problem for that person”. Similarly, Orton & 

Frobisher (2005, p. 25) proclaim that “a mathematical problem for one learner may be an 

exercise for another”. What is distinctive about the previous two definitions is that they 

recognise the person experiencing problematicity, which raises an obvious question from a 

teachers’ perspective about how to classify such a task. Polya (1981) conveys problem 

solving as a feature of human endeavour, by stating that: 

 

 Solving a problem means finding a way out of a difficulty, a way around an obstacle, 

 attaining an aim which was not immediately attainable. Solving problems is the specific 

 achievement of intelligence, and intelligence is the specific gift of mankind: problem solving 

 can be regarded as the most characteristically human activity (p. ix). 

 

Alternatively, Mayer (1985, p. 123) succinctly states that: “A problem occurs when you are 

confronted with a given situation – let’s call it the given state – and you want another 

situation – let’s call that the goal state – but there is no obvious way of accomplishing your 

goal”. According to Cai & Lester (2005, p. 221), problem solving “is an activity requiring the 

individual to engage in a variety of cognitive actions, each of which requires some knowledge 

and skill, and some of which are not routine”. McLeod (1988, p. 135) outlines mathematical 

problems as “those tasks where the situation or goal is not immediately attainable and there is 

no obvious algorithm for the student to use”. Likewise, Posamentier & Krulik (2008, p. 1) 
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asserts that “a problem is a situation that confronts a person, that requires resolution, and for 

which the path to the solution is not immediately known”.   

 

 

In contrast, Verschaffel, Greer & De Corte (2000, p. ix) highlight a common misconception 

amongst teachers that word problems are “verbal descriptions of problem situations which 

one of more questions are raised for which the answer(s) can be obtained by the application of 

one or more mathematical operations to the numerical data available in the problem 

statement”. What is troubling about this definition is that it does not refer to cognitive 

thinking and presumes that a solution is easily achieved by applying a standard procedure. 

Previously, Smith (1986, p. 16) warns practitioners to exercise better judgment in interpreting 

“a set of words which are wrapped around some computational exercise”.  

 

 

Cai & Nie (2007, p. 471) argue that problem solving activities are viewed as a goal to achieve 

and as an instructional approach supported by experience: “The purpose of teaching problem 

solving in the classroom is to develop students’ problem solving skills, help them acquire 

ways of thinking, form habits of persistence, and build their confidence with dealing with 

unfamiliar situations”. However, Orton (2004, p. 35) takes into account the cognitive 

processes involved and contends that “successful solutions of problems are dependent on the 

learner not only having the knowledge and skills required but also being able to tap into the 

relevant networks and structures in the mind”. Whilst, Lester & Kehle (2003) include 

reference to earlier experiences, knowledge and cognitive actions:  

 
 Successful problem solving involves coordinating previous experiences, knowledge, familiar 
 representations and patterns of inference, and intuition in an effort to generate new 

 representations and related patterns of inference that resolve the tension or ambiguity (i.e. 

 lack of meaningful representations and supportive inferential moves) that promoted the 
 original problem-solving activity (p. 510).  

 

This definition is inadequate since it only serves to account for effective problem solving. 

Provocatively, Stanic & Kilpatrick (1989, p. 1) caution that “problem solving has become a 

slogan, encompassing different views of what education is, of what schooling is, of what 

mathematics is, and why we should teach mathematics in general and problem solving in 

particular”. Understandably, with the diversity of operational definitions, Schoenfeld (1992) 

strongly recommends that clarification is required. He writes: 

 The term [problem solving] has served as an umbrella under which radically different types 

 of research have been conducted. At minimum there should be a de facto requirement (now 



41 

 

 
 

 the exception rather than the rule) that every study or discussion of problem solving be 

 accompanied by an operational definition of the term and examples of what the author 
 means... Great confusion arises when the same term refers to a multiple of sometimes 

 contradictory and typically underspecified behaviors (p. 363-364).  

 

It has been established that problem solving encompasses more than a special importance in 

mathematics education and is generally accepted as a means of advancing critical thinking 

skills (Schoenfeld, 1985). It is the heart and soul of the work of mathematicians, engineers, 

scientists, economists, computer programmers, including all other professions that require the 

utilisation of higher-order cognitive processes. Sakshaug, Ollson & Olson (2002) portray the 

mathematical problem solving process experience as a mission that:  

 
 encompasses the acts of exploring, reasoning, strategising, estimating, conjecturing, testing, 

 explaining and proving. It is a very active process for those involved. Through the problem 
 solving, we are challenged to think beyond the point where we were when we started, we are 

 challenged to think differently. We are challenged to extend our thinking about a situation in 

 a way that is new or different (p. vi). 

 

What is appealing about this definition is that it acknowledges many mathematical functions. 

In contrast, the following definition offered by Lesh & Zawojewski (2007, p. 782) is intended 

to embrace creative thinking: “A task, or goal-directed activity, becomes a problem (or 

problematic) when the “problem solver” (which may be a collaborating group of specialists) 

needs to develop a more productive way of thinking about a given situation”. While a 

multiplicity of definitions of mathematical problem solving have been suggested, this thesis 

will use the definition submitted by PISA who saw it as: 

 
 is an individual’s capacity to engage in cognitive processing to understand and resolve 

 problem situations where a method of solution is not immediately obvious. It includes the 
 willingness to engage with such situations in order to achieve one’s potential as a constructive 

 and reflective citizen (OCED, 2014, p. 30).  

 

This delineation captures a number of important features such as the employment of a 

strategy, the non-algorithmic nature of the solution and the need for perseverance. 

 

2.3.1 History of mathematical problems 

Mathematical problems have existed for thousands of years and have been enriched by 

various contributions from the likes of Babylonian, Egyptian, Greek and Islamic sources. 

Euclid’s Data, which is considered the pedagogical strand of Euclid, is a collection of 

geometrical problems. During the Medieval European mathematics period, Fibonacci posed: 
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 A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many 

 pairs of rabbits can be produced from that pair in a year if it is supposed that every month 
 each pair begets a new pair, which from the second month on becomes productive? 

 

This famous problem directed Fibonacci to the introduction of the Fibonacci sequence, which 

has been subsequently applied to the curvature of naturally occurring spirals, combinatorics 

and stock market analysis. One of my favourite mathematical problems involving the 

transcendental number 𝑒 was posed during the scientific revolution. Joseph Fourier proved 

that 𝑒 was irrational by using contradiction. In modern times, at the beginning of the twentieth 

century, David Hilbert, outlined twenty three unsolved mathematical problems to the 

International Congress of Mathematicians in Paris. Several of his problems have since been 

solved (such as Fermat’s last theorem by Andrew Wiles), partially disentangled or remain 

unanswered (e.g. Riemann hypothesis). Today, many problems remain unsolved in 

mathematics, mainly attributed to the continuous formation of new problems. 

 

 

Interestingly, countless historical examples exist where observation and intuition have 

directed mathematicians to offer logical and accurate solutions to problems. However, there 

are cases where it has navigated to wrong suppositions or incomplete or erroneous 

mathematical proofs. For example, Euler once conjectured that the Diophantine equation, 

𝐴4 +  𝐵4 +  𝐶4 =  𝐷4, has no solution in positive integers. Remarkably, it took more than two 

hundred years for this statement to be disproved (Elkies, 1988).   

 

 

It is disingenuous to suggest that inaccurate solutions to mathematical problems are of no 

intrinsic educational value. On the contrary, they can stimulate rich classroom interactions in 

order to strengthen deep conceptual understandings. Within my own professional practice, I 

have regularly posed the fashionable division by zero fallacy: ‘Is 1 + 1 = 1 a true statement?’ 

It has generated a positive learning experience whilst anticipating pupils recognising the 

invalidity of line five, as follows:  

 
 

Let a = b 

⇒ a2 = b2 

⇒ a2 − b2 = ab − b2 

⇒ (a − b)(a + b) = b(a − b) 
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⇒
(a − b)(a + b)

(a − b)
=

b(a − b)

(a − b)
 

⇒ a + b = b 

Since a = b, we have 2b = b 

Thus, 2 = 1 

 

It is essential to consider if this previous task can be classified as a legitimate mathematical 

problem. By undertaking such a deliberation, it focusses attention on the generic structure of 

mathematical problems. Unequivocally, it is a genuine mathematical problem since it can 

foster reason, communication, interest and curiosity, while developing a positive disposition 

towards mathematics.  

 

 

Furthermore, unsuccessful attempts at solving such a problem or in fact any historical 

problem is not unproductive. In a study of 25 American undergraduates conducted by Moser 

et al. (2011), it was found that individuals with a growth mind-set had a greater awareness of 

errors than individuals with a fixed mind-set and thus were able to rebound better from 

mistakes. Exhibiting such a tendency during mathematical problem solving can help to 

promote higher order thinking skills. In describing mathematical thinking processes, Mason 

(1999) professes that: 

 
 Failure can be more useful than success. One challenging problem teaches you far more than 

 many easy problems. Getting stuck gives you an opportunity to learn - when ideas come too 
 readily, you have no marker to return to, no peg from which to extend your network of cues 

 and triggers (p. ix).   

 

 

2.4 Fundamental characteristics 

It is imperative that a worthwhile mathematical problem should offer a suitable challenge 

while simultaneously providing an opportunity to learn important mathematics. Such a task 

should initiate disequilibrium and perplexity (Lambdin, 2003), be intriguing, invite hard work 

and direct pupils to investigate mathematical ideas and methods of thinking towards the 

learning goal (Lester & Cai, 2016). In endorsing the mandatory necessity of challenge, 

Schoenfeld (1985) contends that the task should be an intellectual impasse rather than a 

computational one. 
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However, not all mathematical problems are germane for classroom use. Some are 

contextualised within artificial situations which erroneously promote the employment of 

algorithmic exercises. Pupils are constrained to implement trivial procedures and manifest the 

false expectation that a readily available solution exists for every problem. The resulting 

vulnerability of learners is being ill-equipped in confronting authentic real life mathematical 

problems, where the solution method is not immediately obvious (Schoenfeld, 1992). 

Practitioners must consider the needs of all learners before implementing any task. Orton 

(2004) cautions that sensible attention be afforded when selecting a mathematical task for 

instruction. He argues that:  

 
 One aspect of problem-solving in mathematics is that often the problems are divorced both 
 from the mainstream subject matter and also from the real world. Such puzzles may contain 

 great interest for some children, but others may not see the point and be demotivated. Such 

 puzzles are unlikely to produce knowledge or rules which are useful or applicable elsewhere 
 (p. 26).     

 

Nonetheless, in order to nurture a community of learners, primary and secondary mathematics 

teachers should follow the wisdom of Polya (1957), who advocates a great opportunity that 

awaits: 

 

 If he [teacher] fills his allotted time with drilling his students in routine operations, he kills 
 their interest, hampers their intellectual  development, and misuses his opportunity. But if he 

 challenges the curiosity of his students by setting them problems proportionate to their 

 knowledge and helps them to solve their problems with stimulating questions, he may give 

 them a taste for, and some independent means of, independent thinking (p. xxxi). 

 

Selecting an interesting and challenging problem that can stimulate mathematical learning is a 

fundamental skill for any teacher. Too often, young people are presented with the exclusive 

drudgery of following ‘drill and practice’ routines which only serve to augment computational 

skills whilst instantaneously disengaging learners. Schoenfeld (1994a, p. 60) forewarns all 

teachers of this danger: “When mathematics is taught as dry, disembodied, knowledge to be 

received, it is learned (and forgotten or not used) in that way”. It has been thought that a good 

problem can be justified by successfully applying the augmentation and proof strategy of 

‘convince yourself, convince a friend, convince an enemy’ (Mason, Burton & Stacey, 2010). 

 

 

By directing attention to the type of suitable mathematical problems, focus is drawn to the 

subjective views of teachers. In short, this places more emphasis on the role of the teacher to 

select and develop worthwhile mathematical tasks that create opportunities for pupils to 

develop mathematical understandings, competence, interest and dispositions (NCTM, 1991). 
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In searching for a definitive set of criteria for defining the characteristics of a worthwhile 

problem, the NCTM (2010) refer to the work of Lappan & Phillips (1998). The authors offer 

excellent guidelines in the shape of ten criteria although they emphasise that it is not 

reasonable to expect that every problem selected satisfies all the criteria but should be 

dependent on a practitioners instructional goals:  

 
1. The problem has important, useful mathematics embedded in it. 
2. The problem requires higher-level thinking and problem solving. 

3. The problem contributes to the conceptual development of students. 

4. The problem creates an opportunity for the teacher to access what his or her students are 
learning and where they are experiencing difficulty. 

5. The problem can be approached by students in multiple ways using different solution 

strategies. 

6. The problem has various solutions or allows different decisions or positions to be taken and 
defended. 

7. The problem encourages student engagement and discourse. 

8. The problem connects to other important mathematical ideas. 
9. The problem promotes the skillful use of mathematics. 

10. The problem provides an opportunity to practice important skills (p. 1-2). 

 

The NTCM (2010) highlight that the first four criteria should be considered essential in the 

selection of all mathematical problems. Nevertheless, an important caveat to acknowledge is 

that an appropriate choice of problem does not guarantee that successful mathematical 

learning will occur (Lester & Cai, 2016). In my professional experience, this will depend on a 

number of interrelated dimensions but in particular, the kind of classroom discourse and 

intervention that normally takes place during mathematics lessons between teacher and pupil. 

For example, some teachers do not share the belief or have the patience to allow pupils to 

struggle with challenging mathematical problems, thereby eliminating the requirement to 

stimulate independent and higher level thinking (Stillman et al., 2010).   

 

 

In her informative analysis of problem based learning, Sockalingam (2015) provides a 

valuable insight into the structural elements of a problem. She draws on a previous study of 

34 Singaporean biomedical undergraduates which identified eleven characteristics grouped by 

‘feature’ and ‘function’ (Figure 2.2). However, her conclusions would have been more 

persuasive if she had considered studies involving mathematics problems.    
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Figure 2.2 Function and feature characteristics of problems (Adapted from Sockalingam, 2015) 

 

 

2.4.1 Classification  

One of my satisfying childhood memories was solving the classic puzzle involving a man 

who has to transport a fox, a chicken and a sack of corn across a river using a rowing boat, 

which can only carry him and one other object. The circumstances dictated that if the fox and 

the chicken are left together, the fox will eat the chicken and if the chicken and the corn are 

left together, the chicken will eat the corn. How does the man do it? While such puzzles are 

designed to manifest reasoning and thinking processes (Joanssen, 1997), it is debatable if their 

content neutral and decontextualized nature, evident in many cases, are relevant to the 

promotion of mathematical problem solving.  
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Nevertheless, it is important to understand the classification of mathematical problems that 

can be presented to learners in order to identify the type of solution required (Polya, 1981). 

Thus far, a number of studies have classified mathematical problem types used in schools. 

The three most cited studies refer to ‘routine and non-routine’ problems (McLeod, 1994), 

‘open and closed’ problems (Boaler, 1998) and ‘well and ill-structured’ problems (Jonassen, 

1997). Arguably, all mathematical problems serve a valuable purpose but different categories 

of problems will accomplish different learning objectives. Specific problems require an 

element of recall and formulae, some stimulate the need for divergent strategies, others 

depend on logic and reasoning, selected have multiple solutions or demand decision making 

and creativity (Jonassen, 1997).   

 

2.4.1.1 Routine and non-routine 

Critically, teachers must be able to distinguish between routine mechanical algorithmic tasks 

accentuated by facts or procedures and unfamiliar activities designed to help pupils construct 

a deeper understanding of mathematical ideas (e.g. Polya, 1957; Schoenfeld, 1985; Stanic & 

Kilpatrick, 1989; Krulik & Rudnick, 1993; Mayer, 2003; Orton & Frobisher, 2005; Mason, 

Burton & Stacey, 2010). Schoenfeld (1988) makes a valuable contribution to this argument. 

Based on his American case study of secondary pupils, he found that although learning and 

teaching was successful from a curriculum perspective, learners developed a fragmented 

conceptual understanding including flawed beliefs about mathematics. For example, 

participants believed that mathematical problems can be solved within minutes and that it is 

acceptable to give up quickly. If an activity is reduced to replicating the technique imposed by 

the educator, it can create an illusion of mathematical competence by simple memorising and 

reproducing the correct method to manipulate symbols, and may even come to promote the 

believe that obtaining the correct answer exceeds the need for understanding (Goos, Galbraith 

& Renshaw, 2004). As Yeo (2007) reminds us: 

 

 If a teacher does not know the differences between the types of mathematical tasks, how is he 

 or she to use them to cultivate different types of skills and thinking? If a teacher refers to 

 standard mathematics textbook tasks as ‘problems’ that the students should ‘solve’, then he or 
 she may not realise that practising this type of task is not mathematical problem solving (p.1). 

 

If by poor judgement or otherwise, practitioners restrict pupils to repetitive and computational 

tasks, many will be unprepared to solve genuine mathematical problems whilst 

simultaneously extinguishing their motivation and natural curiosity.  
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Before proceeding to examine other classifications, it is necessary to provide illustrations of 

archetypal tasks found within mathematics textbooks active within Scottish primary and 

secondary schools (Figure 2.3). The provision of a real life context is emblematic but 

surveyed as a solitary feature; its inclusion does not impact on the level of challenge 

implanted within the parameters aligned to a mathematical task.  

 

 

Evaluation of the six mathematical tasks illustrated in Figure 2.3, reveal that in spite of the 

varying levels of complexity, a shared commonality exists with each solution in that a 

standard procedure can be applied to obtain a correct answer. Such routine tasks resonate with 

the objective articulated by Lester (1980, p. 31) to “provide students with practice in using 

standard mathematical procedures, for example, computational algorithms, and use of 

formulas”. The first task is found by multiplying the area of the grass lawn by the unit cost 

per square meter to obtain £990. The next task requires knowledge of rounding and awareness 

that the numbers must be whole numbers i.e. 85 and 94. The third task can be answered by the 

summation of (18 x £0.45) + (6 x £0.30) + £3.99 = £13.89. The fourth task is a recurrence 

relation which begins with the sequence 𝑢𝑛+1 = 0.75𝑢𝑛 + 20, where 𝑢0 = 160 ml. The amount 

of drug remaining is calculated by finding 𝑢4 (105 ml). The fifth task employs a standard 

integration formula for volume of solid of revolution to obtain 2570 cm
3
. The final task may 

appear sophisticated since proofs tend to extend mathematical thinking due to an array of 

theorems, axioms and inferences which are required to construct a rigorous argument. 

However, in this standard case, 𝑛 = 1 is initially proved and an ‘induction rule’ applied to 

establish any arbitrary value. Logically, the degree of challenge within a proof question will 

determine the nature of classification, although evaluation may be subjective. Proofs that 

require the creation of new mathematical concepts or derive novel theorems are obvious 

exemplars of mathematical problems (Powell et al., 2009).  

 

Figure 2.3 Examples of mathematics textbook tasks 
 

 

Task 1  The plan of a rectangular grass lawn is shown below. Find the total cost of the lawn 

  given that the cost per square metre of grass lawn is £13.75.  [Third level] 
 

 

 
          4m  

        4.50m 

 

 

                18m  
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Task 2  Write down the lower and upper bounds of a crowd of people estimated at 90 to the 

  nearest 10 people.  [Second level] 
 

Task 3  An Isle of Lewis photographer charges the following rates: 

 
  • 45p per photograph for the first 18 photographs printed 

  • 30p per photograph for any further photographs printed 

  • £3·99 for a CD of the photographs 

 
  How much will it cost to have 24 photographs printed plus a CD?  [Fourth level] 
 

Task 4  A patient is injected with 160 ml of a drug. Every six hours 25% of the drug passes 

  out of her bloodstream. To compensate, a further 20ml dose is given every 6 hours. 
  Calculate the amount of drug remains after 24 hours.  [Higher] 

 

Task 5  A plastic bowl is modelled by rotating the curve 𝑦 =  𝑒
𝑥

12 between 𝑥 = 15 and 𝑥 = 30 

  through 2𝜋 radians about the 𝑥-axis as shown in the diagram. Find the volume of the 

  bowl.  [Advanced Higher] 

 

 
        
Task 6  Prove by mathematical induction,  

       

∑ 𝑟 =
𝑛(𝑛 + 1)

2
  ∀𝑛 ∈ 𝑍+

𝑛

𝑟=1
 

      [Advanced Higher]  

 

Notwithstanding the actuality that any standard mathematical textbook task may be 

considered ‘sophisticated’ if viewed through the lens of a less experienced individual or 

someone lacking confidence with performing routine procedures (Schoenfeld, 1985; Orton & 

Frobisher, 2005), I will proceed with a trajectory to establish additional boundaries between 

familiar constructs associated with mathematical problem solving. Justification for doing so is 

further underlined by the misappropriation of terminology such as task, problem, activity and 

investigation engrained within various CfE narratives (e.g. Scottish Government, 2009, 

2010a, 2011a, 2014). For example, in a professional learning resource for practitioners, 

Education Scotland (2015, p. 2) reiterate their conceptualisation of numeracy by expressing 

its detachment from mathematics followed by an inference that numerical skills are 

exclusively associated with solving mathematical problems: “Numeracy is not only a subset 
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of mathematics... We are numerate if we have developed: The confidence and competence in 

using number which will allow individuals to solve problems”. Such contradictory language 

only serves to confuse teachers and highlights urgency for conceptual clarity. Furthermore, 

this issue is compounded by the fact that no universally accepted definition exists for each 

term (Powell et al., 2009).  

 

 

As explained earlier, word problems are not mathematical problems but are more accurately 

compartmentalized as routine mathematical tasks. In her study of Australian primary and 

secondary mathematics teachers, Anderson (2005) found that many participants believed they 

were implementing mathematical problem solving based on curriculum guidelines. However, 

it transpired that many of the examples provided to her required lower level thinking. 

Education Scotland (2015) offers the following strategies for practitioners, which help to 

promote the use of word problems and thus impede the implementation of problem solving: 

 

 Learners’ skills in, and application of, estimating and rounding should be a regular feature of 

 learning. Progression in estimation should involve learners taking account of the impact of 
 real life contexts and using this knowledge when communicating their understanding. For 

 example, when solving word problems, such as those involving division, where the 

 interpretation of the context is required to gain a reasonable answer (p. 8). 

 

2.4.1.2 Open and closed 

In her case studies of two English secondary schools, Boaler (1998) draws our attention to 

alternative pedagogical mathematical methodologies. Phoenix Park implemented open-ended 

projects such as: ‘The volume of a shape is 216, what can it be?’ Pupils were encouraged to 

search out multiple solution methods and answers. This approach accommodates diverse 

learning styles and can help to promote rich and deep conceptual understanding (Becker & 

Shimada, 1997; Hiebert et al., 1997). Conversely, in Amber Hill, pupils followed traditional 

practices which focussed on routine tasks featuring one correct answer, which is characterised 

as ‘closed’ (Becker & Shimada, 1997).  

 

 

However, an interesting dilemma arises when a question contains multiple correct responses. 

For example: ‘Solve the equation 𝑥2 = 7𝑥’; By factorising we can obtain 𝑥 = 0 or  𝑥 = 7. 

Both values of 𝑥 are required to formulate the correct answer. Similar cases will occur when 

polynomials, inequalities, trigonometric functions or complex numbers are involved. Yeo 
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(2017) argues that such cases are considered ‘closed’ since all multiple correct answers can be 

determined. 

 

2.4.1.3 Well- and ill-structured  

Much controversy has surrounded well-structured and ill-structured problems. Simon (1973) 

found it impossible to construct a formal definition of well-structured problems and opted for 

a collection of potential characteristics. In the same vein but with less detail, Jonassen (1997) 

offers similar characteristics, as listed in Table 2.1. 

 

Table 2.1 Characteristics of well-structured problems (Adapted from Jonassen, 1997) 

 Present all elements of the problem. 

 Are well-defined with a known solution 

 Engage the application of a limited number of rules and principles that are organized in a predictive and 

prescriptive arrangement with well-defined, constrained parameters. 

 Involve concepts and rules that appear regular and well-structured in a domain of knowledge that also 

appears well-structured and predictable. 

 Possess correct, convergent answers.  

 Possess knowable, comprehensible solutions where the relationship between decision choices and all 

problem states is known or probabilistic. 

 Have a preferred, prescribed solution process. 

 

Other authors point to a clearly specified initial state, goal state and set of operations (e.g. 

Mayer, 2003). Kilpatrick (1987, p. 134) argues that such problems “can be solved by the 

application of a known algorithm, and have criteria available for testing the correctness of a 

solution”. Well-structured problems can be characterised as routine mathematical tasks. 

Examples include finding the mean number of goals scored in a football competition, length 

of an unknown side of a triangle, distance travelled by a projected object, surface area of a 

cuboid, roots of a polynomial function, lines of symmetry of a rhombus and exterior angles of 

a polygon. 

 

1. There is a definite criterion for testing any proposed solution, and a 

In contrast, ill-structured problems have vaguely defined goals, incomplete or ambiguous 

information, generate multiple solutions or no solution at all and possess uncertainty about 

which concepts, rules and principles are necessary for resolution (Simon, 1973; Jonassen, 

1997, Mayer, 2003). Typically, they resemble real world situations and in which the solver 

may not know when they have obtained a final solution (Kilpatrick, 1987). Examples include 
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building a swimming pool using a budget of less than £30,000 and designing a 10 metre long 

bridge that can hold a 200 kg weight. 

 

 

Let us now consider mathematical problems that can be employed to engage pupils in higher-

order thinking. I present six examples from my own professional practice (Figure 2.4) that I 

have used extensively across a continuum of ages and abilities. From a didactical perspective, 

each problem can be successfully attempted by any pupil as no specific background is 

required. Such an intrinsic feature is essential if teachers want to promote inclusion, as many 

practitioners hold the common view that only high achieving pupils can participate in this 

form of mathematical instruction. The initial problem is well-structured and open-ended since 

it contains multiple answers. The second and fourth problems are well-structured and closed 

since they contain a unique answer. In the third problem, the sum of any five odd numbers is 

odd and therefore cannot be solved; irrespectively, it offers an excellent platform to launch 

basic number theory, which can be developed to define odd and even numbers in terms of any 

integer. More critically, as a learning objective, it skilfully alerts pupils to the possibility in 

mathematics that we can legitimately obtain ‘no solutions’. Such an early growth mind-set is 

helpful when discussing future linear equations of the form:  

5𝑥 + 10 =  9(𝑥 + 1) − 4𝑥  

which produces a false statement (i.e. 10 = 9) or explaining roots of quadratic equations 

where b2 − 4ac < 0.  In sum, this problem is defined as an ill-structured problem. The fifth 

and sixth problems are well-structured and closed since they contain a unique answer; 

multiple solutions are possible. 

 

Figure 2.4 Examples of mathematical problems 

 
Problem 1 Is it possible to put the numbers 1, 2, 3, 4, 5, 6 in the circles so that the sums of the 

  three numbers on either side of the triangle are the same? 
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Problem 2 A palindromic number is one which reads the same when its digits are reversed, for 

  example 19391. What is the largest six-digit palindromic number which is exactly 
  divisible by 15?  

 

Problem 3 Find five odd numbers whose sum is 100. 
 

Problem 4 Identify the value of the letters in the equation  CROSS +  ROADS =  DANGER 

 

Problem 5 Four straight lines intersect as shown. What is the value of  2𝑝 + 2𝑞 +  2𝑟 + 2𝑠? 
 

 
 
Problem 6 In a classroom with 10 people, everyone shakes hands with everyone else exactly 

  once. Find the total number of handshakes.  

 

 

2.4.2 Problems and investigations 

Whilst the conceptualisation of problems has penetrated deep into mathematics educational 

discourse, the relationship between problems and investigations highlight inconsistencies in 

the literature. Orton (2004, p. 85) argues that the “exact distinction between an investigation 

and a problem has rarely been clarified by advocates of their inclusion in the curriculum, and 

it still not always clear what is meant when either is being discussed today” and “it is clear 

that either or both may be developed from the same basic idea or situation”. Frobisher (1994) 

asserts “there is no doubt that a great deal of overlap exists” (p. 152) but that “a distinction 

should be made between (problem solving) tasks which lead to investigations, and... 

investigations which have their own existence” (p. 158). Alternatively, some scholars claim 

that nothing can be gained from establishing any differences. Pirie (1987, p. 2) as cited in Yeo 

& Yeap (2009) maintains that “no fruitful service will be performed by indulging in the 

'investigation' versus ‘problem-solving’ debate”. On the other hand, considerable support 

exists for associating investigations with having no clear specified goal in the statement. 

Orton & Frobisher (2005, p. 32) claim that “an open problem is another name for an 

investigation whilst an open problem is a process problem which gives rise to further 

problems”. The implication of problem posing as an integral component of investigations is 

reinforced by others (e.g. Cai & Cifarelli, 2005; Yeo & Yeap, 2009; Yeo, 2012). Yeo & Yeap 
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(2009) illustrates the relationship between mathematical investigation as an activity, 

mathematical investigation as a process and problem solving as a process (Figure 2.5). 

 

Figure 2.5  Investigative activity for open investigative tasks (Adapted from Yeo & Yeap, 2009) 

 

 

In practice, many primary and secondary mathematics teachers have a propensity to view 

problems and investigations as one of the same (Orton & Frobisher, 2005). Nationally, this 

situation is exacerbated by the Scottish Government (2009, p. 3) who do not advocate any 

dissonance between the two activities by encouraging practitioners to promote learners to 

“investigate mathematical problems”. 

  

 

However, I firmly believe that problems and investigations are distinct activities due to the 

unrestricted nature embedded within investigations. Orton & Frobisher (2005, p. 32) opine 

that: “An investigation provides learners with the freedom to determine the goals they wish to 

attain. This independence and autonomy is not possible in problems having a precise and 

unambiguous goal with a known and well-established method of solution”. Frobisher (1994) 

fosters the disparity between problem solving as a convergent activity based on unique 

solutions and an investigation deemed a divergent activity characterised by multiple solutions 

and outcomes. He emphasises that both pedagogical approaches to learning mathematics 

should be welcomed by pupils and “not just something which occurs when the routine of the 

normal curriculum becomes dreary and tiresome” (p. 169).  

 

 

Around ten years ago, I successfully introduced a prominent mathematical investigation into 

my professional practice of which I have shared with many colleagues (McDonald, 2006):  
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Investigate how many squares are on a chessboard (the answer is not 64!) 

 

The first goal is clearly defined and on obtaining the desired 204 (i.e. 12 + 22 +  32 + 42 +

 52 + 62 +  72 +  82) squares, pupils can extend their mathematical thinking by posing a 

different problem which involves finding a general rule for any 𝑛 × 𝑛 chessboard [i.e. 

12 +  22 +  32 +  … +  𝑛2 =  
1

6
 𝑛 (𝑛 + 1)(2𝑛 + 1), 𝑛 ≥ 1, 𝑛 ∈ N ]. Nevertheless, this is not 

obvious to all pupils since it is not explicitly specified in the statement. It is an important 

characteristic that demonstrates that an investigation does not depend on whether the activity 

has a closed or open goal (Yeo & Yeap, 2009). 

 

 

2.5 Heuristics 

As highlighted in chapter one, Curriculum for Excellence advocates that problem solving is 

no longer compartmentalised as a detached entity but integrated into all levels of learning and 

teaching of mathematics. However, inextricably absent from this explicit directive are 

guidelines for practitioners on how to orchestrate this pedagogical approach into practice. In 

this section, the role of heuristics is introduced followed by a brief discussion of two seminal 

theoretical frameworks and a brief summary of whether teaching heuristics improves pupil 

performance. 

 

 

The conceptualisation of heuristics has been synthesised over the years with many conflicting 

descriptions available. For example, according to Polya (1957, p. 112): “The aim of heuristics 

is to study the methods and rules of discovery and invention”. Verschaffel (1999, p. 217) 

defines heuristic methods as “systematic search strategies for problem analysis and 

transformation”. De Bono (1984, p. 10) suggests that the idea of heuristics “includes all those 
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aspects of thinking that cannot be fitted into mathematical formulations”. Martinez (1998, p. 

606) claims that “Heuristics are crucial because they are the tools by which problems are 

solved”. Wilson, Fernandez & Hadaway (1993, p. 63) consider heuristics as “kinds of 

information, available to students in making decisions during problem solving, that are aids to 

the generation of a solution, plausible in nature rather than perspective, seldom providing 

infallible guidance, and variable in results”. Whilst a more contemporary perspective is 

presented by Lesh & Zawojewski (2007) who argue that heuristics involve strategies:  

 
 intended to help problem solvers think about, reflect on, and interpret a problem solving 

 situation more than they are intended to help them decide what to do when ‘stuck’ during a 
 solution attempt (p. 768). 

 
 

2.5.1 Polya (1957) 

Mathematician and educationalist, George Polya, is universally famous for his work on 

mathematical problem solving. The emphasis of Polya's work focussed on the elements of 

plausible reasoning that lead to the discovery of mathematical assertions to which he referred 

to this type of reasoning ‘heuristics’, otherwise known as the mental operations typically 

useful in the process of solving mathematical problems. In his pioneering book, ‘How To 

Solve It’, (Polya, 1957) proposed four explicit phases to provide a more systematic or planned 

process approach to mathematical problem solving (Figure 2.6) and which relies on a 

repertoire of past experiences. A myriad of academics have grounded their research on this 

book, which Schoenfeld (1987, p. 17) eloquently proclaims as “a charming exposition of the 

problem-solving introspection”.   

 

 

Worldwide, many countries have woven inextricably together the influential works of Polya 

within their educational systems. For example, in the USA, the NCTM (2000, p. 53) advocate 

that: “Of the many descriptions of problem-solving strategies, some of the best known can be 

found in the work of Polya (1957)”. Interestingly, his influence is not confined to 

mathematics education. For example, within the field of artificial intelligence (amongst other 

disciplines) his contribution to heuristics is well regarded. Minsky (1961, p. 28) articulates 

that “everyone should know the work of Polya on how to solve problems”.   

 

I will examine Polya’s (1957) four phase model in more detail: 

 

 



57 

 

 
 

First Step - Understanding the problem 

It may be obvious but this initial operation is crucial to fully understand the given information 

and the ultimate goal (Lesh & Jawojewski, 2007). Polya (1957, p. 6) maintains that: “It is 

foolish to answer a question that you do not understand”. Therefore, it is essential to 

appreciate what a problem is asking. For example, what are the unknown, available data and 

conditions? This may require becoming more ‘acquainted’ with the problem statement and in 

some cases, drawing a sketch or a diagram to show connections and relationships, making a 

table, using a model, working backwards or using a variable. Polya (1957, p. 33) suggests 

“attention bestowed on the problem may also stimulate your memory and prepare for the 

recollection of relevant points”. More specifically, he recommends teachers to select problems 

which are challenging but accessible.  

 

Figure 2.6 Steps to follow when solving a mathematical problem (Adapted from Polya,1957)  

Understand the 
problem

Devising a 
plan

Carrying out 
the plan

Looking back

 

 

Second step - Devising a plan  

Many different strategic approaches are available at this stage such as a guess, searching for a 

pattern or connection between the data and the unknown or recalling a similar solved 

problem. On the theme of a guess and check strategy, Polya (1957, p. 99) posits that “many a 

guess has turned out to be wrong but nevertheless useful in leading to a better one”. 

Conversely, Malloy & Jones (1998, p. 149) argue “if a student guessed but could not explain 
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the solution or did not use the guess to verify the solution, the guess was not considered a 

strategy”. Polya (1957, p. 8) states that a suitable plan is devised “when we know, or know at 

least in outline, which calculations, computations, or constructions we have to perform in 

order to obtain the unknown”. However, it may be apparent that the selected strategy needs 

modifying or to be discarded entirely. The application of past experiences may help to relate a 

similar problem that can be solved (Mayer, 2003). The mechanism to transfer knowledge of 

related problems requires analogical reasoning. A beautiful illustration of analogical 

reasoning is presented by Polya (1957) in his solution to solving the centre of gravity of a 

homogenous tetrahedron by forming a solution using a triangle. Thus, a constant review of the 

chosen plan is necessary during implementation of this phase. 

 

Third Step - Carrying out the plan 

Considered to be the most challenging component of the solution. Pupils must be prepared to 

validate each stage of the plan and modify any element of the strategy when it is obvious that 

it will not advance the desired outcome. Polya (1957) states that: 

 
 To devise a plan, to conceive the idea of the solution is not easy. It takes so much to succeed; 

 formerly acquired knowledge, good mental habits, concentration upon the purpose, and one 
 more thing: good luck. To carry out the plan is much easier; what we need is mainly patience 

 (p. 12).  

 

Polya (1957, p. 13) counsels practitioners to insist that the learner should examine each part 

of the process and in certain cases demonstrate “if they can prove that the step is correct?”  

Such attention to detail requires perseverance and an awareness that modifications to the plan 

may result in the abandonment of the original strategy and the creation of a new approach. 

 

Fourth Step - Looking back  

This is deemed the most critical stage and extends beyond checking the answer. Detailed 

examination of the solution will reveal if the argument can be verified, generalised, enhanced, 

derived differently or applied to another problem. Polya (1957) warns that pupils have a 

tendency to stop when they have obtained a result and “miss an important and instructive 

phase of the work” (p. 14). He advises teachers to impress on their students the notion that no 

problem whatsoever is completely exhausted as there remains always something to do and 

believes that “we could improve any solution, and, in any case, we can always improve our 

understanding of the solution” (p. 15). This viewpoint is shared by Watson & Mason (2005, p. 

xiii-xiv) who advocate that: “No matter how profoundly one thinks one understands it is 

always possible to probe more deeply and to discover more connections and complexities”. In 
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other words, reflection is fundamental to the process in order to solidify mathematical 

understanding. Lesh & Zawojewski (2007, p. 770) note that: “By describing their own 

processes, students can use their reflections to develop flexible prototypes of experiences that 

can be drawn on in future problem solving”. The knowledge gained in looking back nurtures 

an investment in long time memory that can facilitate forthcoming problem solving 

encounters (Silver, 1982).   

 

 

One of the common misunderstandings of Polya’s model is that it is a linear procedure that 

can be memorised, practiced and habituated. More accurately, it should be designated as 

dynamic, cyclic and iterative. However, Schoenfeld (1992, p. 353) whilst accepting the 

validity of Polya’s work maintains that it “did not provide the amount of detail that would 

enable people who were not already familiar with the strategies to be able to implement them” 

and suggests they are “descriptive rather than prescriptive”, which according to English & 

Sriraman (2010, p. 264-265) are mostly “just names for large categories of processes rather 

than being well-defined processes in themselves”. Lesh & Zawojewski (2007, p. 769) offer a 

broader perspective on Polya’s heuristics “as not only prompting ways of selecting and 

carrying out procedures and rules (i.e. “doing” mathematics), but also as a means of 

developing systems for interpreting and describing situations (i.e. “seeing” mathematically)”.   

 

 

Although Polya did not include the term ‘metacognitive’ in any of his work, each phase of his 

four step model of mathematical problem solving are metacognitive in nature. At this point in 

this thesis, I feel it pertinent to provide a definition of metacognition and refer to Flavell 

(1976):  

 

 Metacognition refers to one’s knowledge concerning one’s own cognitive processes and 
 products or anything related to them, e.g., the learning relevant properties of information or 

 data... Metacognition refers, among other things, to active monitoring and consequent 

 regulation and orchestration of these [cognitive] processes in relation to the cognitive objects 
 or data on which they bear, usually in the service of some concrete goal or objective (p. 232). 

 

Silver (1982, p. 21) reinforces this viewpoint when he declares that: “If we adopt a 

metacognitive perspective, we can view many of Polya’s heuristic suggestions as 

metacognitive prompts”.     
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2.5.2 Schoenfeld (1985) 

In his book, ‘Mathematical Problem Solving’, Schoenfeld (1985) offers a comprehensive 

overview of his framework and methodological approach to the exploration of undergraduate 

mathematical problem solving of which can be respectively applied to school mathematics. 

On reflection, Schoenfeld (2013, p. 10) describes this publication as “a framework for the 

analysis of the success of failure problem solving attempts, in mathematics and hypothetically 

in all problem solving domains”.   

 

 

Schoenfeld (1985) proposes a model grounded on the theory that a learner’s ability to solve 

problems is determined by their individual functioning cognitive and emotional characteristics 

and identifies four categories of knowledge and behaviour fundamental for mathematical 

problem solving performance (Figure 2.7). In essence, he argues that it is possible to explain 

an individual’s success or failure in trying to solve a problem on the basis of four categories: 

 

Figure 2.7 Framework for solving mathematical problems (Adapted from Schoenfeld, 1985) 

 

Resources Heuristics Control Beliefs Systems

Mathematical 
knowledge possessed 

by the individual 

Strategies and 
techniques for making 
progress on unfamiliar 

or non-standard 
problems; rules of 

thumb for effective 
problem solving

Decisions regarding 
the selection and 

implementation of 
resources and 

strategies

One’s “mathematical 
world view”, the set 
of (not necessarily 

conscious) 
determinants of an 

individual’s behaviour

Problem Solving 
Performance

 

Resources  

According to Schoenfeld (1985, p. 17), these refer to “an inventory of all the facts, 

procedures, and skills – in short, the mathematical knowledge” that the individual is capable 

of bringing to bear on a particular problem”. Examples include intuitions, informal 

knowledge, algorithmic procedures, non-algorithmic procedures and understandings about the 

agreed-upon on rules for working in the domain.  
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Heuristics 

Much development work is based on promoting these types of strategic processes. Exemplars 

include “exploiting analogies, introducing auxiliary elements in a problem or working 

auxiliary problems, arguing by contradiction, working forward from the data, decomposing 

and recombining, exploiting related problems, drawing figures, generalizing” (p. 23). 

Schoenfeld discusses a series of major obstacles to the ascendancy of heuristics strategies 

such as the lack of prescriptive detail afforded to strategies by claiming “that their definitions 

are too vague to serve as a guide to their implementation” (p. 95). Moreover, he emphasises 

the need to have a strong general knowledge base of mathematics as “even a good mastery of 

heuristics cannot be expected to replace shaky mastery of subject matter” (p. 96). 

 

(Metacognitive) control 

This classification of behaviour deals “with the way that individuals use the information 

potentially at their disposal” (p. 27). It involves “planning, monitoring and assessment, 

decision-making and conscious metacognitive acts” (p. 15). Schoenfeld (1985) submits the 

view that ‘good’ problem solvers metacognition differ significantly from ‘novices’ in the 

efficacy of their metacognitive strategies. He reinforces the position that: “One of the 

hallmarks of good problem solvers’ control behaviour is that, while they are in the midst of 

working problems, such individuals seems to maintain an internal dialogue regarding the way 

that their solutions evolve” (p. 140). In other words, they are more skilled at managing 

different mathematical resources. Lester (1994, p. 666) argues that “effective metacognitive 

activity during problem solving requires knowing not only and when to monitor, but also how 

to monitor”. In sum, metacognition plays a critical role in successful problem solving (e.g. 

Lester, 2013).  

  

Belief systems 

These signify an individual’s mathematical world view and the “perspective with which one 

approaches mathematical and mathematical tasks... Beliefs establish the context within which 

resources, heuristics and control operate” (p. 45). They shape the knowledge drawn upon and 

the mobilisation of that knowledge. Schoenfeld (1985) emphasised the need for future 

research on metacognition and beliefs. Main findings arising from his studies include: 

“Explicit heuristic instruction does (or can) make a difference with regard to problem-solving 

performance” (p. 215) and “students in a problem–solving course can learn to employ a 

variety of heuristic strategies” (p. 240).    
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Schoenfeld (1985) offers a schematic outline of a problem solving strategy used with his own 

students (Figure 2.8) and makes reference to exploration which he designates as “the heuristic 

heart of the strategy, for it is in the exploratory phase that the majority of problem-solving 

heuristics come into play” (p. 110).  

 

Figure 2.8 Schematic outline of problem solving strategy (Adapted from Schoenfeld,1985) 
 

  

GIVEN PROBLEM

ANALYSIS
Understanding the statement

Complying the problem
Reformulating the problem

DESIGN
Structuring the argument

Hierarchical decomposition: 
global to specific

Useful formulation:
Access to principles

and mechanism

IMPLEMENTATION
Step-by-step execution

Local verification

EXPLORATION
Essentially equivalent problems

Slightly modified problems
Broadly modified problems

More accessible
Related problem

 or new information

Tentative solution

VERIFICATION
Specific test

General tests

VERIFIED SOLUTION

Schematic solution

Minor/Major difficulties

 

 

However, two limitations are notable. Firstly, the participants worked in isolation thereby 

minimising social interactions. Secondly, all of the mathematical problems were supplied by 

the researcher which constrained the potential outcome as the objectives were established in 
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advance. In short, Schoenfeld did not offer a theory of mathematical problem solving but a 

framework for analysing the success or failure of problem solving within a wide domain.  

 

 

More recently, Schoenfeld (2011) provided an updated theoretical lens from which to explain 

how and why problem solvers make decisions that shape and guide their problem solving 

behaviours. The basic structure offered is recursive where individuals orient to situations and 

decide (on the basis of beliefs and available resources) how to pursue their goals. If the 

situation is familiar, they implement familiar routines; if mechanisms are unfamiliar or 

problematic, they reconsider. An interesting characteristic of this theoretical work is that 

although mainly designed for primary and mathematics teachers, it can be applied to analyse 

and predict the behaviours of other professions. I have summarised the framework used by 

Schoenfeld (2011) in Figure 2.9.  

 

2.5.3 Does the teaching of heuristics improve pupil performance? 

In this subsection, I make two assumptions. Firstly, pupil performance is concerned with 

conceptual understanding that leads to improved problem solving rather than procedural 

knowledge. In this case, Foong (1991, p. 45) argues that to become effective problem solvers, 

instructional activity must build "a repertoire of heuristics that are likely to be useful in a 

variety of problem situation, along with meta (cognitive) knowledge about situations in which 

specific heuristics are appropriate". Secondly, pupils cannot become successful problem 

solvers overnight (Hiebert, 2003; Lambdin, 2003; Lester & Cai, 2016). Considerable 

institutional investment is required throughout primary and secondary levels.  

 

 

Whilst it may be plausible to anticipate that evidence supports the teaching of heuristics, the 

literature suggests only a weak correlation exists at best (Schoenfeld, 1979, 1985, 1992; 

Charles & Silver, 1988; Lester, 1994; Lesh & Zawojewski, 2007). According to Lester & 

Kehle (2003, p. 508): "Teaching students about problem solving strategies and heuristics and 

phases of problem-solving does little to improve students' ability to solve general mathematics 

problems". Previous reports concur with this claim. In his robust assessment of the research, 

Silver (1985) suggests that even in studies where some positive learning has been reported, 

the transfer of learning was insignificant. Likewise, Beagle (1979) noted that:  
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 A substantial amount of effort has gone into attempts to find out what strategies students use 

 in attempting to solve mathematical problems... no clear-cut directions for mathematics 
 education are provided... In fact, there are enough indications that problem solving strategies 

 are both problem and student specific often enough to suggest that hopes of finding one (or 

 few) strategies which should be taught to all (or  most) students are far too simplistic (p. 145).   

 

Figure 2.9 How things work (Adapted from Schoenfeld, 2011) 

  GOALS
Established or reinforced

ORIENTATION
 Information and 

knowledge become salient 
and are activated

DECISIONS
Direction and resources 

IMPLEMENTATION

Consciously or unconsciously

MONITORING
Whether it is effective 

or not

GIVEN PROBLEM

Initial resources, goals
and orientation

Iterative 
process

Routines aimed at particular goals have sub-routines, which have their own 

subgoals; If a subgoal is satisfied, the individual proceeds to another goal 

or subgoal; If a goal is achieved, new goals kick in via decision-making; If 

the process is interrupted or things don’t seem to be going well, decision-

making kicks into action once again. This may or may not result in a 

change of goals and/or the pathways used to try to achieve them.
 

 

However, the success of any problem solving experience is interrelated to the pedagogical 

skills of the teacher involved. Although this has to be balanced against the retrievable nature 

of the research literature on mathematical problem solving. In practical terms, this translates 

to how effectively teachers can delineate generalisations in order to impact regular 

professional practice. A major caveat for teachers to consider is the link between theory and 

practice which is unclear (Lesh & Zawojeswki, 2007; Lester, 2013; Lester & Cai, 2016).  
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Irrespectively, in a study of 20 Israeli current teachers, Koichu, Berman & Moore (2003, p. 7) 

concluded that “heuristic training of students may be an effective tool in combination with 

heuristic training of their teachers, induced either by personal problem solving experience or 

by learning through teaching of regular curriculum with deliberate emphasis on heuristic 

approach in problem solving”. This pedagogical perspective may be well tender the remedy to 

improving the problem solving performance of learners. Though, given that a copious amount 

of research on learning and teaching of mathematical problem solving has already been 

conducted over the last 30 years or so, it would appear unlikely that the teaching of general 

heuristics has little effect on improving problem solving skills (Lester & Cai, 2016). Still, 

Ambrus & Barczi-Veres (2016) challenge this view based on their recent study of 16 

Hungarian secondary pupils. The researchers noted that the implementation of open problems, 

questioning and cooperative techniques had a positive impact on student achievement.   

 

 

2.6 Multiple solutions  

The beauty of elegantly designed mathematical problems leads to the facilitation of an 

assortment of multiple solutions. Leikin (2013, p. 388) defines a multiple solution task as “an 

assignment in which a student is explicitly required to solve a mathematical problem in 

different ways”. According to Leikin (2011), solutions to the same problems are considered 

different when they involve (a) different representations of concepts (b) different theorems or 

mathematical relationships to support conjectures (c) different conceptual arguments and 

reasoning. All too often, pupils embrace the misconception that there is only one precise 

method to approach and solve a problem and fail to develop flexibility in formulating, 

selecting appropriate strategies and searching for alternative solutions (Cai & Nie, 2007). For 

example, to solve a system of two linear equations, a graphical solution can be provided. 

Alternatively, we can use algebra (elimination or substitution method), matrices or trial and 

error.  

 

 

Engaging learners with problems that may be approached by employing different 

representations is widely accepted as fostering good practice (Tsamir et al., 2010) and 

entrenched within the looking back step of Polya’s (1957) heuristic. This is an essential 

constituent of any mathematics classroom as incorporation of these problems will deliver a 

vehicle for pupils to construct rich mathematical connections. Silver et al. (2005, p. 288) 

maintain that learners profit from comparing, reflecting on and discussing multiple solution 
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methods and claim that “different solutions can facilitate connection of a problem at hand to 

different elements of knowledge with which a student may be familiar, thereby strengthening 

networks of related ideas”. When regularly exposed to problems that require multiple 

strategies, pupils learn different approaches and are more efficient in selecting appropriate 

methods to elucidate problems (Dowker, 1992) and can solve problems with greater ease and 

flexibility (Siegler, 2003). The NCTM (2000) designated that students should develop their 

“flexibility in exploring mathematical ideas and trying alternative solutions” (p. 21) and that 

educators should cultivate their students capacity “to link mathematical ideas and deeper 

understanding of how more than one approach to the same problem can lead to equivalent 

results, even though the approaches might look quite different” (p. 354). Similarly, the 

Scottish Government (2009, p. 2) assert that an important feature of effective learning and 

teaching of mathematics should ensure that primary and secondary pupils “explore alternative 

solutions” and aquire opportunities “presenting their solutions to others in a variety of ways”.  

 

 

Not all mathematical problems offer multiple solutions but some branches present more rich 

opportunities than others. Whilst the power of algebra and calculus cannot be underestimated, 

Levav-Waynberg & Leikin (2012a) argue that geometry is a fertile ground to search for 

problems that encompass more than one solution. They maintain that “experience shows that 

almost any geometrical problem in a regular geometry textbook has multiple solutions” (p. 

316) and “geometry contains a rich variety of problems with multiple solutions accessible to 

learners” (p. 329). However, within my professional practice I have employed problems from 

a wide spectrum of mathematics including many originating from other national syllabuses. 

My favourite is a combination problem involving ten people where everyone shakes hands 

with everybody else exactly once, where the objective is to determine how many handshakes 

take place. One of the solutions is a practical approach ensuring that this problem is within 

reach of all secondary pupils. In order to illustrate a task which offers multiple solutions, 

consider the following problem (McDonald, 2014), which is accessible to the majority of 

secondary pupils including well able primary pupils:  

 

 Example 

It is projected that the worth of a lump sum investment is 5% more than its value in the previous year. 

Find in as many ways as possible, the number of years that it will take for the investment to double.   
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Solution 1 Computationally 

Since no value for the investment is specified, we can choose any number to represent this 

unknown amount. Selecting £100 and increasing by 5% each year will produce: 

Year Investment (£) 

0 100.00 

1 105.00 

2 110.25 

3 115.76 

4 121.55 

5 127.63 

6 134.01 

7 140.71 

8 147.75 

9 155.13 

10 162.89 

11 171.03 

12 179.59 

13 188.56 

14 197.99 

15 207.89 

 

Solution 2 Graphically  

In order to find an approximate solution, we must draw the function 𝑦 = 1.05𝑥 and 𝑦 =  2. 

The intersection point is dependent on the degree of accuracy of the graph produced. 

 

For a more accurate graphical solution, we can use a GDC (e.g. TI-Nspire): 

 

By considering only complete years, our answer is 15 years  
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Solution 3 Algebraically  

Let 𝑥 be the initial lump sum where 𝑛 is time in years,  

⇒  𝑥 (1 +  0.05)𝑛 =  2𝑥 

⇒    (1.05)𝑛 =  2  

⇒  𝑛 ln 1.05 =  l𝑛 2  

⇒  𝑛 =  
l𝑛 2 

l𝑛 1.05
 

⇒  𝑛 =  14.21 years  

 

Solution 4 ICT (e.g. TI-Nspire) 

Whilst this approach is deemed a different strategy, it only serves to generate an algorithmic 

solution which does not augment the development of problem solving skills. Nevertheless, I 

have found this to be a valuable instrument during class discussions when comparing other 

solutions. 
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Solution 5 Trial and error 

If we let 1.05𝑛 = 2, where 𝑛 is the number of years, then we can determine the value of 𝑛 by 

continually improving our guess, something like this: 

 
𝑛 (1.05)n Comment 

20 2.653 Too big 

10 1.639 Too small 

15 2.079 Too big 

14 1.980 Too small 

14.5 2.029 Too big 

14.25 2.004 Too big 

14.22 2.001 Too big 

14.21 2.000 Solution 

 

2.6.1 Teachers and multiple solutions 

Whilst there is a growing body of evidence that suggests that the engagement of multiple 

solutions can improve pupil learning (e.g. Stein & Lane, 1996; Silver et al., 2005; Rittle 

Johnson & Star, 2007; Star & Rittle-Johnson, 2008), considerably fewer studies exist that 

have examined the impact on teachers regarding the instructional process. For example, Ma 

(1999) found that Chinese teachers enhanced their mathematical curriculum knowledge while 

Stigler & Hiebert (1999) noted in their international comparative analysis of practitioners 

from America, Germany and Japan, the quality of teaching improved. Intriguingly, from a 

primary perspective, Shimizu (2003, p. 206) reports that “Japanese teachers in elementary 

schools often organize an entire mathematics lesson around multiple solutions to a single 

problem in a whole-class instructional mode. This organization is particularly useful when 

introducing a new concept or a new procedure during the initial phase of a teaching unit”. 

This pedagogical approach is common in other PISA high performing countries such as China 

and Hong Kong (Stigler & Hiebert, 1999; Cai & Nie, 2007). 

 

 

In contrast, other studies have identified concerns from practitioners which have impacted on 

their engagement of multiple solutions. In their study of 12 American middle and secondary 

mathematics teachers, Silver et al. (2005) reported uncertainties regarding perceived time 

constraints and that more than one approach may coalesce to confuse less able learners. 

Equally, Leikin & Levav-Waynberg (2007) discovered that in their study of the professional 

development of 12 Israeli mathematics teachers, participants’ limited domain expertise 

coupled with weak pedagogical content knowledge prevented them from using multiple 
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strategies. Based on a study of 92 American teachers’ views about teaching with multiple 

strategies, Lynch & Star (2014) argue that a divide exists between the views of primary 

teachers and that of middle and secondary mathematics teachers. The researchers hypothesise 

there may be several contributing factors including different amounts of contact time with 

pupils in the sectors.  

 

  

Solving mathematical problems using different methods can also serve as a didactical tool and 

as a diagnostic assessment technique (Levav-Waynberg & Leikin, 2009). Nevertheless, 

teachers are only too aware of the general apathy for some learners to disengage after securing 

a solitary outcome to a given problem. This disengagement may possibly be as a result of 

practitioners failing to encourage the habit of searching for multiple solutions or simply not 

regularly employing a variety of methods or approaches in the classroom. We are reminded 

by Polya (1957, p. 173) that “it should not be forgotten that a teacher of mathematics should 

know some mathematics and that a teacher wishing to impart the right attitude of mind 

towards problems to his students should have acquired that attitude himself”. In offering his 

own experience, Schoenfeld (1994b) advocates that he prefers problems that can be solved, or 

at least approached, in a number of ways because: 

 
 It's good for students to see multiple solutions, since they tend to think, on the basis of prior 
 experience, that there is only one way to solve any given problem (which is usually the 

 method the teacher has just demonstrated in class). I need for them to understand that the 

 "bottom line" is not just getting an answer, but seeing connections. Moreover, on the process 
 level, the possibility of multiple approaches lays open issues of executive decisions – what 

 directions or approaches should we pursue when solving problems, and why? (p. 69). 

 

However, in a study involving Turkish primary teachers, Bingolbali (2011) found that many 

participants during the implementation of a new mathematical curriculum did not value 

alternative solutions and reported experiencing difficulties in evaluating pupil’s alternative 

solutions. His findings reveal a significant variation in the grading of different solutions 

resulting in practitioners conveying mixed messages to their pupils by promoting effort at the 

expense of mathematical accuracy. Many valid reasons may exist to explain why teacher 

nuances exist in this regard. One possible reason could be that some teachers do not share the 

same mathematical beliefs about problem solving as others do. Burton (1984, p. 23) warns 

that “if your pupils never see you engaged in problem solving, they will learn that despite 

what goes on in your classroom, it is not an activity which is important to you”. Alternatively, 

some teachers may not support the notion that promoting multiple solutions in geometry is an 
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effective use of their time in order to provide a benefit to their pupils learning of mathematics 

(Levav-Waynberg & Leikin, 2012a).  

 

2.6.2 Mathematical creativity 

The literature contains numerous contrasting structural and multifaceted definitions of 

mathematical creativity (Mann, 2006; Sriraman, 2009). Leikin et al. (2013) refer to the work 

of Guilford (1967) when distinguishing between convergent and divergent thinking of 

creativity. They argue that the act of convergent thinking involves seeking a single, precise 

solution to a problem, whereas divergent thinking is the creative product that generates 

multiple solution strategies. In the same vein, Leikin (2013) in her theoretical model of 

mathematical creativity expands the connection between creativity and divergent thinking 

based on an explicit requirement to solve mathematical problems in multiple ways. In this 

thesis, I will use the definition of mathematical creativity first suggested by Silver (1997, p. 

75) who saw it as “an orientation or disposition towards mathematical activity that can be 

fostered broadly in the general school population”. My motive for using this definition is 

centred on a belief that every child has the potential to be creative and that schools are obliged 

to fashion an educational environment to promote independent thinking to develop creativity 

skills (Education Scotland, 2013).  

 

 

Mathematics educational research is plentiful with the influence of constructivist concepts 

that strongly value learner’s individual knowledge building and independent development that 

perpetuate the solving of mathematical problems exercising multiple solutions (e.g. 

Schoenfeld, 1983; Silver, 1997; Leikin et al., 2006; Sriraman, 2009; Levav-Waynberg & 

Leikin, 2012a, 2012b). The significance of solving mathematical problems using multiple 

methods can promote advanced mathematical thinking amongst pupils. Krutetskii (1976) and 

Ervynck (1991) link the concept of mathematical creativity to multiple solutions. Leikin & 

Levav-Waynberg (2008, p. 234) argue that “solving problems in multiple ways contributes to 

the development of student’s creativity and critical thinking”.   

 

 

However, it is evident that the dynamic perspective surrounding mathematical creativity is not 

encouraged by the lack of formal evaluation in national examinations (e.g. Scotland). 

Chamberlin & Moon (2005, p. 42) lament that “the significance of creativity in school 

mathematics may be minimised because it is not formally assessed in standardized tests, 
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which purport to thoroughly measure mathematical learning”. Silver (1997, p. 75) counsels 

that whilst “genuine mathematical activity is intimately interwoven with creativity, schooling 

provides most students with little opportunity to experience this aspect of the domain of 

mathematics”. Grounded on the work of Torrance (1974), he strongly advocates that teachers’ 

nurture creativity through mathematical problem solving by promoting fluency, flexibility and 

novelty and illustrates (Figure 2.10) the relation of problem solving instructional activities to 

core components of mathematical creativity.  

 

 

Teachers must encourage, support and cultivate the rich development of mathematical 

creativity by engaging learners in imaginative exploration during the integration of problem 

solving. Shriki (2010, p. 161-62) warns that: “Refraining from development of creativity in 

the classroom conveys the impression that mathematics is merely a set of skills and rules to 

memorize, and in doing so, many students’ natural curiosity and enthusiasm for mathematics 

might vanish”. Resonating with this advice is Nickerson (2011) who asserts that to enhance 

creativity in the classroom; practitioners need to nurture their learners, especially with ideas 

that are unconventional. He makes a poignant remark that I am sure all teachers can relate to:  

 
 Failure to promote creativity in the classroom may well be due sometimes to recognition of 
 the increased challenge that creatively expressive children represent to classroom order and 

 teacher authority (p. 414).  

 

In the course of teaching mathematical problem solving, I have observed children give up 

after a period of intense effort. As a response, I normally introduce an alternative approach 

such as ‘time out’ or provide an unrelated activity. Occasionally, on return to the problem, it 

has stimulated a breakthrough which has produced a creative piece of work.  

 

Figure 2.10 Problem solving and creativity (Adapted from Silver, 1997) 

 

FLEXIBILITY
Student solve (or express or 

justify) in one way; then in other 
ways and discuss many solution 

methods

NOVELTY
Students examine many solution 
methods or answers (expressions 
or justifications); then generate 

another that is different

FLUENCY
Students explore open-ended 

problems, with many 
interpretations, solution methods 

or answers

Problem Solving and Creativity
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Nevertheless, I suspect that some teachers do not accept the view that every pupil has the 

potential to demonstrate mathematical creativity. In a study of primary children, Kattou et al. 

(2013) found a strong positive correlation between mathematical creativity and mathematical 

ability. The researchers suggested that mathematical creativity is a subcomponent of 

mathematical ability. Likewise, in another study involving secondary pupils, Leikin & Lev 

(2013) noted that gifted pupils (high IQ) outperformed all other pupils on every measured task 

involving mathematical creativity. More recently in a further study of secondary pupils, Lev 

& Leikin (2017) assert that expertise in mathematics is a prerequisite for an individual to be 

creative. Together, these studies indicate that the imaginative promotion of multiple solutions 

during problem solving will stimulate and develop creativity skills.  

 

2.6.3 Mathematical competence 

In this section, I focus on three critical elements of mathematical competence which are 

intrinsic to generating multiple solutions within problem solving i.e. procedural knowledge, 

conceptual knowledge and procedural flexibility. Procedural knowledge is expressed as an 

integrated and functional grasp of mathematical ideas that can be utilised as an action 

sequence for solving problems (Kilpatrick, Swafford & Findell, 2001; Rittle-Johnson, Siegler 

& Alibali, 2001). In contrast, conceptual knowledge is considered explicit or implicit 

understanding of the principles that govern a domain and the interrelationships between parts 

of knowledge in a domain (Rittle-Johnson, Siegler & Alibali, 2001). More prosaically, it 

refers to the richness of the mathematical relationships and range of connections (Hiebert & 

Leferve, 1986). Over the years, much debate has taken place regarding the significance of 

drill and practice methods versus theoretical understanding. In their impressive review of the 

literature, Hiebert & Grouws (2007) concluded that both procedural and conceptual 

knowledge were crucial for successful mathematics instruction to take place. Procedural 

flexibility incorporates knowledge of multiple approaches and a propensity to select the most 

appropriate solution based on specific problem characteristics (Kilpatrick, Swafford & 

Findell, 2001; Star, 2005). 

 

Comparing different solutions 

During mathematical problem solving, it is highly likely that multiple solutions will be 

generated and thus launches a suitable platform for pupils to compare different solutions 

(assuming that they know that mathematical problems can have more than one solution). It is 

this action of comparing different solutions that will help extend knowledge by linking new 

knowledge to prior knowledge. Goldstone, Day & Son (2010, p. 103) note that comparison is 
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one of the most fundamental components of human thought and “research has demonstrated 

that the simple act of comparing two things can produce important changes in our 

knowledge”. Gentner (2005, p. 251) maintains that: “Comparison is a general learning 

process that can promote deep relational learning and the development of theory level 

explanations”. Rittle-Johnson, Star & Durkin (2012) evaluated 198 American pupils learning 

of multi-step equation solving. They found that whilst comparing procedures had a limited 

impact on conceptual and procedural knowledge, procedural flexibility was significantly 

improved. 

 

 

Thus far, a number of studies have explored the relationship between multiple solutions and 

mathematical competence. Rittle-Johnson & Star (2007) found that in their study of American 

children, comparing and contrasting solution methods was more effective than reflecting at 

same solution methods one at a time with respect to procedural knowledge and flexibility. 

However, the study would have been more interesting if it had incorporated non-algorithmic 

procedures. Likewise, in another experimental study, Rittle-Johnson & Star (2009) discovered 

that comparing solutions of the same problem augmented conceptual knowledge and 

procedural flexibility, than comparing solutions of similar problems with equivalent 

mathematical structure. Similar evidence suggested that presenting multiple solution 

strategies simultaneously is better than presenting them sequentially. The researchers draw 

attention to the role of prior knowledge and note that learning gains may be more beneficial 

for pupils with low prior knowledge.  

 

 

Star & Rittle-Johnson (2008) showed that encouraging American elementary learners to solve 

linear equations using different methods improved procedural flexibility in problem solving. 

Schukajlow & Krug (2014) argue that teachers should support young people in developing 

multiple solutions during problem solving. In their study of German secondary pupils, the 

researchers investigated the influence of prompting learners to construct multiple solutions for 

real-world problems with vague conditions on pupils’ interest in mathematics as well as on 

their experiences of competence and autonomy and the number of solutions developed. They 

revealed the positive influence of prompting pupils to find multiple solutions on individual 

interest in mathematics. In a further study of American pupils, Star, Rittle-Johnson & Durkin 

(2016) discovered that comparing different strategies for solving the same problem improved 

learning. Whilst the premise for this research was to simplify instructional methods for 
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teachers, the main weakness of the study was the infrequent use of materials by the 

participants.     

 

 

2.7 Problem solving as an overarching goal of mathematical learning  

In many traditional classrooms an emblematic approach to introducing a new mathematical 

concept encompasses a teacher led demonstration of a computational algorithm, supported 

with the decontextualized treatment of some worked examples, followed by the repetitive 

setting of numerous analogous exercises for pupils to develop procedural knowledge. 

Typically, through a lack of challenge many children acquire weak conceptual understanding 

and attempt to subsist by memorising mechanical techniques. Whilst the requirement to 

enhance mathematical knowledge is recognised, a powerful opportunity to present pupils with 

the tools to discover the rich conceptual mastery is lost. We are reminded by the NTCM 

(2014, p. 17) that “learning is greatest in classrooms where the tasks consistently encourage 

high-level thinking and reasoning and least in classrooms where the tasks are routinely 

procedural in nature”. Hiebert et al. (1997, p. 1) encourage the need for pupils to learn 

mathematics with understanding and argue that “things learned with understanding can be 

used flexibly, adapted to new situations, and used to learn new things. Things learned with 

understanding are the most useful things to know in a changing and unpredictable world”. 

Grounded on research that teaching with a clear focus on understanding can cultivate the 

development of pupils’ mathematical problem solving abilities (Hiebert, 2003; Lambdin, 

2003), this section attempts to explore the instructional options for operationalising problem 

solving in schools. 

 

2.7.1 Instructional approaches  

Teachers have long been faced with a dilemma of how to coalesce mathematical problem 

solving into their professional practice. Given that problem solving is a complex and 

challenging mathematical enterprise (Lester, 2013), practitioners need to understand how to 

orchestrate an approach that will stretch and sustain the limit of pupil thinking. Various 

textbooks have ‘story problems’ isolated at the end of each instructional chapter, and thus 

concomitantly serve to perpetuate the notion that problem solving is a simple voluntary add-

on task. Previous classroom encounters may remind educators of the difficulties that are 

apparent when catering for learners with an eclectic mix of mathematical abilities and 

experiences.  
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However, pupils must have a positive attitude towards the regular engagement of challenging 

activities (Lester & Charles, 2003; Schoen & Charles, 2003). Likewise, all primary and 

secondary mathematics teachers must be able to sustain a long-term pedagogical commitment 

to developing learners’ abilities to solve problems. Such an obligation is necessary to ensure 

that every child, regardless of stage and capability, is taught using a method that fosters 

understanding of concepts, procedures and solving problems (Lester & Cai, 2016). Crucially, 

practitioners should be experienced problem solvers and should have a firm grasp of what 

successful problem solving involves (Lester, 2013; Chapman, 2015).  

 

 

In their interesting analysis, Schroeder & Lester (1989) describe a theoretical framework 

outlining three distinct classroom instructional approaches to support teachers with 

mathematical problem solving: 

 

1. Teaching mathematics for problem solving 

In this approach, Schroeder & Lester (1989, p. 32) maintain “the teacher concentrates on ways 

in which the mathematics being taught can be applied in the solution of both routine and non-

routine problems” and “students are given many instances of the mathematical concepts and 

structures they are studying and many opportunities to apply that mathematics in solving 

problems”. That is, problem solving is undertaken after new mathematical concepts and 

procedures have been mastered. For example, in calculus pupils learn the rule for 

differentiation and then apply this technique to solve optimisation problems. Although, this 

method is engrained as the conventional instructional approach to problem solving, it requires 

that all learners have the necessary prior knowledge to understand new concepts. Typically, it 

involves a teacher presenting one method to perform a procedure which may disadvantage 

pupils who possess alternative solutions. Van de Walle, Karp & Bay-Williams (2014, p. 55) 

warn that this one dimensional tactic “can communicate that there is only one way to solve 

the problem, a message that misrepresents the rule of mathematics and disempowers students 

who naturally may want to try to do it their own way”. Another drawback is that pupils may 

be afforded excessive help which will eliminate any cognitive demand and the necessity to 

‘struggle’. Hiebert et al. (1997) contend rich mathematical ideas are generated as a product of 

problem solving experiences that offer challenge opposed to the execution of standard 

algorithms. Learners need to explore problem situations and invent strategies to solve 

problems (Cai & Lester, 2016).  
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Nevertheless, it is purported that this method has merit and with the colossal pressure to 

prepare pupils for high stakes examinations, will probably ensure that this approach will 

continue for some time. For example, teaching for problem solving is the desired approach 

within CfE. The Scottish Government (2009, p. 2) emphatically state that: “Mathematics is at 

its most powerful when the knowledge and understanding that have been developed are used 

to solve problems”. Moreover, the Scottish Government (2011a, p. 4) emphasise development 

of higher‐order thinking skills “that enable the learner to identify which particular 

mathematical techniques can be appropriately applied in order to progress towards a solution 

to a problem”. However, Siemon (1986, p. 35) cautions that to “spend the majority of one’s 

time “doing mathematics as it has always been done”, with “problem solving” added on as an 

interesting appendage, actively acts against encouraging a problem-solving approach”. This 

perspective resonates with Cai (2010) who warns that separating learning skills and concepts 

from problem solving does not contribute to improving pupil learning.   

 

2. Teaching about mathematical problem solving 

This process will seek to develop and encourage an awareness of mechanisms that will allow 

pupils to access a range of appropriate strategies to attempt to solve problems, at the expense 

of learning mathematics (English, Lesh, & Fennewald, 2008). For example, young people are 

taught Polya style heuristics such as draw a picture, make a table, organise a list, look for a 

pattern, write an equation, etc. Paradoxically, while this requires a significant investment of 

time to illuminate and demonstrate relevant processes, it is worthwhile as without problem 

solving skills, pupils need a prolonged period to solve problems successfully. Leong et al. 

(2016) maintain that the language of problem solving can be easily transferred and reinforced 

when solving future problems. However, Schroeder & Lester (1989, p. 34) caution that 

“instead of problem solving serving as a context in which mathematics is learned and applied, 

it may become just another topic, taught in isolation from the content and relationships of 

mathematics”. In order to circumvent such an undesirable outcome, Leong et al. (2016) argue 

that teachers should employ problems containing mathematical conditions that require 

mathematical solutions. This will allow pupils to link their conceptual and procedural 

knowledge to a cycle of thinking and asking questions, as a technique to augment their 

generic ability. One method to ensure that teachers have allotted time for this intervention is 

to include a structural change to the planned mathematics curriculum through the introduction 

of a formal component (Leong et al, 2016). Though, as indicated earlier, the main limitation 

of this approach is that pupils are unable to solve all types of mathematical problems (Lester, 

1994).  
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3. Teaching mathematics through problem solving 

In this rewarding approach, problem solving and learning mathematics are interdependent 

(Lambdin, 2003; Lesh & Jawojewski, 2007). Schroeder & Lester (1989) contend that: 

 
 problems are valued not only as a purpose for learning mathematics but also as a primary 

 means of doing so. The teaching of a mathematical topic begins with a problem situation that 

 embodies key aspects of the topic, and mathematical techniques are developed as reasonable 
 responses to reasonable problems (p. 33).  

 

Similarly, individuals are forced into a state of needing to connect what they know with the 

problem at hand (Lambdin, 2003). For example, in exploring the vertex of a quadratic 

function, pupils are led to discover the procedure for completing the square and how to 

identify the axis of symmetry. 

 

 

To date, a number of studies have suggested that this approach as an important linkage 

between theoretical research and effective practice which fosters learners problem solving 

abilities, reasoning skills and mathematical conceptual understanding (Cai, 2003; Lester & 

Cai, 2016; Leong et al., 2016). Lester & Lambdin (2004) draw a parallel with constructivism 

and maintain that pupils become active participants in the creation of knowledge rather than 

passive receivers of rules and procedures. Lester & Charles (2003, p. xi) argues that as young 

children attempt to solve problems, “they come to understand the mathematical concepts and 

methods involved, become more adept at mathematical problem solving, and develop 

mathematical habits of mind that are useful ways to think about any mathematical situation”. 

What is consistently underpinned is the interplay between problem solving ability and 

mathematical understanding. Significantly, learners are afforded more chances to express 

their mathematical ideas and justify their answers verbally, including increased opportunities 

to engage in cognitively demanding tasks (Lampert, 1990; Hiebert & Wearne, 1993).  

 

 

However, in my professional experience, solving mathematical problems is not perceived by 

teachers in the same light as computational skills required to find the equation of a circle, 

simplify an expression by applying the laws of logarithms, or using integration to find the 

area of a function below the 𝑥-axis. From a pedagogical perspective, teaching through 

problem solving requires a paradigm shift in the philosophical role of the teacher. Enhanced 

responsibility to select appropriate quality tasks that nurture mathematical knowledge blended 

with strategic questioning and an effective understanding of when to extend and formalise 
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pupil thinking, will place an increase on the demand of the teacher (Van de Walle, Karp & 

Bay-Williams, 2014). Coordinating classroom discourse is multifaceted and requires high 

cognitive levels while pupils are learning and validating mathematical concepts (Smith, 

Hughes & Engle, 2009; Kilic et al., 2010). In his discussion on the Japanese school approach, 

Shimizu (2009, p. 100) concludes that: “In order to be successful, teachers have to understand 

well the relationship between the mathematics content to be taught and students’ thinking 

about the problem to be posed. Anticipating students’ responses to the problem is the critical 

aspect of lesson planning”. Much encouragement and support is required for practitioners to 

learn this role which cannot be easily accomplished through attendance at training courses but 

primarily through professional interactions with colleagues and research.   

 

 

Moreover, there may be occasions where this approach is not the preferred method to teach 

mathematics. Leong et al. (2016) argues that some ‘definitions’ can be more appropriately 

introduced by stating definitions with suitable examples and thus shift the emphasis on 

utilising the knowledge of these definitions in problem solving. For example, in the following 

problem it is more pragmatic to help pupils learn the prerequisite term ‘median’ which aligns 

with the first instructional approach (i.e. teaching mathematics for problem solving): 

 Example 

Given that the median is 5 for the data set: 2, 15, 𝑥, 6, 11, 10, 1, 7, 9, state the minimum value 

of 𝑥.  

  

2.7.2 The role of problem solving in school mathematics 

In their classic critique, Stanic & Kilpatrick (1989, p. 1) state emphatically that: “Problems 

have occupied a central place in the school mathematics curriculum since antiquity but 

problem solving has not. Only recently have mathematics educators accepted the idea that the 

development of problem solving ability deserves special attention”. The authors highlight the 

historical limited view of learning and mathematical problem solving and challenge us to 

fully examine why we should teach problem solving. They promote the incorporation of 

problem solving as a vehicle for acquiring new mathematical knowledge by encouraging 

pupils to develop logical reasoning skills and take responsibility for their own learning. Stanic 

& Kilpatrick (1989) identify three different interactive themes about the role of problem 

solving in school mathematics. 
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In the first theme, Stanic & Kilpatrick (1989) describe problem solving as a ‘context’, when it 

is employed to reach and facilitate other valuable ends. In such cases, problem solving can be 

used to justify the teaching of mathematics, to motivate pupils and capture  their interest in 

mathematics, to stimulate further this gained interest; problem solving can also be used as 

recreation to have fun with and even as a vehicle “through which a new concept or skill might 

be learned” (p. 14). Problem solving as a practice is included in this theme to describe 

situations in which problem solving is used to reinforce and practice previously taught 

concepts and skills. Schoenfeld (1992) maintains that problem solving itself is not usually 

seen as a goal but solving problems is seen as facilitating the achieving of other goals. 

 

 

As a second theme, Stanic & Kilpatrick (1989) represent problem solving as a ‘skill’. The 

authors warn that employing problem solving in a hierarchy of competences to be gained by 

pupil’s leads to certain consequences for the role of problem solving in the mathematics 

curriculum. Stanic & Kilpatrick (1989) contend that: 

 
 One consequence is that within the general skill of problem solving, hierarchical distinctions 

 are made between solving routine and non-routine problems. That is, non-routine problem 

 solving is characterized as a higher level skill to be acquired after skill at solving routine 
 problems (which, in turn, is to be acquired after students learn basic mathematical concepts 

 and skills) (p. 15).   

 

As was mentioned in the previous section, this should be learned explicitly as part of the 

curriculum. Translating this into teaching terms, problem solving should be promoted as a set 

of explicit thinking routines, such as drawing a diagram, finding a pattern, logical reasoning, 

etc., which should be part of the repertoire of instructional practices. 

 

 

In the final theme, Stanic & Kilpatrick (1989) refer to the rich work of Polya in portraying 

problem solving as a ‘highly creative process’. The authors express “problem solving as art as 

the most defensible, the most fair, and the most promising. But at the same time it is the most 

problematic theme because it is the most difficult to operationalize in textbooks and 

classrooms” (p. 17). Stanic & Kilpatrick (1989) underline the challenges for teachers to 

develop a practical artistic ability in pupils and cite Polya’s (1981, p. xi) comparison that 

problem solving should be deemed a practical art like “like swimming, or skiing, or playing 

the piano”. Though, it is necessary to point out that creative skills are often presented as 
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separate entities to be learned didactically and applied without any theoretical justification 

(Lesh & Zawojewski, 2007; English & Sriraman, 2010; Lester, 2013).  

 

 

In short, within an ever changing world, the function of mathematical problem solving is to 

empower pupils to manage the complexities and non-routine cognitive real life challenges that 

await them within the future workplace. Independent critical and creative thinking skills will 

help generate solutions to novel mathematical problems that cannot be solved by selecting 

previously learned concepts and rules. The OCED (2014) assert that: 

 
 For students to be prepared for tomorrow’s world, they need more than the mastery of a 
 repertoire of facts and procedures; students’ need to become lifelong learners who can handle 

 unfamiliar situations where the effect on their intervention is not  predictable. When asked to 

 solve problems for which they have no ready-made strategy, they need to be able to think 
 flexibly and creatively about how to overcome the barriers that stand in the way of a solution 

 (p. 26).        

 

In a study of Swedish primary teachers, Van Bommel & Palmer (2015) report that a 

collaborative professional development initiative influenced participants’ awareness of the 

problem solving themes introduced by Stanic & Kilpatrick (1989), evidenced by the quality of 

produced lesson plans.  

 

 

2.8 Assessment  

There is a growing demand from employers and universities for school leavers to be able to 

apply their mathematical knowledge to problem solving in varied and unfamiliar contexts 

(Lesh & Zawojewski, 2007; English & Sriraman, 2010; OCED, 2014; Jones, Swan & Pollitt, 

2014; ACME, 2016; English & Gainsburg, 2016). Assessment will impact on what is taught 

in the classroom and should be driven by mathematics that is valued and expected of a 

modern mathematics education (Suurtamm et al., 2016). Silver (2013, p. 273) reminds 

practitioners that “for students to become convinced of the importance of the sort of behaviors 

that a good problem-solving program promotes, it is necessary to use assessment techniques 

that reward such behaviors”. Viewed in this way, the assessment of problem solving is 

essential in order to ensure the effective learning and teaching of problem solving throughout 

primary and secondary education (ACME, 2016). Lesh & Zawojewski (2007, p. 794) posit 

that “there is a growing recognition that a series mismatch (and is growing) between the low-

level skills emphasized in test-driven curriculum materials and the kind of understanding and 

abilities that are needed for success beyond school”. However, school mathematics 
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examination instruments are typically dominated by short, structured questions that fail to 

assess problem solving (Kilpatrick, 1992; Jones & Inglis, 2015).  

 

 

In Scotland, the centrality of problem solving is recognised as an intrinsic feature within the 

learning and teaching of mathematics (Scottish Government, 2009) although, illogically, 

discharged from any form of assessment accountability. Ironically, this delineated position 

was implicitly bolstered during a recent report established to transform the status of 

mathematics in Scotland by not appearing in any of the ten recommendations highlighted for 

change (Scottish Government, 2016b). It is important to consider how to interpret the 

common theme to emerge from narratives emphasising the indispensable role of problem 

solving along with the current assessment arrangements that are integral to CfE. As a 

practising teacher, I am cognisant of the issues of bureaucracy and lack of clarity which 

undermines our national assessment system but refuse to supplement any rhetoric to this 

topic. Instead, I will focus my attention briefly on exploring how mathematical problem 

solving can be evaluated within a suitable framework.  

 

 

Kilpatrick (1992) suggested that to assess mathematical problem solving effectively, the 

narrowing effects of current testing practice and the continued pressure for efficient 

measurement must be addressed. Since this proposition, multinational comparative 

assessments such as TIMMS and PISA have influenced policy makers throughout the world 

leading to political agendas fueled with neoliberal ideologies. Increasing operation is being 

made of external assessments to gauge mathematical knowledge and continue to serve 

different purposes to the design goals enshrined within the multidimensionality of classroom 

assessments (Suutamm et al., 2016). In Scotland, I believe the functionality of data from 

external assessments ultimately serves to encourage practitioners to ‘teach to the test’ to the 

detriment of assessment for learning (Hodgen & Wiliam, 2006). Still, this scenario would not 

exist if national assessments aligned with curriculum goals and ironically may be held as a 

positive practice (Swan & Burkhart, 2012).     

 

 

Notwithstanding the nuances that arise from assessing complex processes involved in solving 

mathematical problems, Szetela & Nicol (1992) present four categories that teachers can use 

as a marking rubric; answers, answer statements, strategy selection and strategy 
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implementation. Though, it is argued that this method is unable to reliably capture the level of 

divergent thinking involved since thinking is not easily communicated to produce clearly 

formulated responses. Polya (1954, p. 154) highlights that: “The final form of the solution 

may be recorded, yet the changing plans and the arguments for and against them are mostly or 

entirely forgotten”. Since authentic problem solving tasks require an extended time period 

(since they are not suited to a timed examination) and observation to access evidence of 

process, the challenge is to design suitable mathematical problems that can be assessed within 

a controlled time.  

 

 

Monaghan et al. (2009) argue that open-start mathematical problems offer a practical means 

to achieve this objective and encapsulate the type of problems involved: 

 

 The mathematical knowledge needed to solve the problem must already be known securely: 
this is not about assessing curriculum content – it is about assessing the ability to deploy such 

knowledge. 

 The problem-solver must not be familiar with a similar problem – the essence of ‘open-start’ 

is that it is not clear where to start and recall of a similar siltation would compromise this. 

 It would not be clear at the outset whether the strategy will work, and it will have to be 

accepted by the problem-solver that further attempts may be needed (p. 26). 

 

The authors suggest that much development work is required to implement this form of 

assessment. While no marking scheme can circumscribe all conceivable answers that 

examination candidates might offer, Monaghan et al. (2009) anticipate that this would not 

pose an issue for open-start problems. In my view, their contribution would have been more 

convincing if they had provided some empirical evidence.  

 

 

In their study involving the design of a problem solving examination paper, Jones & Inglis 

(2015) administered a test to 750 English secondary pupils of varying mathematical ability. 

The participants work was assessed by experts using comparative judgement in addition to a 

specially designed resource intensive marking procedure. The construct of comparative 

judgment has an underlying theoretical basis grounded within a well-established 

psychological principle that people are more reliable when comparing outputs concurrently 

than when they are asked to judge something in isolation. In another English study, Jones, 

Swan & Pollitt (2014) demonstrated that comparative judgement was not a barrier to 

assessing mathematical problem solving. Results obtained from a review of a sample of 

examination scripts derived its validity from what is valued and expected by mathematics 
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professionals, rather than what can be precisely captured in scoring rubrics. Both Jones & 

Inglis (2015) and Jones, Swan & Pollitt (2014) found that comparative judgment was 

successful and raise the possibility of a richer diet of mathematical assessments anchored on 

holistic relatively unstructured tasks being available to future Scottish pupils. However, if the 

goal of developing proficiently in mathematical problem solving is to be realised, its 

importance must be communicated to pupils, teachers and the general public through the 

assessments that are offered (Silver & Kilpatrick, 1989). Moreover, the main summative 

assessment challenge for stakeholders in Scotland is not novel planning or peripheral 

methodology concerns but a deviation from traditional measurements fixated by the recall of 

facts and fluency of procedural knowledge.      

 

 

2.9 Factors contributing to successful mathematical problem solving 

I commence this section by referring to the social construct of ‘attitude’. McLeod (1992) 

identified attitude along with beliefs and emotions as one of three key affective paradigms in 

mathematics education. All practitioners can relate to classroom experiences where pupils 

display a range of different behaviourisms towards mathematical problem solving which are 

generally construed across a continuum of positive and negative dispositions. They can have 

an affective and emotional character, while on the other hand, are of cognitive origin. For 

many years, this phenomenon was surprisingly neglected by a lack of a theoretical framework 

and new methods of inquiry.   

 

 

A seminal study in this area is the work of Di Martino & Zan (2010) who collected and 

analysed autobiographical narratives written by 1,662 Italian pupils whose school levels 

ranged from early primary to the end of secondary. The results of the study showed that 

almost all of the participants describe their relationship with mathematics along at least one of 

the following three trajectories: 

 

 emotional disposition towards mathematics 

 vision of mathematics 

 perceived competence in mathematics 

 

Di Martino & Zan (2010) present a multidimensional model characterised by three strictly 

interconnected dimensions that pupils recognise as crucial in their development of their 

relationships with mathematics (Figure 2.11). 
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Figure 2.11 The three dimensional model for attitude (Adapted from Di Martino & Zan, 2010) 
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Di Martino & Zan (2010) suggest the need for a new approach about the positive/negative 

portrayal of attitude and offer a definition of ‘negative attitude’ aimed at supporting teachers: 

 

 The multidimensionality of the model underlines the inadequacy of the positive/negative 

 dichotomy for attitude referred to only to the emotional dimension (like/dislike), and 
 rather suggests considering an attitude as negative, when at least one of the dimensions is 

 negative. In this way, we can outline profiles of negative attitude, depending on the 

 dimension that appears to be negative (p. 44). 
 

 

In a study of 16 Belgium secondary children, Op’t Eynde, De Corte & Vershaffel (2006) 

examined the relationship between mathematical related beliefs, emotions and problem 

solving behaviour. They found that the nature and intensity of emotion experienced during 

problem solving fluctuated between participants. One significant aspect to emerge from the 

results was the level of confidence. Guven & Cabakor (2013) investigated factors influencing 

mathematical problem solving achievement of 115 Turkish secondary pupils. The researchers 

discovered that self-efficacy, beliefs and mathematical anxiety were noteworthy. However, 

the study suffers from poor external validity. In a study of 20 Israeli primary children, Prusak, 

Hershkowitz & Schwarz (2013) explored the culture of problem solving. They noted the 

success of their findings heavily relied on five principles such as encouragement to produce 

multiple solutions, creating collaborative situations; social-cognitive conflicts, providing tools 

for checking hypothesis and inviting students to reflect on solutions.  

 

 

In a review of the locus of problem solving within mathematics curriculums of Australia, UK, 

USA and Singapore, Stacey (2005) asserts that successful mathematical problem solving 

depends upon many factors which have distinctly different characters, illustrated in Figure 

2.12. A more comprehensive paper would include Scotland (since a UK curriculum does not 

exist) and non-English speaking countries. A number of scholars argue that pupils should 
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solve a wide range of types of problems and be regularly exposed systematically to planned 

problem solving instruction (e.g. Lester, Garafolo & Kroll, 1989; Lester, 1994, 2013; Boaler, 

1998, Cai, 2003; Lesh & Zawojeswski, 2007). Schoenfeld (2011, 2013) maintains that 

learners require deep mathematical domain knowledge, heuristic strategies, metacognitive 

skills and relevant beliefs. Likewise, Goldin (1998) opines that beliefs systems are powerful 

facilitators of problem solving success, or otherwise, as obstacles to it. Finally, Lester (2013) 

points to the importance of intuition while Boaler (2016) advocates a growth mind set.  

 

Figure 2.12 Factors contributing to successful problem solving (Adapted from Stacey, 2005) 
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I now turn my attention to the multifaceted role of the teacher (Lortie, 1975). From my 

professional experience, the selection of a mathematical problem is critical to the successful 

outcome of any lesson. To ensure equitable engagement of all levels of ability, suitable 

problems must present opportunities to be solved or at least partly attempted by low confident 

learners. Accessible problems should integrate enabling prompts for pupils experiencing 

difficulty and extending prompts for pupils who have completed the tasks (Hiebert et al., 

1997; Sullivan, 2011; Van de Walle, Karp & Bay-Williams, 2014). An overarching ability to 

choose appropriate problems is interrelated to content knowledge and proficiency of solving 
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mathematical problems including an understanding of how young people think about problem 

solving (Chapman, 2015). If teachers are unable to relate first hand to the tension and triumph 

of discovery engendered by solving problems, they are unlikely to be adept at fostering 

mathematical problem solving. During classroom discourse, practitioners should solicit 

questions that unpack pupils’ thinking and press for them to explain their reasoning behind 

the process (Rigelman, 2007). Similarly, a resilient dexterity to identify common 

misconceptions is essential. Schoenfeld (1992) encapsulates widely recognised pupil beliefs 

about mathematics which without approach, form a barrier to the effective learning of 

mathematical problem solving: 

 

 Mathematics problems have only one and only one right answer. 

 There is only one correct way to solve any mathematics problems – usually the rule the 

teacher has most recently demonstrated to the class. 

 Ordinary students cannot expect to understand mathematics; they expect simply to memorize 

it, and apply what they have learned mechanically and without understanding. 

 Students who have understood the mathematics they have studied will be able to solve any 

assigned problem in five minutes or less. 

 The mathematics learned in school has little or nothing to do with the real world. 

 Formal proof is irrelevant to processes of discovery or invention (p. 359). 

 

 

2.10 Summary  

The centrality of problem solving in mathematics is incontrovertible. It can promote deep 

conceptual understanding, critical and independent thinking, habits of persistence and 

curiosity, confidence in unfamiliar situations that will serve pupils greatly in everyday life and 

in the future workplace (Lester, 1985; NCTM, 2000, Cai, 2010). No universally accepted 

definition of mathematical problem solving exists or the imminent prospect of a construct 

being agreed (English & Gainsburg, 2016). Mathematical problems encompass many 

characteristics and are classified in different ways. The learning of problem solving is 

extremely complex and multidimensional with much interplay rooted in the field of cognitive 

science. It can nurture creativity, flexibility and mental fluency (Silver, 1997; Guberman & 

Leikin, 2013). Considerable research has focussed around the theoretical framework 

introduced by Polya (1957). Schoenfeld (1985) established that resources, heuristics, 

metacognitive control and beliefs systems are fundamental mechanisms of successful 

mathematical problem solving.  

 

 

The role of the teacher is instrumental in supporting learners to develop higher order thinking 

skills through generating multiple solutions and providing rich opportunities for comparing 
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and reflection. Continued support exists for teaching mathematics using problem solving as a 

vehicle (Lester & Cai, 2016). There is little evidence to suggest that demonstrating heuristics 

to pupils leads to greater success in solving problems (Lester, 2013) although some strategies 

have merit. Although there is no obligation for practitioners to be expert problem solvers, a 

degree of mathematical proficiency blended with skilful pedagogical knowledge is required 

(Lester, 2013; Chapman, 2015). Concomitantly, tension of high-stakes national mathematics 

examinations which exclusively concentrate on assessing basic skills place educators in an 

undesirable position inconsistent with curriculum objectives (English & Sriraman, 2010). 

Such a misalignment with classroom practice suggests that a review of the philosophy of 

external assessment within CfE may be desirable. 

 

 

New directions and perspectives emerging from the literature (e.g. English & Gainsburg, 

2016) has proposed that future mathematical problem solving research be converged on 

modelling. Whilst I welcome such a move, it is debateable if modelling is a division of 

problem solving or a separate entity that requires a diverse set of skills. Likewise, there is a 

request for the recontextualisation of school mathematical problems so as to offer more 

cognitively challenging dynamic tasks that authentically simulate demands of 21
st
 century 

work and life.  

 

 

However, I believe that in order to advance the mathematical problem solving skills of all of 

our young people, research has to coalesce within two interrelated domains. Firstly, that of 

mathematical problem posing due to the valuable learning benefits that subsist. Secondly, 

teachers’ beliefs since they appear to significantly impact on what takes place in classrooms.  

 

 

The next chapter offers an introductory literature review of mathematical problem posing.  
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CHAPTER THREE 

 
Mathematical Problem Posing 

 

 

The aim of this chapter is to provide an introductory review of the interrelated multiple 

perspectives surrounding mathematical problem posing. First, it is useful to familiarise the 

reader since problem posing is not encompassed within the mathematical domain of 

Curriculum for Excellence. Second, an appropriate background is helpful in advance of the 

systematic literature review of mathematical problem posing arranged for chapter five.  

 

 

3.1 Nature and definition  

In Kilpatrick’s (1987) landmark paper, he provides a valuable insight into our perception of 

the origin of good mathematical problems. More recently, Brown & Walter (2005) state that 

mathematical problems appear during schooling, predominantly from textbooks and to a 

much lesser extent from teachers, highlighting an issue with existing classroom practice. The 

authors encourage us to shift our thinking from solving predetermined problems to 

constructing and designing our own problems and argue that without engaging with this 

powerful form of mathematical inquiry, pupils will be unprepared in adapting to future 

workplace challenges. Unequivocally, without posed problems, there would be no 

mathematical problems to solve (Singer et al., 2011; Ellerton, 2013). As highlighted in 

chapter three, mathematical problems can be described as well-structured, structured, or ill-

structured. Drawing on the work of Fredericksen (1984), Kilpatrick (1987) distinguishes 

between the categories as follows: Well-structured problems are clearly formulated, can be 

solved by the application of a known algorithm and have criteria available for testing the 

correctness of a solution; structured problems are similar to well-structured problems but 

require the solver to contribute in some way to the solution; ill-structured problems lack a 

clear formulation, a procedure that will guarantee a solution and criteria for determining when 

a solution has been achieved.  

 

 

A number of researchers have reported that problem posing is a cognitive activity which 

encompasses both the generation of new problems and the reformulation of given problems 

(e.g. Silver, 1994; Silver & Cai, 1996; English, 2004; Whitin, 2006). Silver (1994) suggests 
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that the generation of new problems can occur before or after the problem solving process and 

that reformulation follows when the original mathematical problem is formulated or 

transformed into a different version. Kilpatrick, Swafford & Findell (2001, p. 124) associate 

problem posing with strategic competence and express this as “the ability to formulate 

mathematical problems, represent them, and solve them”. Pirie (2002, p. 929) includes a 

classification of a problem type when she describes problem posing as “the creation of 

questions in a mathematical context and ... the formulation, for solution, of ill-structured 

existing problems”. This delineation is inadequate since is does not provide clarity on 

previous knowledge.  

 

 

In this thesis, I will adopt the definition offered by Stoyanova & Ellerton (1996, p. 518) who 

refer to the practice of problem posing as “the process by which, on the basis of mathematical 

experience, students construct personal interpretations of concrete situations and formulate 

them as meaningful mathematical problems”. What is appealing about this definition is that it 

clearly links constructivism to problem posing. The researchers offer a theoretical framework 

by classifying three categories of problem posing situations; free, semi-structured and 

structured. In free situations, pupils design problems from a real life context without 

restrictions (see Example 1 below). Semi-structured problem posing occurs when pupils are 

“given an open situation and are invited to explore the structure and to complete it by 

applying knowledge, skills, concepts and relationships from their previous mathematical 

experiences” (p. 520). I believe that this situation has the potential to maximise creative 

thinking (see Example 2 below). Finally, structured problem posing activities are centred on a 

specific problem that requires completion or reformulation (see Example 3 below). This 

approach resonates with Brown & Walter (2005) who introduced the “What-If-Not” strategy. 

All three examples are taken from my professional practice. 

 

 Example 1 

Heather has 145 marbles, Ruairidh has 114 marbles and Wallace has 220 marbles. Write and 

solve as many problems as you can using this information. 

 

 Example 2 

In the following diagram, there is an equilateral triangle and its inscribed circle. Make up as 

many problems as you can that are in some way related to this diagram.   
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 Example 3 

The gradient of a straight line is ½ and passes through the point A (4, 12). Write and solve as 

many problems as you can using this information. 

 

 

Nevertheless, problem posing is not an original concept. Eminent physicist, Albert Einstein 

(Einstein & Infeld, 1938) championed the notion when he famously stated: 

 
 The formulation of a problem is often more essential that its solution, which may be merely a 
 matter of mathematical or experimental skill. To raise new questions, a new possibility, to 

 regard old problems from a new angle, requires creative imagination and marks real advances 

 in sciences (p. 92).     

 

Historically, this view has been shared by many others who have placed greater emphasis on 

the value of posing meaningful questions than on attempts to solve them. For example,  

Singer, Ellerton & Cai (2013, p. 2) reminds us that Socrates (470-399BC) “established an 

efficient method of learning through a continuous dialogue based on posing and answering 

questions to stimulate critical thinking and illuminate ideas”.   

 

 

In recent times, a focus on the idiosyncratic nature of critical thinking has continued, 

establishing this intrinsic feature as a highly desired characteristic. Prominent mathematicians 

and mathematics educationalists (e.g. Polya, 1954; Freudenthal, 1973, 1981; Halmos, 1980; 

Kilpatrick, 1987; Moses, Bjork & Goldenberg, 1990; Silver, 1994; Brown & Walter, 2005; 

Cai et al., 2015; Ellerton, Singer & Cai, 2015) consider problem posing to be an essential 

mathematical curriculum component and advocate that pupils are afforded extensive problem 

posing opportunities.  
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During the last three decades, research of mathematical problem posing has gained increasing 

awareness, although a lack of breadth may limit its future development. It has been suggested 

that problem posing as an emerging paradigm has been marginalised by the mathematics 

education community (English, 1998; Crespo, 2003; Leung, 2013) and be afforded similar 

research status as mathematical problem solving (Silver, Kilpatrick & Schlesinger, 1990; 

Pirie, 2002; Stoyanova, 2003; Silver & Cai, 2005). Concerns have been raised with the lack of 

opportunities provided to pupils (e.g. Ellerton, 1986; Silver et. al, 1996; Leung, 2013). 

However, recent studies have attempted to bestow further evidenced based strategies for 

classroom integration and within initial teacher education (e.g. Singer, Ellerton & Cai, 2015).   

 

 

3.2 The role of problem posing in school mathematics 

The literature has emphasised the importance of problem posing to the learning and teaching 

of school mathematics. For example, Polya (1957, p. 68) posited that “the mathematical 

experience of the student is incomplete if he never had an opportunity to solve a problem 

invented by himself.” Similarly, Kilpatrick (1987, p. 123) argued that problem posing should 

be a fundamental mathematical curriculum objective and stated that “the experience of 

discovering and creating one’s own mathematics problems ought to be a part of every 

student’s education”. Interestingly, both expressed views do not specify gender, age or ability 

which suggests this activity is accessible to all learners. Consequently, pupils at any stage 

may feel encouraged to develop their mathematical curiosity which can act as a motivational 

catalyst for further learning.  

 

 

It has been established from a variety of sources that problem posing can offer valuable 

benefits for both teachers and pupils alike. Practitioners are able to create interesting problems 

for children which can shape and cultivate mathematical learning and help them develop into 

stronger problem posers (Crespo, 2003; Olson & Knott, 2013). The operationalisation of 

problem posing provides a lens through which teachers are able to assess learner’s conceptual 

understanding, problem solving and creativity (e.g. Ellerton, 1986; Kilpatrick, 1987; Silver & 

Cai, 1996; English, 1997a, 1997b; Silver, 1997; Cai & Hwang, 2002; Lowrie, 2002). It 

supplies rich opportunities for pupils to connect their own interest with all facets of 

mathematical education. Teachers can challenge learners to think deeply about what they are 

doing rather than mechanically respond to a set of questions with a prepared technique or 

algorithm. Other authors highlight the empowering aspect of problem posing which 
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encourages pupils to construct knowledge (e.g. Ernest, 1991, English, 1997a) and decide on 

questions to be solved thus rejecting the assumption that there is only one method to solve a 

problem and that all problems have one correct answer (Fox & Surtees, 2010).  

 

 

Based on fostering mathematics as a cognitive activity and grounded on a constructivist 

perspective (Silver & Cai, 1996; Cai, 1998), initiatives have recommended that problem 

posing play a pivotal role within the learning and teaching of school mathematics. This view 

is supported by Silver (1994, p. 19) who notes that “contemporary constructivist theories of 

teaching and learning require that we acknowledge the importance of student generated 

problem posing as a component of instructional activity”. Within my own professional 

practice, problem posing has created a dynamic learning environment where children are 

inspired to take more risks and are less afraid to make mistakes. Whitin (2004, p. 129) asserts 

that it can enhance the atmosphere of every mathematics classroom and portrays it as “a 

strategy that builds a spirit of intellectual excitement and adventure by legitimizing asking 

questions and freeing learners from the one-answer syndrome”.  

 

 

Given its potential to augment the learning and teaching of mathematics, it is unsurprisingly 

that problem posing has featured within many curriculum reforms around the world. It has 

been shown that curriculum reform is a powerful driver for implementing instructional change 

within educational systems (e.g. Cai & Howson, 2013). For example, the NCTM (1989, p. 

138) promulgate the importance of having secondary pupils immerse themselves in some of 

the problem posing aspects involved in the work of professional mathematicians by 

advocating that “students in grade 9-12 should also have some experience recognising and 

formulating their own problems, an activity that is at the heart of doing mathematics”. During 

a later reform, the NCTM (2000) declared that the function of the classroom teacher is to 

orchestrate opportunities for all learners to construct their own mathematical knowledge, 

emphasising that the formulation and modification of problems be within and outside 

mathematics.  

 

 

Stoyanova & Ellerton (1996) reported that the Australian Education Council (1991) offers 

strong support for the use of open-ended problems in mathematics classrooms. In Asia, 

assimilating problem solving within Chinese schools has a long history and continues to be 
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part of contemporary mathematical thinking (Cai & Nie, 2007). Since the start of the twenty 

first century, China has witnessed the development of using open-ended or real life problems 

and accordingly, of paying further attention to problem posing activities opposed to problem 

solving activities (e.g. Cai & Nie, 2007). The standards for problem solving in the Chinese 

National Curriculum Standards on Mathematics (Ministry of Education of Peoples Republic 

of China, 2001, p. 7) emphasise that pupils must be able to “pose and understand problems 

mathematically, apply basic knowledge and skills to solve problems and develop application 

awareness” (as cited by Chen et al., 2011). Within the Singapore Mathematics Curriculum 

Framework, pupils are explicitly encouraged to extend and generate problems (e.g. Ministry 

of Education, 2007). Leung (2013) testifies that curriculum standards and instruction in 

Taiwan emphasise the importance of problem posing. However, Leung (2013, p. 105) warns 

that in “the mathematics curriculum reform occurring in Taiwan, teachers are facing 

unprecedented challenges to change the way they teach, including incorporating problem 

solving and posing by children”. She refers to previous research which highlights the 

inexperience of practitioners in posing activities and that such mathematical activities are 

difficult to implement (e.g. Leung, 1994) and counsels for the provision of problem posing 

training and access to suitable resources for teachers. 

 

 

Various countries including Italy (e.g. Bonotto & Del Santo, 2015) and Turkey (e.g. Kilic, 

2013) have introduced curriculum reforms to embed problem posing activities that develop 

conceptual understanding within different levels of mathematics education. This has 

challenged the capability of teachers to pose valid and interesting tasks for pupils, including 

refining their ability to pose better problems. Research has investigated the problem posing 

performance of prospective and current primary and secondary mathematics teachers (e.g. 

Crespo, 2003; Koichu & Kontorovich, 2013). Whilst, in general, it was found that 

practitioners are capable of posing worthy and quality problems, it appears that this may be 

connected to problem solving experience. Moreover, due to workload demands, teachers 

require accessible classroom resources such as sample problems in order to implement in 

practice. Though, it is possible for reliable problems to be generated from other sources. In 

their study of 70 Portuguese prospective primary teachers, Barbosa & Vale (2016) explored 

authentic contexts outside the classroom contributing to the posing of mathematical problems. 

Drawing on the work of Silver (1997) and Stoyanova (1998), the researchers analysed 

personal interpretations and formulations of real situations inspired by the local environment. 

They found that participants displayed a more positive attitude towards learning and teaching 
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of mathematics by acquiring a wider view of the possible connections between the natural 

worlds. It is anticipated that this pedagogical change will help promote conditions for young 

children to discover and construct their own knowledge.  

 

 

3.3 Relationship between problem posing and problem solving 

Whilst it is acknowledged that problem posing and problem solving are not entirely diverse 

cognitive behaviours, they are nevertheless closely related (Lowrie, 2002). Fox & Surtees 

(2010) maintain that the two are “inextricably linked” whilst some scholars argue that 

problem posing is a “special case” (Kontorovich et al., 2012) or “important companion” 

(Kilpatrick, 1987; Bonotto, 2010) of problem solving. Brown & Walter (2005) illuminate the 

overarching connection by asserting that problem posing is deeply embedded in the activity of 

problem solving in two contrasting ways. Firstly, it is impossible to solve a new problem 

without reconstructing the task and secondly, understanding a solution is typically enhanced 

after the generation and analysis of a new problem. Regarding this latter point, Brown & 

Walter (2005, p. 122) highlight that “we need not wait until after we have solved a problem to 

generate new questions; rather, we may be logically obligated to generate a new question or 

pose a new problem in order to be able to solve a problem in the first place”. The authors 

skilfully illustrate the power of “What-If-Not” thinking by selecting a special case of the 

quadratic equation (𝑥2 + 𝑥 − 1 = 0) and solving it by an unorthodox method to generate a 

continued fraction.  

 

 

It may be reasoned that within the domain of problem posing, individuals have to 

productively engage in a higher level of intellectual or creative thought process. Appraised 

from a physics perspective, Mestre (2002, p. 15) contends that as a cognitively challenging 

undertaking, “it would not be very difficult to argue that posing meaningful, interesting 

problems is intellectually a more demanding task than solving problems”. Moreover, research 

suggests that problem posing activities help to diminish pupils’ mathematical anxiety while 

simultaneously foster a more positive disposition towards mathematics and may also improve 

learner’s conceptual understanding and problem solving ability (Silver, 1994; English, 1997a; 

NCTM, 2000; Brown & Walter, 2005). 
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In chapter two of this thesis, I refer to the problem solving framework offered by Polya 

(1957), which connects a journey back and forth through four phases. Leung (2013) presents a 

similar four phase cycle to incorporate problem posing and problem solving and argues that 

the decisions and actions of posing and solving can be interrelated (Figure 3.1). If an 

individual is solving their own generated problem, the initial ‘Understand’ phase is 

considered a ‘Pose’ phase. Consequently, problem posing can emerge at any time, before or 

after solving. A broader perspective has been adopted by Gonzalez (1998) who describes 

problem posing as the fifth phase of Polya’s model and is dependent on practitioners 

providing worthwhile problems. However, it may be argued that the interaction between 

problem posing and problem solving is strongly influenced by the teachers’ perception of 

what constitutes a suitable problem.    

 

Figure 3.1 Four phases in problem posing and problem solving (Adapted from Leung, 2013) 

 

Understand 
(POSE)

Look Back Plan

Carry Out

 

 

Several studies have probed the interactions between problem posing and problem solving 

with mixed results (e.g. Ellerton, 1986; Silver & Mamona, 1989; Silver & Cai, 1996; Cai, 

1998; Crespo, 2003; Chen et al., 2007). In this remainder of this section, centred on a 

theoretical argument presented by Kilpatrick (1987) that the quality of posed problems is 

directly linked to individual mathematical problem solving ability, I examine two famous 

studies involving pupils. In this first study, the problem posing and problem solving tasks are 

mostly unrelated. Whilst the tasks in the second study are considered to be identical in 

mathematical and contextual structure.    

 

Silver & Cai (1996) 

In this study, the researchers analysed the responses of 509 American secondary pupils who 

were asked to complete a problem posing task which consisted of generating three questions 

based on a driving situation. Posed problems were analysed by type, solvability and 

complexity. This outcome was compared with the results from eight open-ended problem 
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solving tasks involving fractions, geometry, number theory, patterns and relationships, 

ratio/proportion and statistics. Silver & Cai (1996) discovered that pupils’ problem solving 

performance was highly correlated with their problem posing performance. Moreover, 

compared to less successful problem solvers, good problem solvers generated more problems, 

and their problems were more mathematically complex. What is interesting about the study is 

that the participants were not selected on the basis of obvious mathematical ability. 

 

Cai & Hwang (2002) 

This cross-national comparative study examined American and Chinese primary pupils’ 

mathematical performances. A total of 98 American and 155 Chinese children participated in 

the research which involved three pairs of problem solving and problem posing tasks. The 

results “showed differential relationships between problem posing and problem solving for 

US and Chinese students” (p. 419). The disparities appear to be related to learner’s use of 

differing strategies. Chinese pupils tend to choose abstract and symbolic representations while 

American students favour concrete strategies and drawing images. In short, there was a 

stronger connection between problem posing and problem solving for the Chinese sample. 

Overall, the findings of this study are similar to Cai (1998) which located a positive 

correlation between problem posing and problem solving from a cross-national perspective.  

 

 

Whilst both the studies of Silver & Cai (1996) and Cai & Hwang (2002) provide some 

evidence that a linkage exists between problem posing and problem solving, further research 

is required to explore this complex and multidimensional relationship in more detail. 

Recently, Silver (2013, p. 160) in his observation of previous research in the field, asserted 

that “progress has been stymied by the lack of an explicit, theoretically based explanation of 

the relationship between problem posing and problem solving that is consistent with existing 

evidence and that could be tested in new investigations”. In particular, there is scarcity of 

research involving practising teachers (e.g. Silver & Mamoma, 1989; Silver et al., 1996; Chen 

et al., 2011).  

 

 

3.4 Creativity  

The operationalisation of creativity is a desired outcome within any mathematical educational 

setting. Sriraman (2009, p. 13) emphatically states that “mathematical creativity ensures the 

growth of the field of mathematics as a whole”. No one can dispute technological innovations 
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in modern society have been owed to the inspirational creativity of scientists and professional 

mathematicians (Nadjafikhan, Yaftian & Bakhshalizadeh, 2012). In Scotland, creativity has a 

high profile in education and fits very well within the broad framework of CfE, although 

ironically, the vast majority of pupils would not associate the domain of mathematics with 

creativity. 

 

 

Nevertheless, numerous pupils’ classroom experiences of mathematics entail working with 

practitioner-driven material and sequential tasks or being passive observers of mathematics 

(Boaler, 1997). Based on her ethnographic case studies of teaching approaches at two 

different English secondary schools, Boaler (1998, p. 59) cautions against the stereotypical 

limitations of using only standard mathematical methods when she warns “students developed 

an inert, procedural knowledge that was of limited use to them in anything other than 

textbook situations”. Often, the creative side of mathematics education is neglected, as 

instruction normally has an imitative and reproductive character since it is focussed on 

rudimentary activities with a dependency on routine skills, where pupils are encouraged to 

think in narrow domains (Haylock, 1987). 

 

 

It is important to reflect on what is epitomised by mathematical creativity. Previous research 

has suggested that it may be confined to the employment of professional mathematicians 

when they formulate a problem that has not been solved before (Hadamard, 1945; Poincare, 

1948). However, the conceptualisation of creative learning fluctuates due to the diversity of 

perspectives of creativity. Ervynck (1991) deems that mathematical creativity cannot occur in 

a vacuum and needs a context in which the individual moves forward through previous 

experiences which provide a suitable environment for creative development. Ervynck (1991) 

asserts that creativity plays a vital role in the full cycle of advanced mathematical thinking: 

  
 It contributes in the first stages of development of a mathematical theory when possible 

 conjectures are found as a result of individual experiences of the mathematical connects; it 

 also plays a part in the formulation of the final edifice of mathematics as a deductive system 

 with clearly defined axioms and formally constructed proofs (p. 42).  

 

Silver (1997) views creativity as an orientation or disposition towards mathematical activity 

that can be fostered in the general school population. He proclaims the “connection to 

creativity lies not so much in problem posing itself, but rather the interplay between problem 

posing and problem solving. It is in this interplay of formulating, attempting to solve, 
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reformulating, and eventually solving a problem that one sees creative activity” (p. 76). Silver 

discusses previous research by Getzels & Jackson (1962), Balka (1974) and Skinner (1991) 

amongst others which demonstrate valuable samples of problem posing. He proposes a 

didactical paradigm in which classroom practitioners can relate to three practical core 

assessment components of creativity i.e. fluency, flexibility and originality (novelty) as 

displayed in Figure 3.2. However, Kontorovich et al. (2011) argues that these indicators do 

not fully capture the essence of pupils’ creativity and suggest that aptness be included as an 

additional quantitative evaluation. Silver (1997) presents a task which requires showing that 

the product of any four consecutive integers is divisible by 24. Whist this particular 

illustration is more emblematic of problem solving, it can be easily adapted to provide a 

problem posing activity. For example, generate as many problems as you can using the terms 

‘four’, ‘consecutive integers’, ‘divisible’ and ‘24’. Silver (1997, p. 79) claims through the use 

of an inquiry based approach, “teachers can assist students to develop greater representational 

and strategic fluency and flexibility and more creative approaches to their mathematical 

activity”.  

 

 

At school level, Jenson (1973) maintains that mathematically creative pupils should be able to 

pose mathematical questions that extend and deepen the original problem as well as solve the 

problem using multiple methods. Likewise, Krutetskii (1976) portrayed creativity in the 

context of problem formation, invention, independence, originality and associates 

mathematical creativity with giftedness. In a study of 359 Cypriot pupils (aged 9-12 years) by 

Kattou et al. (2013), the researchers found a strong positive correlation between mathematical 

creativity and mathematical ability. In contrast, Skemp (1987, p. 64) argues that all learners 

have the ability to demonstrate mathematical creativity “since all new learning in mathematics 

by the method of concept-building consists of the formation by individuals of new ideas in 

their own minds, it is creative from their point of view”. In the same vein, Mann (2006) warns 

that without providing for creativity in teaching mathematics, all learners are denied the 

option to appreciate the beauty of mathematics.  
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Figure 3.2 Core indicators of creativity (Adapted from Silver, 1997) 
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Logically, in order to cultivate mathematical creativity, teachers should select contexts that 

offer pupils opportunities to pose their own problems. Singer & Voica (2015) found that 

within the context of problem posing, mathematical creativity is a special type requiring 

abstraction and generalization. Jay & Perkins (1997, p. 257) maintain “the act of finding and 

formulating a problem is a key aspect of creative thinking and creative performance in many 

fields, an act that is distinct from and perhaps more important than problem solving”. Another 

illustration of creativity is found in the work of Runco (1994, p. ix) when he expressed 

creativity as a multifaceted construct involving both “divergent and convergent thinking, 

problem finding and problem solving, self-expression, intrinsic motivation, a questioning 

attitude, and self-confidence”. Alternatively, Torrance (1988) proclaimed that creativity is 

almost limitless and occurs whenever a solver has no learned solution for an existing problem.  
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While a number of researchers (e.g. Cai & Cifarelli, 2005; Singer et al., 2011; Siswono, 2011) 

have endorsed the connection between creativity and problem posing, this perspective is not 

universally shared (e.g. Haylock, 1997; Leung, 1997). Yuan & Sriraman (2011, p. 25) note 

“there might not be consistent correlations between creativity and mathematical problem-

posing abilities or at least that the correlations between creativity and mathematical problem 

posing abilities are complex”.  

 

 

Within my professional practice, I have adapted two problem posing activities (Figure 3.3) 

from Christou et al. (2005b) that have stimulated the developmental growth of mathematical 

creativity between S1 and S2 pupils. Whilst I cannot verify the impact of such creativity on 

achievement, these tasks have promoted deep critical thinking and have generated many 

interesting and enjoyable learning experiences.   

 

Figure 3.3 Examples of problem posing activities (Adapted from Christou et al., 2005b) 

 

(a) Write a question to the following story so that the answer to the problem is ‘75 pounds’:  

 Lachlann had 150 pounds. His mother gave him some more. After buying a book for 25 

 pounds he had 200 pounds. 

 

(b) Write an appropriate problem for the following: 

 (2300 + 1100) – 790 = n 

 

 

3.5 Technology  

The integration of technology has a long and prominent history in mathematics education. 

Since the introduction of basic calculators in the 1970s, computers equipped with increasingly 

sophisticated software, graphics calculators that have morphed into ‘all-purpose’ hand-held 

devices assimilating graphical, symbolic manipulation, statistical and dynamic geometry 

packages, and web-based applications offering virtual learning environments have 

transformed the learning and teaching landscape (Goos, 2010). Concrete and virtual 

manipulatives reinforce mathematical concepts and can enhance mathematical sense making, 

communication, problem solving, reasoning and facilitate the tangible emergence of complex 

and abstract ideas. 
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The application of technology provides a range of rich and profound problem posing 

opportunities that allow learners to make conjectures, design their own explorations and 

create reinterpretations of existing concepts. More importantly, it can reliably provoke the 

stimulation of mathematical thinking due to the extensive assortment of ideas that can be 

instantaneously generated. Kilpatrick (1987) helped champion the future use of computers in 

problem formulation. However, the role of technology in problem posing has yielded few 

secondary studies, and even less involving primary pupils (Abramovich & Cho, 2015). 

Research has focussed on electronic spreadsheets (e.g. Abramovich, 2006; Abramovich & 

Cho, 2008), graphing software (e.g. Christou et al., 2005a; Lavy & Shriki, 2010; Leikin, 

2012), computer algebra systems (e.g. Abramovich & Norton, 2006) and modelling (e.g. 

Abramovich & Cho, 2012).  

 

 

Engagement in problem posing activities using dynamic geometry software can produce 

powerful learning environments where problems or relationships can be generalised or the 

validity of a new problem can be examined. This technology produces unique interactions 

between the software’s interface and the users’ actions and understandings, resulting from 

visual reasoning enhanced by dragging facilities (Lavy, 2015). In a study using this software, 

Contreras (2003) claimed that all mathematical problems contain some known information, 

some unknown information and sometimes explicit or implicit restrictions. By illustrating 

with parallelograms and angle bisectors, Contreras describes how to generate multiple 

geometric problems by varying the type of problem information and considering other types 

of problems. He maintains that such technology can show “not only how we can help students 

become better problem posers but also how the teacher can use a problem posing approach as 

an instructional tool to help students specialize, generalize, and extend problems” (p. 275).  

 

 

Class discussions of problem posing activities using dynamic geometry software serve as a 

valuable mechanism for evaluating accurateness of generalisations. The exchange of ideas 

regarding the attributes and interrelations of mathematical objects under inspection may also 

stimulate the development of individual reflection by both teacher and pupil (Lavy, 2015).   

 

 

In a later study using dynamic geometry software, Contreras (2007) advocated that all pupils 

should have extensive experiences posing proof problems. Proving is an essential feature 
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intrinsic to understanding mathematics and provides the quintessential method of establishing 

propositions as results. Greeno (1994, p. 274) argues that “for students to learn mathematics 

without coming to appreciate the role of proof seems as impoverished as it would be for a 

student to learn science without coming to appreciate the role of empirical evidence”. 

Contreras (2007) underlined that reformulating a problem as a proof problem involves more 

than altering the syntactic structure of the problem. It requires an assumed degree of 

mathematical knowledge, since we either know that a proof exists or we can develop such a 

proof. In her study of 22 prospective Israeli mathematics teachers, Leikin (2015) highlighted 

the effectiveness of problem posing investigations in a dynamic geometry environment as a 

pedagogical instrument. She found that the majority of text book problems lead to performing 

mathematics fertile in surprises, discoveries and proofs. Nevertheless, Leikin (2015) cautions 

that the operationalisation of problem posing is dependent on the nature of teachers’ beliefs 

aligning with the suitability of such approaches and the critical provision of rich tasks. In the 

same vein, Abramovich & Cho (2015) illustrate the importance of future practitioners being 

equipped with conceptual understanding of didactic issues related to problem posing with 

technology.  

 

 

3.6 Assessment  

Although assessment is conducted for different reasons, it may be argued that its central 

purpose should be to support and enhance learning. Based on this premise, problem posing 

has been meaningfully employed to assess multiple mathematical constructs generated by 

pupils (e.g. Kantorovich et al. 2011; Van Harpen & Presmeg, 2013; Singer & Voica, 2015, 

Munroe, 2016) and prospective teachers (e.g. Crespo & Sinclair, 2008; Osana & Royea, 2011; 

Tisha & Hospesova, 2013; Singer, Voica & Pelczer, 2017). Pelczer & Rodriguez (2011) 

formulated criteria for assessing levels of creativity generated by a problem posing task on the 

topic of sequences. The lowest level was based on the application of a domain specific 

algorithm. A middle level was similar to the lowest level but was combined with some other 

form of knowledge. The highest level was categorised as using innovative knowledge from 

outside the topic. Kilic (2015) used semi-structured problem posing activities to determine 

prospective Turkish primary teachers’ knowledge structures of fractions.  

 

 

Other researchers have designed frameworks or performance rubrics to support teachers in 

their assessment of problem posing tasks (e.g. Stoyanova & Ellerton, 1996; Leung, 1996; 
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Leung & Silver, 1997; Lowrie, 2002; Lin, 2004). Few studies exist that have focussed 

specifically on the assessment of children’s problem posing skills (Cankoy & Ozder, 2017). 

Moreover, an extensive range of curriculum assessments remain underdeveloped for school 

mathematics (Rosli, Goldsby & Capraro, 2013). In this next section, I draw on two 

assessment tools to stimulate a discussion of characteristics and didactic competences. 

 

    

Whilst promoting creative, flexible and higher-order thinking, it may be argued that a degree 

of subjectivity exists due to the open-ended nature of problem posing tasks. Shriki (2013) 

points out that creativity is dependent on a teacher’s interpretation and is influenced by the 

mathematical abilities of a group. Likewise, Silver & Cai (2005, p. 131) warn that although 

considerable variability is common in the responses that pupils generate, “it can often present 

challenges from an assessment perspective”. While the researchers make a valid point, it 

cannot be underestimated the significance of obtaining a diversity of problems from pupils.  

 

 

Problem posing represents an essential form of authentic mathematical inquiry of which the 

basic tenet is the reformulation or generation of new problems. I believe that the main thrust 

of assessment should include early deduction of ill-structured and unsolvable problems, in 

addition to evaluating different levels of mathematical sophistication. Silver & Cai (2005) 

propose three criteria that can be coalesced for assessing problem posing ability within a 

classroom setting; quantity, originality and complexity. Quantity relates to the number of 

valid responses and fluency of generated problems can help to establish creativity. Originality 

is an obvious measure of creativity and a welcomed attribute. However, the emergence of 

originality may depend on working with large groups of pupils so as to distinguish between 

atypical responses. The complexity of pupils posed problems is a feature that is likely to be of 

interest to all teachers. Silver & Cai (2005) provide a good illustration of a problem posing 

task employed in a previous study (Silver & Cai, 1996) which can be used to evaluate 

complexity of pupil responses (Figure 3.4). 

 

Figure 3.4 Task for evaluating pupil response (Adapted from Silver & Cai, 2005)  

 

Write three different problems with the given situation: 
 

Donald, Coinneach and Eilidh took turns driving home from a trip. Eilidh drove 80 miles more than 

Coinneach. Coinneach drove twice as many miles as Donald. Donald drove 50 miles.      
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Silver & Cai (2005) draw our attention to the aspect of linguistic complexity and suggest that 

this may be judged by focusing on linguistic structures, such as the presence of assignment, 

relational and conditional propositions in mathematical problem statements. The researchers 

extend this perspective to consider fundamental semantic structural relations in order to 

analyse complexity in more detail and offer a framework for assessing the complexity of pupil 

generated problems (Figure 3.5).      

 

Figure 3.5 Framework for assessing complexity of pupil generated problems (Adapted from  
  Silver & Cai, 2005) 

 

Non-Mathematical 
Questions

Mathematical 
Questions

Statements
All 

Responses

Mathematical 
Complexity 

Linguistic 
Complexity

Solvable

Non-Solvable

Problem 
Difficulty

Sophistication of 
Mathematical 
Relationships

Complexity Complexity

 

 

In another study, Kwek (2015) explored the use of problem posing tasks as a formative 

assessment tool to examine thinking processes, understandings and competencies of 

secondary pupils. Her specific focus was on the cognitive demands of mathematical 

complexity which included aspects of knowing and doing mathematics, such as reasoning, 

performing procedures, understanding concepts or solving problems. Kwek employed a rubric 

(Table 3.1) to categorise three levels (low, moderate and high) of complexity of posed 

problems. Low complexity problems are usually solved by recalling and recognising facts or 

having a one-step solution. Problems that are categorised with moderate levels of complexity 

generally demand a combination of mathematics skills and knowledge. High complexity 

problems emphasise resourceful thinking by engaging solvers in a multitude of demands.  

 



106 

 

 
 

Table 3.1 Rubric for evaluating the complexity of posed problems (Adapted from Kwek, 2015)  

 Low complexity Moderate Complexity High Complexity 

D
es

cr
ip

tio
n 

This category relies heavily on the 
recall and recognition of previously–
learned concepts. Items typically 
specify what the solver is to do, 
which is often to carry out some 
procedure that can be performed 
mechanically. It leaves little room for 
creative solutions. The following are 
some, but not all, of the demands 
that items in the low–complexity 
category might make: 
 

 

Items in the moderate– complexity 
category involve more flexibility of 
thinking and choice among 
alternatives than do those in the 
low–complexity category. They 
require responses that may go 
beyond the conventional approach, 
or require multiple steps. The solver 
is expected to decide what to do, 
using informal methods of reasoning 
and problem–solving strategies. The 
following illustrate some of the 
demands that items of moderate 
complexity might make: 

High–complexity items make heavy 
demands on solver, who must 
engage in more abstract reasoning, 
planning, analysis, judgment, and 
creative thought. A satisfactory 
response to the item requires that 
the solver think in an abstract and 
sophisticated way. The following 
illustrate some of the demands that 
items of high complexity might 
make: 

C
og

ni
tiv

e 
de

m
an

d 

• Recall or recognize a fact, term, or 
property 
• Compute a sum, difference, 
product, or quotient 
• Perform a specified procedure 
• Solve a one–step word problem 
• Retrieve information from a graph, 
table, or figure 

• Represent a situation 
mathematically in more than one 
way 
• Provide a justification for steps in a 
solution process 
• Interpret a visual representation 
• Solve a multiple-step problem 
• Extend a pattern 
• Retrieve information from a graph, 
table, or figure and use it to solve a 
problem 
• Interpret a simple argument 

• Describe how different 
representations can be used to 
solve the problem 
• Perform a procedure having 
multiple steps and multiple decision 
points 
• Generalize a pattern 
• Solve a problem in more than one 
way 
• Explain and justify a solution to a 
problem 
• Describe, compare, and contrast 
solution methods 
• Analyse the assumptions made in 
solution 
• Provide a mathematical 
justification 

 

 

3.7 Theoretical frameworks 

During the last twenty years, a number of theoretical frameworks have emerged that 

conceptualise problem posing from an array of perspectives. For example, cognitive processes 

(e.g. Silver et al., 1996; Pittalis et al., 2004; Christou et al., 2005b; Chua & Wong, 2012; 

Kontorovich et al., 2012), assessment of problems posed (e.g. Silver & Cai, 2005; Kwek, 

2015), strategic approaches (e.g. Silver, et al., 1996; Brown & Walter, 2005; Contreras, 

2007), complexity in small groups (e.g. Kontorovich et al., 2012), connection to problem 

solving (English, 1997a, 1997b), learning opportunities (e.g. Lowrie, 2002; Crespo & 

Sinclair, 2008), mathematical modelling (e.g. Bonotto, 2010), creativity (e.g. Leung, 1997; 

Silver, 1997; Siswono, 2011), and situations of problems posed (e.g. Stoyanova & Ellerton, 

1996). 
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My main curiosity in problem posing rests with the professional development of teachers. In 

order for problem posing to be mobilised within classrooms, I believe that it is essential for 

practitioners to appreciate the pedagogical nature of problem posing and are competent in 

demonstrating the mathematical processes that define it. Although some research has 

highlighted teachers’ difficulties with problem posing (e.g. Silver et al., 1996; Koichu, Harel 

& Manaster, 2013; Singer & Voica, 2015), several studies have noted that with intervention, 

teachers can lead to improved problem posing performances (e.g. Abu-Elwan, 2002; Crespo 

& Sinclair, 2008; Chapman, 2012).  

 

 

In my personal view, the Active Learning Framework introduced by Ellerton (2013) aligns 

exactly with a constructivist orientation of learning and teaching mathematics. Central to this 

framework is the active engagement of pupils posing problems in parallel with corresponding 

problem solving activities (Figure 3.6). It is this seamless positioning of problem posing that 

Ellerton argues if excluded from school curricula, will deprive children of rich mathematical 

experiences. For problem posing to be introduced consistently into classrooms, teachers must 

acquire skills and confidence, which may be achieved by conceptualisation of problem posing 

within primary and secondary mathematics initial teacher education programmes or 

embedded within professional learning opportunities.  

 

 

In a recent study employing the same framework, Ellerton (2015) derived that time consumed 

on posing mathematical problems should not be isolated from time expended on mathematics. 

She insists that “it should be seen by all stakeholders as time well spent on learning 

mathematics, and should not be seen as an imposition or an extra that somehow needs to be 

included in an already-busy curriculum” (p. 527). 

 

 

Teachers are continually required to engage learners in worthwhile mathematical experiences 

but such provision is influenced by the efficiency to select, create or pose appropriate 

problems. In a study of 40 Canadian student primary teachers, Chapman (2012) investigated 

methods of making sense of problem posing. By providing the participants with a range of 

assignments, she was able to analyse problem posing behaviour by task type. Chapman 

identified five perceptions on problem posing held by the teachers. Firstly, the paradigmatic 

perspective emphasises “creating a problem with a universal interpretation, a particular 
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solution and an independent existence from the problem solver” (p. 140). Secondly, the 

objectivist perspective illustrates working backwards by beginning with a mathematical fact 

(e.g. 5 x 10 = 50) and then constructing a problem by providing context. Thirdly, the 

phenomenological perspective characterises problem posing that is meaningful from the 

individuals’ point of view and which contains personalised interpretations and solutions. 

Fourthly, the humanistic perspective is similar to the phenomenological perspective but the 

context reflects the individuals’ personal interests or experiences. (e.g. If the individual is 

interested in tennis, they might pose the following problem: A badminton club has 31 playing 

members. 27 play singles and 15 play doubles. How many play both singles and doubles?). 

Finally, the utilitarian perspective emphasises problem posing as an instrument to focus 

attention on the mechanics of mathematical thinking. Chapman states that the perspectives 

“provide a basis to compare and unpack their ways of problem posing. All five need to be 

explored in order to allow the teachers to understand how each could support or inhibit 

students’ mathematical understanding and mathematical thinking” (p. 144).  

 
 
Figure 3.6 Framework for locating problem posing in mathematics classrooms (Adapted from 
  Ellerton, 2013) 
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I believe that, collectively, the frameworks offered by Ellerton (2013) and Chapman (2012) 

offer both primary and secondary mathematics teachers a suitable starting point in their 
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development of problem posing knowledge. Kontorovich et al. (2012) present an insightful 

analysis of collaborative problem posing consisting of a framework which integrates five 

operationally defined facets (Figure 3.7) such as task organisation, knowledge base, problem 

posing heuristics and schemes, group dynamics and interactions, and individual 

considerations of aptness.  

 

Figure 3.7 A confluence framework for handing the complexity of problem posing (Adapted from 
  Kontorovich et al., 2012)   
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Kontorovich et al. (2012, p. 153) define considerations of aptness as “the posers 

comprehensions of explicit and implicit requirements of a problem–posing task within a 

particular context; they also reflect his or her assumptions about the relative importance of 

these requirements”. Interestingly, the researchers describe different types of individual 

considerations of aptness in problem posing such as aptness to potential evaluators, i.e. the 

poser’s assumptions about how other individuals would evaluate the problem poser’s skills 

and performance including aptness to group members i.e. one’s opinion about whether or not 

the idea suggested by the poser would be acknowledged by members of the group.  
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Kontorovich et al. (2012, p. 160) maintain that teachers should provide pupils with an 

opportunity to employ considerations of aptness to potential solvers, as this many lead to 

improving the quality of the problem posing product and suggest that “pedagogical effort 

should probably be invested in designing such situations, in which considerations of aptness 

will be addressed explicitly”. In practical terms, teachers can attempt to evaluate 

considerations of aptness based on observation of the interactions that takes place within 

groups and judge the quality of the problem posing ideas and resulting problems.  

 

 

3.8 Professional reflection 

This chapter has attempted to provide a summary of the works relating to mathematical 

problem posing from both a teacher and learner perspective. In doing so, it has presented a 

rationale for the conceptualisation and operationalisation of mathematical problem posing. In 

sum, it advocates the view that problem posing is of central importance in the domain of 

mathematics and to the nature of critical thinking (Silver & Cai, 1996; Silver et al., 1996) and 

endorses the stance from Ernest (1991, p. 265) that “school mathematics for all should be 

centrally concerned with human mathematical problem posing and solving”. According to 

Christou et al. (2005b, p. 149): “Problem posing is an important aspect of both pure and 

applied mathematics and an integral part of modelling cycles which require the mathematical 

idealization of real-world phenomena”.   

 

 

Intertwined with problem solving, the reformulation of existing problems and the generation 

of new problems have the dynamic capability to increase conceptual mathematical 

understanding and to empower children to nurture their own innate creativity. Authentic 

problem posing activities can unleash a powerful connection between school mathematics and 

the real world, including being accessible to all learners irrespective of ability. In essence, 

problem posing with all its complexities, has the potential to redefine in a radical manner, 

independent learning, where pupils are energised to take a more active role in their 

mathematical development (Brown & Walter, 2005).  

 

One criticism of much of the literature on problem posing is that it does not help to explain 

the dynamics of how teachers can support young people who reject or resist inquiry based 

pedagogy. Whilst problem posing activities promote autonomous learning and can empower 

pupils to interact more with mathematics, some children do not have the desire or motivation 



111 

 

 
 

to engage with the cognitive demands of this instructional approach (Silver & Mamona, 1989; 

Silver, 1994). Characteristically, such pupils are products of previous mathematical success 

through the medium of teacher centred learning, which delimits the enactment of higher order 

thinking.      

 

 

However, while problem posing is recognised as fundamental to the learning and teaching of 

mathematics, it remains on the periphery of school curricula (Ellerton, Singer & Cai, 2015). 

Arguably, without an official mandate, the injection of problem posing into classrooms 

appears to be fragmented. More concerning may be that all practitioners are not fully 

equipped to pose worthwhile problems (e.g. Koichu, Harel & Manaster, 2013; Singer & 

Voica, 2013).  

 

 

I believe that if problem posing is to be interwoven within the fabric of mathematical 

instruction, the critical role of teachers needs to be examined. Since the enactment of any 

didactic vision is influenced by the beliefs of those charged with its implementation, 

practitioners must be robustly convinced of the theoretical merits and educational benefits of 

problem posing. Likewise, teachers need sufficient training to acquire the vital pedagogical 

skills to allow them to cultivate problem posing in practice. Crespo & Sinclair (2008, p. 412) 

contend “that in order for teachers to support student problem posing, they need to gain 

problem posing experience themselves”. Abu-Elwan (2007) suggests that through technology 

guidance, it is possible to change the beliefs of teachers towards the role of problem posing in 

mathematics education. 

 

 

Recently, as part of practitioner enquiry towards professional learning, I examined a rich 

problem posing activity known as the ‘Billiard Task’, with two experienced primary 

colleagues. Both individuals claimed no previous experience in mathematical posing problem 

and indicated a desire to collaborate in order to develop pedagogical knowledge of an 

innovative approach to teaching mathematics. The Billiard task has been utilised in previous 

studies involving prospective and practising mathematics teachers (Silver et al., 1996; 

Cifarelli & Cai, 2005; Koichu & Kontorovich, 2013) and can stimulate the generation of 

interesting problems and conjectures. Our interactions focused on considerations of aptness 

relating to individual understanding of an interesting problem and which problems would be 
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suitable for potential learners (Kontorovich & Koichu, 2009; Kontorovich et al., 2012). 

Crucially, the outcome of the discourse prompted me to search studies reporting an element of 

ill-structured or cognitively undemanding problems created by teachers (e.g. Silver et al., 

1996; Crespo & Sinclair, 2008). It is useful to consider what factors may inhibit the capability 

of teachers to pose authentic problems (e.g. poor conceptual knowledge of the underlying 

construct) and correspondingly, how to prepare teachers to produce interesting and 

challenging problems to cater for multiple levels of pupil abilities. Regarding this last point, 

in the absence of any recognised LEA mandate and within a climate of political and education 

insecurity, it is difficult to envisage a provision of learning opportunities for primary and 

secondary mathematics teachers to develop problem posing skills.  

 

 

A more realistic window for achieving the future integration of problem posing in Scottish 

schools may have its origin in the education of new recruits, since the persistence of 

classroom norms operate against many teachers attempting to improve their professional 

practice. Ellerton (2013) maintains that: 

 
 Perhaps the only way that problem posing has a chance of being seriously introduced into school 

 mathematics curricula and classroom practices would be for young teachers to acquire problem-posing 

 skills and confidence in problem posing themselves to the point where they would be capable and 

 willing to help their students to pose problems. The simplest way to move towards achieving this 

 would be to focus attention on this issue in early childhood, primary, and secondary mathematics 

 teacher education programs (p. 100).  

 

Naturally, the overarching goal for the international research community is to generate 

empirical evidence of improved pupil mathematical learning (e.g. English, 1997b, 1998) 

alongside other benefits such as nurturing creativity. The mandate for such evidence is 

similarly pertinent for engaging prospective and current teachers in order to strengthen 

knowledge and understanding that can be applied to raise professional standards. Harvesting 

empirical evidence of problem posing will help prompt relevant stakeholders and policy 

makers to take notice given that Scottish education is committed to drive forward 

improvements utilising evidence based research as an approach to classroom practice and 

curricula reform. Building on this professional reflection it seems important to move to a 

researcher’s interrogation of the ideas.  

The next chapter of this thesis presents a literature review of teachers’ beliefs, which are at the 

epicentre of this research.  
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CHAPTER FOUR 

 
 

Teachers’ Beliefs 
 

 

4.1 Introduction 

Much societal and political rhetoric has positioned teachers as the critical variable in the 

successful development of learning of all children. Since I began researching my own 

practice, I have become increasingly aware of the richness attached to critiques of 

mathematics education by colleagues. Though, what continues to resonate is the diversity of 

beliefs held regarding mathematical problem solving and mathematical problem posing.   

 

 

Over thirty years ago, Thompson (1985) highlighted the disproportionately small amount of 

attention that researchers had bestowed to the role of the teacher. Similarly, Grouws (1985) 

emphasised his concern with the lack of research on how practitioners conceptualise 

mathematical problem solving and how they attempt to teach it. In recent years, there has 

been an increasing interest in the potential of research to inform classroom practice. Pajares 

(1992, p. 307) asserts that “the beliefs of teachers should be a focus of educational research 

and can inform educational practice in ways that prevailing research agendas have not and 

cannot”.  

 

 

It is the premise of this thesis that individual teachers’ deep rooted beliefs are a major 

influential factor in the concentration of learning and teaching of mathematical problem 

solving and mathematical problem posing. In other words, how a teacher conceptualises the 

nature of mathematics has a direct impact on what is delivered to pupils and therefore any 

changes will require an analysis of professed beliefs, actual beliefs and current practices. 

However, Forrester (2008, p. 25) points out that: “Whether or not a teacher’s beliefs are 

successfully translated into practice, they give an important indication of the teacher’s 

intentions for the future”.    
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Within CfE, the mantra of increased autonomy to teachers as agents of change has been well 

broadcasted. Castle (2006) contends that autonomous practitioners learn to make enhanced 

instructional decisions by undertaking their own critical thinking about educational matters 

and opines that teachers, who are not autonomous, depend on others to communicate what to 

do. Scottish teachers theoretically enjoy the dynamic pedagogical freedom to exercise, reflect, 

research and develop their own perspectives on the learning and teaching of mathematics, 

thus connecting beliefs to professional practice. As was pointed out in chapter one, with no 

available empirical data to analyse it is unknown what the nature of this relationship is.  

 

 

In this chapter, I will briefly review key theoretical perspectives and important contributions 

that have advanced research on teachers’ beliefs. In doing so, I will provide a rational for the 

importance of teachers’ beliefs with reference to recent educational policy reform in Scotland. 

 

 

4.2 Defining the “belief” construct 

Extensive academic debates attempting to define a precise universal conceptual definition on 

the belief construct has yet to be established within the research literature. Possibly as a result 

of researchers assuming that readers already know what beliefs are (Thompson, 1992) or the 

flexibility of the belief construct is accommodating to many (Goldin, Rosken & Torner, 

2009). Alternatively, Leder & Forgasz (2002) contend that it is not easy to produce a precise 

definition because the belief concept is not directly observable and is inferred. However, 

Fives & Buehl (2012) argue that the difficulty lies not in the definition since several authors 

have provided so but instead encouraging researchers to consistently define and use such 

terms within and across interrelated fields. Nevertheless, a mosaic of overlapping constructs 

populated within a densely and uncertain world of interchangeable conceptualisations exist. 

Though Wilson & Cooney (2002) advise that it is more germane to be acquainted with the 

influence of teacher beliefs rather than seeking harmony on a definition. McLeod & McLeod 

(2002, p. 120) propose “there is no single definition of the term “belief” that is correct and 

true, but several types of definitions that are illuminative in different situations”. For example, 

Pajares (1992) expresses the view that beliefs include: 

  
 attitudes, values, judgments, opinions, ideology, perceptions, conceptions, conceptual 

 systems, preconceptions, dispositions, implicit theories, explicit theories, personal theories, 
 internal mental processes, action strategies, rules of practice, practical principles,  perspectives, 

 repertoires of understanding, and social strategy (p. 309).  

 



115 

 

 
 

According to Hermans, van Braak & Van Keer (2008, p. 128), beliefs are “a set of conceptual 

representations which store general knowledge of objects, people and events, and their 

characteristic relationships”. Cross (2015, p. 175) maintains that beliefs are “embodied 

conscious and unconscious ideas and thoughts about oneself, the world, and one’s position in 

it developed through membership in various social groups, which are considered by the 

individual to be true”. Tillema (1994) avows that beliefs serve as filters which screen new 

information and ultimately determine which elements are accepted and integrated in their 

knowledge base. Similarly, Clark & Peterson (1986) advocate beliefs act as a monitor which 

practitioners make their decisions rather than just relying on their pedagogical knowledge or 

curriculum guidelines. What is notable about this definition is that is recognises that teachers’ 

beliefs can influence classroom practice irrespective of the written curriculum. In contrast, 

Perry, Wong & Howard (2006) warn that beliefs are rooted and constrained by the culture of 

the society and educational systems in which the teachers are living and working.  

 

 

Unsurprisingly, with so many different perspectives, Mason (2004, p. 347) calls for the 

research community “to work out what beliefs actually are, and where they fit into an entire 

alphabet of associated terms”. Skott (2013, p. 548) notes that belief research is notorious for 

its conceptual and methodological problems and laments that the “notion of beliefs, however, 

is still somewhat underspecified, and the discussion continues on how to distinguish it from 

knowledge, conceptions, emotions, and values”. For instance, in their study of American 

primary teachers’ pedagogical content beliefs, Peterson et al. (1989) describe practitioners as 

individuals who rely on their knowledge and beliefs to understand and interpret the rapid flow 

of events in a classroom, make decisions and act on their interpretations. Peterson et al. 

(1989) employ the term ‘knowledge’ which relates to ‘pedagogical content knowledge’ as 

illustrated by Shulman (1986) but appear to attempt to coalesce knowledge and beliefs into a 

common construct. While some support remains for this conception (e.g. Pajares, 1992; 

Calderhead, 1996) other researchers have at least attempted to distinguish between beliefs and 

other suppositions such as knowledge, affect, values, emotions, etc. (e.g. Nespor, 1987; 

Kagan, 1992; Thompson, 1992; Calderhead, 1996; Richardson, 1996; Handel, 2003; Philipp, 

2007). 

 

 

Beliefs have been extensively portrayed from a mathematical perspective. Goldin, Rosken & 

Torner (2009) argue that beliefs are fundamental to the discussion of problem solving 
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approaches in mathematics education and are necessary components in the psychology of how 

mathematical problems are solved. Schoenfeld (1992, p. 358) interprets beliefs “as an 

individual’s understandings and feelings that shape the ways that the individual 

conceptualizes and engages in mathematical behavior”. It is important to consider that the 

nature of the classroom environment that the teacher creates can shape learners beliefs about 

the nature of mathematics (Schoenfeld, 1992). Likewise, Lester, Garofalo & Kroll (1989, p. 

77) articulate that “beliefs constitute the individuals subjective knowledge about self, 

mathematics, problem solving, and the topics dealt with in problem statements”. In the same 

vein, Hersh (1986, p. 13) invites us to examine our mathematical pedagogy and alludes to the 

critical nature of a philosophy of mathematics when he questions: “The issue, then, is not, 

what is the best way to teach? But, what is mathematics really all about?”.  

 

 

In sum up, Skott (2015) in his analysis of the conceptualisation of teachers’ beliefs concluded 

that there appears to be four key aspects. First, beliefs are used to describe individual mental 

constructs that are subjectively true for the person in question. Second, there are cognitive as 

well as affective aspects to beliefs. Third, beliefs are considered stable and may stem from 

schooling, life experiences, teacher education programmes and collaborations with 

colleagues. They tend to be resistant to change. Fourth, beliefs are expected to significantly 

influence classroom practice.  

 

 

4.3 Teachers’ belief systems 

Within the literature, there is considerable agreement that teachers’ beliefs are not regarded in 

isolation but consist of various substructures within a multidimensional system. Green (1971) 

identified three theoretical dimensions of belief systems, which have become fertile ground 

for researchers (e.g. Schoenfeld, 1985; Nespor, 1987; Pajares, 1992; Thompson, 1992; Cross, 

2009; Braunling & Eichler, 2015). He postulated that beliefs are not compartmentalised but 

are in fact interrelated in elaborate ways. Firstly, there is the quasi-logical relation between 

beliefs which are depicted as either primary or derivative. Thompson (1992) illustrates this 

hierarchical dimension by considering a teacher who believes that it is important to present 

mathematics “clearly” (primary belief) and to obtain this outcome has to plan thoroughly and 

be readily prepared to answer pupil questions (both derivative beliefs). Secondly, based on 

their psychological strength, some beliefs are considered central or peripheral. Rokeach 
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(1968), as cited in Pajares (1992), maintains beliefs vary along a central-peripheral 

continuum, where the more central a belief is situated, the more resistant it is to change.  

 

 

Thirdly, beliefs can be held in clusters and may coexist without conflict in isolation. This 

would explain why some individuals can hold incompatible or inconsistent views without any 

sense of divergence. Thus, beliefs are not considered mutually exclusive as teachers can hold 

overlapping views simultaneously and over time. Nonetheless, teachers’ beliefs may change 

when they are afforded effective opportunities to reflect and challenge those beliefs (Wilson 

& Cooney, 2002). 

 

 

In her case study of five American mathematics teachers, Cross (2009) highlights the 

diversity among practitioners’ beliefs by presenting three hypothesised belief models. Firstly, 

she describes the parallel belief systems of Mr. Henry, Mr. Brown and Ms. Reid, unfolding 

that these individuals deem mathematical knowledge as an absolute established set of 

concepts that are rigid and infallible, with their classroom practices reflecting those beliefs. 

Secondly, in the example of Mr. Simpson, the researcher accounts that although his 

mathematical beliefs differed considerably from the other teachers, they did cluster in similar 

ways. Cross (2009) describes Mr. Simpson’s mathematical views from a social constructivist 

perspective, not as fragmented groups of isolated facts and concepts but as an interconnecting 

and evolving set of relationships. Finally, in the case of Ms. Jones, the researcher conveys her 

mathematical beliefs as a conglomerate of viewpoints grounded on the importance of problem 

solving and critical thinking, coupled as a vast reservoir of knowledge rooted in numbers. Ms. 

Jones believed that it was vital she possessed an information base to teach pupils how to solve 

problems, identify errors, and demonstrate how to correct them. Cross (2009) concluded that 

her participants’ beliefs were organised in a system such that theories about learning and 

teaching of mathematics were derived from their core mathematical beliefs. Furthermore, in 

the case of Ms. Jones, her opposing pedagogical views did not appear to present any internal 

conflict.      

 

 

In another study, Braunling & Eichler (2015) investigated the belief systems of six recently 

qualified German primary and secondary mathematics teachers, which focused on the 

learning and teaching of arithmetic. Based on the analysis of Mrs. A, the researchers were 
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able to distinguish her espoused central beliefs, peripheral beliefs and the assorted 

interrelationships between them. However, the study would have been more convincing if the 

authors had used a larger sample.  

 

 

From my own collaborations of working with colleagues, two classifications of belief 

structures appear to dominate the teaching of mathematics within Scottish schools. Both 

orientations sit at the opposite ends of a spectrum. The first system is where teachers have a 

direct transmissionist view of learning, where knowledge is communicated in an explicit and 

structured way, where pupils are presented with demonstrations of correct solutions together 

with a provision of unsophisticated mathematical problems. Teachers resolutely believe that a 

quiet classroom is required for effective teaching. In contrast, the second system adopts a 

constructivist view of learning which focuses on children not as passive recipients but as 

active participants in the management of acquiring knowledge. Practitioners holding this 

perspective emphasise the facilitation of pupil inquiry and provide challenging mathematical 

problems to cultivate knowledge. Individuals offer the minimum of support in order to allow 

pupils more freedom to execute an active independent role in their thinking and reasoning 

processes.  

 

 

A number of researchers have provided different classifications of teachers’ mathematical 

beliefs systems (e.g. Skemp, 1987; Lerman, 1989, 1990; Askew et al, 1997; Chapman, 2002; 

Speer, 2005; Beswick, 2012). One well-known review that is often cited is Kuhs & Ball 

(1986) who draw our attention to the connection between teachers’ mathematical 

conceptualisations and their instructional methods by identifying four overriding approaches 

to the teaching of mathematics. The first is a description of teaching as content focussed with 

an emphasis on performance, which has been expressed as instrumental learning (Skemp, 

1978) and calculational orientation (Thompson, et al., 1994). Here, pupils are taught to follow 

and master rules and procedures without acquiring any conceptual understanding, where 

memorisation of mathematical facts is stressed. The second approach is a description of 

teaching as content focussed with an emphasis on ensuring conceptual understanding. The 

third arrangement is focussed on context where the classroom structure and organisation 

strongly influences student learning. Finally, the last approach is learner focused and is 

underpinned by a social constructivist view of learning (Thompson, 1992). This method is 

characterised by engaging the learner with activities that explore, discover, formulate and 
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construct a wide range of mathematical ideas. This is similar to Skemp’s (1978) relational 

concept of mathematics.  

 

 

In his major contribution, Ernest (1989a) suggests that acceptance of teaching mathematics 

through problem solving depends fundamentally on profound changes to a teachers’ belief 

system. He argues that mathematical instruction is dependent on several key elements, but in 

particular on the practitioners’ conception on the nature of mathematics, including mental 

models of learning and teaching of mathematics. A teachers’ conception of the nature of 

mathematics may be considered as conscious or subconscious views, perceptions, values, 

guidelines, mental images and preferences concerning the discipline of mathematics 

(Thompson, 1992). 

 

 

Ernest (1989a) posits three distinct philosophies of the nature of mathematics that are held by 

teachers as individual beliefs systems. First, the instrumentalist view regards mathematics as 

an accumulation of facts, rules and skills in the pursuance of some external end. Thus 

mathematics is thought to be a set of unrelated but utilitarian rules and facts. Routinely, 

teachers expect pupils to listen, participate in didactic interactions and then replicate 

computational algorithms that have been demonstrated. Such a position has been the object of 

much criticism by mathematics educators (Thompson, 1992). Second, the Platonist view 

considers mathematics to be a static but unified body of certain knowledge. In this case, 

mathematics is discovered (not created) by humans through mathematical investigation. 

Third, the problem solving (or social constructivist) view deems mathematics as a dynamic, 

continually expanding field of human creation and invention, a cultural product. Mathematics 

is believed to be a process of inquiry and coming to know, not a finished product. Crucially, 

its results remain open to revision. Proficiency in mathematics is equated with autonomous 

problem solving and problem posing. The former two views assimilate within the domain of 

absolutism while the latter one within the domain of fallibilism (Thompson, 1992; Ernest, 

2014).   

 

 

Ernest (1989a) proposes three instructional models to reflect the diverse roles a teacher might 

play within a classroom, which has been encapsulated by Leatham (2002) in his doctoral 

dissertation (Table 4.1). Both instrumental and Platonist views and their respective derived 
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teaching strategies present narrow views of mathematics, compared to a problem solving 

perspective which promotes a child-centred and inquiry based approach (Schoenfeld, 1992).  

 

Table 4.1 Ernest models as summarised by Leatham (2002) 
 

Phenomena Instrumentalist   Platonist Problem Solving 
 

Nature of 
mathematics 

An accumulation of facts, rules, 
and skills 

A static but unified body of 
certain knowledge 

A dynamic continually 
expanding field of human 
creation and invention 
 

Teacher’s role Instructor Explainer Facilitator 
 

Intended outcome 
 

Skills mastery with correct 
performance 

Conceptual understanding with 
unified knowledge 
 

Confident problem posing and 
problem solving 

Use of curricular 
materials 

Strict adherence to a text or 
scheme 

Modification of the textbook 
approach,  enriched with 
additional problems and 
activities  
 

Teacher, student, or school 
construction of the 
mathematics curriculum  

 

Ernest (1989a) outlines the relationship between beliefs and their impact on classroom 

practice by illustrating how teacher’s views of the nature of mathematics provide a basis for 

mental modes of the learning and teaching of mathematics (Figure 4.1). However, the model 

proposed by Ernest (1989a) is not universally shared by all. For example, Skott (2013, p. 548) 

rejects such models and argues that this “line of research was and still is based on the 

assumption that teachers’ beliefs are a main line to educational change, and that beliefs 

research may remedy what is generally referred to as the problems of implementation”.  

 

Figure 4.1     Relationship between beliefs and their impact on practice (Adapted from Ernest, 1989a) 

 

View of 
nature of 

mathematics

Espoused model of 
learning mathematics 

Espoused model of 
teaching mathematics

Enacted model 
of learning 

mathematics

Enacted model 
of teaching 

mathematics

Constraints and opportunities provided by the social context of teaching

 

 

Ernest (1991) defines three distinctive interpretations about the role of problem solving in the 

mathematics curriculum. First, he argues that problem solving is rejected by “Industrial 
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trainers” as inappropriate and frivolous based on the perception that mathematics is a set of 

absolute decontextualized but utilirian truths and rules, and that its central function is to 

inculcate basic skills. Second, he suggests both “Old humanists” and “Technological 

pragmatists” consider problem solving as additional content and implemented as mechanical 

objects of inquiry used to enrich teaching. Finally, Ernest argues that “Progressive educators” 

and “Public educators” view problem solving as pedagogical approaches to the whole 

curriculum, and not just as an addition. Such ideologies arise from philosophies of 

mathematics which deem it a growing field of knowledge, if not as social constructivism and 

maintain full incorporation of these processes into the curriculum, including problem posing, 

leads to a problem solving and investigational pedagogy (Ernest, 1991).  

 

 

4.4 The importance of teachers’ mathematical beliefs 

The thrust of research into mathematics related beliefs has centred on beliefs about the nature 

of mathematics and the learning and teaching of mathematics (Thompson, 1992; Beswick & 

Callingham, 2014). A growing number of empirical studies (e.g. Thompson, 1984; Cooney, 

1985; Chapman, 1999; Aguirre & Speer, 2000; Beswick, 2004; Speer, 2008) have been 

propelled by the supposition that there subsists a positive correlation between espoused 

mathematical beliefs and instructional practices. In other words, there has been a plethora of 

research on teachers’ beliefs based on the presumption that what teachers believe is a 

powerful indicator in selecting what mathematics is taught, how it is delivered and what is 

learned in the classroom (Wilson & Cooney, 2002; Beswick, 2006; Skott, 2015). The research 

has advocated that beliefs are one of the major components influencing pedagogical practice 

and should not be underestimated. Kilpatrick (2003) informs us that beliefs influence the 

choice of curriculum materials and therefore affect the type of mathematical ideas and 

opportunities offered to pupils. In the same vein, Pajaras (1992, p. 325) argues that “beliefs 

are instrumental in defining tasks and selecting the cognitive tools with which to interpret, 

plan, and make decisions regarding such tasks; hence, they play a critical role in defining 

behaviors and organizing knowledge and information”.  

 

 

In their research of 21 American primary teachers, Stipek et al. (2001) found a consistent 

association between mathematical beliefs and observed classroom practices. Likewise, 

Zakaria & Maat (2012) noted a positive connection between mathematical beliefs and 

reported pedagogical methods in their study of 51 Malaysian secondary mathematics teachers. 
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In her renowned case studies of three American junior high school mathematics practitioners, 

Thompson (1984) described a teacher named Kay who perceived mathematics as 

continuously expanding and changing to accommodate new developments. Kay’s espoused 

views about mathematics were consistent with her espoused views about teaching 

mathematics and with Thompson’s observations. According to Thompson (1984), she 

employed a variety of approaches to stimulate interest including encouraging pupils to ask 

questions, guess, theorise, and be wrong; used appropriate examples and non-examples; 

provided a variety of justifications; showed applications of the topics taught; and mobilised 

games and puzzles as motivational devices. 

 

 

Other studies have been illuminating in comparable ways. For example, in an investigation of 

problem solving and problem posing ability and beliefs of 128 Chinese prospective and 

current primary teachers, Chen et al. (2011) found that their participants’ mathematical beliefs 

strongly influenced their evaluation of pupils attempts to solve and pose mathematical word 

problems. Sivunen & Pehkonen (2009) analysed the mathematical beliefs on teaching 

problem solving of 42 Finish primary teachers. The researchers learned that practitioners held 

a limited knowledge of instructional techniques and were dependent on available resources. In 

an international comparative study, Zambo & Hong (1996) found that South Korean teachers 

held stronger views than American teachers regarding the importance of being a proficient 

problem solver prior to teaching problem solving. The research alluded that South Korean 

educators did not promote multiple solutions, much preferring single solution paths in order to 

minimise learner uncertainty. However, such an adverse belief is at the expense of fostering 

creative mathematical thinking.  

 

 

By acknowledging the importance of beliefs in shaping teachers characteristic patterns of 

instructional behaviour, it is possible to formulate steps to improve the quality of mathematics 

education. Thompson (1984) forewarns that failure to recognise the role that teachers’ beliefs 

might play in determining their professional practice is likely to result in misguided efforts to 

improve the standard of mathematics instruction in schools. The delivery of school 

mathematics has been compared with the work of professional mathematicians by several 

scholars (e.g. Ernest, 1991; Beswick, 2012; Boaler, 2015b). Boaler (2015b) argues that 

teachers’ traditional beliefs of the nature of mathematics may adversely affect young people’s 

image of the subject. She suggests that for pupils to appreciate and enjoy mathematics, they 
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need to be regularly exposed to authentic ways in which mathematicians operate such as 

“posing problems, making guesses and conjectures, exploring with and refining ideas, and 

discussing ideas with others” (p. 31).  

 

 

4.5 Inconsistencies between teachers’ beliefs and practice 

While miscellaneous studies have found consistencies between teachers’ mathematical beliefs 

and instructional practices, more often research has revealed a misalignment between the two 

features (Thompson, 1992, Phillip, 2007). The correlation between mathematical beliefs and 

mathematics teaching are multifaceted, dialectical and can be influenced by a structure of 

reciprocal factors. These may be rationalised through the anxiety and unpredictability of 

classroom life, external pressures and constraints placed on teachers that compromise their 

contemporary views of education in place of more traditional methods. In clarifying such 

inconsistencies, Beswick (2006) draws on the notion of clustering, citing Green (1971). She 

maintains that “beliefs within a system can be held in groups that are isolated from other 

beliefs” and “a person may hold beliefs that contradict one another without being aware of the 

contradiction”.   

 

 

In her renowned case study of novice American primary teachers, Raymond (1997) described 

the case of Joanna who held traditional beliefs about mathematics but non-traditional beliefs 

about learning and teaching of mathematics. Raymond (1997) determined that this 

inconsistency arose from various factors and introduced a theoretical framework (Figure 4.2) 

towards understanding the complex nature of the interrelationship between mathematical 

beliefs and classroom practice. She warns stakeholders not to overlook multiple factors that 

teachers are frequently exposed to. Moreover, Thompson (1984, p. 124) maintains that: 

“Many factors appear to interact with the teachers’ conceptions of mathematics and its 

teaching in affecting their decisions and behavior, including beliefs about teaching that are not 

specific to mathematics”.  
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Figure 4.2 Model of relationships between mathematics beliefs and practice (Adapted from  
  Raymond, 1997)  
 

Past school experiences Teacher education program Social teaching norms Teacher’s life outside school

Early family experiences
Immediate classroom 

situation
Personality traits of the 

teacher

Mathematical beliefs
Mathematics teaching 

practices
strong influences

moderate influences
slight influences

strong influences

Students' lives outside 
school

slight influencesslight influences slight influences
strong influences 

strong influences

moderate influences

moderate influences

moderate influences

 

Mathematics beliefs: Students’ lifes: 

About the nature of mathematics and mathematics 

pedagogy 

Home environment, parents’ beliefs (about children, 

school and mathematics) 

Mathematics teaching practice:  Teacher education program:  

Mathematical tasks, discourse, environment and 

evaluation 

Mathematics content courses, methods courses, field 

experiences, student teaching 

Immediate classroom situation:  Past school experiences:  

Students (abilities, attitudes and behaviour), time 

constraints, the mathematics topic at hand. 

Successes in mathematics as a student, past teachers 

Social teaching norms:  Early family experiences:  

School philosophy, administrators, standardized tests, 

curriculum, textbook, other teachers, resources 

Parents’ view of mathematics, parents’ educational 

background, interaction with parents (particularly 

regarding mathematics)  

Teachers life:  Personality traits:  

Day-to-day occurrences, other sources of stress Confidence, creativity, humour, openness to change 

 

In a study of a novice Danish teacher, known as Christopher, Skott (2001) investigated the 

relationship between the beliefs of mathematics, learning and teaching of mathematics and 

that of classroom practice. He introduced the term ‘school-mathematics images’ to “describe 

teachers’ idiosyncratic properties in relation to mathematics, mathematics as a school subject 

and the teaching and learning of mathematics in schools” (p. 6). Skott (2001) found that 

Christopher’s school mathematics images were highly compatible with aspects of the reform 
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discourse but this relationship with classroom practice was very different in contrasting 

situations. However, what is distinguishing about the study is that is challenged much of the 

underlying reasoning and evidence from previous research in the field on teachers’ beliefs. In 

choosing not to instinctively exploit apparent inconsistencies, Skott attempted to rationalise 

the dissonance between beliefs and practice. By reflecting on his own position as a researcher, 

he was able to acknowledge that his initial assumption that Christopher’s beliefs about 

mathematics would have been the driving force behind his pedagogical decisions. Instead, the 

more centrally held belief for Christopher was dominated by an emphasis on the individual 

learner, sometimes at the expense of his mathematical beliefs.  

 

 

The outcome of the study helped influence Philipp (2007) to propose that as researchers, we 

must assume that contradictions between teachers’ beliefs and practice do not exist. Taking 

this stance, Philipp (2007, p. 276) maintained “when we observe apparent contradictions, we 

would assume that the inconsistences exist only in our minds, not within the teachers, and 

would strive to understand the teachers’ perspectives to resolve the inconsistencies”. In his 

impressive analysis of teachers’ beliefs, Leatham (2006, p. 92) anchored his sensible systems 

theoretical framework on the fundamental assumption that “teachers are inherently sensible 

rather than inconsistent beings”. Put differently, individuals beliefs are organised in systems 

that make obvious sense to them. Leatham (2006) underlined the need for researchers to 

follow a process of exploring and explaining apparent inconsistencies rather than simply 

indicating conflicts so as to facilitate a deeper understanding of the nature of beliefs and how 

they are held. 

 

 

Furinghetti & Morselli (2011) in their case studies of four Italian secondary mathematics 

teachers’ treatment of proof, focussed on the detection of the reasons behind instructional 

practices. To unravel the dilemma of inconsistencies, the authors introduce the construct of 

leading beliefs which they define as “beliefs (whole nature may vary from teacher to teacher) 

that seem to drive the way the teachers treats proof” (p. 590).  Furinghetti & Morselli (2011) 

claim that through the construct of leading belief they were able to divert attention away from 

inconsistencies.    
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Likewise, during a case study of two American elementary teachers, Cross (2015) skilfully 

looked beyond perceived inconsistencies to gain a better understanding of the nature of 

mathematics beliefs and how they were organised. Drawing on the tenets of a sensible 

systems framework (Leatham, 2006) and utilising both contextualised and de-contextualised 

data sources, Cross (2015) found that observed practices were aligned with other sets of 

beliefs. These aligned beliefs were personal and external factors including beliefs not directly 

related to the teaching of mathematics. To ensure that researchers better understand the 

complexities of individual beliefs systems, Cross (2015, p. 198) highlights the requirement 

“to expand the scope of their investigations to include multiple contexts, examining the role 

of macro-and mircofactors on instruction”. 

 

 

What is apparent from the case studies described in this section is the need for researchers to 

attempt to fully understand the complexities and interactions that manifest themselves within 

the context of school and classroom cultures. Teachers’ espoused beliefs impact on their 

pedagogical practice but a direct causal relationship cannot be assumed. Multiple factors may 

influence both professional practice and the institutional context (Cooney, 1985; Hoyles, 

1992). 

 

 

4.6 Changing teachers’ beliefs 

It is a widely held view that teachers’ beliefs are slow to form but once established are highly 

resistant to change. According to Schommer-Aikins (2004, p. 22), they “are like old clothes; 

once acquired and worn for a while, they become comfortable. It does not make any 

difference if the clothes are out of style or ragged. Letting go is painful and new clothes 

require adjustment.” Furthermore, teachers may not be consciously aware of the underlying 

beliefs that underpin their practice (Schoenfeld, 2015).  

 

 

Though it is asserted by Liljedahl (2010) that the trajectory of change in teachers’ beliefs and 

practices can also be rapid and profound. In his research study of mathematics professional 

activities set within Canada, Liljedahl (2010) identifies five distinct mechanisms of belief 

change: (1) conceptual change (2) accommodating outliers (3) reification (4) leading belief 

change (5) push-pull rhythm of change. Within this chapter, I have referred to conceptual 

change and leading belief changes. Liljedahl (2010) illustrates a leading belief change by 



127 

 

 
 

describing the case of Phil, a primary teacher and problem solving workshop participant. As a 

consequence of being deeply affected by one experience, Phil made a significant change to his 

belief system and evaluation practices. This transformation was expedited by Phil’s ability to 

critically examine his professional practice.  

 

 

In another study involving practising secondary mathematics teachers, Liljedahl (2011) 

strengthens his argument surrounding teacher change as conceptual change. All of the 

participants were situated within a professional learning environment and subjected over time 

to interventions designed to promote cognitive conflict within their core beliefs about various 

aspects of mathematics education. Based on the results, Liljedahl (2011) contends that the 

theory of conceptual change may act as a framework for changing teachers’ beliefs. An 

intriguing outcome of this study revealed that participants not only rejected beliefs pertaining 

to their current practice but often did so without replacement. This can be exemplified by 

reference to an assignment tasked with reviewing Boaler (1997) and her dichotomous settings 

of Amber Hill and Phoenix Park. While many of the participants were quick to reject the 

teaching practices of Amber Hill, they were reluctant to embrace the paradigm extolled in the 

descriptions of Phoenix Park, which integrated problem posing.  

 

 

I will now review two studies that feature specific mathematical domain beliefs about 

problem solving and problem posing i.e. Emenaker (1996) and Barlow & Cates (2006). 

 

 

In the first study, Emenaker (1996) analysed the impact of a problem solving based 

mathematics course on 137 American prospective elementary teachers’ beliefs about 

mathematics and the teaching of mathematics. Prior to launching the course, he found 

considerable support clustered around belief misconceptions listed as: (1) If a mathematics 

problem takes more than 5-10 minutes, it is impossible to solve (2) Mathematics is mostly 

memorisation (3) All problems can be solved using a step-by-step algorithm or a single 

equation (4) Only geniuses are capable of creating or understanding formulas and equations 

(5) There is only one correct way to solve any problem. On completion of the course, 

Emenaker (1996) detected positive alterations to participants beliefs manifested primarily 

through three underlying themes. First, certain problems contain multiple solutions and 

alternative answers. Second, conceptual understanding is more important than memorising 
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procedures. Third, through independent thinking it is reasonable to expect children of average 

mathematical ability to discover some concepts on their own. However, the research would 

have been more convincing if the observed changes in beliefs were monitored over a longer 

time period to determine stability and resilience. 

 

 

In the second study, Barlow & Cates (2006) investigated the impact of incorporating problem 

posing on the beliefs about mathematics and the teaching of mathematics of 61 American 

elementary teachers. The participants were exposed to a one year innovative professional 

learning programme featuring miscellaneous references to the literature complemented with 

pedagogical activities. The results suggested that working with teachers to incorporate 

problem posing into their classroom practice had a positive effect on changing teachers’ 

beliefs and their instructional approaches. 

 

 

In these two studies, it is evident that reflection on their individual beliefs and classroom 

practices contributed significantly to teacher change towards problem solving and problem 

posing respectively. Reflection is regarded as a critical factor for shifting beliefs, as teachers 

learn fresh ways to make sense of what they observe (Philipp, 2007). However, in both 

instances, participants volunteered for each experience implying that on entering each study 

may have had a degree of motivation and preconceived interest in changing their central or 

peripheral beliefs. In the following subsection, I consider the challenge of teacher belief 

change from the perspective of education reform, where practitioners may not be consciously 

aware of the beliefs that underpin their classroom strategies.           

 

4.6.1 Teachers’ beliefs and educational reform 

Fundamental to successful implementation of any education reform is the teacher. Moreover, 

teachers are the key agents when it comes to transforming practice and curriculum enactment 

depends in great part on the capacity and will of the teachers involved (Spillane, 1999; Fullan, 

2016). As a subset of this professional agency, teachers’ beliefs play an essential role within 

this domain (Hargreaves, 1994; Biesta, Priestley & Robinson, 2015; Fullan; 2016)  

  

 

Teachers’ prevailing beliefs about mathematics and mathematics pedagogy have long been 

detected as one of the major obstacles to educational reform (Pajares, 1992; Cooney & 
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Shealy, 1997; Handel & Herrington, 2003; Aquirre, 2009). Chapman (1999) cautions that 

practitioners’ beliefs about the nature of mathematics are a main factor in any movement to 

ameliorate the teaching of mathematics. Similarly, Goldin, Rosken & Toner (2009) warn that 

teachers’ beliefs have been perceived as impediments to problem-solving based developments 

of the mathematics curriculum and of imaginative classroom teaching approaches. Ernest 

(1989a) upholds that adopting a problem solving approach to the teaching of mathematics 

depends on institutional reform but more essentially on individual teachers changing their 

entrenched philosophy to the learning and teaching of mathematics. He asserts that: 

 

 It depends fundamentally on the teacher’s system of beliefs, and in particular on the 
 teacher’s conception of the nature of mathematics and mental models of teaching and 

 learning of mathematics. Teaching reforms cannot take place unless teachers’ deeply held 

 beliefs about mathematics and it teaching and learning change (p. 249).  

 

Buzeika (1996) explored the relationship between beliefs and practices, as professed by three 

primary teachers implementing a new mathematics curriculum in New Zealand. The reform 

emphasised constructivist practices to incorporate problem posing. The participants expressed 

“difficulties in maintaining control over what was happening if children were left to explore 

an idea for themselves” and “confusion resulting from a document which they perceived as 

vague and lacking in direction” (p. 97). In her study of an urban American secondary school, 

Aguirre (2009) found that mathematics teachers’ domain-specific beliefs did not entirely 

resonate with district-mandated progressive reforms aimed at increasing standards and 

accountability to learn mathematics. The main locus of attention focused around explicit 

algebraic beliefs. Aguirre found a perception by some participants that the learning of algebra 

was not necessary or practical for all pupils, raising significant content and equity issues. 

Charalambos & Phillippou (2010) investigated the concerns and efficacy beliefs of 

implementing a problem solving reform (five years after its introduction) of 151 primary 

teachers in Cyprus. In the study, participants highlighted a scarcity of information and 

training about planned educational changes and reported feeling more confident in teaching 

problem solving by employing previous methods with some harbouring a negative disposition 

towards the reform. 

 

 

Another element inhibiting curriculum reform is teacher resistance to change. This may be 

fuelled by the opposition to restructure existing practices (Clarke, 1997) based on the 

conviction that reforms, as an alternative paradigm are implausible as they offer no obvious 

classroom improvements, are not compatible with established procedures and present no 
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observable outcomes for stakeholders such as parents or senior management fixated on 

examination results. Experienced teachers can feel alienated when not empowered to 

participate in the reform conceptualisation but are required to take part in the implementation 

process, habitually at the expense of an increased workload (Hjelle, 2001).  

 

 

Research undertaken by Doerr & Tinto (2000, p. 427) maintains that “teachers are asked 

frequently to change how they teach, but they seldom have meaningful data that encourages 

them to do so”. Rather than radically transform their practice, teachers often tweak their 

approach to learning and teaching (Hughes, 2002) but this does not always match the 

intentions of the reform strategy. Fives & Buehl (2016) recommend that policy makers must 

attend to teachers’ beliefs as part of any reform effort.   

 

4.6.2 The Scottish context 

Primary and secondary colleagues are reciprocally responsible for integrating the mechanism 

of problem solving and problem posing into the learning and teaching of mathematics. 

Simultaneously interwoven into the educational theoretical fabric is the challenge of 

facilitating learning from a constructivist perspective. The shift from employing a traditional 

(instrumentalist and Platonist) slant presents multiple pedagogical dilemmas for educators due 

to the transformational changes initiated by CfE. Due to its convolution, a problem solving 

approach demands that practitioners engage in agentic and proactive ways to prepare for its 

effective implementation. 

 

 

However, little is known about individual teachers’ beliefs and how they impact on 

professional practice or if they fully appreciate what is required or, more arguably, completely 

equipped to deliver to the implored standard. Priestley (2005, p. 36) warns that: “Teachers 

must clearly understand reform and have the pre-requisite skills to put it in place, if they are 

to enact it successfully”. Paradoxically, Hayward, Priestley & Young (2004) state:  

  
 ensuring that policies are coherent and grounded in research does not ensure their ready 

 adoption in practice. Such an assumption implies a functionalist and social engineering 

 conception of policy and research that ignores the heterogeneity of contexts within which 

 policy has to take root, as well as the role of accumulated practitioner knowledge (p. 399). 

 

Irrespectively, Donaldson (2011, p. 70) in his emphatic review of Scottish teacher education 

declares: “If we are to achieve the aspiration of teachers being leaders of educational 



131 

 

 
 

improvement, they need to develop expertise in using research, inquiry and reflection as part 

of their daily skill set”. Consequently, latest restructuring of national standards (GTCS, 2012, 

p. 8) prescribe that practitioners are expected to develop and apply their knowledge, skills and 

expertise through enquiry and sustained professional learning to “critically engage with a 

range of educational literature, research and policy to make meaningful links to inform and 

change practice”. In spite of this ambitious doctrine, it is questionable if a suitable framework 

exists to allow Scottish teachers to successfully operationalise research literature to help 

execute this didactical requirement, forcing them to rely on their own, unexplored and 

possibly restricted cognitive past experiences (Ellis, 2010). In their ethnographic study of the 

beliefs of six Scottish primary and secondary teachers, Biesta, Priestley & Robinson (2015) 

delineates the existence of a narrow professional discourse about teaching and education. The 

researchers opine that the limiting nature of a weak set of orientations will prevent teachers 

from locating future beliefs within a wider intellectual dimension.   

 

 

Tensions already exist between constructivist underpinnings of the curriculum and implicit 

transmissionist views of the teachers (Priestley & Minty, 2012). Priestley & Minty (2013, p. 

50) argue that practitioners have different perceptions of the purposes and philosophy of the 

curriculum “which relate inherently to their prior experiences of the 5-14 Curriculum, the 

long tradition of subject specialism (in secondary schools), and to their own personal beliefs 

and values about education”. It is inferred that the implementation of reform initiatives is 

compromised when teachers’ beliefs are misaligned with the theoretical foundations of CfE.  

 

 

In an autonomous environment with no prescriptive curriculum, the enactment of classroom 

practices is influenced and fashioned by conceptualisations of teachers’ beliefs. Grouws 

(1996) contends if teachers executed a problem solving approach to mathematical learning, 

opposed to providing robotic “endless sets of exercises where each exercise has one answer 

and there is one set way of doing each exercise in the set” (p. 79), they would enrich pupils 

mathematical thinking. Moreover, he asserts that in such a terrain, “one would see lots of 

exploration of situations, hypothesis generation, problem posing, multiple solutions and 

solution methods, arguments followed by justifications and verifications” (p. 80). Though a 

common agreement exists that mathematics beliefs are personal philosophies and conceptions 

about the nature of mathematics and its learning and teaching (Thompson, 1992), such views 
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encapsulate an array of perspectives which may be overtly influenced by the contextual nature 

of CfE. 

 

 

4.7 Summary  

Teachers’ beliefs play an important role in the education landscape. They influence what is 

taught, how it is delivered and what is learned (Fives & Buehl, 2012). Teachers’ beliefs are 

not held in isolation but are interrelated in complex ways known as a belief system (Rokeach, 

1968; Green, 1971; Leatham, 2006). Mathematical beliefs are often classified as personal 

philosophies about the nature of mathematics, the learning of mathematics and the teaching of 

mathematics. The literature has highlighted inconsistences between teachers’ espoused beliefs 

and enacted classroom practices (e.g. Thompson, 1984; Raymond, 1997; Skott, 2001). If we 

are to bridge the disjunction between educational policy, research and practice, it is essential 

that teachers’ beliefs are explored and valued.  

 

 

The next chapter presents and justifies the research methods and methodology selected to 

answer the research questions in this study.  
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CHAPTER FIVE 

 
 

Research Methodology and Methods 
 

 

The purpose of this chapter is to present the philosophical assumptions underpinning this 

research along with justifications and rationalisations for the methodology adopted. The first 

part outlines the objective of the study and the research questions. This is followed by an 

examination of the research design, consideration of ontology, epistemology and different 

research approaches. Next, the chapter reports on my own research positionality and 

assessment of the interdisciplinarity of the study. Succeeding this, I comment on the 

operationalisation of the research questions. This includes an explanation of the search 

strategy used in the systematic literature review of mathematical problem posing and an 

overview of the design of the instruments employed to measure the belief construct. 

Integrated is a narrative on the development of the questionnaire and interview schedule. The 

penultimate section provides analysis of the pilot and the role of reliability and validity in 

mixed methods research. Finally, ethical considerations are discussed. 

 

 

5.1 Research questions 

During the early planning stages of this inquiry process, I composed several general questions 

grounded on my pedagogical experience, knowledge of localised observations and 

interpretation of the mathematics guidelines within CfE. These preliminary queries generated 

a stimulus for personal reflection and developing more specific questions. On completion of 

the literature review (i.e. chapter two, three and four respectively), the questions were refined 

to capture my engagement with published works in the field that contributed to a conceptual 

framework. In particular, it explicitly underlined a requirement for me to coalesce with 

primary and secondary mathematics teachers in some form of cross-sector empirical study of 

beliefs.   

 

 

The next phase involved framing the questions to take cognisance of data collection and 

analysis implications. In other words, it sensitised me to begin theorising about my 

contribution to existing knowledge, while simultaneously emphasising the practical nature of 
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research methods and methodologies. Flick (2014, p. 146) notes that “reflecting on and 

reformulating the research questions are central points of reference for assessing the 

appropriateness of the decisions you take at several points”. Finally, the research questions 

emerged after reviewing theoretical advice on conceptualisation from several scholars (e.g. 

Bryman, 2012; Creswell, 2013a; Maxwell, 2013; Punch, 2014). Collective features included 

the construction of clearly stated questions that are researchable within the given time frame 

and location, including consideration of constraints due to my full-time teaching role. 

 

 

The reflective and interrogative processes shaped and directed the development of the 

following three research questions: 

 

Question 1 

To what extent should mathematical problem posing be embedded within the framework of 

Curriculum for Excellence? 

 

Question 2 

Are there any differences in the mathematical beliefs of Scottish primary and secondary 

mathematics teachers? 

 

Question 3 

What factors impact on the mathematical beliefs of Scottish primary and secondary 

mathematics teachers? 

 

From these questions and a further period of reflection, I derived five sub questions: 

 

Q1(a) What would be the value for learners of emphasising mathematical problem 

 posing in the curriculum? 

Q1(b) What would be the implications for teachers’ professional practice of implementing 

 mathematical problem posing in their pedagogy? 

Q2(a) What is the importance of learning theory of shaping teachers’ mathematical beliefs? 

Q2(b) What are teachers’ beliefs about mathematical problem solving?   

Q3(a) What are the practical characteristics that support or constrain the development of 

 teachers’ beliefs? 
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5.2 Educational research 

Cohen, Manion & Morrison (2011, p. 1) skilfully encapsulate many of the associated 

perspectives and complexities when they offer the following definition as the “systematic and 

scholarly application of the principles of a science of behaviour to the problems of teaching 

and learning within education and the clarification of issues having a direct and indirect 

bearing on those concepts”. On further examination, it is reasonable to assume that 

educational research is undertaken within some paradigm or interpretive framework (Guba, 

1990). For example, Denzin & Lincoln (2011, p. 13) maintain that interpretive research is 

“guided by a set of beliefs and feelings about the world and how it should be understood and 

studied. Some beliefs may be taken for granted, invisible, or only assumed, whereas others are 

highly problematic and controversial”. Furthermore, Waring (2012) attests that all researchers 

need to understand that their research is encased by a series of related suppositions framed 

around four key questions, represented in Figure 5.1.  

 

Figure 5.1 The relationship between ontology, epistemology, methodology and methods  
  (Adapted from Waring, 2012) 

 

ONTOLOGY
What is the form and 
nature of the social 

world?

EPISTEMOLOGY
How can what is 

assumed to exist be 
known?

METHODOLOGY
What procedure or 

logic should be 
followed?

METHODS
What techniques of 

data collection should 
we use?
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Waring (2012) identifies a fundamental set of philosophical assumptions that underpin the 

research activity and describes their interrelationship and implications, in order that a 

researcher can appreciate the process and to locate their position. Crotty (1998) argues that a 

researcher can select any philosophical assumptions as a starting point. However, Grix (2010) 

contends that the need to understand the philosophical underpinnings that inform their choice 

of research questions, methodology, methods and intentions must begin with identification of 

ontological assumptions. He counsels: 

 
 setting out clearly the relationship between what a researcher thinks can be researched (her 

 ontological position) liking it to what we can know about it (her epistemological position) and 
 how to go about acquiring it (her methodological approach), you can begin to comprehend the 

 impact your ontological position can have on what and how you decide to study (p. 67).  

 

I will now briefly attempt to make more sense of the assumptions of ontology, epistemology, 

methodology and methods as they apply to this research study. 

 

5.2.1 Ontology 

Ontology is the starting point of all research and enjoys a rich history in philosophy. It is 

governed by the form and nature of reality or a phenomenon. According to Guba & Lincoln 

(1994), ontology is centred on what we know about something. Likewise, Crotty (1998, p. 10) 

illustrates that it “is the study of being” and “is concerned with ‘what is’, with the nature of 

existence, with the structure of reality as such”. Taken together, ontology encompasses our 

assumptions about how the world is made up and the nature of objects. 

 

 

Therefore, it is only logical that different claims and assumptions exist, which in turn lead to 

the presence of a wide variety of human ontological perspectives. Consequently, this factor 

can produce multiple research results. Grix (2010, citing Lewis, 2002) points out that explicit 

reflection about ontological issues can help clarify the precise character of theoretical 

positions and arguments. For example, from a mathematical perspective, a simple ontological 

option is to postulate the existence of abstract mathematical objects like numbers or sets. In 

considering my own ontological position, I refer back to the three views of mathematics as 

characterised by Ernest (1989a) in chapter four. On this basis, I hold a  problem solving 

perspective since I believe mathematics is aligned with a continually expanding field of 

human inquiry i.e. mathematics is not a finished product and its results remain open for 

revision. 
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5.2.2 Epistemology 

Epistemology is an important branch of philosophy that investigates the origin, methods and 

limits of human knowledge and is concerned with the relationship between the researcher and 

the communities who are being examined. It deliberates over what constitutes valid 

information and how we can obtain it. Cohen, Manion & Morrison (2011) claim that useful 

knowledge is established by the societal and positional authority of the proponents of that 

knowledge. As Crotty (1998, p. 3) concludes, epistemology is “the theory of knowledge 

embedded in the theoretical perspective and thereby in the methodology” and additionally in 

shortened form, as “how we know what we know” (p. 8); this informs the research in different 

ways such as objectivism, subjectivism, etc. 

 

 

All researchers are driven by particular epistemologies and all research is impregnated with 

epistemological beliefs. My own epistemological perspective, when faced with a proliferation 

of learning theories regarding the teaching of mathematics, is focused on what ideas can be 

practically adapted to my professional practice. What appeals to me is the position of Dewey 

and his support for a naturalistic approach and rejection of the dualistic epistemology and 

metaphysics of modern philosophy. In this view, inquiry does not consist of a passive 

observation of the world and ensuing inferences about reality, but rather as an active process 

which initiates human engagement such as testing hypotheses. 

 

5.2.3 Methodology 

The research methodology is the philosophy or general principles which guide the logic of 

scientific enquiry. It explains how we research complex and multiple realities (Cohen, 

Manion & Morrison, 2011). A methodology as a set of theories shows how research questions 

are articulated with questions asked in the field (Clough & Nutbrown, 2007). According to 

Crotty (1998, p. 3), methodology is defined as the “strategy, plan of action, process or design 

lying behind the choice and use of particular methods and linking the choice and the use of 

methods to the desired outcomes”. In contrast, Cohen, Manion & Morrison (2011) argue that 

no single solution for planning research exists but that any design must be governed by the 

notion of ‘fitness for purpose’. Moreover, as there are various ways of interpreting the world, 

a researcher must ensure that the objectives of the research drive the methodology and related 

design.  
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5.2.4 Methods 

Research methods are specific instruments employed in collecting data. Denscombe (2014, p. 

3) suggests that: “Methods are the equivalent of a microscope when used by a scientist, a 

thermometer when used by a medic, or a telescope when used by an astronomer. They do a 

job”. Although, the choice of methods will be influenced by ontological and epistemological 

assumptions and the range of research questions (Grix, 2010), caution is required to ensure 

that an appropriate instrument is selected. Recognition of the merits and limitations of each 

collecting device will assist the researcher, as will a foresight to change method if 

unsuccessful.   

 

 

5.3 Paradigms in educational research 

The concept of a paradigm is a worldview or a set of interrelated assumptions and beliefs 

about how objects work which is shared by members of a given community. Among the 

historiography of paradigms, perhaps the most well-known work is that of Kuhn (1996). He 

explained how paradigms represent ways of viewing the world and identified that “shared 

paradigms result in commitment to the same rules and standards for scientific practice” (p. 

11). Conversely, Guba (1990) argues that a lack of consensus allows a paradigm to be 

reshaped as our perception of its many implications improves. Subsequent radical changes to 

our understanding are known as a ‘paradigm shift’ (Kuhn, 1996). Reinforcing the foundation 

of any paradigm is that an individual will contribute previous life experiences and knowledge 

to every research context.  

 

 

Research paradigms represent a critical element in educational research as they strongly 

influence both the strategy and the method researchers construct and interpret the meaning of 

reality. It is important for new researchers to consider the philosophical underpinning and 

orientation that defines different perspectives in this regard. Therefore, advocates of any given 

paradigm should be able to summarise their beliefs relative to their responses to those 

ontological, epistemological, methodological and methods questions identified (e.g. Guba & 

Lincoln, 1994; Waring, 2012). Prior to finalising the research design for this study, my 

previous training and experience had the effect of hermetically sealing my choice of 

paradigm. Having recognised this at an early stage, I attempted to remain neutral throughout 

the process in order to justify all of my strategic decisions.  
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Executing a research project requires planning consideration as there are two main techniques 

on how to proceed. It is possible to begin with a paradigm, articulate it and develop research 

questions and methods from it. Alternatively, as in the case of this study, start with research 

questions that need answers and then select methods for solving them. Within education, this 

pragmatic approach often arises from practical problems and professional issues within the 

workplace (Punch, 2014).  

 

 

Generally, there are three broad competing paradigms that guide the research process across a 

continuum from positivist to interpretivist positions, though, variations occur in the labelling 

of what sits between these two extreme positions. For example, Grix (2010) asserts that in the 

philosophy of the social and human sciences, there exist a positivist, post-positivist and 

interpretivist position. In the remainder of this section, I am directed by Cohen, Manion & 

Morrison (2011) who outline three major paradigms within educational research (Figure 5.2) 

in which two are of interest to me.  

 

Figure 5.2 Paradigms in educational research (Adapted from Cohen, Manion & Morrison, 2011)   
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5.3.1 Positivism 

Positivism is an epistemological position that endorses the application of the methods of the 

natural sciences to the study of social reality and beyond (Bryman, 2012). Developed in the 

early ninthteenth-century by French philosopher, Auguste Comte, it is represented as an 

acceptance of the natural sciences as the paradigm of human knowledge. Similarly, Punch 

(2014, p. 17) contends that positivism is “the belief that objective accounts of the world can 

be given, and that the function of science is to develop descriptions and explanations in the 

form of universal laws – that is, to develop nomothetic knowledge”.  

 

 

Since positivism is heavily influenced by the role of theory in the natural world, I feel it apt to 

declare my understanding of this role. I believe that natural sciences provide reliable 

explanations or interpretations of phenomena that evolve after a hypothesis has accumulated 

sufficient evidence through testing; in such theories involving variables, the functioning 

relationships can be replicated independently. Entrenched within this premise is that scientific 

theories seek precision and objectivity through structured measurable observations. Positivism 

advocates that methodological procedures of natural science can be directly applied to the 

study of the complexities and interactions of human behaviour, the employment of normative 

questions such as value judgements are rejected. One position on this is that since there is a 

fundamental difference between facts and values, we cannot use empirical evidence in the 

construction of value judgements. Another position argues that values have a direct impact on 

research and that we should discontinue the fallacious dichotomy between facts and values 

(Lincoln & Guba, 1985). 

 

 

Viewed from a classroom perspective, positivism is centred on the transmission of knowledge 

as an exchange of statements. Freire (1970) refers to this as the “banking theory” where a 

teacher deposits knowledge in the form of facts into empty receptacles, which are the 

students. Such a pedagogical approach only serves to devalue the educational experience of 

the learner since it rejects the intangible nature associated with human thoughts and feelings 

such as intuition and emotion. Kincheloe (2012, p. 12) opines that “human-created knowledge 

is conceptualized as a physical substance handed from one individual to another via the 

process of teaching”. Within the context of educational research, positivism presents many 

challenges; for instance, it is not possible to directly measure teachers’ beliefs.  
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Bryman (2012) describes positivism as compromising of five principles; firstly, only 

phenomena confirmed by the senses can be accepted as knowledge. Secondly, the testing of 

hypotheses can allow explanations of laws to be assessed. Thirdly, knowledge is arrived at 

through the gathering of facts that provide the basis of realities. Fourthly, science is conducted 

in a manner that is value free. Finally, there is a clear distinction between scientific statements 

and normative statements and a belief that the former is the true domain of the scientist. 

 

5.3.2 Interpretivism  

Interpretivism is a term assigned to a contrasting epistemology to positivism. Proponents of 

this paradigm argue that individual behaviour can only be identified by the researcher sharing 

their interpretations of the subjective world around them. Crotty (1998, p. 67) states that 

interpretivism searches for “culturally derived and historically situated interpretations of the 

social life-world”. Cohen, Manion & Morrison (2011, p. 15) attest that “the social world can 

only be understood from the standpoint of the individuals who are part of the ongoing action 

being investigated and that their model of a person is an autonomous one, not the plastic 

version favoured by positivist researches”. In other words, interpretivism maintains that each 

individual has their own interpretation of reality which cannot be measured and generalised. 

In contrast to positivism, which seeks objectivity, this position considers the social and 

natural sciences as being distinct from one another and thus the social world requires to be 

investigated from within and with different methods from those applied in the study of the 

natural sciences (Grix, 2010). Interpretivists believe in subjectivity where researchers are 

inextricably part of the social phenomenon being examined. The variable and personal nature 

of social constructions suggests that data can only be elicited through interaction between 

researcher and participant (Waring, 2012). 

 

 

5.4  Research methods considered  

Within this section, I will briefly examine approaches that I contemplated using to 

operationalise my research questions for this study.  

 

5.4.1. Systematic literature review  

According to Dixon-Woods (2016, p. 380), a systematic literature review is “a scientific 

process governed by a set of explicit and demanding rules oriented towards demonstrating 

comprehensiveness, immunity from bias, and transparency and accountability of technique 

and execution”. They are designed to locate, appraise and synthesis the best available support 
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relating to a specific research question in order to provide informative and evidence-based 

answers (Boland, Cherry, & Dickson, 2014) and are characterised by being objective, 

efficient and replicable. Fundamentally, as a methodological approach, a systematic review 

seeks to promote impartiality in order to allow readers to evaluate the researchers’ 

assumptions, procedures, evidence and suppositions, rather than accepting the researchers’ 

findings on faith. Importantly, in comparison to traditional reviews, they are rigorous, follow 

prescribed protocols and employ overt methods to combine information from across different 

studies including carefully considered conclusions and recommendations (Cohen, Manion & 

Morrison, 2011; Punch, 2014).  

 

5.4.2 Quantitative research  

Quantitative research methods were originally developed in the sciences to study natural 

phenomena. The quantitative paradigm is more closely associated with positivism and 

distinguished by empirical research which purposely collects numerical data for mathematical 

analysis. Though, interpretative approaches, however, are equally applicable to the analysis of 

quantitative data as they can offer triangulation of research results from multiple perspectives, 

integration of measurements and modelling into a more holistic process of discovery and the 

ability to think reflexively about the manner in which data have come into existence 

(Babones, 2016). Even so, generalisability remains an issue with all aspects of interpretative 

approaches. Creswell (2009, p. 4) observes that quantitative research “is a means for testing 

objective theories by examining relationships among variables. These variables, in turn, can 

be measured, typically on instruments, so that numbered data can be analysed using statistical 

procedures”. Non-quantitative data (e.g. teachers’ beliefs) may be converted into quantitative 

form by using measurement instruments such as Likert scales. Another intention of 

quantitative research is to measure and analyse causal relationships between variables within 

an unrestricted framework (Denzin & Lincoln, 1994). 

 

 

The ontological position is that there is only one truth, an objective reality that exists 

independent of human perception. Interestingly, Bryman (2012, p. 160) argues that: “The very 

fact that it has a distinctive epistemological and ontological position suggest that there is a 

good deal more to it than the mere presence of numbers”.  Epistemologically, it is assumed  

that the researcher is capable of studying a phenomenon without influencing it or being 

influenced by it and that inquiry takes place as through a one-way mirror (Guba & Lincoln, 

1994). Nevertheless, it is misleading to suppose that quantitative research is entirely liberated 
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from bias or error. Researchers have an element of discretion and choice throughout the 

process. For example, the development of ‘standard questions’ may produce data which 

reflects the view of the researcher opposed to the participating subject. Furthermore, from a 

statistical perspective, errors in the selection of procedures for determining statistical 

significance can result in erroneous findings. 

 

5.4.3 Qualitative research  

As a suite of interpretative activities, qualitative research is particularly useful in the 

investigation of educational settings and processes. Based on my professional experience, 

teachers operate within a multifaceted and interconnected social dimension that breeds the 

multiple interpretations and perspectives that qualitative research can help us to explore. Due 

to the complex overlapping family of terms, qualitative research is not easy to describe. Over 

twenty years ago, Denzin & Lincoln (1994, p. ix) reported that “the field of qualitative 

research is defined primarily by a series of essential tensions, contradictions and hesitations. 

These tensions work back and forth among competing definitions and conceptions of the 

field”. More recently, Denzin & Lincoln (2011, p. 6) maintain that “qualitative research is 

difficult to define clearly” and argue: “It has no theory or paradigm that is distinctly its own ... 

Nor does qualitative research have a distinct set of methods or practices that are entirely its 

own”. Nevertheless, Denzin & Lincoln (2011) present the following description:  

 
 Qualitative research consists of interpretive, material practices that make the world visible. 

 These practices transform the world. They turn the world into a series of representations, 
 including field notes, interviews, conversations, photographs, recordings, and memos to the 

 self. At this level, qualitative research involves an interpretive, naturalistic approach to the 

 world. This means that qualitative researchers study things in their natural settings, 

 attempting to make sense of or interpret phenomena in terms of the meanings people bring to 
 them (p. 3). 

 

From an ontological perspective, qualitative researchers are concerned with the changing 

nature of reality fashioned through human experiences, in which the researcher adopts an 

interactive, flexible and inseparable connection with the phenomena being investigated. 

Multiple methodologies exist to collect data within the field of qualitative research. Reflecting 

on the term ‘reality’ has made me think about the notion of whether reality changes according 

to human experiences. For example, it may be postulated that reality for someone living five 

hundred years ago is different to our reality of today. Likewise, it may be claimed the 

individualistic nature of reality, reflected by different life experiences has shaped each human 

perception of reality. I believe that our physical reality has not changed, but that multiple 
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realities exist in the minds of people which have been manifested through idiosyncratic 

perspectives.   

 

5.4.4 Mixed methods research 

Over the years, mixed methods research has been conceptualised in various different ways. 

Based on their meticulous examination of researchers in the field, Johnson, Onwuegbuzie & 

Turner (2007) offer the following composite definition: 

 
 Mixed methods research is the type of research in which a researcher or team of researchers 

 combines elements of qualitative and quantitative research approaches (e.g., use of qualitative 
 and quantitative viewpoints, data collection, analysis, inference techniques) for the broad 

 purposes of breadth and depth of understanding and corroboration (p. 123). 

 

Fundamentally, however, it is inadequate to suggest that mixed methods is simply the 

gathering of both quantitative and qualitative data. For example, Clark et al. (2008, p. 364) 

describe mixed methods research “as a design for collecting, analysing, and mixing both 

quantitative and qualitative data in a study in order to understand a research problem”. Whilst 

this definition contains important qualities of mixed methods research, such as the integration 

of the two data sources, it does not make explicit reference to framing of the design within a 

philosophy or theory.   

 

 

In searching for a definition that encapsulates the entire spectrum of basic features, I draw 

upon the robust contribution from Creswell & Clark (2007), which states that: 

 
 Mixed methods research is a research design with philosophical assumptions as well as 

 methods of enquiry. As a methodology, it involves philosophical assumptions that guide the 

 direction of the collection and analysis and the mixture of qualitative and quantitative 
 approaches in many phases of the research process. As a method, it focuses on collecting, 

 analyzing, and mixing both quantitative and qualitative data in a single study or series of 

 studies. Its central premise is that the use of quantitative and qualitative approaches, in 

 combination, provides a better understanding of  research problems than either approach 
 alone (p. 5). 

 

However, more recently, Creswell & Clark (2011) argue that a definition for mixed methods 

should incorporate many diverse viewpoints. The authors itemise several core characteristics 

to illustrate their perspective and whilst they compose a valid reason for the inclusion of a 

research design orientation, it is debatable if such a position is absolutely necessary given 

their well cited original version.  
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Naturally, a dilemma arises during the integration of numerical and text data; Researchers 

need to decide on the level of interaction between quantitative and qualitative strands in a 

study. Johnson, Onwuegbuzie & Turner (2007, p. 124) present contrasting approaches that 

incorporate overlapping types of research. Firstly,  

 
 Qualitative dominant mixed methods research is the type of mixed research in which one 

 relies on a qualitative, constructivist-poststructuralist-critical view of the research process, 

 while concurrently recognizing that the addition of quantitative data and approaches are likely 
 to benefit most research projects.  

 
And secondly,  

 
 Quantitative dominant mixed methods research is the type of mixed research in which one 
 relies on a quantitative, postpositivist view of the research process, while concurrently 

 recognizing that the addition of qualitative data and approaches are likely to benefit most 

 research projects. 

 

Other key decisions in choosing mixed methods design includes the timing of the strands and 

procedures for mixing the strands (Creswell & Clark, 2011). Timing can be classified by three 

different systems as follows; Firstly, concurrent timing occurs when both quantitative and 

qualitative stands are implemented during a single phase of the study. Secondly, sequential 

timing transpires in two distinct phases, with the collection and analysis of one strand 

occurring after the collection and analysis of the other. Finally, multiphase combination 

timing ensues when several phases of sequential and or concurrent timing over a programme 

of study.  

 

 

Nevertheless, within the literature it is debatable if the rational for promoting mixed methods 

as a third paradigm, has assimilated sufficient merit, as underlying assumptions of the 

quantitative and qualitative paradigms result in differences which extend beyond 

philosophical and methodological debates. Tashakkori & Teddlie (2010) draw our attention to 

a variety of conceptual stances including the notion that quantitative and qualitative methods 

should not be mixed due to the incompatibility of the paradigms that underlie their methods. 

Conversely, both quantitative and qualitative methods may be used appropriately with any 

research paradigm (Guba & Lincoln, 1994). Notably, the logic for employing mixed methods 

is justified when the use of quantitative research or qualitative research alone is insufficient 

for gaining an understanding of the problem.  
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Notwithstanding the above positions, proponents of the tenets of mixed methods research hail 

it as an important and influential approach that is driven by pragmatism and directed by 

philosophical assumptions (e.g. Johnson, Onwuegbuzie & Turner, 2007; Greene, 2008; 

Creswell, 2009; Cohen, Manion & Morrison, 2011; Creswell & Clark, 2011). Whilst gaining 

in popularity, Bryman (2012) points out two key factors in promoting this development. First, 

he highlights a growing awareness of the consideration of research methods as data collection 

techniques or analysis which are not encumbered by epistemological and ontological 

‘baggage’. Second, he alludes to a ‘softening’ in the attachment towards quantitative research 

among feminist researchers, who had previously been highly resistant to its deployment. 

Regarding this latter factor, I suspect that Bryman is referring to the methodological paradigm 

wars of the 1970s where feminist researchers clearly positioned themselves firmly within the 

interpretative model. 

 

 

Creswell & Clark (2011) outline six mixed methods designs, with contrasting worldviews, 

that provide an effective research framework. One such enterprise is an explanatory sequential 

design (Figure 5.3) which I particularly value because of my mathematical background and 

newness to the field of mixed methods research. The intention of this design is to begin with a 

quantitative strand followed by a qualitative stand to help explain the quantitative results. The 

strength of this strategy lies in the fact that the two phases build upon each other so that they 

are distinct and easily recognised stages. Although various challenges exist such as sampling 

considerations for phase two, this design offers many advantages. One such benefit is that the 

final report can be written with a quantitative component followed by a qualitative section, 

making it straightforward to write and providing a clear delineation for readers (Creswell & 

Clark, 2011). Thus far, a number of educational studies have employed this methodological 

design (e.g. Ivankova, Creswell & Stick, 2006; Palak & Walls, 2009; Lamb, 2011; Hung, 

2012; Jetty, 2014).  

 

Figure 5.3 Explanatory sequential design (Adapted from Creswell & Clark, 2011)  
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5.5 Researcher positioning and interdisciplinarity  

Throughout my professional life as a teacher, I have always been an enthusiastic proponent of 

collaboration and teamwork in order to share insights and patterns of good practice. It has 

motivated me to look beyond subject domain boundaries to search for multiple perspectives. 

For example, I have applied an interdisciplinary approach to cross-circular projects involving 

colleagues from art and humanities subjects such as music, history and geography. With an 

open and curious mind, I approached this study with a willingness to develop and modify my 

own viewpoints so as to enhance personal scholarship. In particular, I have been cognisant of 

the requirement to guard against discipline entrapment (Grix, 2010).  

 

 

Moreover, I have reflected on my beliefs that have strongly influenced this research journey 

thus far. During previous undergraduate and postgraduate study, I employed instruments to 

measure data which suggest that I possibly hold a deterministic or reductionist opinion 

associated with post positivism. Identifying and assessing causes that influence outcomes is of 

interest to me, as does the testing of a theory or a hypothesis. On the other hand, I have 

generated data using a focus group which may perhaps reflect a constructivist worldview of 

understanding several meanings; I believe that specific contexts in which practitioners work 

can help to comprehend the historical and cultural settings of participants. Nevertheless, both 

of these contrasting theoretical perspectives would not accurately represent my genuine 

philosophical orientation as I hold different viewpoints and favour a research approach that 

chooses methods of data collection that are fit for particular purposes. In education, problems 

require solutions and questions need answers. I therefore position myself with embracing a 

pragmatic view of the world and how knowledge is formed. Such a justification has been 

reinforced by copious classroom experiences interacting with theoretical and practical 

methods to learning and teaching.  

 

 

At the same time, I have sought to actively acknowledge the influence of reflexivity and how 

this has impacted on my ontological and epistemological assumptions. Reflexivity recognises 

that researchers shape the research process and should seek to disclose their posit ionality on 

all matters that might affect the phenomena under study (Tashakkori & Teddlie, 2010; Cohen, 

Manion & Morrison, 2011). Foote & Bartell (2011, p. 46) argue that: “The positionality that 

researchers bring to their work, and the personal experiences through which positionality is 
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shaped, may influence what researchers may bring to research encounters, their choice of 

processes, and their interpretation of outcomes”.  

 

 

As a strategy for maintaining reflexivity, I kept a research journal which I used to convey my 

personal experiences throughout all phases of this study. I define this strategy as a mechanism 

that has fuelled a perpetual motion of reflection and critical self-evaluation. Significantly, it 

has propelled me back and forth along a continuum of objectivism and subjectivism. I believe 

that a researcher can strive to be objective but that an individual cannot completely detach 

themselves during the research process since they are part of the social world under 

investigation. Cohen, Manion & Morrison (2011, p. 225) refer to researchers in this basis as 

“actors” within “an already interpreted world”, of which undermines “the notion of objective 

reality”. Such an observation suggests that researchers should disclose their personal 

influences opposed to solely attempting to eliminate their positional affect. Assuming this to 

be universally true, I have viewed this research through the lens of an experienced and 

flexible Scottish secondary mathematics teacher who entered the initial process anchored with 

an empirical scientific philosophical position coupled with an intimate awareness of localised 

assessment concerns. Furthermore, I have come to realise that pragmatism is not driven by 

any particular dialectal stance and that research methods can be widespread and 

heterogeneous. Similarly, I fully recognise and value that educational research is underpinned 

by a socially constructed multidimensional subjective world, which is contrary to my own 

training and background. 

 

 

I align my philosophical position on pragmatism with a mixed methods approach. Greene 

(2008) advocates that choosing mixed methods, as a way of answering research questions, is a 

natural paradigm for holding such a position. Likewise, interdisciplinarity is achieved as 

mixed methods integrate two different specialisms. Crossing disciplinary boundaries has 

helped me understand the wider impact of my research and enabled me to appreciate that 

interdisciplinarity can be utilised to address what Bridle et al. (2013) refer to as ‘complex 

problems’ that cannot be solved using a solitary disciplinary perspective.  

 

 

Also, the interdisciplinarity of this study has impacted upon the selection of literatures that I 

have consulted and interrogated in several ways. Firstly, I have questioned my traditionally 
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held assumptions and have attempted to think ‘outside the box’ by reviewing texts 

encompassing a proliferation of data collection methods. Secondly, I have progressed beyond 

the limitations of using theoretically driven empirical research to consider the usefulness of 

assessing articles underlined by social theories. Thirdly, I have evaluated writings concerned 

with symbolising ‘explanations’ opposed to emphasising measurements or causations. An 

illustration of this involves discourses that are specifically related to context in order to 

illuminate the manifestation of human variables on the situatedness of social experiences.  

 

 

In short, while harnessing the creative tensions engendered by this research has developed my 

ability to be conversant with a wider repertoire of techniques, forging synergies across 

quantitative and qualitative disciplines stimulated a significant challenge for me as a new 

researcher. For instance, it required a considerable investment of time that I did not anticipate. 

Perhaps, the only ambiguity to resonate during this encounter is whether interdisciplinarity 

has inadvertently weakened my core discipline dependency.  

 

 

5.6 Previous studies measuring teachers’ beliefs 

Having justified my decision to employ a mixed methods research approach in this study, the 

next choice involved selecting appropriate instruments to collect the data. Various methods 

have been proposed to measure the construct of teachers’ beliefs. Supplementing the use of 

questionnaires and belief inventories, a researcher should consider open-ended interviews, 

responses to dilemmas and vignettes and observations including giving thought to metaphors, 

biographies and narratives (Pajares, 1992).  

 

 

Consequently, in order to augment my knowledge, I reviewed a number of previous studies 

that reported different strategies of assessing teachers’ beliefs. Within the scope of my brief 

analysis, I searched for peer-reviewed empirically based articles of practising and student 

teachers published during the last fifteen years. To my surprise, I discovered that the 

dimension of teachers’ beliefs are purported to be measured in at least twenty different ways. 

For example, Ozgun-Koca & Sen (2006) used concept-mapping, journal writing and 

interviews to elicit the perspectives about effective teaching of 51 Turkish prospective 

mathematics and physics teachers. In another study, Khan & Begum (2012) employed a 

portfolio and interview approach to evidence the changes in beliefs of six Pakistani current 
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practitioners undertaking professional development. Whilst this review of empirical studies 

generated practical information regarding methods of data collection, two critical interrelated 

features emerged as a result. First, it underlined the challenge of defining the belief construct 

and the methodological issue of how it can be operationalised successfully. Second, it 

revealed contrasting standards of research design within the literature.  

 

 

Moreover, it highlighted an essential requirement for me to consider how to ensure the 

trustworthiness of any interpretations being made acceptable as worth. I reflected on what 

criteria are acceptable to evaluate the quality of any research. Eager to avoid any artificial 

categories of judgment or unrealistic frameworks, I referred to the influential and much cited 

work of Lincoln & Guba (1985). Guided by the conceptualisation of validity and reliability 

where appropriate, I prepared an overview of previous methods used to measure teachers’ 

beliefs (Appendix A). This presented an excellent opportunity to compare and recognise 

various procedures utilised in the field. More significantly, it allowed me to identify studies 

which have demonstrated methodological and interpretative rigour, thus providing much 

needed design clarification as a new researcher.  

 

 

To date, observations (e.g. Stipek et al., 2001; Beswick, 2007; Forrester, 2008) and case 

studies (e.g. Raymond, 1997; Cooney, Shealy & Arvold, 1998; Skott, 2001; Cross, 2009; 

Beswick, 2012) have been widely adopted as they allow a deeper insight into the complexities 

of teachers’ mathematical beliefs within a contextualised setting. A distinct advantage of 

applying either of these methods is that they can be employed to corroborate or contrast 

teachers’ espoused beliefs. However, I rejected both approaches due to time constraints. 

 

 

In the remainder of this section, I briefly examine the suitability of one well-established 

quantitative and qualitative method that has been used extensively in the investigation of 

teachers’ beliefs i.e. questionnaires and interviews respectively. 

 

5.6.1 Questionnaires 

Research on teachers’ mathematical beliefs is dominated by questionnaires (e.g. Anderson, 

White & Sullivan, 2004; Beswick, 2004; Barkatas & Malone, 2005; Barlow & Gates, 2006; 

Perry, Wong & Howard, 2006; Yu, 2008; Wilkins, 2008; Chen et al., 2011; Roscoe & 
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Sriraman, 2011). The obvious advantage of using questionnaires is that they can be easily 

mobilised with large numbers of participants in multiple locations and can evaluate more than 

one construct. Many factors need to be addressed prior to successful operationalisation such 

as the time taken to complete the instrument, level of sensitivity of the questions, or the 

possible invasion of privacy (Cohen, Manion & Morrison, 2011). Crucially, in order for the 

resultant data to describe accurately what it is intended to describe, the design must combine 

the components of sampling, constructing questions and data collection (Fowler, 2014). 

 

 

Various rating scales can be used to accommodate non-dichotomous questions such as the 

Likert scale. The Likert scale is uni-dimensional and normally provides an odd number of 

choice options. An illustration of a study employing an even number of response options is 

that by Stipek et al. (2001), which used a six-point Likert scale to measure teachers’ 

mathematical beliefs and practices. It may be posited that the space between each response 

cannot possibly be equidistant, therefore failing to capture a true dimension of a respondents 

selection. Poorly articulated questions can attempt to force participants to condense their 

complex set of beliefs into pre-determined compartmentalised researcher statements that may 

or may not be mutually exclusive (Fang, 1996). Philipp (2007) probes the effectiveness of 

using Likert scales for measuring beliefs and notes that validity is reduced when questions 

provide little or no context. This view is supported by Speer (2005) who contends that beliefs 

are situated in contexts and interrogates the legitimacy of collecting data on beliefs separately 

from practices. However, Charalambous & Philippou (2010) suggest the ability to capture 

rich and accurate representations of teachers’ beliefs using Likert scales is inherently 

restricted by design. In an attempt to address some of the limitations, Ambrose et al. (2004) 

designed a web based survey to assess prospective primary teachers’ mathematical beliefs. 

The researchers claim that a major strength of their instrument is that video clips and learning 

episodes created contexts to which participants responded in their own words rather than 

choose from a set of pre-determined options. Denscombe (2014) offers a summary of the key 

criteria that researchers need to be aware of when designing and evaluating a questionnaire 

(Table 5.1).   
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Table 5.1 Criteria for the design of a questionnaire (Adapted from Denscombe, 2014) 

Criteria 
Research 
issue 

Factors to be considered 

 
Response rate 
Will a sufficient proportion of questionnaires 
be returned to avoid bias in the information 
collected? 
 

 
Reliability 

 

 Good design of questionnaires 

 Motivation of respondents 

 Follow-ups used 

Full information 
Does the questionnaire gather information 
on all crucial areas necessary for the 
research? 
 

Completeness  Inclusion of all vital topics 

 All sections of the questionnaire answered 
 

Accurate information 
Is the information free from errors arising 
(intentionally or accidently) from the nature 
of the questions being asked? 
 

Validity  Appropriate questions for the topic/concepts 
being investigated 

 Clear, precise and unambiguous questions 

 Honest answers 
 

Ethical stance 
Has due consideration been given to the 
rights of those supplying the information? 

Professional 
integrity 

 Voluntary co-operation 

 Information given about the way data will be 
used 

 Respondents’ identities not disclosed 

 Protection of sensitive data 

 

5.6.2 Interviews 

An interview is a very powerful mechanism for understanding human interactions and has 

been widely employed within the research of teachers’ mathematical beliefs (e.g. Aguirre & 

Speer, 2000; Anderson, Sullivan & White, 2004; Perry, Wong & Howard, 2006; Cross, 2009; 

Furinghetti & Morselli, 2011; Beswick, 2012; Skott, 2013; Xenofontos & Andrews, 2014). 

Interviews can empower participants to freely discuss their interpretations of the world in 

which they live, and to express how they understand situations from their own perspective 

(Cohen, Manion & Morrison, 2011). The selection of a particular interview type is based on 

the purposes of the research and nature of the questions. For example, Mosvold & Fauskanger 

(2013) used focus group interviews to investigate the beliefs about knowledge of 

mathematical definitions of 15 Norwegian secondary mathematics teachers. Consideration is 

accorded to practical aspects of the interview and how the process will be administered. It 

requires patience, demands considerable time and energy and involves coordinating between 

different timetables and establishments (Bryman, 2012). However, as with questionnaires, a 

drawback associated with this method is that there are no watertight ways of detecting false 

statements.  
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5.7 Research methods selected  

The overarching goal of this thesis is to find an answer to each of the three research questions. 

Moreover, it is widely accepted that individual research questions should drive the range of 

research methods. That is, in this study, after due consideration and reflection, I believe that I 

have selected the most appropriate research method for each of the research questions. A 

summary mapping of the research methods to the research questions is shown in Figure 5.4.  

Figure 5.4 Summary of mapping of research methods to research questions 

 

Systematic 
Literature Review

Mixed 

Methods

Mixed 
Methods

Research 
Question 1

Research 
Question 2

Research 
Question 3

Pragmatism Pragmatism Pragmatism

Phase 1 
(Quantatitive)

Questionnaires

Phase 1 
(Quantatitive)

Questionnaires

Explanatory Sequential Design Explanatory Sequential DesignInclusion Criteria

Based on key 
elements of CfE

Pragmatic approach 
to searching

Phase 2
(Qualitative)
Interviews

Phase 2
(Qualitative)
Interviews

 

 

 

Research Question 1 

A systematic literature review was chosen in order to establish a reliable evidence base for 

evaluating the effectiveness of embedding mathematical problem posing within the 

framework of Curriculum for Excellence. The purpose was to identify empirical research on 

problem posing which indicated educational benefits to the learning and teaching of 

mathematics. To ensure that the review was systematic, I followed the guidance 

recommended by Boland, Cherry & Dickson (2014). 
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The first step involved developing criteria for searching. I employed the keywords and 

phrases: “mathematical problem posing”, “problem posing intervention research”, “problem 

posing in mathematics education”, “experimental studies and mathematical problem posing” 

and “effect of problem posing on mathematics”. The next step concerned searching for 

publications. An electronic search of educational databases included JSTOR, ProQuest 

Dissertations and Theses (PQDT), PsycINFO and Educational Resources Information Centre 

(ERIC). Additional citations were located by inspecting the reference list of selected 

publications. Furthermore, a manual search was conducted of a number of well-respected 

academic journals such as Journal of Mathematical Behavior, Journal of Mathematics 

Education, Journal for Research in Mathematics Education, International Journal of 

Mathematical Education in Science and Technology including Advanced Google Scholar. 

The breadth of the literature yielded an initial pool of 3823 citations from these multiple 

searches. However, the vast majority of publications were duplicated across database searches 

or were found to be inappropriate and were discarded during this phase. Based on these 

searches, 197 unique sources from journals, conference papers, theses and ERIC documents 

related to mathematical problem posing were identified for inclusion (Figure 5.5). 
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Figure 5.5 Identification of included studies 

 

3823 citations identified through electronic and hand searching

197 citations remain after removing duplicate or inapproprate  records

Titles/Abstracts of 197 citations screened 

Full text of 61 citations assessed for inclusion 

136 citations excluded

17 included citations

44 full-text citations excluded:

 Full text could not be obtained (n = 5)
 Inappropriate (n = 37)
 Inappropriate population (n = 1)
 Inappropriate language (n = 1)

 

 

In order to narrow the list of potential sources located in the initial database search, I 

employed specific eligibility criteria. First, only peer-reviewed works published in English 

between 1996 and 2016 were considered. Second, citations had to be related to primary and 

secondary pupils, university initial teacher education students or practising teachers. Third, 

only sources containing explicit details of the research design methodology with an 

appropriate level of statistical analysis were deemed suitable. Fourth, the search was restricted 

to empirical studies indicating a minimum sample size of 25.  

 

 

After carefully screening the titles and abstracts, a further 136 records were removed. 

Thereafter, I strove to retrieve the full text of the remaining 61 sources to examine each 

citation in more depth. During this phase, 5 items were not available in full text or 

inaccessible, 10 were discarded because they adopted non-experimental research designs, 
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while 27 were constrained to theoretical frameworks, literature reviews, pedagogical 

approaches or comparative studies. In one case, the source involved only 19 participants and 

in another example, the text language was not in English.  

 

Results 

A total of 17 citations were included in the systematic review (Appendix B). Eleven studies 

involved pupils and six centred on prospective primary or secondary mathematics teachers. 

Eight studies were published between 2010 and 2016 with the remainder between 1997 and 

2009. The origin of the studies was diverse in nationality with four coming from Turkey, 

three deriving from Australia and Kazakhstan, two hailing from China and USA and one from 

Oman, Ireland and Iran respectively. The datasets contained 1,939 participants (i.e. 1,186 

pupils and 753 ITE university students). 

 

 

Application of the inclusion criteria to the results of the searches identified seventeen 

experimental studies for inclusion in this review. Surprisingly, no studies involved practising 

teachers from either sector. Nonetheless, piloting of the search strategy and supplementation 

of the results of the electronic search with hand searching and searching of reference 

publications allows a reasonable confidence in the deduction that all relevant research was 

included in this systematic review and that the conclusions arising from this review can be 

based on synthesis of all available empirical evidence.  

 

 

Overall, the methodological quality of the included experimental studies was of a high 

standard. No restriction was placed on geographical criteria which allowed the range of 

eligible worldwide literature to be maximised. All studies stated that participants were 

randomly allocated to treatment groups. The majority employed t-tests to analysis the 

statistical results. Ten are published in peer-reviewed international journals, five are 

individual university research degrees, one is an international conference paper and one is 

featured as a chapter in a renowned book. However, around one third of the studies involve a 

sample size of 40 or less. 

 

 

Research Questions 2 and 3 

A mixed methods explanatory sequential design was chosen to explore the mathematical 

beliefs of Scottish primary and secondary mathematics teachers. This decision was centred on 
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the simplicity of the research strategy, my functioning knowledge of statistical processes and 

the challenges of conducting research as a full-time practitioner. Furthermore, as the construct 

of beliefs do not lend themselves easily to empirical investigation, I elected to incorporate 

more than one type of assessment to enhance reliability. Pajares (1992, p. 314) reminds us 

that beliefs “cannot be directly observed or measured but must be inferred from what people 

say, intend, and do – fundamental prerequisites that educational researchers have seldom 

followed”.  

 

 

The research design comprised of two distinct phases. In the opening phase, an internet based 

questionnaire was employed as the instrument to collect quantitative data. One practical 

advantage of using an online survey is that the data is instantly available and can easily be 

transferred into specialised statistical software for more detailed analysis. This was followed 

by a second phase, which used semi-structured interviews to gather qualitative data to help 

explain why certain variables and factors are important or non-significant. I opted for semi-

structured interviews as I sought to remain flexible and establish an opportunity for any 

participant to develop ideas and speak more extensively on issues raised. An overview of the 

main procedures used is shown in Figure 5.6. 
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Figure 5.6 Main procedures for explanatory sequential design mixed methods study 

Questionnaire 
Design and 

Development

Pilot Testing of Instrument

Quantitative 
Data Collection

Quantatitive 
Data Analysis

Statistical Analysis 
of Numerical Data 

Using SPSS 

Qualitative
Data Analysis

Qualitative 
Data Collection

Semi-Structured 
Interviews

Coding and 
Thematic Analysis 

of Transcripts

Integration of 
Quantitative and 

Qualitative Results

Interpret How 
Qualitative Data 

Explain Quantitative 
Results

Theory
Research 
Questions 

Interview 
Protocol 

Interview 
Schedule

Development

Purposeful Sampling 
of Participants 
and Finalising 

Interview Questions

 

 

 

 

 

 

 



159 

 

 
 

5.8    Questionnaire  

The design objective was to measure teachers’ beliefs about mathematical problem solving 

and problem posing. Thoughtful consideration was afforded to a constellation of interrelated 

contextual beliefs rooted in the orientation of learning and teaching of mathematics, including 

theoretical constructivist and collaborative underpinnings projected within the framework of 

CfE. 

 

Initial design 

My strategy was centred on demographic information, belief statements and a procedure for 

recruiting interview participants. To begin with, I complied an inventory of potential belief 

statements utilising previously implemented research field instruments (e.g. Kloosterman & 

Stage, 1992; Ford, 1994; Emenaker, 1996; Perry, Howard & Conroy, 1996; Perry, Howard & 

Tracy, 1999; Hart, 2002; Kupari, 2003; Anderson, White & Sullivan, 2005; Beswick, 2005; 

Barlow & Cates, 2006; Memnun, Hart & Akkaya, 2012; Voss et al., 2013). Whilst these 

empirical studies presented a worthwhile starting point, several items on closer inspection 

required alteration to eliminate doubt regarding intelligibility. This triggered my awareness to 

assess the dimension of reliability and validity to ensure the quality of the ensuing data is 

acceptable. Fowler (2014) observes that good questions depend upon reliability (i.e. providing 

consistent measures in comparable situations) and validity (i.e. responses correspond to what 

they intend to measure).     

 

 

The list of belief statements was lengthened in response to the literature (e.g. Polya, 1957; 

Thompson, 1992; Schoenfeld, 1985, 1992; Kilpatrick, 1987; Skemp, 1987; Ernest, 1989a, 

1991; Stanic & Kilpatrick, 1989; Silver, 1994; Lester & Charles, 2003; Scheon & Charles, 

2003; Brown & Walter, 2005; Lesh & Zawojewski, 2007; Mason, Burton & Stacey, 2010; 

Lester, 2013; Singer & Voica, 2013) including three items composed by myself. In sum, this 

component generated 65 items grouped under three main categories, considered most relevant 

to practice (Beswick & Callingham, 2014): 

 

 Teachers’ beliefs about the nature of mathematics  

 Teachers’ beliefs about the learning of mathematics 

 Teachers’ beliefs about the teaching of mathematics 
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A theoretical framework by Ernest (1989a) was used to create three subsets for teachers’ 

beliefs about the nature of mathematics i.e. instrumentalist view, Platonist view and problem 

solving view. Juxtaposed with this perspective, personal epistemological philosophies of the 

teaching of mathematics as described by Ernest (1991) provided a further theoretical 

foundation; philosophies of mathematics included an absolutist and a fallibilist view, both of 

which sit at the opposing ends on the belief continuum. According to Ernest (2004), absolutist 

philosophies “view mathematics as an objective, absolute, certain and incorrigible body of 

knowledge, which rests on the firm foundations of deductive logic” (p. 12) whilst fallibility 

philosophies argue that mathematical knowledge is “understood to be fallible and eternally 

open to revision, both in terms of its proofs and its concepts” and “made up of many 

overlapping structures” (p. 14). As a Chartered mathematician, I find it difficult to accept 

uncritically the previous assertion about the validity of proofs or the truth of theorems but this 

position is valuable for this design. In completing this section, two hierarchal headings of 

teachers’ beliefs about the learning of mathematics were dichotomised into traditional 

(transmissive) and constructivist (contemporary) orientations respectively.  

 

Development  

Having established a preliminary draft of variables, the next step involved critical assessment 

of the proposed instrument in terms of reliability, validity, length and unnecessary, difficult or 

ambiguous questions. Acting on practical advice from two Education Officers (located within 

different local education authorities), an internet-based survey program was introduced. It was 

advocated that as all potential participants were likely to have access to a computer and 

possession of the minimum degree of computer literacy required, administration costs would 

be significantly reduced. Cohen, Manion & Morrison (2011) point out other advantages of 

internet based surveys: 

 
 it reduces the time to distribute, gather and process data (data entered onto a web-based 

 survey can be processes automatically as soon as they are entered by the respondent rather 

 than being keyed in later by the researcher); the computer can check incomplete or 

 inconsistent replies; it enables a wider and much larger population to be accessed; human error 
 is reduced in entering and processing online data (p. 280).  

 

After deliberation of various options, https://www.surveymonkey.co.uk/ was selected as the 

internet based survey program to collect the data. Likewise, a five-point Likert scale ranging 

from 1 (Strongly Agree), 2 (Agree), 3 (Undecided), 4 (Disagree) and 5 (Strongly Disagree) 

was appointed as response options. With the assistance of five school colleagues and three 

external professionals, a pre-pilot was implemented to gather information. As a review group, 

https://www.surveymonkey.co.uk/
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the participants yielded rich feedback grounded on an accumulation of 170 years of primary 

and secondary teaching experience. Criticism focussed on significantly reducing the number 

of comparable items, extending the belief groupings to take a wider account of collaborative 

learning within CfE, together with a way of differentiating between a social constructivist 

approach and a problem solving viewpoint. Based on this critique, I conducted a short 

literature review.  

 

 

As a consequence of constructive feedback and the acquisition of supplementary knowledge, I 

initiated a spectrum of changes to the original design. Oppenheim (1992, p. 47) argues that: 

“Questionnaires do not merge fully-fledged; they have to be created or adapted, fashioned and 

developed to maturity after many abortive test flights”. An augmented reconceptualised 

version emerged consisting of 41 belief statements featuring new items employed from 

empirical studies by Van Zoest, Jones & Thornton (1994) and Barkatas & Malone (2005). 

Moreover, the questionnaire structure was expanded to reflect five distinct mathematical 

belief classifications like so: 

 

Under the heading of a constructivist (contemporary) orientation:  

 A social constructivist view 

 A problem solving view 

 A collaborative view 

 

Under the heading of a traditional (transmissive) orientation: 

 A static (instrumentalist) view 

 A mechanistic (Platonist) view 

 

This modified design facilitated an anthology of information about the interrelationships 

among multiple teacher belief categories as follows: 

 

Factor 1 A social constructivist orientation towards the nature of mathematics, the  

  learning of mathematics and the teaching of mathematics. 

 

Factor 2 A problem solving orientation towards the nature of mathematics, the learning 

  of mathematics and the teaching of mathematics. 
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Factor 3 A static transmission orientation towards the nature of mathematics, the  

  learning of mathematics and the teaching of mathematics. 

 

Factor 4 A mechanistic transmission orientation towards the nature of mathematics, 

  the learning of mathematics and the teaching of mathematics. 

 

Factor 5 A collaborative orientation towards the nature of mathematics, the learning 

  of mathematics and the teaching of mathematics. 

 

It is conjectured by me that by widening the groupings (i.e. factors) from three to five, it will 

engender a more accurate dimensional representation of teachers’ mathematical beliefs 

systems, not previously contemplated in this study. Intrinsically, this should mobilise a richer 

diversity of belief constructs to be elicited during the research process. This is particularly 

worthwhile given the groupings are not mutually exclusive and that this study encompasses 

practitioners from both sectors, functioning within an expansive multiplicity of pedagogical 

and autonomous demands of CfE.  

 

 

Finally, a second pre-pilot was conducted to evaluate the modified design version. This was 

undertaken by an accomplished secondary Principal teacher of mathematics in possession of 

recent online survey experience. The outcome of which prompted me to incorporate some 

minor word and layout refinements, including the rejection of a belief statement deemed to be 

theoretically inconsequential, thereby decreasing the total number of items to 40.  

 

5.8.1 Pilot study 

The purpose of a pilot study is to verify (although this can never be completely guaranteed) 

that the final design will operate in the field, by attempting to identify and amend problematic 

questions in advance. Creswell (2013) strongly advocates pilot testing to ensure that 

respondents share common understanding and meaning of the questions and to establish 

content validity of the instrument. Similarly, Bell & Waters (2014, p. 167) testify that the 

purpose of a pilot “is to get the bugs out of the instrument so that respondents in your main 

study will experience no difficulties in completing it”. Oppenheim (1992) champions the 

benefits of making preparations for fieldwork and argues that pilot testing can be immensely 

rewarding for a researcher.  
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In offering guidance on selecting potential participants, Cohen, Manion & Morrison (2011, p. 

403) advise researchers to pilot the questionnaire “using a group of respondents who are 

drawn from the possible sample but who will not receive the final, refined version”. Equally, 

Peat et al. (2002, p. 57) maintain that “an essential feature of a pilot study is that the data are 

not used to test a hypothesis or included with data from the actual study when the results are 

reported”. It is evident from the literature that researchers should not contaminate the main 

study by including flawed or inaccurate data from the pilot study.  

 

 

During 2014, a two week pilot study was conducted with a sample of practising primary and 

secondary mathematics teachers from Dundee City Council, with the understanding that no 

teachers from this LEA would be invited to participant in the main study. The decision to 

approach Dundee City Council was based on a positive attitude towards educational research 

and its strong link with the University of Dundee. I am extremely grateful for the courtesy, 

advice and cooperation afforded to me by this LEA. The pilot was administered via an email 

and invitation link under the management of an Education Officer, and thus no information is 

available on the precise choice of sampling method employed or response rate. The main 

body of the instrument consisted of 40 belief statements (23 positive items and 17 negative 

items) during which respondents were encouraged to identify any problematic or ambiguous 

questions, including an opportunity to enter comments regarding any aspect of the survey 

design (e.g. clarity, appearance, relevance, limitations, etc.) and possible suggestions for 

improvement. In order to alleviate question order bias, ‘Question Randomization’ was 

selected on Survey Monkey to guarantee that each respondent answered the questions in a 

different order. 

 

Results  

The pilot questionnaire attracted 42 participants of which 11 entries were incomplete and 

consequently deleted. The remaining 31 complete entries included 14 primary teachers and 17 

secondary mathematics teachers, consisting of 9 males and 22 females. All with the exception 

of one (TIS) were employed on a full-time basis. The estimated mean age of the participants 

was 37.3 years and the estimated mean length of teaching experience calculated to be 15.8 

years. The distribution of grades is contained in (Figure 5.7). In terms of the highest level of 

qualification in the field of education, 2 participants indicated Masters level.  
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Figure 5.7 Bar graph of grade of pilot participants (N = 31) 

 
 

The outcome of the pilot study provided valuable information summarised as follows:    

 

 Participants offering constructive comments on belief statements (11) 

 Participants offering critical comments on belief statements (1) 

 Participants offering suggestions for design improvements (6)  

 Participants agreeing to a telephone interview (2) 

 

Telephone interviews 

These were conducted within one week of the pilot and involved two experienced primary 

practitioners from different schools. Each participant was actively engaged in postgraduate 

study of mathematics education as part of a professional update process. The duration of the 

telephone interviews ranged between 15 and 20 minutes. Both responses underpinned the 

suitability of the overall design and guided the introduction of a handful of marginal 

adjustments (e.g. expansion of demographic information and enlargement of the space for 

volunteered comments). Furthermore, I utilised each opportunity to explain some of the 

quantitative results and to appraise a mixture of phase two interview open questions.     

 

5.8.2. Trustworthiness of pilot study 

It is essential to evaluate the credibility of any pilot to establish what modifications are 

required. In this section, I will briefly report on reliability and validity and will follow this up 

with a more critical examination of both concepts in the next section.  

 

 

In order to determine reliability, Creswell (2009) advises that a researcher must obtain levels 

of internal consistency based on the correlations between various items. Such a concept 

measures the interrelatedness of the items and is expressed on a numerical scale between 0 

and 1. In simple terms, it is used to evaluate the degree to which different test items that probe 

the same construct produce similar results. Reliability was calculated using Cronbach’s alpha 

(Table 5.2). Pallant (2013) contends that the Cronbach alpha coefficient should be above 0.70, 
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whereas Bryman (2012) reports that 0.80 is more typical to denote an acceptable level, 

although both authors caution that the value is sensitive to the quantity of items in the 

analysis. 

 

Table 5.2 Pilot reliability statistics 

Belief Factor Number of items Cronbach alpha coefficient 

1 7 0.784 

2 10 0.867 

3 10 0.828 

4 8 0.712 

5 5 0.789 

 

The overall Cronbach alpha for the 40 items was 0.940 indicating excellent internal 

consistency reliability. Although, one item was removed since its presence decreased this 

value. This item was part of belief factor 1 (i.e. Social constructivist orientation towards the 

nature of mathematics, the learning of mathematics and the teaching of mathematics) and 

titled: “It is important for students to be provided with opportunities to reflect on and evaluate 

their own mathematical understanding”. Concurrently, it presented a chance to moderate the 

numerical imbalance of positive and negative items.  

 

 

In terms of validity, the readability and clarity of the belief statements was reviewed by 

teachers from both sectors, producing only one adverse comment. This provided evidence that 

the questions can collect the intended data. Furthermore, the bulk of the items have been 

successfully employed in the field within previous empirical studies (e.g. Perry, Howard & 

Tracy, 1999; Nisbet & Warren, 2000; Hart, 2002; Anderson, Sullivan & White, 2005; 

Barkatsas & Malone, 2005; Barlow & Cates, 2006; Voss et. al, 2013). Arguably, the sample 

size of 31 may be considered small but I believe this quantity to be acceptable based on a 

forecasted main study population of 200 and that I had no control of the administration or 

sampling frame of the pilot. Whilst the exclusion of a HT is a peripheral concern, the mean 

teaching experience indicates that this sample has valuable knowledge of previous 

educational reforms.   

 

Final design  

Based on statistical analysis of the pilot including responses from the telephone participants, 

several minor design changes were inducted. As no additional belief statements emerged, it 
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was deemed unnecessary to implement a second pilot. The final version of the questionnaire 

is divided into three main components (Appendix C) and is compiled of 39 belief statements 

(22 positive items and 17 negative items). 

 

5.8.3 Interview schedule 

A semi-structured approach was chosen because it allows a researcher to ask a list of formal 

questions but is flexible in order to probe key unique issues arising from the analysis of the 

quantitative results including unplanned discourses. To prevent interviewee bias, I sought to 

avoid the presence of any misleading question. An iterative process of revision and reflection 

fashioned the plan including constructive feedback from two colleagues used in the first pre-

pilot. The final design of the interview schedule (Appendix D) is based on four stages. First, I 

will formalise the interview by explaining the purpose of the research project, what questions 

I want to explore and what my aims and objective are. This is followed by discussion of ethics 

such as the measures I will take to protect confidentiality and anonymity including the 

gathering of further demographic information. Second, I will ask ten identical questions 

focussed on the review of the literature relating to nature of mathematics, the learning of 

mathematics and the teaching of mathematics. Interrelated questions include reference to 

mathematical problem solving and problem posing within the context of Curriculum for 

Excellence. Third, quantitative analysis will guide which specific results from phase one 

require further explanation. Questions from this section will be determined by significant 

results, nonsignificant results, outliers and sector differences. Fourth, if relevant, an 

opportunity will be taken to probe emergent themes and ideas. Intrinsic to the overall design 

is control of the order based upon my perception of what seems most appropriate at the time. 

For example, question wording may be modified and explanations given; inappropriate 

questions for a particular interviewee may be omitted, or additional questions incorporated. 

 

5.8.4 Issues for main study  

Piloting testing focussed my attention towards design features that produce accurate, credible 

and replicable research. In doing so, it highlighted three main issues of which I will now 

discuss in turn. Firstly, sampling is a crucial component within research since it is impractical 

to access an entire target group. A variety of techniques (e.g. stratified where sampling occurs 

within groups of the population) are available to attempt to identify a representative sample of 

the population as a whole. Randomly selected samples will help reduce bias and permit 

generalisations (Bryman, 2012). Moreover, it has been reasoned that the quality of a piece of 

research relates in part to the suitability of the sampling strategy selected (Cohen, Manion & 
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Morrison, 2011; Fowler, 2014). Unfortunately, as in the case of the pilot study, it is 

anticipated that no scope for incorporating a strategy will be realised during phase one of the 

main study, as I will not be permitted direct access to the population. Though, it is speculated 

that with around two thirds of local education authorities granting permission to approach 

Headteachers (Appendix E), a suitable sample of 100 participants from each sector may be 

procured. With non-response an unknown factor, it is projected that this will be compensated 

by oversampling. More influence is envisaged with phase two of the main study where I will 

have full access to interview volunteers, thereby mobilising some form of purposeful 

sampling strategy. Based on my mixed methods design, the qualitative sample will be a subset 

of the quantitative sample, which requires fewer participants. In other words, the size of the 

samples for phase one and phase two will be unequal.  

 

 

Secondly, I note that reliability is interrelated to the concept of validity and refers to the 

consistency to which research findings can be replicated or the trustworthiness by which the 

methods have been undertaken. Cohen, Manion & Morrison (2011, p. 199) maintain for 

research to be reliable, “it must demonstrate that if it were to be carried out on a similar group 

of respondents in a similar context (however defined), then similar results would be found”. 

Furthermore, the criteria of reliability in quantitative methodologies vary from those in 

qualitative methodologies, although some commonalities exist (Creswell, 2014). In the main 

study, I will seek to address quantitative reliability by statistical procedures of internal 

consistency and any test-retest comparisons while exploring the data. To ensure reliability in 

the qualitative element, I will provide an in-depth description of the inquiry process including 

checking transcripts for errors.   

 

 

Thirdly, Creswell & Clark (2011) point out that validity differs in quantitative and qualitative 

research. For example, the matter of generalisability is problematic as positivists have no need 

for contextual variables, whilst for ethnographic researchers, human behaviour is infinitely 

complex, socially situated and unique (Cohen, Manion & Morrison, 2011). Within the 

literature, a plethora of validity classifications exist which is confusing to a new researcher. 

Onwuegbuzie & Johnson (2006) claim that because mixed methods research involves 

combining complementary strengths and nonoverlapping weaknesses of quantitative and 

qualitative research, assessing the validity of findings is particularly complex. However, 

Tashakkori & Teddlie (2010) argue that inferences are the overarching aspects or outcomes of 
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any study. In their model, the authors state that the quality of inferences is assessed 

simultaneously by examining the process of reaching the results that they are based on and the 

attributes of the conclusions themselves. In the main study, I will use a convergent approach 

to assess validity. This is a strategy from the quantitative method such as content validity and 

another from the qualitative approach such as using audio recorded interviews to allow for 

repeated revisiting of the data and the use of rich, thick description to convey findings. 

Finally, triangulation of methods will enhance the strength of any conclusions drawn and will 

help to avoid the snare of confirmation bias.  

 

 

5.9 Ethical considerations  

Planning of any form of educational research has inescapably critical ethical considerations 

since the value of research depends as much on its ethical veracity as in the novelty of its 

discoveries (Walliman, 2006; Best, 2012). Researchers must ensure that they operate with 

honesty and integrity. Moreover, the research community and those using the findings have a 

right to expect that research is conducted vigorously, conscientiously and in an ethically 

defensible manner (Cohen, Manion & Morrison, 2011). 

 

 

Without the assistance of other people, the operationalisation and robustness of this study 

would not exist. In this regard, Blaxter, Hughes & Tight (2010) offer the following advice for 

researchers: 

 
 Ethical research involves getting the informed consent of those you are going to interview, 
 question, observe or take materials from. It involves reaching agreements about the uses of 

 this data, and how its analysis will be reported and disseminated. And it is about keeping to 

 such agreements when they have been reached (p. 164). 

 

My request to undertake this research was subject to the rigorous ethical procedures employed 

by the University of Glasgow. The research study was reviewed and approved by the College 

of Social Sciences Research Ethics Committee. Ethics committees play a crucial part in 

ensuring that no carelessly designed or harmful research is permitted (Bell & Waters, 2014) 

and to prevent misconduct such as fabrication, falsification or plagiarism in the research 

process (Best, 2012). In line with the regulatory framework provided by the University of 

Glasgow and SERA (2005), informed consent was sought from all those who participated in 

the study. Participants were informed that they would be able to withdraw from the study at 

any point during data collection. They were also informed that once the data collection stage 
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was complete, they could ask for their data to be withdrawn, without the need to provide any 

reason for this. All research participants were furnished with my email address for this 

purpose and to request feedback on the outcomes of the research including any other matter. 

As a final protocol measure, all participants were provided with contact details of the Ethics 

Officer in order to direct any concerns regarding the conduct of this research project.  

 

Synopsis of procedure employed in main study  

In sum, I followed the ethical procedures within the regulatory framework as outlined in the 

statements of informed consent that each person associated with my research received. No 

complaints were made about my conduct of this research and so I am satisfied that the ethical 

considerations were fully respected. 

 

 Phase one – All participants supplied with questionnaire information sheet (Appendix F). 

Informed consent realised by survey participation. 

 

 Phase two – All participants supplied with interview information sheet (Appendix G). 

Informed consent achieved by written completion of consent form (Appendix H).    

 

 

5.10  Summary 

This chapter has allowed me to reflect on differing ontological and epistemological views. 

Key research paradigms and the role of theory have been briefly examined. Research methods 

have been introduced, propelling me to think deeply about the strengths and limitations of 

various approaches to measuring teachers’ beliefs. I have expressed my research position and 

assessed the interdisciplinarity of this study. Significantly, I have expanded my appreciation 

that methods should follow from research questions (Grix, 2010). Moreover, carrying out the 

systematic literature review has been a great learning encounter. Validity, reliability and 

triangulation have been discussed. Finally, the influence of ethics has had a profound effect 

on my research experience.  

 

 

The next chapter will report on the quantitative results of phase one of this study. 
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CHAPTER SIX 

 
 

Quantitative Results 
 

 

This chapter presents phase one of the empirical results derived from analysis of the online 

questionnaire. Consistent with a mixed methods explanatory sequential design, examination 

of the findings of the quantitative analysis will determine which results require further 

explanation during phase two of the study. However, outcomes of the analysis are reported 

within two distinctive sections. Firstly, statistical analysis of the responses to the 39 

questionnaire items is presented, followed by qualitative analysis of the optional component 

which collected a variety of open-ended comments. Descriptive statistics are represented to 

display demographic information of the participants followed by the application of inferential 

statistics to address the second and third research questions. Throughout this chapter, IBM 

SPSS version 22 was employed as the computing software to generate all necessary statistical 

calculations with one exception.   

 

 

6.1 Preliminary analysis  

During the period from December 2014 to January 2015, a total of 543 practising teachers 

volunteered for the online questionnaire producing 475 fully completed entries and 68 

incomplete entries. Of the incomplete entries, 3 fulfilled all elements of the questionnaire with 

the exception of responding to the interview option and were subsequently retained, thus 

producing a total of 478 completed entries. All of the remaining entries were deleted.  

 

 

The online data were exported directly from Survey Monkey to SPSS. Nevertheless, data 

cleaning procedures were applied in line with advice offered by Pallant (2013, p. 44), who 

warns that “it is important to spend the time checking for mistakes initially, rather than trying 

to repair the damage later”. To reduce response bias, all negatively worded statements (i.e. 

questionnaire items 18 to 34 respectively) were reversed to allow computation of an overall 

total mathematical beliefs score for the 39 items and for summation of each of the five sub-

domain belief factors. A five point Likert scale was used to offer a choice of responses from 

‘strongly agree’ to ‘strongly disagree’. Correspondingly, a score of 1 was assigned to the 
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‘strongly agree’ option and a score of 5 to the ‘strongly disagree’ option respectively. This 

numerical system produced a theoretical range of total mathematical beliefs scores from 39 

(most favourable) to 195 (least favourable). 

 

Internal consistency reliability 

The Cronbach’s alpha coefficient was used to estimate how well the items that reflect the 

same construct yield similar results. This main study reports values for each of the five beliefs 

factors as 0.704, 0.759, 0.728, 0.789 and 0.699 respectively with an overall high coefficient 

value of 0.884. The 22 positive items (i.e. social-constructivist, problem-solving and 

collaborative orientation to the nature of mathematics, the learning of mathematics and the 

teaching of mathematics) measured 0.851. Likewise, the 17 negative items (i.e. static-

transmission and mechanistic-transmission orientation to the nature of mathematics, the 

learning of mathematics and the teaching of mathematics) recorded a value of 0.817. Pallant 

(2013, p. 104) maintains that, “Values above .7 are considered acceptable; however, values 

above .8 are preferable”. Though, Field (2013) argues that it is more germane for a researcher 

to think about what obtained values mean within the context of their own research, opposed to 

applying any ‘general guidelines’. Accordingly, I identified similar studies of teachers’ 

mathematical beliefs with comparable overall coefficient measurements (e.g. Peterson et al., 

1989; Van Zoest, Jones & Thornton, 1994) leading me to conclude acceptance of the 

computed result obtained in this study.   

 

Parametric or non-parametric? 

For a study of this nature, it may be natural to select from a range of non-parametric statistical 

techniques such as the Mann-Whitney U-test or the Wilcoxon signed rank test on the basis of 

utilising ordinal data, since Likert Scales are coded accordingly. Previous studies of teachers’ 

beliefs have employed these types of non-parametric tests (e.g. Jamieson-Proctor & Byrne, 

2008; Rajabi, Kiany & Maftoon, 2011; Ampadu, 2014). Controversially, many authors 

promulgate conflicting statistical advice for researchers in this regard (e.g. Jamieson, 2004; 

Carifio & Perla, 2007; Norman, 2010; Brown, 2011). Though, what appears to be in harmony 

is that parametric tests are more powerful and exhibit additional applications than non-

parametric tests (McCrum-Gardner, 2008; Field, 2013). Since the majority of previous studies 

involving teacher’s mathematical beliefs have been statistically analysed using parametric 

methods (e.g. Van Zoest, Jones & Thornton, 1994; Stipek et al., 2001; Barkatas & Malone, 

2005; Yates, 2006; Yu, 2008; Depaepe, De Corte & Verschaffel, 2010; Memnun, Hart & 

Akkaya, 2012), it suggests that the belief construct is normally distributed. 
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6.1.1 Exploratory factor analysis 

Factor analysis seeks to reduce or summarise a compilation of variables into a smaller set of 

dimensions termed factors or components. In this study, 39 items of the positive and negative 

scale were subjected to principle components analysis (PCA) in order to explore the nature of 

previously unknown variables to seek underlying patterns, clusterings or groupings. Prior to 

performing PCA, the suitability of data for factor analysis was assessed as follows: 

 

Sample size 

This is determined by considering a minimum sample size or a ratio of subjects to variables. 

Comfrey & Lee (1992, p. 317) suggest that “the adequacy of sample size might be evaluated 

very roughly on the following scale: 50 – very poor; 100 – poor; 200 – fair; 300 – good; 500 – 

very good; 1000 or more – excellent”.  Whereas, Nunnally (1978) advises that the subject to 

item ratio should be at least 10:1, however this recommendation is not supported by published 

research. Irrespectively, exercising both distinctive approaches, the sample size of 478 is 

comfortably ‘good’ from a magnitude perspective and equally acceptable from an item ratio 

viewpoint.  

 

Factorability of the correlation matrix  

Inspection of the correlation matrix, as advocated by Tabachnick & Fidell (2014), revealed 

the presence of many coefficients of 0.3 and above. The Kaiser-Meyer-Olkin measure of 

sampling statistic was 0.903, generously exceeding the recommended minimum value of 0.6 

(Kaiser, 1970, 1974) and Bartlett’s Test of Sphericity (Bartlett, 1954) reached statistical 

significance [χ
2
 (741) = 6057.958, p < 0.001], supporting the factorability of the correlation 

matrix. 

 

Factor extraction 

Factor extraction involves determining the smallest number of factors than can be used to best 

represent the interrelationships among a set of variables. Several techniques can be used to 

assist in this decision making process; Kaiser’s criterion, scree test and parallel analysis 

(Pallant, 2013).  

 

Kaiser’s criterion 

Kaiser (1960) recommended retaining all factors with eigenvalues greater than 1. According 

to Field (2013, p. 677), “This criterion is based on the idea that the eigenvalues represent the 

amount of variation explained by a factor and that an eigenvalue of 1 represents a substantial 

https://mail.student.gla.ac.uk/owa/redir.aspx?SURL=AxPfCQ3EtEQSgdVv5KFlr6AAqViVuNFxjdDSnDdqZpWllMl7xwbSCGgAdAB0AHAAOgAvAC8AZQBuAC4AdwBpAGsAaQBwAGUAZABpAGEALgBvAHIAZwAvAHcAaQBrAGkALwBWAGEAcgBpAGEAbgBjAGUA&URL=http%3a%2f%2fen.wikipedia.org%2fwiki%2fVariance
https://mail.student.gla.ac.uk/owa/redir.aspx?SURL=AxPfCQ3EtEQSgdVv5KFlr6AAqViVuNFxjdDSnDdqZpWllMl7xwbSCGgAdAB0AHAAOgAvAC8AZQBuAC4AdwBpAGsAaQBwAGUAZABpAGEALgBvAHIAZwAvAHcAaQBrAGkALwBWAGEAcgBpAGEAbgBjAGUA&URL=http%3a%2f%2fen.wikipedia.org%2fwiki%2fVariance
https://mail.student.gla.ac.uk/owa/redir.aspx?SURL=AxPfCQ3EtEQSgdVv5KFlr6AAqViVuNFxjdDSnDdqZpWllMl7xwbSCGgAdAB0AHAAOgAvAC8AZQBuAC4AdwBpAGsAaQBwAGUAZABpAGEALgBvAHIAZwAvAHcAaQBrAGkALwBWAGEAcgBpAGEAbgBjAGUA&URL=http%3a%2f%2fen.wikipedia.org%2fwiki%2fVariance
https://mail.student.gla.ac.uk/owa/redir.aspx?SURL=AxPfCQ3EtEQSgdVv5KFlr6AAqViVuNFxjdDSnDdqZpWllMl7xwbSCGgAdAB0AHAAOgAvAC8AZQBuAC4AdwBpAGsAaQBwAGUAZABpAGEALgBvAHIAZwAvAHcAaQBrAGkALwBWAGEAcgBpAGEAbgBjAGUA&URL=http%3a%2f%2fen.wikipedia.org%2fwiki%2fVariance
https://mail.student.gla.ac.uk/owa/redir.aspx?SURL=AxPfCQ3EtEQSgdVv5KFlr6AAqViVuNFxjdDSnDdqZpWllMl7xwbSCGgAdAB0AHAAOgAvAC8AZQBuAC4AdwBpAGsAaQBwAGUAZABpAGEALgBvAHIAZwAvAHcAaQBrAGkALwBWAGEAcgBpAGEAbgBjAGUA&URL=http%3a%2f%2fen.wikipedia.org%2fwiki%2fVariance
https://mail.student.gla.ac.uk/owa/redir.aspx?SURL=AxPfCQ3EtEQSgdVv5KFlr6AAqViVuNFxjdDSnDdqZpWllMl7xwbSCGgAdAB0AHAAOgAvAC8AZQBuAC4AdwBpAGsAaQBwAGUAZABpAGEALgBvAHIAZwAvAHcAaQBrAGkALwBWAGEAcgBpAGEAbgBjAGUA&URL=http%3a%2f%2fen.wikipedia.org%2fwiki%2fVariance
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amount of variation”. Principle component analysis revealed the presence of eight 

components with eigenvalues exceeding 1, explaining 20.338%, 11.429%, 7.078%, 3.536%, 

3.311%, 2.957%, 2.657% and 2.606% of the variance respectively (Appendix G).  

 

Cartell’s Scree Test 

Cartell’s (1966) scree test is considered to be the best choice according to Field (2013) and 

involves plotting each of the eigenvalues of the factors and retaining all factors above the 

elbow. Conversely, Tabachnick & Fidell (2014, p. 697) caution that, “Unfortunately, the scree 

test is not exact; it involves judgment of where the discontinuity in eigenvalues occurs and 

researchers are not perfectly reliable judges”. An inspection of the scree plot obtained (Figure 

6.1) revealed a clear break after the third component, and it was decided to retain three 

components for further investigation.  

 
Figure 6.1 Scree plot 

  

Parallel analysis 

This involves comparing the magnitude of the eigenvalues with those obtained from a 

randomly generated data of the same size. For this analysis, I employed Monte Carlo PCA 

software which showed only three components with eigenvalues exceeding the corresponding 

criterion values (please refer to Appendix H and Table 6.1 respectively) for a randomly 

generated data matrix of the same size (39 variables   478 respondents).  Therefore, the 

results of parallel analysis validate my decision from the scree plot to retain three factors for 

further investigation.   

 

Elbow (Point of Inflexion) 
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Table 6.1 Comparison of eigenvalues from PCA and criterion values from parallel analysis  

Component  

number 

Actual  eigenvalue from 

PCA 

Criterion value from 

parallel analysis 

Decision 

1 7.932 1.5790 Accept 

2 4.457 1.5147 Accept 

3 2.760 1.4693 Accept 

4 1.379 1.4276 reject 

5 1.291 1.3872 reject 

6 1.157 1.3509 reject 

7 1.036 1.3188 reject 

8 1.016 1.2861   reject 

 

Factor rotation and interpretation  

To aid in the interpretation of these three components, direct oblimin rotation was performed. 

The rotated solution revealed the presence of a simple structure (Thurstone, 1947), with three 

components showing a number of fairly strong loadings and all variables loading substantially 

on only one component. This can be observed from the Pattern Matrix (Appendix I) and the 

Structure Matrix (Appendix J). To determine the strength of the relationship between the three 

factors, examination of the component correlation matrix was carried out. This revealed very 

weak positive affects between the three factors (r = 0.054, 0.147 and 0.140 respectively). The 

results of this analysis highlight the presence of three distinct mathematical belief systems as 

follows: 

 

1.  A social constructivist, problem solving and collaborative orientation;  

 

2.  A social constructivist, problem solving and static transmission orientation;  

 

3.  A static and mechanistic transmission orientation.  

 

 

Further investigation will help to determine which belief system is associated with each sector 

and homogenous group. 

 

 

6.2 Demographic information of the participants 

The demographic information provides the rational for statistical analysis of the generated 

data guided by the research questions. The questionnaire responses involved teachers from 21 

local education authorities (32 local education authorities exist in Scotland). Displayed by 
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frequency tables, the data of the 478 participants is presented employing the following 

variables:  

 

 Gender  

 Sector   

 Age (years)  

 Mode of working  

 Employment type  

 Trained in or out with Scotland  

 Grade  

 Length of teaching experience (years)   

 Highest level of qualification in the field of education  

  

The frequencies and cumulative percentages associated with each variable is summarised in 

Table 6.2 to Table 6.10 respectively. 

 

Table 6.2 Frequency table for gender (N = 478) 

Characteristic   n % Cumulative % 

Male  148 31.0 31.0 

Female  330 69.0 100.0 

Total  478 100.0  

 

Table 6.3 Frequency table for sector (N = 478) 

 Characteristic  n % Cumulative % 

Primary  229 47.9 47.9 

Secondary  249 52.1 100.0 

Total  478 100.0  

 

Table 6.4 Frequency table for age in years (N = 478) 

 Characteristic  n % Cumulative % 

21-25  31 6.5 6.5 

25-34  102 21.3 27.8 

35-44  118 24.7 52.5 

45-54  140 29.3 81.8 

55+  87 18.2 100.0 

Total  478 100.0  
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Table 6.5 Frequency table for mode of working (N = 478) 

 Characteristic  n % Cumulative % 

Full-time  439 91.8 91.8 

Part-time  39 8.2 100.0 

Total  478 100.0  

 

Table 6.6 Frequency table for employment type (N = 478) 

 Characteristic  n % Cumulative % 

Permanent  446 93.3 93.3 

Temporary  14 2.9 96.2 

Teacher Induction Scheme  18 3.3 100.0 

Total  478 100.0  

 

Table 6.7 Frequency table for teacher training in Scotland (N = 478) 

 Characteristic  n % Cumulative % 

 Yes  450 94.1 94.1 

 No  28 5.9 100 

 Total   478 100.0  

 

Table 6.8 Frequency table for grade (N = 478) 

Characteristic  n % Cumulative % 

Teacher  321 67.2 67.2 

Principal Teacher  75 15.7 82.8 

Deputy Headteacher  30 6.3 89.1 

Headteacher  52 10.9 100.0 

Total  478 100.0  

 

Table 6.9 Frequency table for teaching experience in years (N = 478) 

Characteristic  n % Cumulative % 

0-5  87 18.2 18.2 

6-10  101 21.1 39.3 

11-15  67 14.0 53.3 

16-20  50 10.5 63.8 

20+  173 36.2 100.0 

Total  478 100.0  
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Table 6.10 Frequency table for highest level of qualification in the field of education (N = 478) 

Characteristic  n % Cumulative % 

BEd  162 33.9 33.9 

PGCE/PGDE  274 57.3 91.2 

Masters   42 8.8 100.0 

Doctorate  0 0 100.0 

Total  478 100.0  

 

As Table 6.2 shows, the ratio of male to female participants is approximately equal to 1:2. 

This is explained by the substantial presence of female primary teachers which dominate this 

sector. Unexpectedly, the proportion of primary and secondary teachers is reasonably similar 

(Table 6.3), given the superior quantity of primary teachers that are employed in Scotland. 

The overall estimated mean age of the participants is 42.8 years and the overall estimated 

length of teaching experience is 17.2 years. It is suggested that the most prominent 

characteristic is the grade distribution of the participants (Table 6.8). Whilst all levels are 

represented, one third are promoted teachers. In fact, it is argued that this study is unique in 

this respect since it incorporates such a wide continuum of grades, ranging from 18 

probationers to 52 Headteachers, amalgamated between both primary and secondary 

establishments. Unfortunately, the questionnaire did not contain any participants holding a 

Doctorate in the field of education (Table 6.10). It is postulated that inclusion of such a 

unique group would have been of enormous interest to this study.  

 

 

Since this study seeks to compare both primary and secondary mathematics teachers, I have 

compiled an overview of participants’ demographic information based on sector (Table 6.11). 

Several similarities can be observed such as mode of working, employment type, Scottish 

teacher qualifying status, proportion of classroom teachers and Masters level graduates in the 

field of education. Whilst the age groups vary at both extremes, the estimated mean age of 

41.5 years for primary teachers is comparable with the secondary mathematics counterparts of 

44.0 years. Likewise, the length of teaching experience varies in the majority of categories but 

almost match when estimates are calculated; the estimated mean length of teaching 

experience for primary teachers is 17.0 years compared with 17.8 years for secondary 

mathematics participants. Sector differences exist regarding gender and grade but this is 

symptomatic of conducting research with participants from two separate systems. In general, 

analysis of the sample population supports the view that both sectors contain participants with 

similar characteristics.    
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Table 6.11 Demographic characteristics of participants by sector (N = 478)  

Characteristic Primary Secondary 

 n % n % 

Gender      

     Male  22 9.6 126 50.6 

     Female 207 90.4 123 49.4 

Age (years)     

     21-24 23 10.0 8 3.2 

     25-34 51 22.3 51 21.3 

     35-44 52 22.7 66 24.7 

     45-54 69 30.1 71 29.3 

     55 and over  34 14.9 53 18.2 

Mode of working     

     Full-time 208 90.8 231 92.8 

     Part-time 21 9.2 18 7.2 

Employment type     

     Permanent 212 92.6 234 94.0 

     Temporary 7 3.0 7 2.8 

     Teacher Induction Scheme 10 4.4 8 3.2 

Teacher training in Scotland     

     Yes 217 94.8 233 93.6 

     No 12 5.2 16 6.4 

Grade     

     Teacher 151 65.9 170 68.3 

     Principal Teacher 15 6.5 60 24.1 

     Deputy Headteacher 18 7.9 12 4.8 

     Headteacher 45 19.7 7 2.8 

Teaching experience (years)     

     0-5 59 25.8 28 11.2 

     6-10 38 16.6 63 25.3 

     11-15 22 9.6 45 18.1 

     16-20 26 11.3 24 9.6 

     Over 20 84 36.7 89 35.7 

Highest qualification in the field of education     

     BEd 130 56.8 32 12.7 

     PGCE/PGDE 84 36.7 190 76.3 

     Masters 15 6.5 27 10.8 

     Doctorate 0 0.0 0 0.0 

Note: Totals of percentages are not 100.0 for every characteristic because of rounding.  
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6.3 Analysis of findings relevant to research question two 

The second research question was designed to explore the espoused mathematical beliefs of 

primary and secondary mathematics teachers, irrespective of variable, and posed: 

 

 Are there any differences in the mathematical beliefs of Scottish primary and 

 secondary mathematics teachers?  

 

In this section, I will begin by presenting descriptive statistics including a discussion of 

general observations of the two categorical groups, followed by a robust justification for using 

parametric tests, ending with statistical analysis of the differences in the mathematical beliefs 

between the sectors, using an independent samples t-test.  

  

6.3.1 Descriptive statistics  

Descriptive statistics of the total mathematics beliefs scores are displayed in Table 6.12. 

Inspection of the mean values of the two data sets suggest that primary teachers hold stronger 

mathematical beliefs than secondary mathematics teachers. Since both sector statistics for 

mean and 5% trimmed mean are similar, no extreme scores appear to have strongly influenced 

the original mean. The standard deviation measurements indicate that the mathematical 

beliefs of the secondary mathematics teachers are more dispersed around the mean. 

Comparing the median of both sectors confirms that primary teachers’ mathematical beliefs 

are stronger than the secondary mathematics teachers. On inspection of the range, the 

secondary mathematics teachers’ beliefs are more spread out suggesting a less homogenous 

group. This inference is confirmed when variability is considered, which noticeably reveals 

that primary teachers’ mathematical beliefs are less inconsistent. This statistic is confirmed by 

visual inspection of the sector boxplots (Figure 6.2). Using SPSS, eight outliers were 

identified all associated with the primary data set. No extreme points were detected for each 

sector. 
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Table 6.12 Descriptive statistics of sector TMBS  

Characteristic  Primary Secondary Mathematics 

  Statistic Std. Error Statistic Std. Error 

N  229  249  

Mean  97.71 .965 100.63 1.073 

95% Confidence Interval for Mean Lower Bound 95.81  98.52  

 Upper Bound 99.61  102.75  

5% Trimmed Mean  97.42  100.48  

Median  97  100  

Variance  213.224  286.418  

Std. Deviation  14.602  16.924  

Minimum  59  58  

Maximum  138  140  

Range  79  82  

Interquartile Range  17  24  

Skewness  .356 .161 .150 .154 

Kurtosis  .576 .320 .324 .307 

 

 

Figure 6.2 Boxplots of primary and secondary mathematics TMBS  

 

 

Since measures of central tendency (i.e. mean and median values) for both sectors are similar, 

it suggests that each data set is symmetrical. Inspection of the appearance of both frequency 

histograms (Figure 6.3) reveal the majority of scores occurring in the centre, tapering out 

towards the extremes, indicating that the scores on each variable is normally distributed. 
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Figure 6.3 Frequency histograms of TMBS according to sector 

 

General comments 

Inspection of the results of the questionnaire (Appendix K) revealed that primary teachers, 

(Items 4 and 12) and secondary mathematics teachers (Items 2 and 12) failed to obtain a 

minimum belief response of 50% for Strongly Agree and Agree for two of the twenty two 

positive items. Surprisingly, both sectors simultaneously rejected problem solving belief 

construct (i.e. ‘Teaching mathematics through problem solving is the best method to help 

students learn’). This statement also produced the highest number of combined undecided 

responses of the questionnaire, suggesting a degree of uncertainty surrounding this important 

concept.  

 

 

However, more surprising were the results obtained for the seventeen negative beliefs 

constructs. Primary teachers (Items 18, 20, 21, 22, 25, 26, 27, 29, 31 and 34) remained 

unsuccessful in obtaining a minimum belief response of 50% for Strongly Disagree and 

Disagree for ten negative items, representing a lack of support for the rejection of almost three 

fifths of the belief statements aligning with a static transmission and a mechanistic 

orientation. Correspondingly, secondary mathematics teachers (Items 20, 21, 26, 27, 29 and 

34) failed to achieve a consensus for rejecting one third of the negative belief statements. 

Whilst the mathematical beliefs of both sectors overlap with five negative items, differences 
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remain apparent; results of two static transmission belief statements are particularly notable. 

Firstly, Item 20 (i.e. Mathematics is an accumulation of facts, rules and skills), which is based 

on an instrumentalist view of mathematics (Ernest, 1989a), is considerably favoured by both 

sectors. Secondly, an overwhelming majority of participants from both sectors strongly 

endorsed Item 21 (i.e. the primary purpose of teaching problem solving is to equip students 

with a collection of skills and processes). This belief statement was designed to extract the 

underlying philosophy of problem solving by establishing the priority between fostering 

learners computational and procedural abilities and the development of independent critical 

thinking skills. In his insightful research on mathematical problem solving, Lester (1985) 

reminds us that: 

 
 The primary purpose of teaching problem-solving instruction is not to equip students with 

 a collection of skills and processes, but rather to enable them to think for themselves. The 
 value of skills and processes instruction should be judged by the extent to which the skills 

 and processes actually enhance flexible, independent thinking (p. 66).  

 

6.3.2 Assumptions  

In order to implement any parametric test, it is essential to check that relevant assumptions 

have not been violated. Using the total mathematics beliefs scores as the dependent variable 

for the sample as a whole, the following five assumptions were checked for violation:  

 

Random sampling 

Samples have been randomly selected from the population. Within the subset of local 

education authorities granting research approval for me to contact their schools, each member 

of the subset has had an equal probability of being selected. 

 

Independence of observations 

Freedom of observations is a fundamental prerequisite for almost all hypotheses testing 

procedures (Stevens, 2009; Gravetter & Wallnau, 2012). According to Pallant (2013, p. 213-

214), “[t]he observations that make up your data must be independent of one another; that is, 

each observation or measurement must not be influenced by any other observation or 

measurement”. In this study, data were collected from individual teachers employed from an 

assortment of primary and secondary schools, located throughout multiple local education 

authorities in Scotland. The instrument was administered and collected once. Furthermore, the 

design of the online questionnaire ensured that only one response per computer was possible, 

in an attempt to eliminate collusion between colleagues. As both sectors operate 

independently from each other and the autonomous nature of the profession, it is strongly 
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intimated that there is no relationship between the observations in each group or between the 

groups themselves. 

 

Normality 

The total mathematical beliefs scores for the sample, D(478) = .069, p < .001, suggests 

violation of the assumption of normality. However, this is fairly common in large samples 

when using a Kolmogorov-Smirnov test (Field, 2013; Pallant, 2013) and is refuted by 

skewness of 0.265 (SE = 0.112) and kurtosis of 0.012 (SE = 0.223). Visual inspection of the 

shape of the associated frequency histogram (Figure 6.4) suggests that the data is normally 

distributed.   

 

Figure 6.4 Frequency histogram of TMBS for whole sample 

 

Normal distribution is further supported by inspection of the normal probability plots 

(labelled Normal Q-Q Plot and Detrended Normal Q-Q Plot respectively). Tabachnick & 

Fidell (2014, p. 115) maintain that “Frequency histograms are an important graphical device 

for assessing normality, especially with the normal distribution as an overlay, but even more 

helpful than frequency histograms are expected normal probability plots and detrended 

expected normal probability plots”. It can be observed that the Normal Q-Q plot (Figure 6.5) 

displays a reasonably straight line with some minor deviations indicating normal distribution. 

Likewise, no real clustering of points with most collecting around the zero line is exhibited in 

the Detrended Normal Q-Q plot (Figure 6.6).  
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Figure 6.5 Normal Q-Q plot of TMBS for whole sample 

 
However, Yap & Sim (2011) argue that graphical methods are open to interpretation and 

require a researcher to be experienced in such matters: 

 
 Even though graphical methods are useful in checking the normality of a sample data, they 

 are unable to provide formal conclusive evidence that the normal assumption holds. Graphical 

 method is subjective as what seems like a ‘normal distribution’ to one may not necessarily be 

 so to others. In addition, vast experience and good statistical knowledge are required to 
 interpret the graph properly (p. 2142).  

 

Citing my familiarity as a chartered mathematician combined with that of a knowledgeable 

mathematics teacher, I am confident that my assessment of normality has been justified.    

 
Figure 6.6 Detrended Normal Q-Q plot of TMBS for whole sample  
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No significant outliers  

An outlier is an observation that lies an abnormal distance from other values in a random 

sample from a population. No extreme points or outliers were detected from inspection of a 

boxplot or by re-examining the tails of the distribution of the frequency histogram. 

Comparison of the 5% trimmed mean value of 99.01 with the similar numerical mean value of 

99.23, confirms the absence of significant outliers.  

 

Homogeneity of variance (Homoscedasticity) 

For the total mathematics beliefs scores, variances were unequal for the primary and 

secondary mathematics teachers, F(1, 476) = 8.383, p. = .004. However, violations of this 

nature are common with unequal group sizes and large samples. Field (2013, p. 195) warns 

researchers that, “In large samples Levene’s test can be significant even when group variances 

are not very different. Therefore, it should be interpreted in conjunction with the variance 

ratio”. In this case, the variance ratio is calculated by dividing the largest variance (286.418) 

by the smallest variance (213.224), producing a resultant value of 1.343, strongly suggesting 

that the variances are approximately equal. Furthermore, this particular variance ratio is well 

within the parameters advised by Tabachnick & Fidell (2014, p. 120) who state that “If 

samples sizes are relatively equal (within a ratio of 4 to 1 or less for largest to smallest cell 

size), an Fmax [ratio of largest cell variance to the smallest] as great as 10 is acceptable”.  

 

In short, all five assumptions have been satisfied.  

 

6.3.3 Independent samples t-test 

An independent samples t-test was conducted to compare the mean of the Total Mathematics 

Belief Scores (N = 478) between primary and secondary mathematics teachers. The results 

revealed a statistically significant difference between the two sectors, primary teachers (M = 

97.71, SD = 14.602) and secondary mathematics teachers (M = 100.63, SD = 16.924), t 

(474.098) = -2.026, p = 0.043, two-tailed). The magnitude of the differences in the means 

(mean difference = 2.92, 95% CI [-5.758, -0.088] was significant. Therefore, we reject the 

null hypothesis that there is no difference in the TMBS between primary and secondary 

mathematics teachers.  

 

 

In order to indicate a level of prominence of statistical significance, it is necessary to consider 

the effect size. A common used interpretation in social sciences is to refer to effect sizes as 
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‘small’ (d = 0.2), ‘medium’ (d = 0.5) and ‘large’ (d = 0.8), based on benchmarks suggested by 

Cohen (1988). Applying such a scale to this study, the effect size is considered ‘small’ (d = 

0.185), although it may be argued that applying this generic descriptor to teachers’ beliefs is 

misleading. More relevant is an interpretation that contextualises the magnitude of an effect 

size (Lenth, 2001; Baguley, 2009). Therefore, in the absence of comparable Scottish 

educational research data, I have interpreted the effect size as having practical significance 

worthy of detailed further investigation. 

 

6.3.4 Further investigation  

In this section, I will report the outcome of the statistical analysis of three interrelated 

mathematical belief investigations of the following elements: 

 

 Individual belief items 

 Belief categories (i.e. Belief Factor 1, 2, 3, 4 & 5 respectively) 

 CfE mathematical beliefs and Traditional mathematical beliefs (i.e. positive and negative 

items)  

 

Individual belief items 

In order to explore the previous findings in more detail, an independent samples t-test was 

conducted for each of the 39 questionnaire items. The objective of this exercise was to 

compare the mean of the individual belief construct scores (N = 478) between the primary and 

secondary participants. The results obtained from this analysis are displayed in Appendix M. 

From this data, it can be seen that when juxtaposed, 32 of the 39 belief statements produced 

statistically significant results i.e. the mathematical beliefs of primary and secondary 

mathematics teachers differed in their responses to more than fourth fifths of the 

questionnaire (82%). I will briefly comment on a result from each of the five belief 

categories:  

 

Questionnaire Item 2 – ‘Preparing learners to think critically about mathematics is more 

important than success at national examinations’ (Figure 6.7) 

Responses to this social constructivist item divided the participants more than any other 

question. Almost three-quarters of primary teachers (72%) strongly agreed or agreed with this 

belief statement opposed to less than half of this amount by the secondary mathematics 

teachers (35%). A possible explanation for this disparity might be that primary teachers have 

a greater social constructivist freedom to exercise their mathematical beliefs, relatively 
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unrestricted from the constraints of their intensely examination focused secondary 

counterparts. Another possible explanation for this is that secondary mathematics teachers 

may prefer to identify with the tangible nature of examination results, as critical thinking is an 

intrinsic element manifested within multiple aspects of mathematical learning such as the 

construction of arguments, reasoning and solving complex problems.  

 

Questionnaire Item 10 – ‘Teachers should be experienced problem solvers and should have a 

firm grasp of what successful problem solving involves’ (Figure 6.8) 

This problem solving belief statement is based on the theoretical work of Lester (2013) who 

maintains that teachers themselves need not be expert problem solvers, but have proficiency 

in teaching pupils how to solve mathematical problems. The vast majority of secondary 

mathematics teachers (95%) strongly agreed or agreed with this statement opposed to a 

significantly reduced quantity of primary teachers (74%). It seems possible that some primary 

practitioners lack enthusiasm or confidence in teaching mathematical problem solving. 

Thompson (1985) reminds us about Jeanne [one of her teacher participants] skipping some 

pages in a textbook containing story problems involving rates and proportions: “She then 

indicated that the reason for her skipping the pages involving problems was that the students 

did not enjoy working them and that problems caused them to experience a great deal of 

frustration with mathematics” (p. 288). This experience fuelled her argument for teachers “to 

experience mathematical problem solving from the perspective of the problem solver before 

they can adequately deal with its teaching” (p. 292).  
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Figure 6.7 Bar chart of sector responses to Questionnaire Item 2  

 

 

Questionnaire Item 18 – ‘Mathematical problems can only have one final correct answer’ 

(Figure 6.9)  

This negative item is a quintessential component of absolutism, which rejects the existence of 

multiple answers in mathematics. Such a belief system typifies a widely held misconception 

about mathematics that each problem contains a unique solution. The results reveal that more 

than three-quarters of secondary mathematics teachers (79%) strongly disagreed or disagreed 

compared to less than half of primary teachers (45%). Whilst it may be argued that secondary 

mathematics teachers are more naturally positioned to respond to this question due to their 

knowledge and understanding of negative numbers, trigonometric equations, graphs, etc., the 

sector divide is considerable given the critical nature of this belief statement within the 

operationalisation of mathematical problem solving. Worryingly, over one fifth of 

mathematics teachers (21%) were undecided or concurred with this item.       
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Figure 6.8 Bar chart of sector responses to Questionnaire Item 10  

 

 

Figure 6.9 Bar chart of sector responses to Questionnaire Item 18  
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Questionnaire Item 31 – ‘Mathematics is a static but unified body of knowledge’ (Figure 

6.10)  

Proponents of this view postulate that mathematics is discovered by humans through 

investigations, is free from ambiguity and located within a hierarchical interconnected body 

of knowledge (Ernest, 1989a). The results indicate that less than half of primary teachers 

(45%) strongly disagreed or disagreed compared to fourth-fifths of secondary mathematics 

participants (80%). A possible explanation for this differential might be that primary teachers’ 

beliefs align more with a Platonist philosophy compared with secondary mathematics 

teachers. Though, it is notable that almost a quarter (24%) of primary participants remained 

undecided about this item. 

 

Figure 6.10 Bar chart of sector responses to Questionnaire Item 31 

 

 

Questionnaire Item 37 – ‘All students are able to be creative and do original work in 

mathematics’ (Figure 6.11) 

Creativity is considered essential for effective learning of mathematics regardless of age 

(Mann, 2006). Scottish practitioners have a duty to ensure that all pupils are supported in their 

development of creativity skills in ways which build on personal strengths whether as 

individuals or in group activities (Education Scotland, 2013). More than two-thirds of primary 

participants (69%) strongly agreed or agreed with this collaborative belief statement 

compared to less than two-fifths (39%) of secondary mathematics participants. This result 
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suggests that primary teachers have a greater tendency to support pupils’ ability to display 

flexible and divergent thinking along with generating unusual, novel or insightful answers or 

strategies. This may be explained by a belief system which aligns innately with a 

constructivist orientation. Perhaps the most surprisingly observation is the truncated provision 

of secondary participants, since paradoxically this has emerged when the level and 

sophistication of mathematical knowledge has unlocked centuries of beautiful and original 

work such as Pi, Apollonian circles, the golden ratio and Maclaurin series. It seems likely that 

many secondary mathematics teachers may not associate the learning of mathematics with 

creativity, possibly as a result of their own schooling since teachers tend to reproduce the kind 

of instruction they themselves received (Lortie, 1975; Pehkonen, 1997). Nevertheless, 

Lockhart (2009) argues that mathematics is an art, and should be taught by functioning 

artists, or if not, at least by individuals who appreciate the art form and can recognize it when 

they see it. 

 

Figure 6.11 Bar chart of sector responses to Questionnaire Item 37 
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significant difference in the mean belief scores of the social constructivist orientation to 

mathematics, mathematics learning and mathematics teaching (i.e. Belief Factor 1) between 

primary and secondary mathematics teachers. The effect size is deemed ‘small’ (Cohen, 

1988). Secondly, there was a significant difference in the mean belief scores of the 

collaborative orientation to mathematics, mathematics learning and mathematics teaching 

between primary and secondary mathematics teachers (i.e. Belief Factor 5). However, in this 

case, the effect size is ‘large’ (Cohen, 1988).  

 

Table 6.13 Results of independent samples t-tests by belief factors 

Scale and Items Primary Secondary Statistic 

M SD M SD df t p Cd 

Belief Factor 1  

(Items 1-7) 

16.08 2.911 16.82 3.627 467.589 -2.484 .013 -.230 

Belief Factor 2  

(Items 8-17) 

22.09 4.814 22.59 4.944 476 -1.134 .257 -.104 

Belief Factor 3  

(Items 18-26) 

26.75 4.969

  

26.16 5.246 476 1.261 .208 .116 

Belief Factor 4  

(Items 27-34) 

22.36 3.835 22.45 4.322 475.393 -.245 .807 -.022 

Belief Factor 5  

(Items 35-39) 

10.44 2.347 12.61 3.240 451.793 -8.432 .000 -.793 

Note: Cd is abbreviated for Cohen’s d value (Cohen, 1988)  

 

Having established that significant statistical differences exist between primary and secondary 

participants for BF1 and BF5, it was necessary to investigate the dynamics of both results in 

further detail. In order to explore more accurately where both sectors function within the 

continuum of any belief factor, I considered the concept of establishing descriptive parameters 

to produce such a judgement. On reviewing the uniformity of the questionnaire choices along 

with the overall distribution of responses for each item, I compiled a range of appropriate 

limits (Table 6.14).  

 

The following analysis is offered using an additional variable (i.e. grade) to provide more data 

concerning the demographics of the participants.  

 

Belief Factor 1  

It can be shown from the line graph (Figure 6.12) that the mean of both sectors mathematical 

beliefs align with a weak social constructivist orientation towards the nature of mathematics, 

the learning of mathematics and the teaching mathematics. The most revealing aspect of the 
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line graph is the variation between primary and secondary Headteachers, while both sectors 

share similar beliefs at the Deputy Headteacher grade.  

 

Table 6.14 Belief factor response limits  

BF  Agreement Neutral Disagreement 

Strong Moderate Weak Weak Moderate Strong 

1 Min 7.0000 12.6000 15.4000 18.2000 23.6000 26.5000 29.4000 

Max 12.5999 15.3999 18.1999 23.5999 26.4999 29.3999 35.0000 

2 Min 10.0000 18.0000 22.0000 26.0000 34.0000 38.0000 42.0000 

Max 17.9999 21.9999 25.9999 33.9999 37.9999 41.9999 50.0000 

3 Min 9.0000 16.2000 19.8000 23.4000 30.6000 34.2000 37.8000 

Max 16.1999 19.7999 23.3999 30.5999 34.1999 37.7999 45.0000 

4 Min 8.0000 14.4000 17.6000 20.8000 27.2000 30.4000 33.6000 

Max 14.3999 17.5999 20.7999 27.1999 30.3999 33.5999 40.0000 

5 Min 5.0000 9.0000 11.0000 13.0000 17.0000 19.0000 21.0000 

Max 8.9999 10.9999 12.9999 16.9999 18.9999 20.9999 25.0000 

 

Belief Factor 5  

It can be shown from the line graph (Figure 6.13) that the mean of all grades of primary 

teachers’ mathematical beliefs align with a moderate collaborative orientation towards the 

nature of mathematics, the learning of mathematics and the teaching of mathematics. 

However, with the exception of Headteachers, the mean of all grades of secondary 

mathematics teachers’ mathematical beliefs align with a weak collaborative orientation 

towards the nature of mathematics, the learning of mathematics and the teaching of 

mathematics. 
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Figure 6.12 Line graph of mean Belief Factor 1 for sector and grade  

 

 
 
Figure 6.13 Line graph of mean Belief Factor 5 for sector and grade 

 
 

CfE and traditional mathematical beliefs  

An independent samples t-test was conducted for both CfE mathematical beliefs (i.e. BF1 + 

BF2 + BF5) and traditional mathematical beliefs (i.e. BF3 + BF4). On both occasions, the 

mean of the summation of the positive and negative scores respectively were compared 

between the primary and secondary participants. The results obtained from this analysis are 

displayed in Table 6.15. The most unexpected result to emerge was that there was a 

Weak agreement 

Moderate agreement 

Strong agreement 

Agreement 

 

Weak agreement 

Moderate agreement 



195 

 

 
 

significant difference in the mean scores of CfE mathematical beliefs between primary and 

secondary mathematics teachers. The effect size is deemed ‘medium’ (Cohen, 1988). In other 

words, primary teachers hold statistically significantly stronger CfE mathematical beliefs than 

secondary mathematics teachers. However, the results did not find any statistical significant 

difference in the mean scores of traditional mathematical beliefs between the sectors. 

 

Table 6.15 Results of independent samples t-test of CfE and traditional mathematical beliefs   
 

Scale and Items Primary Secondary Statistic 

M SD M SD df t p Cd 

Belief Factors 1, 2 & 5 

(Items 1-17 & 35-39) 

48.60

  

8.619 52.02 10.487 470.192 -3.909 .000 .633 

Belief Factor 3 & 4 

(Items 18-34) 

49.11 8.928 48.61 8.872 476 .633 .527 -.361 

Note: Cd is abbreviated for Cohen’s d value (Cohen, 1988)  

 

6.3.5 Correlation between CfE and traditional beliefs 

The relationship between CfE mathematical beliefs scores (i.e. total of the positive item 

scores) and traditional mathematical belief scores (i.e. total of the negative item scores) was 

investigated for both sectors, using Pearson product-moment correlation coefficient. A 

scatterplot (Figure 6.14) allows inspection of the graphical relationships. Preliminary analyses 

were performed to ensure no violation of the assumptions of normality, linearity and 

homoscedasticity. Prior to the interpretation of any correlation coefficient value, researchers 

need to be aware of four caveats such as causal relationships, Type I error, Type II error and 

effect size (Cohen, Manion & Morrison, 2011). Various authors recommend different 

techniques to translate the strength of linear relationships. Cohen (1988), as cited in Pallant 

(2013), suggests the following guidelines, which apply irrespective of sign: ‘small’ (r = .10 to 

.29), ‘medium’ (r = .30 to .49) and ‘large’ (r = .50 to 1.0). For the primary teachers, there was 

a modest positive correlation between the two variables, r = .49, n = 229, p < .001. For the 

secondary mathematics teachers, there was a strong positive correlation between the two 

variables, r = .53, n = 249, p < .001.  
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Figure 6.14 Scatterplot of sector CfE and traditional TMBS 
 

 
 

However, since both correlation coefficients are similar, it was important to compare the 

strength of the correlation coefficients of the two groups. After satisfying appropriate 

assumptions, testing of this statistical significance produced an observed z value of -.362. 

Since, this value comfortably lies within the interval -1.96 < z < 1.96, the correlation 

coefficients for the sectors are deemed not statistically significantly different i.e. there is no 

difference between CfE mathematical beliefs scores and traditional mathematical belief scores 

for both sectors. 

 

 

6.4 Analysis of findings relevant to research question three 

The third research question investigated features contributing to teachers opinions about the 

nature of mathematics, the learning of mathematics and the teaching of mathematics, and 

posed, 

 

 What factors impact on the mathematical beliefs of primary and secondary 

 mathematics teachers? 

 

In this section, five characteristics were explored i.e. gender, age, grade, length of teaching 

experience and highest level of qualification in the field of education. The objective was to 

determine if significant differences exist in the mean scores of total mathematical beliefs 
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scores (continuous dependent variable) across five groups (categorical independent variables), 

where gender and sector are used as the main interaction effects. Two-way between groups 

analysis of variance (ANOVA) were used to compare the population means. One of the 

important advantages of this approach is that there are two sources of assignable causes of 

variation, and this helps to reduce the error variance thus making this design more efficient 

(Field, 2013).  

 

6.4.1 Assumptions of ANOVA 

The assumptions of ANOVA are analogous to the parametric assumptions presented earlier in 

this chapter. Nevertheless, the conditions for normality were reassessed given that various 

group sizes are involved. The results for skewness and kurtosis measurements are shown in 

Figure 6.16, where it can be observed that all values are comfortably positioned within 

acceptable guidelines (Field, 2013; Tabachnick & Fidell, 2014). Figure 6.17 displays an 

overview of normality tests with nine results suggesting violation of normality (i.e. p < .05). 

However, inspection of each corresponding sample size suggests that the population from 

which the samples are taken from are normally distributed. Pallant (2013, p. 214) asserts that: 

“With large enough sample sizes (e.g. 30+), the violation of this assumption [normality] 

should not cause any major problems”. The condition of normal distribution is further 

corroborated for each of the five characteristics (i.e. gender, age, grade, length of teaching 

experience and highest level of qualification in the field of education) by inspection of each 

resultant histogram and Normal Q-Q plot of Total Mathematical Belief Scores (Appendix N).    
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Table 6.16 Skewness and Kurtosis values of TMBS for gender, age, grade, experience and  
  highest level of qualification in the field of education  
 

Group  

 Skewness  Kurtosis  

Frequency Statistic Std. Error z-score Statistic Std. Error z-score 

Gender        

 Male 148 .244 .199 1.226 -.309 .396 -.322 

 Female 330 .253 .134 1.888 .186 .268 .694 

Age (years)  

 Under 25 31 .755 .421 1.793 -.127 .821 -.155 

 25 to 34 102 .051 .239 .213 -.088 .474 -.186 

 35 to 44 118 .530 .223 2.377 -.026 .442 -.059 

 45 to 54 140 .180 .205 .878 .419 .407 1.029 

 55 and over 57 .217 .258 .841 -.564 .511 1.104 

Grade  

 Teacher 321 .121 .136 .890 -.152 .271 .561 

 PT 75 .587 .277 2.119 .517 .548 .943 

 DHT 30 -.104 .427 -.244 -.469 .833 .563 

 HT 52 .308 .330 .933 -.307 .650 .472 

Experience (years)  

 5 and under 87 .515 .258 1.996 .574 .511 1.123 

 6 to 10 101 .216 .240 .900 -.070 .476 -.147 

 11 to 15 67 -.197 .293 -.672 .260 .578 .450 

 16 to 20 50 -.166 .337 -.493 .081 .662 .122 

 Over 20 173 .557 .185 3.011 -.297 .367 -.809 

Qualification  

 BEd 162 .507 .191 2.654 .006 .379 .016 

 PGCE/PGDE 279 .200 .147 1.361 .002 .293 .068 

 Masters  42 .086 .365 .236 -.286 .717 -.399 
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Table 6.17 Test of Normality  

 

Group 

Kolmogorov-Smirnov 

Statistic df Sig. 

Gender  

 Male  .049 148  .200* 

 Female .076 330 .000 

Age (years)  

 Under 25 .126 31  .200* 

 25 to 34 .037 102  .200* 

 35 to 44 .089 118 .022 

 45 to 54 .080 140 .030 

 55 and over .084 87 .191 

Grade  

 Teacher .056 321 .019 

 PT .111 75 .023 

 DHT .094 30  .200* 

 HT .067 52  .200* 

Experience (years)  

 5 and under .114 87 .007 

 6 to 10 .067 101  .200* 

 11 to 15 .085 67  .200* 

 16 to 20 .082 50  .200* 

 Over 20 .103 173 .000 

Qualification  

 BEd .086 162 .005 

 PGCE/PGDE .064 274 .009 

 Masters  .072 42  .200* 

* This is a lower bound of the true significance 

 

The results of Levene’s test of equality of error variances are set out in Table 6.18, where it 

can be observed that p < .05 for two measurements. Regarding this matter, Pallant (2013) 

advises: 

 
 A significant result (Sig. value less than .05) suggests that the variance of your dependent 

 variable across the groups is not equal. If you find this to be the case in our study, it is 
 recommended that you use a more stringent significance level (e.g. .01) for evaluating the 

 results of your two-way ANOVA (p. 279).  
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Table 6.18 Levene’s Test of Equality of Error of Variances 

 

 

Consequently, in this study I have used a significant level of .01 for both sector and age and 

sector and grade respectively. Accordingly, I will consider the main effects and interaction 

effects significant only if the Sig. value is greater than .01. 

 

 

In summary, all relevant assumptions have been inspected and satisfied.  

 

6.4.2 Descriptive statistics of ANOVA 

The mean and standard deviations of the participants total mathematical beliefs scores with 

respect to gender, sector, age, grade, experience and highest qualification in the field of 

education are summarised in Tables 6.19 to 6.26 respectively. The following interesting 

observations can be made: 

 

 The group with the strongest mathematical beliefs are male teachers holding a Master’s 

degree in the field of education. 

 The overall group with the weakest mathematical beliefs are male teachers aged under 25 

years. 

 Female teachers have stronger mathematical beliefs in every age group and in each grade. 

 The greatest disparity of mathematical beliefs occurs between primary and secondary 

mathematics teachers aged 55 and over. 

 In terms of grade, primary Deputy Headteachers have the strongest mathematical beliefs. 

Unpromoted secondary mathematics teachers have the weakest mathematical beliefs. 

 F df1 df2 Sig.  

Gender     

 Age 1.901 9 468 .051 

 Grade 1.941 7 470 .062 

 Gender 1.082 9 468 .374 

 Experience .947 5 472 .450 

Sector      

 Age 2.596 9 468 .006 

 Grade 2.591 7 470 .012 

 Gender 2.493 9 468 .090 

 Experience  2.028 5 472 .073 
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 In terms of teaching experience, the group with the strongest mathematical beliefs are 

female teachers with 6-10 years of service. The group with the weakest mathematical 

beliefs are secondary mathematics teachers with 16-20 years of service. 

 In terms of highest qualification in the field of education, the group with the weakest 

mathematical beliefs are male teachers with a Bachelor of Education degree. Primary 

teachers have stronger mathematical beliefs at every educational level. 

 

Table 6.19 TMBS with respect to gender and age 

 Male Female Total 

 M SD N M SD N M SD N 

Under 25 105.00 7.92 9 103.18 17.90 22 103.71 15.55 31 

25 to 34 98.84 16.42 31 96.28 15.94 71 97.06 16.05 102 

35 to 44 101.87 16.77 39 100.06 13.59 79 100.66 14.67 118 

45 to 55 98.78 16.92 37 96.77 14.79 103 97.30 15.35 140 

Over 55 104.50 18.38 32 99.55 17.34 55 101.37 17.79 87 

Total  101.22 16.69 148 98.34 15.48 330 99.23 15.91 478 

 

Table 6.20 TMBS with respect to sector and age 

 Primary Secondary  Total 

 M SD N M SD N M SD N 

Under 25 103.74 17.56 23 103.63 8.19 8 103.71 15.55 31 

25 to 34 96.73 16.31 51 97.39 15.95 51 97.06 16.05 102 

35 to 44 99.29 12.47 52 101.74 16.21 66 100.66 14.67 118 

45 to 55 96.00 12.94 69 96.56 17.37 71 97.30 15.35 140 

Over 55 96.18 15.50 34 104.70 18.49 53 101.37 17.79 87 

Total  97.71 14.60 229 100.63 16.92 249 99.23 15.91 478 

 

Table 6.21 TMBS with respect to gender and grade  

 Male Female Total 

 M SD N M SD N M SD N 

Teacher 102.20 16.90 101 100.10 16.44 220 100.76 16.59 321 

PT 101.19 17.46 32 96.70 13.80 43 98.61 15.52 75 

DHT 94.13 16.10 8 92.14 13.72 22 92.67 14.13 30 

HT 95.43 7.93 7 94.33 11.03 45 94.48 10.61 52 

Total  101.22 16.69 148 98.34 15.48 330 99.23 15.91 478 
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Table 6.22 TMBS with respect to sector and grade  

 Primary Secondary  Total 

 M SD N M SD N M SD N 

Teacher 99.75 15.80 151 101.66 17.26 170 100.76 16.59 321 

PT 95.00 8.58 15 99.52 16.75 60 98.61 15.52 75 

DHT 90.44 13.96 18 96.00 14.32 12 92.67 14.13 30 

HT 94.67 10.37 45 93.29 12.89 7 94.48 10.61 52 

Total  97.71 14.60 229 100.63 16.92 249 99.23 15.91 478 

 

Table 6.23 TMBS with respect to gender and experience   

 Male Female Total 

 M SD N M SD N M SD N 

5 or under 98.33 14.24 24 99.68 15.95 63 99.31 15.42 87 

6 to 10 102.89 18.40 37 94.84 15.37 64 97.79 16.91 101 

11 to 15  97.96 15.25 25 99.29 17.90 42 98.79 16.85 67 

16 to 20 99.54 18.22 13 100.38 13.87 37 100.16 14.92 50 

Over 20 103.49 16.69 49 98.54 14.84 124 99.94 15.56 173 

Total  101.22 16.69 148 98.34 15.48 330 99.23 15.91 478 

 

Table 6.24 TMBS with respect to sector and experience  

 Primary Secondary Total 

 M SD N M SD N M SD N 

5 or under 99.85 16.77 59 98.18 12.33 28 99.31 15.42 87 

6 to 10 95.37 14.61 38 99.25 18.11 63 97.79 16.91 101 

11 to 15 99.73 15.41 22 98.33 17.66 45 98.79 16.85 67 

16 to 20 96.96 13.72 26 103.62 15.67 24 100.16 14.92 50 

Over 20 96.98 13.03 84 102.74 17.22 89 99.94 15.56 173 

Total  97.71 14.60 229 100.63 16.92 249 99.23 15.91 478 

 

Table 6.25      TMBS with respect to gender and highest qualification in the field of education 

 Male  Female Total 

 M SD N M SD N M SD N 

BEd 103.20 14.93 30 99.41 15.15 132 100.11 15.14 162 

PGCE/PGDE 102.73 16.90 103 99.09 15.20 171 100.46 15.93 294 

Masters 86.93 11.71 15 88.41 15.98 27 87.88 14.47 42 

Total  101.22 16.69 148 98.34 15.48 330 99.23 15.91 478 
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Table 6.26       TMBS with respect to sector and highest qualification in the field of education   

 Primary Secondary  Total 

 M SD N M SD N M SD N 

BEd 99.47 14.81 130 102.72 16.38 32 100.11 15.14 162 

PGCE/PGDE 96.80 13.42 84 102.07 16.70 190 100.46 15.93 274 

Masters 87.60 15.50 15 88.04 14.17 27 87.88 14.47 42 

Total  97.71 14.60 229 100.63 16.92 249 99.23 15.91 478 

 

 

6.4.3 Inferential statistics of ANOVA 

A two-way between-groups of analysis of variance was conducted to explore the impact of 

gender, sector, age, grade, experience and highest level of qualification in the field of 

education on participants total mathematical beliefs scores. Included in the statistical 

hypothesis test measurements is power which is reported as a value between 0 and 1 (e.g. 

0.997 relates to 99.7%). Cohen (1998, p. 4) asserts that: “The power of a statistical test of a 

null hypothesis is the probability that it will lead to the rejection of the null hypothesis i.e., the 

probability that it will result in the conclusion that the phenomenon exists”. The effect size 

statistic employed was partial eta squared which indicates the proportion of variance of the 

dependent variable that is explained by the independent variable. Guidelines for interpretation 

is based on Kirk (1996) who classifies .010 as ‘small’, .059 as ‘medium’ and .138 as ‘large’ 

respectively. I will now comment on each of the eight individual results, as follows:  

 

1.     Exploration of gender and age  

Participants were divided into five groups, according to their age (Group 1: Under 25 years; 

Group 2: 25 to 34 years; Group 3: 35 to 44 years; Group 4: 45 to 54 years; Group 5: 55 years 

and over). As presented in Table 6.27, the interaction effect between gender and age group 

was not statistically significant, [F (4, 468) = 0.141, p = .967]. In other words, the total 

mathematical beliefs scores of male and female teachers are not moderated by age.    

Table 6.27 Two-Way ANOVA between gender and age 

Source Type III Sum 

of Squares 

df Mean 

Square 

F Sig. Partial Eta 

Squared 

Observed 

Power * 

Gender 528.614 1 528.614 2.105 .148 .004 0.305 

Age  1891.873 4 472.968 1.883 .112 .016 0.570 

Gender  Age 141.449 4 35.362 0.141 .967 .001 0.079 

Error 117547.189 468 251.169     

Total 4827746.000 478      

Corrected Total 120665.757 477      

* Computed using alpha = .05 
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2.     Exploration of sector and age  

Participants were divided into five groups, according to their age (Group 1: Under 25 years; 

Group 2: 25 to 34 years; Group 3: 35 to 44 years; Group 4: 45 to 54 years; Group 5: 55 years 

and over). As presented in Table 6.28, the interaction effect between sector and age group was 

not statistically significant, [F (4, 468) = 0.847, p = .496]. In other words, primary and 

secondary mathematics teachers’ total mathematical beliefs scores are not moderated by age.    

 

Table 6.28 Two-Way ANOVA between sector and age 

Source Type III Sum  

of Squares 

 df Mean 

Square 

F  Sig.  Partial Eta 

Squared 

Observed 

Power * 

Sector 622.610 1 622.610 2.502 .114 .005 0.352 

Age 1754.231 4 438.558 1.762 .135 .015 0.538 

Sector  Age 843.001 4 210.750 0.847 .496 .007 0.271 

Error 116481.494 468 248.892     

Total 4827746.000 478      

Corrected Total 120665.757 477      

* Computed using alpha = .05 

 

3.     Exploration of gender and grade  

Participants were divided into four groups, according to their grade (Group 1: Teacher; Group 

2: Principal Teacher; Group 3: Deputy Headteacher; Group 4: Headteacher). As presented in 

Table 6.29, the interaction effect between gender and grade was not statistically significant, 

[F (3, 470) = 0.131, p = .942]. There was a statistically significant main effect for grade, [F 

(3, 470) = 2.935, p = .033], as can be visually inspected by the line graph in Figure 6.15. 

However, the effect size was small (partial eta squared = .001).  

 

 

Post-hoc comparisons using the Tukey HSD test indicated than the mean score of the Teacher 

group (M = 100.76, SD = 16.59) was significantly different from the Deputy Headteacher 

group (M = 92.67, SD = 14.13) and from the Headteacher group (M = 94.48, SD = 10.61). The 

Principal Teacher group (M = 98.81, SD = 15.52) did not differ significantly from either of 

the other groups. The main effect for gender [F (1, 470) = 0.930, p = .335], did not reach 

statistical significance. 
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Table 6.29 Two-Way ANOVA between gender and grade 

Source Type III Sum  

of Squares 

 df Mean 

Square 

F  Sig.  Partial Eta 

Squared 

Observed 

Power * 

Gender 231.044 1 231.044 0.930 .335 .002 0.161 

Grade 2186.466 3 728.822 2.935 .033 .018 0.697 

Gender  Grade 97.470 3 32.490 0.131 .942 .001 0.074 

Error 116713.760 470 248.327     

Total 4827746.000 478      

Corrected Total 120665.757 477      

* Computed using alpha = .05   

 

Figure 6.15 Line graph of TMBS for gender and grade 

 
 

4.     Exploration of sector and grade  

Participants were divided into four groups, according to their grade (Group 1: Teacher; Group 

2: Principal Teacher; Group 3: Deputy Headteacher; Group 4: Headteacher). As presented in 

Table 6.30, the interaction effect between sector and grade was not statistically significant, [F 

(3, 470) = 0.309, p = .819]. There was a statistically significant main effect for grade, [F (3, 

470) = 3.463, p = .016], as can be visually inspected by the line graph in Figure 6.16. 

However, the effect size was small (partial eta squared = .022). Post-hoc comparisons using 

the Tukey HSD test indicated than the mean score of the Teacher group (M = 100.76, SD = 

16.59) was significantly different from the Deputy Headteacher group (M = 92.67, SD = 

14.13) and from the Headteacher group (M = 94.48, SD = 10.61). The Principal Teacher 
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group (M = 98.81, SD = 15.52) did not differ significantly from either of the other groups. 

The main effect for sector [F (1, 470) = 1.131, p = .288], did not reach statistical significance. 

 

Table 6.30 Two-Way ANOVA between sector and grade 

Source Type III Sum  

of Squares 

 df Mean 

Square 

F  Sig.  Partial Eta 

Squared 

Observed 

Power * 

Sector 280.778 1 280.778 1.131 .288 .002 0.186 

Grade 2578.384 3 859.461 3.463 .016 .022 0.775 

Sector  Grade 229.754 3 76.585 0.309 .819 .002 0.110 

Error 116649.002 470 248.189     

Total 4827746.000 478      

Corrected Total 120665.757 477      

* Computed using alpha = .05 

 

Figure 6.16 Line graph of TMBS for sector and grade 

 
 

5.     Exploration of gender and experience  

Participants were divided into five groups, according to their length of teaching experience 

(Group 1: 5 years and under; Group 2: 6 to 10 years; Group 3: 11 to 15 years; Group 4: 16 to 

20 years; Group 5: Over 20 years). As presented in Table 6.31, the interaction effect between 

gender and experience was not statistically significant, [F (4, 468) = 1.483, p = .206]. In other 

words, the total mathematical beliefs scores of male and female teachers are not moderated by 

experience.    
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Table 6.31 Two-Way ANOVA between gender and experience 

Source Type III Sum  

of Squares 

 df Mean 

Square 

F  Sig.  Partial Eta 

Squared 

Observed 

Power * 

Gender 303.360 1 303.360 1.205 .273 .003 0.195 

Experience 416.493 4 104.123 0.413 .799 .004 0.147 

Gender  Exp. 1494.370 4 373.592 1.483 .206 .013 0.461 

Error 117867.497 468 251.854     

Total 4827746.000 478      

Corrected Total 120665.757 477      

* Computed using alpha = .05 

 

6.     Exploration of sector and experience  

Participants were divided into five groups, according to their length of teaching experience 

(Group 1: 5 years and under; Group 2: 6 to 10 years; Group 3: 11 to 15 years; Group 4: 16 to 

20 years; Group 5: Over 20 years). As presented in Table 6.32, the interaction effect between 

gender and experience was not statistically significant, [F (4, 468) = 1.197, p = .311]. In other 

words, the total mathematical beliefs scores of primary and secondary mathematics teachers 

are not moderated by experience.    

 

Table 6.32 Two-Way ANOVA comparing sector and experience  

Source Type III Sum  

of Squares 

 df Mean 

Square 

F  Sig.  Partial Eta 

Squared 

Observed 

Power * 

Sector 660.667 1 660.667 2.623 .106 .006 0.366 

Experience  474.632 4 118.658 0.471 .757 .004 0.162 

Sector  Exp. 1206.341 4 301.585 1.197 .311 .010 0.377 

Error 117882.472 468 251.886     

Total 4827746.000 478      

Corrected Total 120665.757 477      

* Computed using alpha = .05 

 

7.     Exploration of gender and highest level of qualification in the field of education 

Participants were initially divided into four groups, according to their qualification (Group 1: 

BEd; Group 2: PCGE/PGDE; Group 3: Masters; Group 4: Doctorate. However, this was 

reduced to three groups as no entries were received for Group 4). As presented in Table 6.33, 

the interaction effect between gender and qualification was not statistically significant, [F (2, 

472) = 0.482, p = .618]. There was a statistically significant main effect for qualification, [F 

(3, 470) = 2.935, p = .033], as can be visually inspected by the line graph in Figure 6.17. 

However, the effect size was small (partial eta squared = .052). Post-hoc comparisons using 
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the Tukey HSD test indicated than the mean score of the Teacher group (M = 100.76, SD = 

16.59) was significantly different from the Deputy Headteacher group (M = 92.67, SD = 

14.13) and from the Headteacher group (M = 94.48, SD = 10.61). The Principal Teacher 

group (M = 98.81, SD = 15.52) did not differ significantly from either of the other groups. 

The main effect for gender [F (1, 470) = 0.930, p = .335], did not reach statistical 

significance. 

 

Table 6.33 Two-Way ANOVA between gender and highest level of qualification in the field of 

  education 

Source Type III Sum  

of Squares 

 df Mean 

Square 

F  Sig.  Partial Eta 

Squared 

Observed 

Power * 

 

Gender 221.572 1 221.572 0.921 .338 .002 0.160 

Qualification 6208.626 1 3104.313 12.910 .000 .052 0.997 

Gender  Qual. 231.618 2 115.809 0.482 .618 .002 0.129 

Error 113494.234 472      

Total 4827746.000 478      

Corrected Total 120665.757 477      

* Computed using alpha = .05 

 
 
Figure 6.17 Line graph of TMBS for gender and highest qualification in the field of education   
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8.     Exploration of sector and highest level of qualification in the field of education 

Participants were initially divided into four groups, according to their qualification (Group 1: 

BEd; Group 2: PCGE/PGDE; Group 3: Masters; Group 4: Doctorate. However, this was 

reduced to three groups as no entries were received for Group 4). As presented in Table 6.34, 

the interaction effect between sector and qualification was not statistically significant, [F (2, 

472) = 0.482, p = .618]. There was a statistically significant main effect for qualification, [F 

(3, 470) = 2.935, p = .033], as can be visually inspected by the line graph in Figure 6.18. 

However, the effect size was small (partial eta squared = .052). Post-hoc comparisons using 

the Tukey HSD test indicated than the mean score of the Teacher group (M = 100.76, SD = 

16.59) was significantly different from the Deputy Headteacher group (M = 92.67, SD = 

14.13) and from the Headteacher group (M = 94.48, SD = 10.61). The Principal Teacher 

group (M = 98.81, SD = 15.52) did not differ significantly from either of the other groups. 

The main effect for sector [F (1, 470) = 0.930, p = .335], did not reach statistical significance. 

 
Table 6.34 Two-Way ANOVA comparing sector and highest level of qualification in the field  
  of education 

Source Type III Sum  

of Squares 

 df Mean 

Square 

F  Sig.  Partial Eta 

Squared 

Observed 

Power * 

Sector 502.638 1 502.638 2.103 .148 .004 0.304 

Qualification 5281.875 2 2640.937 11.048 .000 .045 0.991 

Sector  Qual. 227.145 2 113.572 0.475 .622 .002 0.128 

Error 112823.937 472 239.034     

Total 4827746.000 478      

Corrected Total 120665.757 477      

* Computed using alpha = .05 
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Figure 6.18 Line graph of TMBS for sector and highest level of qualification in the field of  

  education 

  

 

 

6.5 Volunteer comments received  

The final part of the questionnaire included an optional feature which generated a significant 

number of comments and provided a wide range of interesting viewpoints, which enriched the 

data collection method for this instrument. With the exception of a solitary contribution, 87 

participants (18% of main study) submitted a coalesced text of over 6000 words relating to 

various aspects of the belief statements. In order to make sense of the narrative, I divided the 

comments into two categories based on sector and identified various perspectives. Several 

common and distinctive themes emerged which helped to illuminate some of the quantitative 

results.  

 

6.5.1 Primary teachers  

Primary teachers provided 42 (48%) of the contributions, from which five broad themes 

emerged from the analysis. The following comments were tendered by participants with a 

minimum of six to ten years teaching experience including two promoted staff, one of which 

holds a Masters level qualification in the field of education: 
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1. Time constraints 

A number of participants offered support for mathematical problem solving but alluded that 

opportunities to implement in practice were limited due to workload demands and other 

variables. It appears that some participants consider problem solving to be separate from 

mathematics. Sivunen & Pehkonen (2009) reported a similar finding, inferring that ‘time’ was 

manipulated as an obstacle for implementing problem solving. The comments below illustrate 

two cases: 

  

 The idea of learning through problem solving sounds fantastic in an ideal universe. However, 

 this is nearly impossible to do in a busy classroom where the basic foundations of 

 mathematics have to be put in place in order to give the pupils the tools to become problem 

 solvers. In secondary school our whole exam system gets in the way of learning through 
 problem solving. Where would the time come from in an already overcrowded curriculum?  

 
 [Teacher A, Unpromoted, BEd, 11 to 15 years’ experience - December 2014]      

                  

 ... Many pupils have only a surface understanding of various topics and are unable to 
 solve challenging problems without a lot of guidance - But with so many other curriculum 

 subjects to deliver, I feel that as a primary teacher, I do not have enough quality time to 

 spend on problem solving.  
 
 [Teacher B, Unpromoted, BEd, 16 to 20 years’ experience - December 2014] 

 

2. Teaching mathematics through problem solving 

A variety of perspectives were expressed. Some participants reported that this teaching 

approach is an effective method of mathematical instruction but only possible to implement 

after pupils had acquired a solid base of mathematical knowledge. For example, one 

participant wrote, “in practice, it is not achievable to do until P7 as pupils had not yet 

developed any real algebraic skills”. There were some negative comments about the 

conceptualisation of teaching mathematics through problem solving, emphasising awareness 

for practitioners to incorporate various pedagogical approaches to accommodate the needs of 

all learners. One individual stated that: 

 
 You cannot assume that there is only one effective way to teach maths as all children are 
 different; they learn in different ways and require different styles and approaches to 

 teaching. It doesn't mean that someone who is able to solve problems quickly is more of a 

 mathematician than someone who can't ... it only means that they can transfer and apply  their 
 skills in that area.  

 
 [Teacher C, Deputy Headteacher, Masters, Over 20 years’ experience - December 2014] 

 

And another commented, 

 
 I disagreed with the question – “Teaching mathematics through problem solving is the best 

 method to help students learn.” The implication of best way to teach problem solving assumes 

 that all children are identical. For example, some children thrive when doing problem solving 
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 in groups whilst others are completely switched off ... Are we not supposed to provide a range 

 of teaching approaches when doing maths?       
        
 [Teacher D, Unpromoted, PGCE/PGDE, 6 to 10 years’ experience - January 2015]  

 

3. Mathematics teaching self-efficacy 

Some participants indicated they were incapable of operationalising the teaching of 

mathematical problem solving since in their view, they did not consider their individual 

mastery of the subject of mathematics to be of an acceptable standard. Another participant 

stated that in addition to “low confidence in solving problems”, regularly experiences “a 

feeling of dread when manipulating numbers in everyday contexts but more so when under 

pressure”, suggesting an association with mathematical anxiety. According to Richardson & 

Suinn (1972, p. 551), “mathematics anxiety involves feelings of tension and anxiety that 

interfere with the manipulation of numbers and the solving of mathematical problems in a 

wide variety of ordinary life and academic situations”. If teachers who are anxious about 

mathematics are charged with delivering its content, their anxieties could have consequences 

for learners’ mathematical achievement (Beilock, et al., 2010). In one case, a participant 

demonstrated self-evaluation and tentatively enquired about the availability of professional 

support to deepen their pedagogical knowledge:    

 

 Coming from an Arts background, I have to admit that I do not really feel confident in 

 teaching maths.  It has always been a weak subject for me and all through school, I have never 
 been able to solve problems and failed Int 2 in S4 and Higher in S6. I was OK at following 

 some things but found it difficult to put ‘everything together’... There is no doubt that maths 

 is a key subject within the CfE and I would like to know how to go about teaching problem 
 solving properly but would need a lot of training! Is there any such help available? 
   

 [Teacher E, Unpromoted, PGCE/PGDE, 6 to 10 years’ experience - December 2014] 

  

4. Multiple solutions  

A small number of participants were able to identify with this strategy as a valuable method 

of enhancing deeper conceptual understanding. However, one participant suggested a 

complete lack of awareness of what constitutes a mathematical problem, inferring that it is 

possible to teach pupils a procedure that can be repeated and later applied as an algorithm to 

every problem:   

 
 When demonstrating problem solving, I regularly have issues with under confident 

 children who say they just want one way that works for them ... Their thinking is not 

 mature enough  and constantly have to revisit stuff and trying alternative ways to solve 
 problems undermines their confidence. In a class with a wide range of learning styles it is 

 important to remember this small but significant group.  

 
 [Teacher F, Principal Teacher, PGCE/PGDE, 11 to 15 years’ experience - January 2015]  
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5. Pupil ability   

A few participants felt that the nature of problem solving is complex and should exclude less 

mathematical able pupils, including those with poor literacy skills, unless additional help is 

provided. According to one teacher:  

 
 In my experience, only more able pupils can solve problems. Less able pupils tend to 

 become very frustrated and easily lose focus, unless they are given a lot of additional 

 support which takes time with no guaranteed success.  
 

 [Teacher G, Unpromoted, BEd, 16 to 20 years’ experience - December 2014] 

 

It was also suggested that the nature of classroom interactions during the implementation of 

problem solving is heavily influenced by the teacher but that successful problem solving can 

only occur when a class contains a nucleus of enthusiastic learners with a strong desire to 

collaborate with others. As one participant put it: 

 
 I think teachers can make a big difference to what goes on throughout PS [problem solving] 

 but what really works is having a few good children that are very keen and can help the others 

 to keep going when stuck... My P6 have really struggled as a group in maths this year after the 
 top two moved away.  

 

 [Teacher H, Unpromoted, BEd, Over 20 years’ experience – January 2015] 

 

6.5.2 Secondary mathematics teachers  

Secondary mathematics teachers provided 45 (52%) of the contributions, from which seven 

broad categories emerged from the analysis. The following comments were tendered by 

participants with a minimum of one year teaching experience including three promoted staff, 

one of which holds a Masters level qualification in the field of education: 

 

1. National qualifications  

A number of participants reported functioning within a ‘results driven culture’ in which their 

professional practice is inextricably linked to the enactment of traditional teaching methods 

i.e. emphasise on procedural fluency opposed to the development of critical thinking skills. 

Some participants referred to a deterioration of professional autonomy. For example, one 

participant stated:  

  
 My mathematical beliefs help me to establish a basis for classroom teaching and given the 

 freedom, I would happily fill every day with problem solving, problem posing, 
 investigations, challenges, proofs, history of mathematics, etc... However, like everyone  else, 

 I am controlled by the intense pressure of exam targets which dictate what particular teaching 

 methods can be used limiting the experiences of my pupils. 
 

 [Teacher I, Principal Teacher, PCGE/PGDE, 16 to 20 years’ experience - December 2014] 
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Another participant questioned the legitimacy of teachers’ beliefs,  
 

 Our first priority is to get students their qualifications as without these, their maths career 

 comes to an end... Not getting their qualifications also damages confidence - Does it 

 really matter what teachers believe as long as their pupils pass exams?  
   

 [Teacher J, Unpromoted, PCGE/PGDE, Over 20 years’ experience - December 2014] 

 

2. Time constraints 

Several participants expressed workload concerns regarding a lack of class time to allocate to 

mathematical problem solving, attributing liability to the administration of national 

assessments. The comment below illustrates a typical viewpoint:  

 

 It would be great to approach the teaching of maths by problem solving but in many ways 
 this is totally unrealistic in terms of time, when you are trying to get pupils through national 

 exams, especially Nat.4/5 which drains a teacher’s already limited time, especially when 

 having to cater for absent pupils and organising re-assessments.  
   
 [Teacher K, Unpromoted, PGCE/PGDE, 6 to 10 years’ experience - December 2014]  

 

While a different participant hinted towards a common conundrum faced by all teachers:   

 

 We are continually faced with the choice of teaching for understanding or pass the test - 
 Problem solving and posing questions to challenge thinking would be fantastic but the 

 restriction of time when juggling so many other daily matters (e.g. behaviour) is a major 

 issue. 
 

 [Teacher L, Unpromoted, BEd, 5 or under years’ experience - January 2015]  

 

3. Teaching mathematics through problem solving 

A number of participants expressed disapproval or rejection of this powerful mechanism for 

promoting conceptual understanding. Borko & Putnam (1996, p. 684) argue that teachers’ 

views about education may serve as impediments to change and point out that “experienced 

teachers’ attempts to learn in new ways also are highly influenced by what they already know 

and believe about teaching, learning, and learners”. In one case, a teacher appeared to be 

unaware that a problem solving approach is rooted within the literature and characterised as a 

curricula objective:  

 

 I have taught maths for over 40 years in a number of different schools and have yet to meet 

 someone who teaches through problem solving. I imagine this would take a lot of preparation 
 time and expertise, both something of which I don’t readily have... I would also speculate that 

 many teachers would be extremely anxious if this method was to be introduced!   

       
 [Teacher M, Unpromoted, PGCE/PGDE, Over 40 years’ experience - December 2014] 

 

Another participant referred to the input of controversial New Zealand academic John Hattie 

and his ground breaking collection of evidence based research into learning in schools. This 
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comment is the solitary contribution from both sectors that included explicit reference to the 

literature:  

  
 John Hattie's findings show us that discovery teaching is a very ineffective way of learning, 

 whereas direct teaching is shown to be the most effective. Problem solving cannot take place 
 until a pupil has the range of mathematical skills required to solve the problem. If a range of 

 skills and understandings are to be taught through posing problems this has major 

 implications for planning LI and SC, and can overwhelm student and teacher. It can be very 
 difficult to get and give effective feedback on where a pupils problems lie, is it the maths 

 skills and understandings, is it the interpretation of the problem, or is it the modelling of the 

 solution? I have read no literature or had any experience in the classroom that would suggest 
 that problem solving (as in a question that requires an extended response across a range of 

 mathematical areas or in an unfamiliar context) is the best way in which pupils' learn. Any 

 question on a discrete area can be posed as a problem to pupils if their understanding or skills 

 need to be developed in a particular area. The expectation in the response from the teacher in 
 terms of showing understanding is the most important aspect.  
   

 [Teacher N, Principal Teacher, PGCE/PGDE, Over 20 years’ experience - December 2014] 

 

This previous comment is grounded on a claim by Hattie & Yates (2014) who used meta-

analysis to compare different learning strategies and concluded that, based on effect size, 

direct instruction is effective and discovery learning is not. Notwithstanding validity concerns 

when applying meta-analysis, the authors claim is seriously misleading as both techniques are 

pedagogical strategies that are utilised for divergent purposes. Besides, neither of these 

strategies should be exclusively employed as the sole means of instruction for teaching 

mathematics within a constructivist learning environment. Particularly notable is the 

relevance of the curricula argument regarding planning and evaluation of learning intentions 

and success criteria given that problem solving is infused into all aspects of mathematics 

learning. Moreover, Hattie & Yates (2014) advocate teaching problem solving as one of the 

top teaching practices having the biggest effect size. 

 

4. Primaries 

A common view amongst some participants included concerns with the recent level of 

mathematical competence of primary pupils entering secondary. In particular, a few teachers 

specifically criticised the quality of problem solving skills. One individual stated that: 

 
 I believe that the primary curriculum to too diverse and not enough emphasis is given to basic 

 numerical skills; we have observed deterioration in the standard of numeracy in the last few 

 years e.g. some pupils do not know their times tables when starting first year of high school 
 and problem solving skills are virtually non-existent.  
      

 [Teacher O, Principal Teacher, Masters, 11 to 15 years’ experience - January 2015] 

 

 

This view was echoed by another participant who noted: 
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 ... we depend on the primaries to provide us with pupils with a basic set of mathematical 

 skills but in recent years the quality of these skills has reduced with the very few being able to 
 problem solve for themselves. Another thing I have noticed is that these pupils give up so 

 easy and demand the answer instead of taking the time to work it out. They lack elementary 

 problem solving strategies and perseverance. 
   

 [Teacher P, Unpromoted, PGCE/PGDE, Over 20 years’ experience - January 2015] 

 

5. Pupil ability 

Some participants questioned the necessity to engage all learners in problem solving 

activities, highlighting concerns with establishing inquiry oriented classrooms due to issues 

with pupils not participating in constructive dialogue and debate. One participant reported 

that: 

 
  This questionnaire assumes the existence of a standard learner... They are anything but 

 standard. Some  are active problem solvers; some wouldn't have the sense to get in out of the 

 rain. Some will throw themselves into your problem scenarios and some will stare at the paper 
 for ten minutes before saying 'I don't get it' and hitting their neighbour with a rolled up jotter.  
        

 [Teacher Q, Unpromoted, PGCE/PGDE, Over 20 years’ experience - January 2015] 

 

6. Mathematical problem posing 

A small number of participants were particularly critical of the validity of engaging all ability 

levels with this important cognitive process. For example, one participant alluded to the 

notion that problem posing is academically elitist and should not be encouraged:  

 
 While conjecturing, justifying, reasoning, proving, disproving, searching for patterns and 

 tackling problems are an essential part of early mathematics training, posing your own 

 problems is only suited  for the more advanced pupil ... this is something that I don’t really 
 promote as it would exclude the vast majority of children. 
         

 [Teacher R, Principal Teacher, PGCE/PGDE, 16 to 20 years’ experience - December 2014] 

 

Another participant referred to the sum of the angles in a triangle, suggesting a potential 

pitfall of collaborative problem posing: 

 

 Problem solving and problem posing are fantastic tools for learning for capable pupils who are 
 quick to grasp new topics and ideas. Problem posing for those who can't answer a basic times 

 table question with any degree of consistency is the opposite of an effective approach... I've 

 seen a pupil invent a series of problems regarding angles in a triangle where the two given 
 angles always added to more than 360 degrees (let alone 180 degrees). I won't deny that it 

 taught me something about their understanding, but it taught him and the poor boy he invented 

 the problem for nothing at all. 
         
 [Teacher S, Unpromoted, PGCE/PGDE, 16 to 20 years’ experience - January 2015] 
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7. Solving mathematical problems quickly 

A few participants suggested that in order to demonstrate mathematical competence, pupils 

must be able to solve problems within a very short time frame. Such views overlook the 

reality that engaging pupils in mathematical thinking demands awareness that some problems 

require a period of time and perseverance to solve. As one teacher recorded: 

 

 The question – ‘To be good at mathematics you must be able to solve problems quickly’ – 

 no indication of time is specified here but I understood this to be within minutes – 
 Solving problems quickly is an obvious measure of strong mathematical ability.   

    
 [Teacher T, Unpromoted, PGCE/PGDE, 11 to 15 years’ experience - December 2014] 

 

In general, the aforementioned comments appear to illustrate tension in teachers’ beliefs about 

their existing role and how they perceive mathematical problem solving. A common theme 

permeating from both sectors is bureaucracy, which can suffocate attempts to innovate and 

implement intrinsic curricula objectives. For instance, this is encapsulated by ‘Teacher I’ who 

concomitantly alludes to a trend of de-professionalization by being “controlled by the intense 

pressure of exam targets”. Such accountability suggests that what is taught in many schools is 

based on what is assessed nationally and therefore inevitably leads to a narrowing of the 

mathematics curriculum, to which Boaler (2015b, p. 2) symbolises as a “strange mutated 

version of the subject”.  

 

  

However, an underlying issue worthy of mention is in relation to the professional 

responsibility of teachers towards children and young people. Prevailing within the 

contributions was a repeated use of terms like ‘able’, ‘advanced’ or ‘poor’ to describe their 

pupils. Biesta, Priestley & Robinson (2015) reported a similar finding in their ethnographic 

research of Scottish teachers’ beliefs. Such language suggests that many practitioners identify 

mathematical ability as a fundamental prerequisite for teaching problem solving and, 

arguably, justification for rebuffing specific individuals in favour of a localised selective 

engagement policy. Assuming this to be true, it raises serious concerns regarding issues of 

equality and equity, as the existing politically charged arena and societal impetus is to 

encourage every teacher to ensure that all learners are afforded similar opportunities and 

given the same chance of success to develop as fully rounded citizens. Moreover, it 

undermines the ideology that all primary and secondary mathematics teachers have a duty to 

expose their pupils to problems much more than to facts (Halmos, 1980). 
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In summary, inconsistencies appear to exist between the mathematical beliefs of both sectors 

including deviations from the mathematical philosophy underpinned by CfE. The optional 

element of the questionnaire generated significant interest and revealed that both sectors may 

have concerns that impact on their capability to implement mathematical problem solving and 

problem posing.  

 

 

The next chapter moves on to report on the second phase of this empirical study.   
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CHAPTER SEVEN 

 
 

Qualitative Results 
 

 

This chapter describes the second phase of the mixed methods explanatory sequential design, 

which was driven primarily by the quantitative results along with due consideration of the 

outcome of the optional component, as reported in the previous chapter. The objective is to 

present the qualitative data to help explain the initial results from the questionnaire which 

addressed the second and third research questions of this study. Eleven semi-structured 

interviews were conducted with current teachers from the local education authorities of 

Edinburgh, Fife, North Lanarkshire and West Lothian respectively.  

 

 

7.1  Nature of the semi-structured interviews  

Arising from the analysis of the results of phase one, interviews were conducted during 

March and April 2015. Each interview was audio-recorded using a high-quality device and 

conducted at the participants’ place of employment, lasting on average 40 minutes in 

duration. Field notes were used to gather demographic information and convey personal 

reflections. With one exception, all of the interviews were located in a quiet area free from 

interruption. Rapport was instantaneously established with ‘social capital’ afforded to me as a 

full-time practising teacher. All of the participants were cooperative allowing for a relaxed 

and informal atmosphere to dominant the interactions. 

 

 

The protocol of each interview was similar and followed a prearranged sequence grounded in 

the quantitative results and optional comments from the first phase (Appendix O). The initial 

development of the interview questions were guided by significant results, non-significant 

results and group differences, followed by an iterative process of revisions and reflection, 

framed against the mathematical problem solving expectations of CfE. This procedure was 

later strengthened by other interrelated questions which focussed on teachers’ beliefs about 

the nature of mathematics, the learning of mathematics and the teaching of mathematics. In 

essence, participants were posed a set of identical questions including follow-up questions 

corresponding to their individual responses to the online questionnaire. Due to the nature of 
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the semi-structured arrangement, opportunities to capture unplanned conversations emerging 

from the interview were also examined.  

 

 

All of the interviews were professionally transcribed ‘intelligent verbatim’ by an independent 

company, producing approximately 160 pages of transcripts. In terms of rigour, random 

samples of two transcripts were scrutinised by me against each audio-recording to determine 

the accuracy and reliability of the transcription service provided. As a further measure shortly 

after the interview, one individual transcript was examined in detail by the participant 

involved, to ensure some form of corroboration. With the exception of a few inconsequential 

punctuation errors and the misspelling of two words, no inconsistencies were detected in 

terms of accidental or intentional alterations. Subsequently, it is considered that the transcripts 

are trustworthy for analysis purposes.     

 

 

7.2 Participant information 

Purposeful sampling was undertaken (Teddlie & Yu, 2007) as the strategy to select 

participants from a sample of 63 volunteers, collected from the questionnaire. This sample did 

not yield individuals at or near extreme levels, although, a significant number of volunteers 

were typical or representative of different groups, including several that varied in their 

statistical results and others that contrasted in their scores on significant predictors. 

Principally based on total mathematical beliefs scores, intermixed with consideration of 

demographic characteristics, an interviewee list deemed capable of helping to explain the 

phase one results was formulated. Due to the unavailability of some individuals including 

limitations owing to my own full-time teaching commitments, the list was subsequently 

modified to produce a final array of participants with total mathematical beliefs scores 

ranging from 71 to 120. In terms of schools establishments, the participants worked in co-

educational institutions classified as denominational and non-denominational, and located 

within urban and semi-rural areas. Where possible, considerable effort was made to ensure 

that the participants and their schools reflected the diversity of all schools. Pseudonyms are 

used throughout to ensure anonymity of the participants, of which relevant background 

information can be seen in Table 7.1. 
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Integration 

At this point, I wish to clarify my position regarding the methodological issue of ‘integration’ 

which refers to the stage or stages in the research process where the mixing of the quantitative 

and qualitative methods occurs (Ivankova, Creswell & Stick, 2006). A number of scholars 

maintain that integration can dramatically enhance the value of mixed methods research (e.g. 

Bryman, 2006; Fetters, Curry & Creswell, 2013; Creswell, 2015). In this study, I connected 

the quantitative and qualitative phases during the intermediate stage in the research process, 

while selecting the participants for the qualitative follow-up interviews. Considerable 

attention was afforded to the selection of interview participants, in order to ensure a diverse 

representation of mathematical beliefs including a comparable range of mathematical beliefs 

between each sector. The second connecting point included development of the interview 

questions for the qualitative data collection, based on the results of the analysis of the first 

quantitative phase.  

 

Table 7.1 Background information of the interview participants  

Interview 

No. 

 

Pseudonym TMBS Gender Sector Age group 

(Years) 

Grade Teaching 

experience 

(Years) 

Highest level 

of qualification 

in the field of 

education 

1 lona 86 Female Primary 45-54 HT 27 BEd 

2 Alasdair 101 Male Secondary 35-44 Teacher 14 PGCE 

3 Grace  103 Female Primary 35-44 Teacher 21 PGCE 

4 Isabella 97 Female Primary Under 25 TIS 0.5 BEd 

5 Skye 120 Female Secondary 55 or over Teacher 17 PGCE 

6 Lorna 100 Female Primary 45-54 PT 8 PGCE 

7 Fraser 71 Male Primary 45-54 DHT 21 PGCE 

8 Morag 114 Female Primary 35-44 Teacher 18 PGCE 

9 Kirsty 106 Female Secondary 55 or over Teacher 40 PGCE 

10 Hamish 83 Male Secondary 45-54 PT 20 MSc 

11 Cormac 116 Male Secondary 25-34 Teacher 3 PGDE 

Note: TIS (Teacher Induction Scheme)   PT   (Principal Teacher)  

 DHT (Deputy Headteacher)    HT   (Headteacher) 

 

The estimated mean age of the group is 44.4 years and the mean length of teaching experience 

calculated as 17.6 years, comparable with the main study sample (N = 478). Similarly, the 

mean of the total mathematical beliefs scores for the participants measured 99.73, which is 

very close to the overall mean value of 99.23.  
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7.3 Qualitative analysis process  

After careful consideration, an early decision was made to reject the use of qualitative data 

analysis software such as NVivo. The significant investment of time required to effectively 

master such a specialist system was not possible given my full-time teaching commitment. 

Irrespective of available time, Lambert (2012, p. 173) advises beginner researchers “to stick 

to more straightforward methods”. Although also potentially labour intensive, it was felt that 

a manual approach with a relatively small database, presented a rich opportunity for me to 

appreciate ‘first-hand’ the complexities of the interconnected analytical processes.  

 

 

Four stages of analysis were undertaken in phase two of this study, all of which were iterative. 

The qualitative research questions designed for the interviews provided the development of a 

suitable thematic framework. I will explain each stage of the process separately. 

 

 

The first stage involved carefully reading the transcripts several times in order to gain a 

general sense of the material. This allowed me to immerse myself in the details. Particular 

emphasis was made to ensure that the understanding of the transcripts was precise. Cohen, 

Manion & Morrison (2011, p. 537) warn of the controversy of interpretation by asserting: 

“one has to note that there are frequent multiple representations to be made of qualitative data 

- that is their glory and their headache!” Where necessary, I reviewed my interpretations on 

several different occasions. Principally to ensure that my original thinking about the data did 

not follow a stereotypical linear process as opposed to a desired contextual one. Patton (2002, 

p. 480) warns qualitative researchers about the temptation to “fall back on the linear 

assumptions of quantitative analysis”.   

 

 

During the second stage, I highlighted all comments deemed ‘interesting’ and introduced a 

colour system to code the data. Creswell (2014, p. 267) states that “coding is the process of 

segmenting and labelled text to from descriptions and broad themes in the data”. As a large 

number of codes were generated, codes were examined for overlap and redundancy. 
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In the third stage, I annotated the emergent themes. By applying a critical perspective to the 

raw examination of the transcripts and field notes, I was able to identify reoccurring and new 

themes. Menter et al. (2011) sensitises researchers to: 

 
 keep your mind open to what may emerge. Do not always assume that the first transcripts you 

 read will provide you with all of the important insights you are hoping for and then all you 

 are effectively doing when you read the later ones is looking for confirmation. Indeed, it is 
 good to be looking for countervailing evidence that seems to contradict your previous 

 judgement or at least represents a very different experience or perspective (p. 216). 

 

I also identified and disregarded data that did not provide evidence for any theme. 

 

 

The final stage involved tabulation of responses to questions and cross-participation analysis. 

This allowed me to re-read the data holistically and identify the key themes emerging from 

the interviews.  

 

7.3.1 Emergent themes  

On analysis of the qualitative data, eight interrelated broad themes emerged during the 

discourse that help to explain the results of the first phase one of this study:   

 

1. Philosophies of mathematics 

The most salient hierarchal feature of the participants’ interactions is the multiple perspective 

philosophies held between individuals and sectors regarding the nature of mathematics, 

although one teacher did not articulate a coherent philosophy. Engrained within some primary 

teachers’ beliefs is the personal view that mathematical knowledge is objective, unique, 

rational, inert, cold, abstract and logical. A pertinent illustration of this was offered by Grace, 

who firmly stated: 

 
 Maths is about following a set of established rules that have been in place for a very long time 

 and which don’t change...The angles in a triangle have always added up to a hundred and 
 eighty degrees have they not? Maths is a hard subject where your final answer is either right 

 or wrong... You also need a good memory... When I doing maths at school, I always use to 

 wonder why we needed to learn some things, like quadratic equations, since most people will 
 never use them again... For me now, numeracy is just as important, if not more.  

 

Similarly, Morag reported: 

 
 ... If you need to solve a question, you need to know the correct procedure to follow... but 

 sometimes in maths you just have to apply the rule even when it doesn’t make sense to you... 

 Yesterday, I got a question on dividing one by nothing and checked it on a calculator... still 
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 not really sure why it [calculator] gives you an error since one number is being divided by 

 another.  
 

Both positions reinforce an absolutist philosophical perspective of mathematics, which is 

succinctly defined by Ernest (1991, p. 7) as “consisting of certain and unchallengeable 

truths”.  Conversely, this stance is contrasted with predominantly a fallibist philosophical 

perspective advocated by most of the secondary mathematics teachers, although support for a 

social constructivist approach is sporadic. Thompson (1992, p. 132) opines that “mathematics 

is considered fallible, and it is developed through conjectures, proofs, and refutations, and, 

uncertainly is accepted as inherent in the discipline”. Evidence of an underpinning fallibilist 

perception was noted in comments embracing historical and mathematical applications 

including the notion that mathematics as a discipline is open to revision. For example, 

Alasdair remarked that “maths is a beautiful subject that goes back to ancient times” and “it is 

used in every field of real life and is always evolving due to new research”. Likewise, this 

view was reinforced by Skye, who said:  

 
 When I think about maths, I think about the contribution of Archimedes, Napier, Euler, 

 Maxwell and wonder how these guys did what they did without the use of a computer! Maths 
 has an infinite number of practical applications; you can explore almost anything. Numbers 

 are used everywhere from building bridges, insurance premiums, sports, music, missiles, 

 stock market, mobile phones, weather forecasting, voting methods, gaming, predicting the 
 spread of a disease or population growths or even the likelihood of the next tsunami and so 

 on...What other school subject can offer the same level of stimulus? 

 

From my own professional experience, using mathematical applications and examples of 

antiquities as pedagogical tools for learning and teaching mathematics, can stimulate interest 

and enthusiasm, since it helps to humanize the subject. Bidwell (1993, p. 461) eloquently 

describes that teachers “can rescue students from the island of mathematics and relocate them 

on the mainland of life that contains mathematics that is open, alive, full of emotion, and 

always interesting”.  

 

 

In expressing an equivalent notion, Kirsty, a veteran practitioner, emphasised a humanist 

philosophy of mathematics, based on her strong admiration of a pure mathematician. She 

reported that,     

             

 I recently watched ‘The Imitation Game’ about the genius Alan Turing and his Enigma 
 machine, which he used to break Nazi codes during the Second World War; totally 

 amazing film! Cryptography is such a powerful branch of maths, and there’s so much 

 more out there that has yet to be discovered! 
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What is particularly intriguing about Kristy’s narrative is her use of the word ‘discovered’, 

intimating that mathematical truths are unearthed at some point in human evolution, which 

aligns with a Platonist view of mathematics. It also suggests refutation that mathematical 

knowledge is created by a community of mathematicians, which is the cornerstone of social 

constructivism. Ernest (1998) argues that mathematics is constructed by the mathematician 

and is not a pre-existing reality that is discovered. Assimilating to a platform focusing 

completely on school mathematics, three distinct belief dimensions emerged mostly in line 

with mathematical philosophies represented by Ernest (1989a). The mathematical beliefs of 

both primary and secondary mathematics teachers do not assimilate with one single belief 

structure but are reflected in a cluster of instrumentalist, Platonist and problem solving 

perspectives.  

 

 

The effect of grade and highest qualification in the field of education was explored further and 

found to be noteworthy. This was suitably illustrated in the case of Fraser, a science graduate 

and experienced Deputy Headteacher (he holds the professional award of SQH and 

postgraduate diploma). His responses to the belief questionnaire were unambiguously 

consistent with a problem solving view of mathematics. For example, he strongly agreed or 

agreed with the following belief statements: 

 

 The priority in teaching mathematics is to ensure students develop confidence in problem 

posing and problem solving.  

 Teaching mathematics through problem solving is the best method to help students learn. 

 Mathematics is a continually expanding field of human creation and invention. 

 

Consistent with these views, Fraser also strongly disagreed or agreed with the following belief 

statements: 

 Mathematics is an accumulation of facts, rules and skills.  

 You explain in detail what the students have to do to solve problems. 

 Mathematics is a collection of procedures and rules that specify how to solve problems. 

Fraser noted that his enthusiasm for a problem solving philosophy of mathematics was fuelled 

during his time spent as a former LEA development officer for science. He dismissed the 

notion that the nature of mathematics is all about numbers, but that it can be appreciated by 

considering different types of “scientific relationships”. In particular, Fraser expressed a need 
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to understand why a given formula is true, in order that the formula can be internalised 

without memorisation. He said,  

 

 Although I learned maths at school the traditional way by following procedures, I could still 

 pass exams but never really understood what I was doing... When I had to plan science 
 lessons, I realised that a problem solving approach could be applied to other areas maths... To 

 me, understanding is the key opposed to reciting facts or formulas... Maths is an incredibly 

 useful tool in the real world, it’s at the core of the curriculum and without it, we can’t solve 

 problems. The fact that it can be adapted to so many different applications, not just science, 
 means that it’s flexible and essential for everyone to learn.   

 

 

Equally, in the case of Hamish, a Principal Teacher and Masters graduate in ‘Professional 

Education and Leadership’, his responses to the belief questionnaire were unmistakably 

consistent with a problem solving view of mathematics. He strongly agreed or agreed with the 

following belief statements: 

 Teaching mathematics through problem solving is the best method to help students learn. 

 Mathematics is a continually expanding field of human creation and invention. 

 Problem posing is beneficial for developing students’ mathematical skills and investigating 

their understanding of mathematics. 

Consistent with these views, Hamish also strongly disagreed or disagreed with the following 

belief statements: 

 Mathematics is computation.  

 You explain in detail what the students have to do to solve problems. 

 Mathematics is a static but unified body of knowledge. 

Hamish conveyed mainly a formalist view, emphasising that mathematics is characterised by 

logic, intuition and proof. However, he maintained that within its subject domain, 

mathematics embodies infinite creativity because it perpetuates the requirement to solve new 

and exciting real life problems using innovative techniques. Hamish said: 

 
 I love everything about maths... logic, proofs, theorems, complex numbers, geometric shapes, 

 fractals, modelling... It’s available to everyone, male, female and is all around us in the 

 natural world. It’s always been a creative and exciting subject for me because of its use in 
 solving real life problems... in fact, maths is really all about solving problems... and of course 

 we have the future, which will need our youngsters to use imaginative ways to solve new 

 problems...   
  

In general, only Fraser and Hamish explicitly referred to mathematics as a “scientific 

relationship”. Both participants highlighted the link to solving real life problems and for 

interpreting the natural world. This view was shared by three other secondary participants. A 
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common theme amongst primary participants was that mathematics is viewed as a numerical 

tool for managing daily life scenarios such as household accounts. This is comparable with 

Archer’s (1999) Australian cross-sector study who found that primary teachers tended to view 

mathematics as linked to everyday functions while secondary mathematics teachers were 

inclined to regard it as self-contained, orderly and logical. 

 

2. Image of mathematics 

Emerging directly from the philosophies about the nature of mathematics is the interrelated 

theme concerning ‘images of mathematics’ as espoused classroom practices. An image of 

mathematics is conceptualised as a mental representation or view of mathematics, presumably 

constructed as a result of previous social or personal experiences. All of the secondary 

mathematics participants portrayed a positive image of mathematics. This was clearly 

manifested by their promotion of multiple solutions or elegant solutions to mathematical 

problems. In one case, Alasdair commented that: 

 

 Teachers must encourage pupils to look for alternative ways to solve problems if they want 

 to raise attainment in maths... The solutions don’t have to be fancy, simple is better with no 
 need to include a long list of calculations. 

 

This comment follows closely with views articulated by participants in a study of Israeli 

mathematics teachers’ conceptions of multiple solutions, by Leikin & Levav-Waynberg 

(2009). One illustration is centred on a similar awareness that solving problems in different 

ways may “contribute to the development of students’ mathematical understanding” (p. 12). 

In contrast, a variety of perspectives were expressed by the primary participants. For example, 

two primary teachers communicated a negative image of mathematics by their support of the 

over use of routine mathematical tasks in order to ‘repeat newly acquired algorithmic and 

memorised procedures’. Grace and Lorna claimed that pupils need sufficient time to develop 

self-assurance and that low confidence in mathematics is a major barrier to successful 

learning. Grace insisted that: 

 
 It’s really important that time is set aside to allow children to practice their new maths 

 knowledge without the need for questions [problem solving] that will put them under too 

 much pressure... If they don’t practice what they have been taught, for instance number 

 bonds, they may not remember things later on...       

 

A possible explanation from Grace’s narrative is that memorisation is instrumental in learning 

mathematics (a view shared by many participants from both sectors during phase one). 

Assuming this to be correct, it may be reasonable to speculate that such practitioners wish to 
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prevent the creation of misconceptions, although misunderstandings can never be fully 

circumvented in teaching mathematics (Swan, 2001). 

 

 

Within the first two themes, all of the participants explicitly referred to their previous school 

experiences as former pupils and offered evidence to what instigated and shaped their early 

mathematical beliefs. Lortie (1975) contends many of the beliefs held by teachers about the 

profession originate from personal schooling experiences, gained through an ‘apprenticeship 

of observation’. For example, Hamish positively said: 

 
 My first memories were fantastic thanks to an inspirational primary teacher who took the  time 
 to help me try new things and made numbers fun and meaningful... I was never frightened of 

 making a mistake... she taught me algebra and always encouraged me to learn more advanced 

 stuff including solving difficult problems... Her enthusiasm for the subject was infectious... 
 she was the main reason why I became a teacher. It was certainly not due to much of my 

 secondary education, as the teachers there were obsessed with handing out the belt [former 

 school corporal punishment] opposed to helping people  achieve... not until fifth year [S5] 
 doing proofs and calculus did I begin to really enjoy maths again... even after all these years, 

 because of one teacher, algebra is still my favourite topic. 

 

There were some negative comments about early mathematical experiences that appear to be 

unaffected by the impact of initial teacher education including years of professional 

experience. The comment below from Morag is a typical illustration of such a tension: 

 

 ... I remember when I was young trying to learn my times tables and always getting shouted 
 at, even though I could recite Burns... One time, Dad was angry with me for failing to pass an 

 entrance exam that included lots of long division... I cried a bit as a teenager because I 

 couldn’t follow all the rules, especially equations... Disliked maths at secondary because of 
 the oppressed and repetitive way it was taught and that we were always set... The teachers 

 were impatient because they knew I was really good at other subjects... I even struggled 

 during my BEd and almost failed the final placement because of fractions and decimals 

 [laughter]. Even with CPD, I still feel indifferent towards maths... I will never forget the 
 feeling of dread as a wee girl been forced to stand up and repeat the twelve times table... This 

 is the same wee lassie that could easily stand up during an assembly and perform ‘Ae fond 

 kiss’. 

 

It is apparent by her emotive language that Morag was and still is upset by her early school 

experiences of learning mathematics. This finding is consistent with that of Hudson, 

Henderson & Hudson (2015) who describe the case of Angela, a Scottish primary teacher, 

who had been traumatised by mathematics during secondary schooling. Many primary 

teachers lack confidence in their mathematical abilities (Winteridge, 1989) and often exhibit 

feelings of anxiety and emotion relating to their negative experiences of school mathematics 

(Buxton, 1981). Moreover, Chalke (2007) warns that practitioners who have themselves been 
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exposed to poor teaching of mathematics may, as a result, lack confidence in teaching it or 

have a negative image of the subject, falling back and relying on the way they were taught 

and thereby transmitting their negative attitudes towards the subject to their own pupils.  

 

3. Learning and teaching of mathematics 

Some primary participants offered evidence to support the view that their beliefs are 

consistent with a social constructivist and problem solving orientation and that the strength of 

these beliefs may be influenced by grade. However, two of the participants hold conflicting 

prescriptive views that are incompatible with these belief orientations. To illustrate this, 

consider the case of Morag. For example, she strongly agreed or agreed with the following 

belief statements: 

 

 Ignoring the mathematical ideas generated by the students can seriously limit their learning. 

 After solving a problem, students should be encouraged to search for alternative solutions. 

 Mathematical learning is enhanced when students are encouraged to take part in challenging 

activities. 

  

Consistent with these views, Morag also strongly disagreed or disagreed with the following 

belief statements: 

 The most effective way to learn mathematics is by listening carefully to the teacher. 

 Teachers are the authority for what is right or wrong. 

 The primary purpose of teaching problem solving is to equip students with a collection of 

skills and processes. 

However, inconsistent with these views, Morag also strongly disagreed with the following 

belief statements: 

 

 Preparing learners to think critically about mathematics is more important than success at 

national examinations. 

 Teaching mathematics through problem solving is the best method to help students to learn. 

 It is important for students to create and solve their own problems. 

 

Continuing in the same vain, Morag also strongly agreed or agreed with the following belief 

statements: 

 Students learn best by doing lots of exercises and practices.  
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 When there is more than one way of solving a problem, it is generally safer to practice just 

one of the approaches. 

 You explain in detail what the students have to do to solve problems. 

 

Morag’s resonance with a social constructivist and problem solving orientation to the learning 

and teaching of mathematics is undermined with a number of conflicting beliefs aligned to a 

static transmission or mechanistic transmission orientation. For instance, when asked about 

the promotion of critical thinking and inquiry in mathematics, she said: 

 
 I agree with this to a certain extent but definitely not at the expense of passing national 

 assessments, as they must always come first. Otherwise there would be no point... Being able 
 to think can be a good thing but only if the thinking is similar to the teacher... Sometimes 

 when we are building plastic 3D shapes, I might leave them to it, but usually I tell them how 

 to get started...     

  

Further evidence that substantiates this traditional position is contained in Morag’s 

justification for strong agreement with the statement - ‘You explain in detail what students 

have to do to solve problems’. This negative statement which at its root, eliminates the 

intellectual challenge for the learner, deemed an inherent strategic ingredient of mathematical 

problem solving. Also, it rejects the pivotal role of the teacher as a facilitator in emphasising 

pupils’ active involvement doing mathematics e.g. exploring, making mathematical 

conjectures, stimulating learners to think, etc. Irrespectively, Morag expressed a firm belief in 

the importance of achievement and indicated an implicit detachment with the need to promote 

the construction of deep conceptual understanding. In her words: 

 
 It’s important that children can achieve success with the right answer... By clearly explaining 

 what they have to do, it makes it easier for them to understand, this will allow them, well  most 

 of them, not to fail... which in turn will boost their confidence... and not think of maths as a 

 hard subject that they can’t do. It also helps them the next time they come across the same 
 problem. Hopefully, they will remember what to do.  
 

Morag’s last comment resonates with the promotion of instrumentalism (Skemp, 1978). With 

this approach, it is usually easier to understand, offers instant rewards and allows learners to 

obtain the right answer quickly and reliable. However, it impedes pupils from monitoring 

their thinking and using adaptive reasoning during mathematical problem solving 

(Schoenfeld, 1992). On closer examination, it may be apparent that Morag’s adverse 

experience as a pupil (as highlighted earlier in this chapter) may illuminate why she does not 

want children to fail. Moreover, by lowering the level of challenge during a lesson will 

eliminate the productive struggle that is essential for developing an understanding of what to 

do and why (Hiebert & Grouws, 2007; Schoenfeld, 2014).  
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With respect to the secondary mathematics teachers, an assortment of beliefs exists between 

the participants. In one case, Cormac, a young inexperienced practitioner, expressed a 

multidimensional perspective that impacted on his own pedagogical practice. He described an 

unsolicited culture of target setting at his current school, which resulted in him reluctantly 

adopting an overwhelming support for integrating national marking guidelines within the 

teaching of S4 classes and above. Furthermore, he alluded to the controversial notion that 

older pupils are unperturbed with relinquishing conceptual knowledge and other enrichment 

experiences, in order to focus on enhancing procedural fluency. Cormac testified,   

 

 I feel under intense pressure to teach not my subject [mathematics] but the exam techniques 
 that the SQA are looking for... In fact, everything is geared towards the final exam, so much 

 so that my pupil’s don’t really care about learning content as long as I show them how to pass 

 the exam.  
 

I have reviewed the data from all of the secondary participants regarding a social 

constructivist orientation. What has transpired is a mixed view, influenced by grade or the 

highest level of qualification in the field of education, exists (it is not possible to distinguish 

between the effect of these two characteristics). It is suggested that class teachers hold little 

support for social constructivism, in contrast with the beliefs of promoted teachers. 

Interestingly, with respect to a problem solving orientation, a spread of beliefs exists, 

comparable to the espoused beliefs of primary teachers. Again, the strength of these beliefs is 

influenced by grade and the highest level of qualification in the field of education. 

 

 

Several common features exist for both sectors. For instance, the level of support for 

encouraging multiple solutions during mathematical problem solving, promoting 

mathematical problem posing, importance of memorising mathematical facts during learning 

and that mathematical problem solving should not be considered a separate element within 

CfE. Likewise, a number of conflicting discourses emerged from the data. To illustrate this, I 

have selected a participant from each sector with a similar TMBS, grade and qualification. 

Using the responses from Grace and Alasdair respectively, with regard to three random belief 

statements:   

 

(a)  ‘Preparing learners to think critically about mathematics is more important than success at 

national examinations’ 

This positive belief statement encompasses desirable skills such as mathematical problem 

solving, analogical reasoning, independent thinking, generalising and verbal and written 
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communication of mathematical ideas. In the questionnaire, Grace agreed with this statement 

while Alasdair strongly disagreed. According to Grace, she deemed that it was more 

imperative that teachers make the distinction between short and long term learning 

implications. She explained:  

 

 In the short term, it is sometimes easier just to prepare children to pass an exam... some of 
 them might retain the knowledge but most of them will probably forget... developing critical 

 thinking will have a longer positive effect on the overall needs and progress of all children...    

 

Conversely, Alasdair inferred that regardless of what theoretical didactic options he is 

presented with, nothing will override the foremost priority of his school which is to produce 

individuals that can achieve success at national examinations. After all, in his words,    

 

 We [teachers] are only measured on how well pupils perform in exams as you cannot assess 
 critical thinking... I am grilled big time if my results don’t meet a certain target... It happened 

 to me last year and I am still suffering from the fallout from the Headteacher... so this is why 

 I normally teach to the test... It also helps to prevent parents writing in to try and rubbish you.  

 

It is particularly notable that Alasdair’s espoused mathematical beliefs are inconsistent with 

his professed conventional classroom practice, due to the significant influence of an external 

contextual factor. 

 

(b) ‘Teachers should encourage their students to strive for elegant solutions when they solve 

problems’ 

This positive belief statement encourages teachers to promote originality and imagination in 

mathematical problem solving. Digging beyond the surface of a problem can help develop 

characteristics such as interest, versatility and perseverance. Regarding this belief statement, 

Grace disagreed with this item during the questionnaire. She maintained that by encouraging 

pupils to practice algorithmic tasks, it was possible for learners to “remember shortcuts” but 

that her specific interest lies only with a desirable outcome. Grace affirmed: 

 
 It really doesn’t matter what a solution to a problem looks like as long as it’s correct... If a 

 child has obtained the right answer then this is much more important than how they have 

 solved it... if they can make it neater then it might look better visually but it is still worth the 
 same... sometimes it is not easy to judge when I give out practical tasks like tangrams or 

 during strategy games on the computer. 
 

This comment suggests that Grace has not considered the possibility of a pupil obtaining a 

correct answer by using a wrong approach or by guessing. Furthermore, she appears not to 

support abstract thinking and creativity during mathematical problem solving, which hampers 

the intellectual curiosity of pupils (Scottish Government, 2009, 2010a, 2011a). In sharp 
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contrast, Alasdair concurred with this belief statement and upheld the view that practitioners 

should actively engage pupils to look for “simple but clever” or “original” solutions, 

commenting that: 

 

 A short cut version is normally an indication of stronger understanding... it takes good 
 imagination to produce a novel type solution... teachers should encourage this because it can 

 help pupils to think deeper... I sometimes ask pupils to solve a problem first and then 

 challenge them to come up with an improved version. Usually most of them are unable to 
 do this but at least it makes them aware that some solutions may be better than others... 

 

 

It is advocated that by encouraging pupils to participate in mathematical discourse about 

different solutions to problems, Alasdair has concomitantly fostered the rational for 

promoting multiple solutions during mathematical problem solving.  

 

(c)  ‘Mathematical problems can only have one final correct answer’  

This negative belief statement highlights one of the most widely held misconceptions that 

mathematical problems have a unique correct answer (Schoenfeld, 1985, 1992; Devlin, 2003). 

In upholding a decision to strongly agree with this questionnaire item, Grace related her belief 

about the nature of mathematics as “an exact subject that can only have a right answer and 

lots of wrong answers”. In expanding further she pronounced,  

 

 Two times three is the same as three times two... you get the same answer every time... If 
 you’re hinting that there is the possibility that more than one answer can exist then this 

 questions everything I believe about maths... it is simply not possible to have more than one 

 answer...  

 

In robustly opposing this viewpoint, Alasdair endorsed his decision to strongly disagree with 

this questionnaire item. He claimed throughout his mathematical learning he had encountered 

many non-computational problems that contained multiple answers and that “it’s a matter of 

training the mind to be open to more than one response”. Alasdair explained as follows: 

 

 Maybe it’s because I have a maths degree that I know that for some problems, more than one 

 answer might be possible... in fact some problems cannot be solved at all since they do not 

 contain enough information... or it’s my experience teaching negative numbers, quadratic 
 equations, trigonometric functions...  

 

Overall, perhaps the most troubling finding is that some participants from both sectors do not 

advocate the orchestration of challenging mathematical tasks that require cognitive and 

metacognitive demands of their pupils. Instead, it is proposed that direct instruction will 

ensure procedural fluency which will help override the requirement for profound conceptual 
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understanding and circumvent the need for pupils to ‘struggle’ during the learning process. In 

one case, Skye thought that: 

 

 When most youngsters fail at something, they tend to give up immediately and you can lose 

 them forever so there’s no point in making things hard for you or for them. Whether it’s right 
 or wrong, I provide all the steps so they can answer the questions and progress further since 

 you don’t get them moaning there’re not learning anything... I have tried making them think 

 in the past when I did a weekly problem but it ended up you’re the one being criticised 

 because there’re stuck and you’re accused of not helping them...  

 

The above comment raises a plethora of pedagogical issues. However, I do not wish to 

attempt to unpack all of the possible reasons but prefer to speculate briefly on why Skye does 

not appear to employ rich mathematical tasks that promote discussion, foster challenge and 

develop higher order thinking. In her narrative, she alludes to her teaching being criticised for 

not helping pupils when interacting as a ‘Public Educator’ (Ernest, 1991). If we assume that 

Skye has performed this function to the best of her ability, and in doing so, has received 

complaints. Based on human nature, it is expected that people will incorporate adjustments to 

their professional practice to avert unwarranted attention. Though, I suspect in this case, it is 

more plausible that Skye holds an absolutist view of mathematics and lacks confidence when 

having to align her beliefs with a fallibilist philosophy rooted in social constructivism, 

creativity and critical thinking. Jaworski (2010, p. 13) asserts that a fallibilist perspective can 

be “threatening for teachers who feel insecure without an authority to sanction their 

judgements”.  

 

4. Nature of a mathematical problem 

In general, both sectors expressed similar and contrasting beliefs of the nature of a 

mathematical problem. I will now discuss the comments expressed by each group separately. 

 

 

Beginning with the primary teachers, two of the six participants were unable to offer a 

meaningful definition of a mathematical problem. For example, Isabella, a probationer stated: 

“I can’t really explain what it is but I know when I see one in a textbook”. All of the 

remaining participants indicated that mathematical problems are contextualised word 

problems associated with a real world scenario and solvable by application of one or more of 

the basic arithmetical functions. Furthermore, three of the four participants alluded to the 

inclusion of a human presence. According to Lorna, mathematical problems “comprise of an 

account of someone performing an everyday function like spending money, sharing fruit or 

measuring a quantity, followed by a sum question about what they are doing”. Likewise, 
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Grace described a mathematical problem as “a wee story set within a familiar real life 

situation involving people and numbers”. This finding is consistent with that of Xenofontos & 

Andrews (2014) who found that prospective Cypriot primary teachers regarded mathematical 

problems having both a connection to reality and human actors.   

 

 

Absent from any narrative is explicit reference to the level of cognitive challenge, time 

required to obtain a solution or consideration of different strategies. Embedded in such 

perspectives is the tacit acceptance that mathematical problems must be linguistically 

accessible to all learners, require no higher order thinking skills and that every problem is 

solvable by the execution of a simple algorithm. Moreover, there is no distinction between 

various types of problems. Though, Iona, a primary Headteacher, intimated that “a problem 

which is easy for someone might be really hard for someone else”. This point resonates with 

Hiebert et al. (1996, p. 16) who maintain that the issue of ‘problematic interpretation’ is 

subjective, noting that tasks “which are neither problematic nor routine, whether they become 

problematic depends on how teachers and students treat them”. 

 

 

Four of the six participants were able to present manipulatives of problems employed during 

the school term. A representative peer example of a second level mathematics problem used 

with P5 pupils was offered by Morag:  

 

 A bus driver travels 75 km on the first day of a five day school trip. On the second day he 

 travels 246 km, on the third day he travels 103 km and on the fourth day, 398 km. If the total 
 bus journey is 1000 km, how many kilometres has the bus driver got to travel?  

 

However, this is not characteristic of a genuine mathematical problem, since a previously 

learned algorithm exists to solve it (Hiebert, 1997). More accurately, it is an illustration of a 

routine word problem that is incapable of eliciting a trajectory of cognitive and metacognitive 

behaviours, typically manifested by solvers tackling unfamiliar mathematical tasks 

(Schoenfeld, 1985, 1992). In other words, although grounded on reality, this task is focused 

on producing a correct answer opposed to developing mathematical understanding.  

 

 

The data generated from the secondary teachers yielded three sub-themes concerning the 

nature of mathematical problems. These were: 
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 The solitary source of mathematical problems is textbooks.  

 Problems can have different structures and different cognitive demands. 

 Problems are designed to test procedural knowledge and be solved quickly. 

 

The solitary source of mathematical problems is textbooks 

Three of the five participants referred to the origin of mathematical problems deriving from 

official curriculum textbooks. This factor appeared to justify their decision to incorporate 

such exemplars in lessons. For instance, Skye stated that mathematical problems “are real life 

application questions that we use from the textbooks”. Equally, Kirsty explained that “good 

problems usually have a relevant context such as the Olympic games... I use a couple of 

different textbooks to ensure that I can offer variety”. These narratives coalesce to suggest 

that practitioners are dependent on extracting their supply of mathematical problems from 

school textbooks (Kilpatrick, 1987). 

 

Problems can have different structures and different cognitive demands 

With one exception, secondary participants alluded that a mathematical problem may be 

represented in multiple ways such as encompassing text, visuals, symbols and numbers, none 

of which should be mutually exclusive. Furthermore, it was considered that problems should 

engage learners in a suitable challenge but not anything requiring complex thinking or 

considerable cognitive effort. An emblematic comment capturing this attachment was 

produced by Hamish: 

 
 Maths problems can include pictures, symbols, words, geometric shapes or just numbers on 

 their own... They should offer various challenges but never be too difficult so that the 

 majority of pupils can still solve them by using what [mathematics] they already know and 

 importantly, without any real help. 
 

Problems are designed to test procedural knowledge and be solved quickly 

Three secondary teachers intimated that mathematical problems require the application of 

previously learned facts, rules and formulas, without the need to provide explanations or 

logical reasoning. It may be the case that these participants do not agree that learners should 

critically engage with conceptual ideas or explore the nature of processes, connections and 

complex relationships. Perhaps the most unexpected finding to surface is the lack of reference 

to any heuristics (e.g. Polya, 1957). Moreover, it was intimated that problems should be 

solvable within a short period of time. For example, Cormac declared mathematical problems 

“are normally not too demanding so that some pupils like the fast finishers can practice them 

after completing a textbook chapter”.  
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In sum, comparing the sectors revealed that secondary mathematics teachers are more 

informed about the nuances of mathematical problem solving, using terminology like 

“interesting” and “challenging”. Nevertheless, the evidence suggests that both sectors exhibit 

a fragmented perspective surrounding the conceptualisation of a mathematical problem, 

inextricably linked to a series of familiar algorithmic procedures isolated of appropriate 

cognitive challenge. It seems plausible that without an association with specific desirable 

characteristics (e.g. a mechanism to foster critical thinking), the operationalisation of 

mathematical problem solving is impeded.  

 

5. Mathematics teaching self-efficacy 

Some primary participants felt that their ability to deliver meaningful mathematical problem 

solving instruction, is inhibited by not having obtained SQA Higher Mathematics. Arguably, 

their perception of self-efficacy may well be socially acceptable within the context of Scottish 

educational culture. For instance, Isabella explained:  

 
 I didn’t do well in maths at school because I always struggled to understand what was being 
 asked. I failed Higher [Mathematics] because it contained lots of wordy questions... I think to 

 be honest this is why I don’t know how to teach problem solving... Sorry to say this but at the 

 end of the day, English [Higher] is much more important as you cannot get into teacher 

 training in Scotland without it [laughter]...  

 

Isabella’s low self-esteem and insecurities regarding problem solving is shared to a lesser 

extent with Grace and Morag. Collectively, all appear to be circumscribed with an ineffective 

didactical knowledge base of problem solving skills and heuristics. Morag made explicit 

reference to a colleagues “maths challenge” (Figure 7.1), presented to a P7 class. She 

disclosed that “during lunch we all had a wee go at this but only one of us could solve it. This 

is the type of thing that I can’t do because I never know what rule to use”.  

 

Figure 7.1 Example of “maths challenge” used by a colleague of Morag with a P7 class 
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Two points are noteworthy here. Firstly, Morag refers to this good exemplar of a rich 

mathematical problem (Fibonacci sequence) as a “maths challenge” and when probed about 

the difference in terminology between a mathematical problem and a mathematics challenge, 

responded:  

 
 A maths problem can be worked out fairly quickly on your own whereas a maths  challenge is 

 something we would always give to a group or to pairs because it is much harder and takes 

 longer to answer...  

 

Intriguingly, this last comment reaffirms a previous theme concerning the misconception of 

what constituents a ‘mathematical problem’. Secondly, with promoting an instrumentalist 

view that a “rule” must be applied, it is evident that Morag is unaware that mechanical 

algorithms do not exist for the solving of every mathematical problem.  

 

 

It may be plausible to suggest that one method to attempt to enlighten the narrated self-

efficacy dilemma is that primary teachers believe mathematical subject knowledge and the 

teaching of mathematics to be mutually exclusive. The dichotomy of addressing these two 

distinctive bodies of knowledge was first introduced by Shulman (1986). He proposed the 

term ‘pedagogical content knowledge’ (PCK) as a form of practical knowledge used by 

teachers to guide their actions in highly contextualised settings.   

 

 

Returning briefly to the issue of ‘academic entry standard’ raised by Isabella, a similar view 

was expressed by Iona, who questioned the rationality of contrasting admission requirements 

for core CfE subjects, by stating: 

 
 I believe that something is wrong in the recruitment of primary teachers that it’s not essential 

 that they have Higher Maths. Maybe not every Higher Maths student is the best... you know, 

 there are maybe some people that don’t have Higher Maths but can still teach the subject 
 really well. But I think it devalues the subject by saying, well, you need a Higher in English 

 but you don’t need one in maths.  

 

Nevertheless, in a study of Scottish student primary teachers’ levels of mathematics 

competence and confidence, Henderson & Rodrigues (2008) advocate that it is perhaps not 

the level of mathematics that requires to be changed but the nature of mathematics taught and 

learned at that level, needs to be ameliorated. The researchers assert that: 

 
 Our findings suggest that simply raising the entry qualification does not make the student 

 primary teacher more competent with respect to the mathematics required at the primary 
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 school level. The results... show that students who have Higher Mathematics are no more 

 competent than their peers who hold Standard Grade Credit or Intermediate 2 [equivalent to 
 SCQF Level 5]. Furthermore, having a higher level mathematics qualification does not 

 necessarily improve their confidence (p. 103).    

 

Similarly, McKechan & Day (2015) found that Scottish prospective primary teachers with 

Higher Mathematics did not perform significantly better in a subject knowledge assessment of 

mathematics, when compared with counterparts holding a Standard Grade Credit pass. 

However, their findings affirm concerns raised by Donaldson (2011) that current entry 

requirements relating to qualifications in mathematics do not seem to provide a sufficient 

guarantee of competence required for primary teaching. It is of interest that in both studies, no 

assessment of mathematical problem solving or problem posing skills took place.  

 

6. Workload issues    

The main thrust of this theme centred on an external driven assessment culture, which is 

thought to be undermining the professional autonomy, judgement and responsibility of both 

primary and secondary sectors, irrespective of grade. As a consequence of perceived idealistic 

target setting and excessive bureaucracy by local education authorities, all participants 

reported some form of ‘reprioritising’ their mathematical beliefs to gratify their respective 

stakeholders. In other words, with additional teaching time assigned to more assessment and 

related administration tasks, a significant incongruence has grown between teachers’ 

espoused beliefs and their enacted pedagogical practices. Unexpectantly, the intensity of the 

participants’ frustration was comparable between both sectors, irrespective of the fact that 

secondary mathematics teachers have responsibility for external national examinations. 

Representing the views of primary teachers, Fraser made explicit reference to the first three 

national curriculum levels. He commented that:   

 
 The classroom teacher is now under relentless pressure to have children at the level expected 
 for ‘the norm’ regardless of real mathematical ability, as we are driven by assessment and 

 written results... In terms of a management perspective, as a school we are judged by how 

 many children we have at certain levels at one, four and seven... we are forever told from the 
 authority, ‘okay right, now you need to get better than that’... The upshot is that we have less 

 unstructured time to make maths more fun like playing chess, interactive strategy games or 

 exploring websites like NRICH... 

 

Fraser elaborated further on this theme, captured as follows: 

 

Interviewer: Are you hinting that primary teachers are unable to be agents of change as they are 

  controlled entirely by an external results driven system?  
Fraser:  Yes, but it’s not something we are all happy with as we have no choice but to follow 

  whatever the attainment targets set by our local authority are. This is regardless of 
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  what our children’s ability is like in reality... In effect, we’re all being undermined in 

  this issue... our professional autonomy has been watered down which has seriously 
  affected staff morale and what we can we actually do in class... 

 

 
Interviewer: Do you think it would it be possible to present your authority with an alternative to 

  attainment targets? Say, instead of pushing through X percent this year, we have used 

  the extra time to enrich mathematical learning by energising everyone with research 

  and have produced a group of confident children that can demonstrate creative and 
  critical thinking skills that can be applied to solve real world problems?  

 

 
Fraser:  [Laughter]... No, I could not say that if I wanted to keep my job. That just would not 

  be accepted.    

 
 

Interviewer: Do you think it should be accepted? 

 

 
Fraser:  Yes, of course most definitely! But I am only one teacher, one voice. However, I do 

  think it’s all about beliefs. If you sincerely believe that creativity and critical thinking 

  skills are key, then we need to stand up for them. I firmly believe that as a profession 
  we need to say, look, we have pushed these bairns through hoops to get 85 percent last 

  year, 86 percent this year, and we’ll do 87 percent next year. But what real good is it 

  doing them? What values are we actually teaching them? ... All we are really doing is 
  showing them how to pass an exam without having real understanding. Surely there 

  is something more important than government statistics?... They do not provide a true 

  picture of ability.  

 
 

Interviewer:  How does your school prepare pupils for such assessments? 

 
 

Fraser:  Some genuine revision but mostly we have to provide lots of similar examples, which 

  the children practice... For the vast majority though, it’s pretty much all rote to be 

  honest, as we are under severe pressure to achieve. 
 

 

Interviewer:       Do you know of any other schools who adopt a similar approach? 
 

 

Fraser:             Oh yes, our fellow cluster would definitely say the same. In fact, I have been told this 
  is fairly common in maths by our local secondary school. They are also under huge 

  pressure to achieve their targets. 

 

 
Interviewer:      In your view, what is the nature of an effective maths assessment? 

 

 
Fraser:  Well, something much more useful to the one being used at the moment. It should 

  offer variety like practical tasks like say solving a Sudoku puzzle cube, magic squares 

  or completing a fractions jigsaw but definitely where the child is at the centre of the 
  whole process, opposed to being exploited for political gain.  
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This extract highlights that Fraser would welcome a revision to the method of reporting 

mathematical ability for P1, P4 and P7 respectively.  He advocates the embodiment of 

‘variety’ in official assessments. This perspective is shared with the NCTM (2000, p. 24) who 

testify that “assembling evidence from a variety of sources is more likely to yield an accurate 

picture of what each student knows and is able to do”. However, what is disturbing is the 

apparent widespread use of a behaviourist methodology, in responding to high-stakes testing. 

It does not promote conceptual understanding of mathematical ideas that allow knowledge to 

flourish and be further developed. This may help to explain why Fraser is dismissive of 

summative assessment scores. In their research of learning trajectories in mathematics, Daro, 

Mosher & Corcoran (2011, p. 30) state of such testing: “As teachers have found through hard 

experience, these scores and associated inferences are not of much help in designing 

instructional interventions to help students stay on track and continue to progress”. 

 

 

Equivalent feelings were expressed by the secondary mathematics teachers. For example, 

Kirsty asserted that the lack of opportunities to engage pupils in problem solving was 

attributed to “the excessive amount of assessments” which she also confessed to having a 

negative impact on her motivation to teach. She explained,  

 
 Reassessments are the real bugbear. You might be in the middle of a run of really interesting 
 lessons and stop; someone demands an update and hey, reassessments take over... They are 

 outrageously time consuming, not just for teachers... it results in a lot of unnecessary wasted 

 periods for the pupils that passed it the first time... I strongly believe this dead time could be 

 spent on other activities, such as the UKMT problem solving stuff...  

 

A similar view was conveyed by Skye, who insisted that her approach to the learning and 

teaching of S3/S4 mathematics is compromised by the imperatives of national assessments. 

She commented:    

 

 With Nat four and five, I have to have to follow a regimented text book route, not because of 

 my PTC, but because the CfE has created an assessment monster which is controlled by 
 evidence... So in order to survive, I revert to rote learning with virtually no time given to 

 solve problems. 

 

It was also suggested that another barrier to implementing mathematical problem solving is 

the contextual nature of the school. In the case of Cormac, he reported feeling restricted in his 

professional enquiry, due to the social dynamics of his working relationships with colleagues. 

Inherent within his faculty was a tacit expectation that all practitioners adopt a uniform 

classroom approach. Cormac stated: 
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 Even if I had any spare time for doing problem solving, the other teachers in the department 

 would probably not want to follow as this would involve lots of extra work... They are much 
 older than me and some are due to retire soon... In fact, they are really set in their ways and 

 just want an easy life [laughter]... Maybe they don’t like the fear of the unknown? Who 

 knows? But for me, I can do change but only when we all do it... This is my first full-time 
 position after my induction and I don’t want to stand out as being different because they’re all 

 really good teachers and very helpful. 

 

A study which resonates with the contextual issue raised by Cormac, is the case study by 

Priestley & Miller (2012). The researchers illustrate the situation of Drew, an ambitious 

Scottish mathematics teacher working within a department reluctant to implement change. 

They describe that, “Drew believed that he was swimming against the tide in his department, 

which he described as being ‘stuck’ and very resistant to change” (p. 112). Teacher resistance 

to educational reform is nothing new. Consequently, when teachers do not support reform, the 

successful execution of curriculum change is unlikely (Elmore, 1995; Fullan, 2016). In 

particular, this tendency is more prevalent among older and experienced teachers. Hargreaves 

(1991) points out that: 

 

            … in mid-to late career, if they [teachers] have not been promoted out of the classroom, or 

 become disenchanted and disengaged by dispiriting conditions, blocked careers and lack of  
 recognition, teachers are still committed to change and improvement, but on a more modest 

 and gradualistic scale with their own classrooms that they can control. [They are] unlikely to 

 invest fashionable innovations with unmitigated enthusiasm, especially when they have seen 
 so many come and go in the past (p. 249). 

 

7. Collaborative mathematical problem solving 

Whilst collaborative learning in mathematics has the capability to promote deeper conceptual 

understanding amongst other benefits (Swan, 2006), teachers’ beliefs of this pedagogical 

approach diverged between the sectors. To illustrate the significant variations in beliefs, I 

have compiled participants extracts (Table 7.2 and Table 7.3 respectively) relating to two 

items belonging to Belief Factor 5.  

 

 

Both tables are quite revealing in several ways. The primary participants appear to embrace 

collaborative mathematical problem solving as a method that can enrich the development of 

positive independence. A possible explanation for this could be that younger pupils cooperate 

well together in a heterogeneous system where all members of a group feel valued as having 

equal worth. Furthermore, it is suggested that synergy can help generate the growth of 

alternative problem solving strategies and stimulate mathematical engagement. A derivative 

of this can ameliorate personal responsibility and social skills. For example, Fraser expressed 
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the view that pupils “share strategies that can lead to different solutions”. Likewise, Morag 

highlighted the efficiency of communication between pupils noting “they can share success 

equally with no one child to blame for failing to solve a task”. Moreover, it is alluded that 

primary teachers have higher expectations of pupils and therefore respond better to diversity 

enabling more children to feel empowered to learn mathematics (Rosenthal & Jacobson, 

1968; Rubie-Davies, 2015).  

 

 

In contrast, the secondary participants conveyed a disjunctive and apathetic view pointing 

towards the existence of a hierarchical orientation within older children that is centred on 

competition. A tension permeates in relation to noise levels generated by non-mathematical 

interactions, since from a traditional perspective, excessive sound generally indicates a lack of 

discipline or teacher control. However, more likely bolstering this position is a reluctance to 

accept a child-centred approach including knowledge of how to design an organised 

classroom structure to promote active learning. Such a barrier to collaborative learning may 

be manifested by a lack of support for social constructivism, which is illustrated in the 

following comment from Skye: 

 
 For practical reasons, this [collaborative learning] is not an easy thing to manage. Apart from 
 not being in control of the class, many pupils are incapable of debating problem solving at a 

 mature level because they don’t like to admit that they unable to do something or don’t 

 understand... Since maths is a subject where things are either right or wrong, then I am not 
 convinced there is a legitimate need for any discussion anyway... Surely, a much better use of 

 everyone’s time is to have pupils working on their own, so they can quietly practice things 

 and receive the individual help they need to progress.  
 

 

Taken together, these results provide important insights into teachers’ beliefs of collaborative 

mathematical problem solving and highlight the emergence of conflicting discourses between 

the sectors.  
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Table 7.2 Overview of Item 35 – ‘An effective way to teach mathematics is to provide pupils with interesting problems to investigate in small groups’ 
 

Primary Teachers  Secondary Mathematics Teachers 

Participant Questionnaire 
Response 

Interview Extract Participant Questionnaire 
Response 

Interview Extract 

 
Iona 

 
Strongly Agree 

 
This approach can be very productive as children learn a 
lot from each other through different ideas... pupils are free 
to walk about and offer help... they can explain some 
things better than teachers as they use a similar language.  
 

 
Alasdair 

 
Agree 

 
I only do this type of thing once in a while as it can get very 
noisy and in the past I’ve had behavioural problems with 
people disrupting the lesson and others not being mature 
enough to properly debate together...  

Grace Agree Good way to allow children to express themselves and feel 
part of a group...The key is to choose a task that cannot be 
solved by just one pupil but needs input from others... 
Using a poster to display the results is very effective...  
 

Skye Strongly 
Disagree 

I don’t do problem solving that often and prefer to have 
pupils working individually when I do... Many youngsters 
use group work as an excuse to talk about other stuff or 
take out their phone and do absolutely nothing...  
 

Isabella Agree It can help to generate lots of different answers which is 
useful for the teacher... the tactic is to select groups with a 
mixture of abilities... I often use pentominoes because the 
children really enjoy the challenge. 
 

Kirsty Agree When I have the time, I like to do this because it’s good 
experience for them having to work in a team... but 
normally I have to force some of them to sit together as 
they prefer to work on their own. 
  

Lorna Undecided Not convinced about this for problem solving... Sometimes 
children can easily lose focus or find it hard to work 
together. I already have children that I have to keep 
apart... Some still look to me for immediate help...  
 

Hamish Agree I should be doing more of this but don’t have the time due 
to exams and staff absence... not always easy to assess 
individual progress... We always had team-teaching here 
but budget cuts have restricted our approach with groups...   
 

Fraser Strongly Agree Great way for children to liaise together... they share 
strategies that can lead to different solutions... with a really 
good problem it can stimulate creativity and increase 
motivation... It allows teachers to stand back and observe, 
rather than jump in with offering help straight away... 
 

Cormac Disagree This activity requires lots of planning and finding an 
interesting problem that can keep thirty bairns entertained 
for almost an hour is not easy... I prefer whole class 
teaching as you can explain things at the start which cuts 
down on mistakes... To be honest, the main drawback is 
noise because classes in this corridor are quiet and 
anytime there’s a din, the PT marches in to see what’s 
going on!   

Morag Agree Children are natural at sharing information... They 
communicate well together and can all help each other... 
One main advantage is they can share success equally  
with no one child to blame for failing to solve a task...    
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Table 7.3 Overview of Item 37 – ‘All students are able to be creative and do original work in mathematics’ 

Primary Teachers  Secondary Mathematics Teachers 

Participant Questionnaire 
Response 

Interview Extract Participant Questionnaire 
Response 

Interview Extract 

 
Iona 

 
Strongly Agree 

 
In groups, practical work with shape and space is a 
fantastic way to witness creativity and all children are 
capable of demonstrating this by coming up with individual 
ways to solve problems... 
 

 
Alasdair 

 
Undecided 

 
Not sure I really understand how to judge creativity in 
problem solving... I have a third year bottom set who 
struggle to tell the time let alone can produce something 
which would be considered creative or original... 

Grace Agree With group work, its importance to allow children to convey 
their own thoughts about the subject... They can express 
things in original ways. 

Skye Disagree This is definitely not possible with any of the classes I have 
this year as they all need me to direct them. They are not 
good at thinking things through on their own... 
 

Isabella Agree During one of my placements, I observed two pupils 
spontaneously create a 3D sketch of a pizza to 
demonstrate their understanding of fractions.    

Kirsty Disagree Not convinced this is possible for every student... some 
are switched off and don’t like maths full stop... they also 
give up so easily... 
 

Lorna Agree I believe that all children are capable of producing 
something imaginative if a positive [classroom] climate is 
in place... with the right project, some weaker children can 
produce brilliant work. 

Hamish Agree Some pupils thrive in pairs and can achieve much more 
than working on their own, so this might be a creative use 
of their time... A few of my S6 are creative because they 
can explore, make conjectures, verify and prove things 
without much help from me... Pupils can all do something 
special but there’re some who have reached their peak by 
S4 and our job really is to help maintain their basic 
numeracy skills... I tend to think of original work being like 
Gauss and his method for the sum of the first n integers. 
 

Fraser Strongly Agree Teachers should encourage groups to search for different 
ways to solve problems... this will help encourage 
innovative and independent thinking. I really believe that 
all pupils have something unique to offer no matter how 
small it might be... It also helps if children enjoy maths...  
 

Cormac Disagree I dinnae think that all pupils can achieve this unless the 
really poor ones are spoon fed all the way and even then it 
will not really be creative or original as they have been 
helped.  

Morag Undecided Some can struggle to be creative even with lots of help...   
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8. Mathematical problem posing 

Within mathematics education, teachers have a critical role in cultivating problem posing 

activities within lessons (Gonzales, 1996). Such a requirement has been recognised by a 

growing body of research which underlines multiple learner benefits such as enhanced 

creativity (e.g. Silver, 1997; Shriki, 2013; Singer, Ellerton & Cai, 2013). In this study, whilst 

peripheral support for this practice appears to prevail in the implicit beliefs of the majority of 

participants, no evidence was uncovered that operational knowledge exists of a theoretical 

framework to underpin its centrality and effective pedagogical implementation. For instance, 

Lorna reported that: “I have never read anything about it in CfE guidelines or came across 

anything that explains what we have to do or what we have to follow”. This perspective was 

reinforced by Alasdair who said:   

 
 I’ve never heard of problem posing until your questionnaire... I think I know what it means 

 but I am not exactly sure... Since it’s not included as an experience or an outcome then 

 obviously it’s not that important to what we already do in maths as it would be part of our 
 assessment procedure... and everybody would know about it... but it does sound interesting.    

 

A variety of perspectives were expressed by other participants. It was suggested by Morag 

that problem posing is considered to be a voluntary mathematical topic, independent of 

problem solving. She stated:  

 

 You can do problem posing work with the children anytime I suppose... It’s not linked to 
 problem solving; they are two completely different activities...  

 

In another case, Cormac rejected the notion that practitioners should invest time with problem 

posing activities, claiming that such classroom endeavours offer no intrinsic merit. He 

claimed the generation of new mathematical problems only serve to replenish available 

inventories that already exist. In his words, he affirmed: 

 

 Problem posing is when I put a factorising or equation type question on the board 

 when I  don’t have a resource handy... I have never asked pupils to make up questions or 
 problems before... not sure what they can gain from this apart from everyone wasting 

 valuable teaching time... 

 

Conversely, Grace declared the construction of new mathematical problems to be a creative 

exercise for children that required “a good imagination”. She concurred that learners should 

try to create and solve their own problems but was unable to articulate a meaningful rational 

for this viewpoint, although consented that it had something to do with “improved thinking”.  

She revealed: 
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 I sometimes write three numbers on the board like 3, 6 and 12, then ask the children to 

 produce as many different numbers from this as possible... they really enjoy this type of 
 challenge and it’s good for their confidence... I then split them into pairs and ask them to 

 make up their own set of numbers... This approach has led to the creation of other 

 problems involving the likes of money, weight, and so on...  

 

In general, participants from both sectors indicated that they hold a constellation of positive 

and negative beliefs of mathematical problem posing, which appear to contradict the 

favourable outcome from phase one of this study. To illustrate this, consider the case of Iona 

and Hamish. Both participants strongly agreed or agreed with the following belief statements: 

 The priority in teaching mathematics is to ensure students develop confidence in problem 

posing and problem solving. 

 Problem posing is beneficial for developing students’ mathematical skills and investigating 

their understanding of mathematics. 

 It is important for students to create and solve their own problems. 

 

Nevertheless, whilst both promoted teachers were able to identify with the theoretical value of 

problem posing within the stimulus of learning and teaching of mathematics, they voiced 

concerns with problem posing as an officially sanctioned method of promoting classroom 

inquiry and suggested that it may never be regarded in the same vain as problem solving. For 

example, Iona explained: 

 

 I’m sure problem posing has benefits in maths but I’m not 100% I know what these are but 
 I think some form of improved thinking which is great... and I imagine that some teachers are 

 already doing this but the bottom line is that it’s not a LI in the same way we are expected to 

 do problem solving... I consider this type of thing ‘ideal’ in a world where we had the time to 
 choose all our own activities without the constant pressure from the authority to perform. 

 

Hamish alluded to the notion that problem posing could be employed as a diagnostic tool 

within mathematics education as it has the potential to uncover deficits in pupils’ knowledge 

and that it is a work intensive process. He commented: 

 

 If pupils make up problems, this can be used to test their knowledge and understanding and 
 may throw up their mistakes. But this would have to be done in class because they could 

 easily look up a textbook or search the internet... Although I think my department would not 

 be too happy, as this would be time consuming and it’s not even in the CfE... It’s hard enough 

 trying to get them to do problem solving right now, which is more relevant.  

 

The participants on the whole demonstrated less intense support for ensuring pupils develop 

confidence in problem posing, compared with the promising results (i.e. 70% of both sectors 

strongly agreed or agreed) obtained from the questionnaires.  



248 

 

 
 

In general, the primary participants revealed a willingness to recognise the conceptualisation 

of problem posing within the echelons of real world mathematics education, compared with a 

polarised position adopted by the secondary mathematics participants. Significantly, primary 

practitioners exhibited a more enthusiastic disposition towards fostering creative experiences 

for their learners.   

 

 

In summary, the results in this chapter help to explain the context of the statistical results 

from the quantitative first phase of this study. Thematic analysis revealed interrelated themes 

which provide sufficient breadth and depth of understanding to help distinguish between the 

mathematical problem solving and problem posing beliefs of both primary and secondary 

participants.  

 

 

The next chapter moves on to discuss the findings of the results with reference to each of the 

research questions in more detail.  
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CHAPTER EIGHT 

 
Discussion 

 

 

8.1 Introduction 

The purpose of this thesis is to contribute to the field of mathematics education through 

increasing our understanding of teachers’ beliefs of mathematical problem solving and 

problem posing. Teachers’ beliefs of mathematical problem solving and problem posing 

belong to a larger totality that includes teachers’ beliefs about the nature of mathematics, the 

learning of mathematics and the teaching of mathematics. It is postulated that by researching 

teachers’ mathematical beliefs, it may be possible to determine current levels of classroom 

practice (Thompson, 1992; Richardson, 1996; Leder, Pehkonen & Torner, 2002; Philip, 2007; 

Speer, 2008; Beswick, 2012). However, it is a widely held view from the literature that 

researching teachers’ beliefs is problematic, due to a lack of consensus about an explicit 

conceptual definition including significant methodological issues surrounding how to 

operationalise the belief construct (Pajares, 1992; Skott, 2015). In this chapter, I will respond 

to the research questions, synthesising the findings, followed by a discussion of the key 

aspects of my study. 

 

 

I addressed three main research questions as follows:      

 

1. To what extent should mathematical problem posing be embedded within the 

 mathematical framework of Curriculum for Excellence? 

 

2. Are there any differences in the mathematical beliefs of Scottish primary and 

 secondary mathematics teachers? 

 

3. What factors impact on the mathematical beliefs of Scottish primary and secondary 

 mathematics teachers?  

 

By considering each research question in turn, I will formulate an appropriate response 

followed by a discussion where I review my research in relation to the wider context in which 

it is located.  
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8.2 Research question one 

To what extent should mathematical problem posing be embedded within the mathematical 

framework of Curriculum for Excellence? 

 

The empirical evidence from the systematic literature review amalgamated with the 

theoretical and empirical evidence from my research leads me to argue that mathematical 

problem posing should be embedded within the mathematics framework of Curriculum for 

Excellence. While problem posing is considered an inseparable part of mathematical problem 

solving (Kilpatrick, 1987), it should be compartmentalised as a unique cognitive activity (Cai 

& Hwang, 2002), since it resonates with a social constructivist paradigm. The evidence also 

leads me to argue that there is a theoretical gap in the mathematics framework of CfE, and 

that this gap has been exacerbated as a consequence of the incorporation of nebulous 

guidelines throughout the curriculum itself.  

 

 

The systematic literature review provided favourable results for implementing problem posing 

within the learning and teaching of mathematics at both primary and secondary school level 

including the training and development of university students at initial teacher education 

institutions. The requirement to consider prospective teachers is grounded on a growing body 

of research which has highlighted problem posing as a valuable tool in developing 

mathematics teaching at all levels (e.g. Pittalis et al., 2004; Singer et al., 2011; Cai et al., 

2015; Ellerton, 2015; Osana & Pelczer, 2015). Hospesova & Ticha (2015) argue that problem 

posing within initial teacher education is an effective way of enhancing subject didactic 

competence. Equally, Crespo (2015) maintains that without substantial work on problem 

posing during teacher preparation, prospective teachers will enter the profession with limited 

vision and strategies for mathematics teaching. 

 

 

There is strong evidence from nine studies (English 1998; Dickerson, 1999; Demir, 2005; 

Xia, Lu & Wang, 2008; Priest, 2009; Kesan, Kaya & Guvercin, 2010; Guvercin, Cilavaroglu 

& Savas, 2014; Guvercin & Verbovskiy, 2014; Haghverdi & Gholami, 2015) of a significant 

impact on pupils’ mathematical attainment. Likewise, there is reasonable evidence from three 

studies (English, 1997b; Kesan, Kaya & Guvercin, 2010; Guvercin & Verbovskiy, 2014) of 

increased levels of pupil motivation, cognition and flexible mathematical thinking. 

Furthermore, there is strong evidence from five studies (Demir, 2005; Xia, Lu & Wang, 2008; 
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Guvercin, Cilavarouglu & Savas, 2014; Guvercin & Verbovskiy, 2014; Chen, Dooren & 

Vershaffel, 2015) of improved levels of pupil interest and positive attitudes towards 

mathematics. Moreover, the study by Priest (2009) is particularly noteworthy since it found 

that a problem posing intervention facilitated the mathematical re-engagement of disengaged 

middle-year pupils.  

 

 

Secondly, there is strong evidence from four studies (Abu-Elwan, 2002; Akay & Boz, 2009a; 

Toluk-Ucar, 2009; Walsh, 2016) of a significant impact of prospective teachers’ mathematical 

achievement such as improved problem solving performance and conceptual 

knowledge. Toluk-Ucar (2009) makes a valuable contribution with regard to problem posing 

changing prospective primary teachers traditionally held beliefs on the nature of mathematics. 

Similarly, there is reasonable evidence from two studies (Akay & Boz, 2010; Fetterly, 2010) 

that problem posing can help to enhance mathematical creativity and self-efficacy, foster 

positive mathematical beliefs and reduce mathematical anxiety for prospective teachers.  

 

 

Discussion  

My findings for this question are in line with previous literature advocating that problem 

posing can enhance the mathematical experiences of learners and prospective teachers. For 

example, Stoyanova (2003, p. 39) encapsulates the essence of many scholars when she 

affirms that “problem posing activities provide environments that seem to engage students in 

reflective mathematical abstraction in a natural way. Such activities nurture students’ attempts 

to explore problems and solutions structures rather than to focus only on finding solutions”. In 

their study of 81 Australian primary pupils, English & Watson (2015) investigated the impact 

on developing statistical literacy. They found that the participants worked creatively and 

critically on tasks and that problem posing has the power to develop diverse mathematical 

thinking and improve confidence. Cai et al. (2013) employed problem posing tasks as a tool 

to investigate the long term effect on mathematical learning of 390 American secondary 

pupils. Using a system of linear equations, the researchers found a strong relationship 

between the participants’ ability to solve a problem and their capacity to pose valid problems 

within the same mathematical context. Also, Cai et al. (2013) opine that problem posing can 

engender augmented conceptual understanding and bolster the growth of problem solving 

skills. In the same vein, it has been argued that problem posing can help young people to 

stimulate diverse and flexible reasoning (e.g. Silver, 1994; Leung, 2013; Kwek, 2015), foster 
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creativity (e.g. Silver, Kilpatrick & Schlesinger, 1990; Silver, 1997; Leung, 2013), eliminate 

textbook dependency (e.g. Brown & Walter, 2005) and support the promotion of independent 

learning and critical thinking skills (e.g. Kilpatrick, 1987; Silver, 1994; Silver & Cai, 1996; 

Brown & Walter, 2005; Mamona-Downs & Downs, 2005), which are the cornerstones of 

CfE. Brown & Walter (2005, p. 1) argue that “problem posing can help students to see a 

standard topic in a sharper light and enable them to acquire a deeper understanding of it as 

well”. Interestingly, they maintain that problem posing can be applied to “encourage the 

creation of new ideas from any given topic - whether a part of the standard curriculum or 

otherwise.” 

 

 

Grundmeier (2003) found that in his study of 19 American prospective K-8 teachers, the 

instruction of problem posing has a positive impact of participants’ beliefs about the nature of 

mathematics, the learning of mathematics and the teaching of mathematics. Akay & Boz 

(2009b) investigated the views of 41 prospective Turkish primary teachers on completion of a 

problem posing training course. They reported that participants expressed numerous benefits 

of using a problem posing approach such as the encouragement of creative thinking and a 

connection to real life mathematics. In another study, Ticha & Hospesova (2013) examined 

the didactic competence of 56 prospective Czech primary teachers. The researchers 

discovered that problem posing provided a motivational influence which resulted in 

participants acquiring a deeper conceptual understanding of fractions. Likewise, in their study 

of 25 prospective Israeli secondary mathematics teachers, Lavy & Shriki (2010) found that by 

engaging in geometric problem posing activities, participants increased their mathematical 

knowledge and expressed a curiosity and enthusiasm towards learning mathematics.  

 

 

So far, two previous systematic literature reviews have been implemented on mathematical 

problem posing. In their comprehensive meta-analysis, Rosli, Capraro & Capraro (2014) 

reported that problem posing activities have important benefits for mathematical 

achievements of learners from primary and secondary levels such as improved problem 

solving skills and positive attitudes towards mathematics. Their inclusion criteria identified 

fourteen individual experimental studies published between 1989 and 2011. Though, the 

researchers fail to offer an adequate explanation of why the study by Xia, Lu & Wang (2008) 

is presented as two distinct studies. Likewise, Zuya (2017) found similar valuable educational 

benefits of problem posing, based on sixteen single experimental studies published up to 
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2016. However, his study suffers from a lack of clarity in defining a search strategy and 

makes no attempt to discuss the strengths and limitations of the review process. Collectively, 

the systematic literature reviews by Rosli, Capraro & Capraro (2014) and Zuya (2017) played 

an important role in helping me decide to create a clear record keeping system. Moreover, the 

reviews spawned twenty empirical studies, fifteen of which are respectively featured in this 

study.    

 

 

My research evidence suggests that mathematical problem posing is a powerful agent for 

raising attainment. The main educational benefits include the autonomous promotion of 

higher levels of mathematical thinking, reasoning, creativity, engagement and enhanced 

problem solving performances (Stoyanova & Ellerton, 1996; Silver, 1997; Cai et al., 2013; 

Singer, Ellerton & Cai, 2013; Chen, Dooren & Vershaffel, 2015). Nevertheless, my teaching 

experience and knowledge of the literature recognises that mathematical tasks with high 

cognitive demands are difficult to implement and are often converted into less challenging 

tasks during instruction (Stein, Grover & Henninsen, 1996; Stigler & Hiebert, 2004). This 

factor alludes to the effectiveness of the classroom practitioner which ultimately requires 

examination of their mathematical beliefs since change may be required to induce 

professional practice (Wilson & Cooney, 2002; Sowder, 2007). Since problem posing tasks 

are nurtured by their pedagogical actions, it is essential that practising teachers can be trained 

accordingly (Lowrie, 2002; Leung, 2016).  

 

 

From professional experience, and considering my own research, there appears to be a 

mismatch between the holistic values and principles advocated by the mathematical research 

community and those implemented in Scottish classrooms. For instance, it is argued that there 

is an overplaying of examination techniques, which consequently, have suppressed the 

cultivation of young people’s creativity. I believe that the Scottish Government has a 

responsibility to recalibrate how they measure mathematical success in primary and 

secondary schools. To enhance pupil learning, the curriculum should be centred on rich 

mathematical tasks which consistently encourage higher levels of cognitive thinking and 

reasoning opposed to a saturation of routine procedural or computational activities (Hiebert & 

Wearne, 1993; Stein & Lane, 1996). Mathematical problem posing yields such tasks. 
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I would argue that the overarching current curriculum structure does not possess the intended 

flexibility to sustain the coalescing of new research perspectives within classrooms. Although 

it may be perceived by many that it is straightforward for someone to initiate a change in 

professional practice, it is another matter to navigate the trajectory of a transformational 

change in educational policy. One method to achieve this is to combine both a descriptive and 

prescriptive approach to the mathematics framework that will ensure conceptualisation and 

operationalisation of mathematical problem posing throughout all schools in Scotland. 

Pragmatically, such an intervention can only be promulgated by expanding the mathematics 

guidelines of Curriculum for Excellence. Cai et al. (2015, p. 17) maintain that if “problem-

posing activities are to play a more central role in classrooms, they must be more prominently 

represented in curricula”. Similarly, Bonotto & Del Santo (2015, p. 121) concluded from their 

exploratory study of Italian primary pupils, that “the presence of problem-posing activities 

should not emanate from a specific part of the curriculum but should permeate the entire 

curriculum”. 

 

 

In summary, this research study has found that robust empirical evidence exists which shows 

that mathematical problem posing can improve pupil learning by deepening conceptual 

understanding, fostering problem solving skills, transforming attitudes towards mathematics, 

cultivating creativity and promoting critical and independent thinking at various echelons of 

school education. It supports the view that mathematical problem posing can provide a 

springboard for connecting school settings with real life situations and offers a constellation 

of educational benefits that assist practitioners in promoting social constructivism and 

collaborative learning. Moreover, it has also emerged from this study that strong empirical 

evidence exists that mathematical problem posing is effective in the pedagogical development 

of prospective primary and secondary mathematics teachers. These remarks provide responses 

to each of the sub questions of the first research question. 

 

 

8.3 Research question two 

Are there any differences in the mathematical beliefs of Scottish primary and secondary 

teachers? 

 

The results of my research indicate that whilst both sectors share particular commonalities, a 

number of significant differences exist between the espoused mathematical beliefs of primary 
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and secondary mathematics teachers. Narrative evidence of enacted mathematical beliefs has 

engendered multiple conjectures of classroom practices.  

 

 

Discussion 

The evidence suggests that both primary and secondary mathematics teachers hold similar 

clusters of mathematical beliefs, of which are strongly influenced by their perception about 

the nature of mathematics, the learning of mathematics and the teaching of mathematics. 

These aspects have been previously highlighted in chapter five as fundamental topographies 

of mathematical beliefs (Stipek et al., 2001; Barkatas & Malone, 2005). Indeed, three distinct, 

but not mutually exclusive, mathematical beliefs systems emerged as follows:  

 

1.  A social constructivist, problem solving and collaborative orientation;  

 

2.  A social constructivist, problem solving and static transmission orientation;  

 

3.  A static and mechanistic transmission orientation.  

 

This finding that teachers’ beliefs systems are not in isolation but are grouped together in 

clusters is consistent with the literature (Rokeach, 1968; Green, 1971; Leatham, 2006). 

Furthermore, some teachers appear to hold a mixture of fallibilistic and absolutist beliefs. 

Such an incompatible or inconsistent arrangement suggests that not all teachers’ beliefs 

systems are logically structured, which accords with other research perspectives (e.g. 

Thompson, 1992; Ernest, 2004; Beswick, 2012). 

 

 

Previous empirical studies have identified a range of similar mathematical belief orientations 

as are found in my research. For example, in a study of Australian secondary mathematics 

teachers, Beswick (2005) located three clusters of beliefs that she identified as ‘content and 

understanding’, ‘content and clarity’ and ‘relaxed problem solvers’. Curiously, Beswick did 

not uncover a cluster representing teachers with an instrumentalist view of mathematics and 

associated views of learning and teaching of mathematics. Barkatsas & Malone (2005) found 

that Greek secondary mathematics teachers held two main beliefs; a contemporary-

constructivist orientation (consisting of a social constructivist view, problem solving view and 

a collaborative view) and a traditional-transmission information processing orientation 

(consisting of a static view and a mechanistic view).  
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Similarly, in a study of 249 Australian secondary mathematics teachers’ beliefs, Howard, 

Perry & Lindsay (1997) also discovered two main categories i.e. constructivist beliefs and 

transmission beliefs; the results of which are intriguing given that it involved an identical 

sample size of secondary mathematics participants and a comparable range of grades to this 

study. Analysis of several individual questionnaire items revealed a number of similarities 

and contrasts. For example, comparable quantities of participants from both countries agreed 

with the item: ‘Teachers should provide instructional activities which result in problematic 

situations for learners.’ However, more than double the amount of Scottish participants 

disagreed with the negative belief statement: ‘Mathematics is computation’. Overall, it is 

suggested from a cross-national perspective, mathematical problem solving is equally 

supported and that Scottish mathematics teachers hold less instrumentalist views about the 

nature of mathematics. However, this analysis is superficial given the Australian sample was 

confined to teachers only from the south western suburbs of Sydney.     

 

 

In another Australian study, Nisbet & Warren (2000) surveyed 389 primary teachers’ beliefs 

of mathematics, the teaching of mathematics and the assessment of mathematics. The 

researchers found that beliefs about the nature of mathematics reflected only two of Ernest’s 

(1989a) three categories of views of mathematics. Nisbet & Warren (2000, p. 44) noted “it 

seems that primary teachers hold limited views of what mathematics is – static and 

mechanistic views, rather than a dynamic problem-driven ever-expanding field of human 

creation”. 

 

 

In a study involving English practising primary teachers undertaking postgraduate training to 

become primary mathematics specialists, Allen (2010) uncovered little evidence of 

practitioners viewing mathematics in terms of problem solving. She argued that in order for 

them to become effective teachers of mathematics, they need to shift their beliefs of 

mathematics from Platonist or instrumentalist to one of problem solving (Ernest, 1989a; 

Nisbet & Warren, 2000).  

 

 

In short, it is postulated that for both sectors, the operationalisation of mathematical problem 

solving and problem posing is restricted in practice. Even although substantial advice is 
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readily available for practitioners to teach problem solving skills and to employ problems as a 

focus of learning in mathematics education (Wilson & Cooney, 2002; Lester & Cai, 2016) 

 

 

There are six possible explanations which help to illuminate this posit:  

 

 Conceptualisation of mathematical problem solving is misunderstood 

 Struggle is not widely supported 

 Time pressure due to assessments 

 No curricula requirement 

 Mathematics self-efficacy 

 Misconception of the construct of mathematical problem posing  

 

Each will now be considered in turn: 

 

 

Firstly, the evidence suggests that the theoretical conceptualisation of mathematical problem 

solving is considered to be misunderstood within significant divisions of both sectors. The 

comprehension of what constitutes a mathematical problem is a particularly troubling finding. 

In my research, more than half of the primary teachers and over a third of the secondary 

mathematics teachers strongly agreed or agreed with the misconception that ‘a mathematical 

problem is the description of a situation involving stated quantities, followed by a question 

about some relationship among the quantities’. As a practising teacher, I have concerns from 

my experience that the ‘everyday function problem’ (illustrated by Lorna) may be indicative 

of a shortcoming among some Scottish teachers. The reason for this is not obvious but may 

have something to do with the misinterpretation of the principles underlying their professional 

development. Such a situation resonates with Cohen’s (1990) well-known case study of a 

teacher named Mrs Oublier. According to Cohen (1990), Mrs. Oublier was open to new 

curriculum ideas but that the change initiated by her professional development remained 

dormant. Cohen (1990, p. 312), concluded that while her teaching reflected the new 

framework in many innovative ways, “Mrs. O seemed to treat new mathematical topics as 

though they were part of traditional school mathematics”. Perhaps, another possible reason on 

the theme of CPD, might be the case that the professional development provided in 

mathematics education has not met the individual needs of teachers (Sowder, 2007). Overall, 

the results from this study were more disappointing than Thompson (1989) obtained where 
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she reported that under one third of American primary teachers’ concurred with a similar 

definition of a mathematical problem. 

 

 

As an interrelated issue, participants from both cohorts in this study were unable to articulate 

the structure and purpose of different types of mathematical problems (e.g. open-ended). In 

order to facilitate pupil learning, practitioners must be able to identify what kind of problems 

exist in order to address the issue of solving them (Polya, 1981). Recent studies have 

bolstered teachers’ knowledge of rich problems and highlighted the importance of diverse 

types of problems in implementing problem solving (e.g. Crespo & Sinclair, 2008; Guberman 

& Leikin, 2013). Furthermore, without a coherent understanding of the conceptualisation of 

problem solving, it is impractical for teachers to evaluate the success of any corresponding 

classroom experience.   

 

 

Secondly, a finding of this study suggests that a third of primary teachers and half of 

secondary mathematics teachers do not endorse the view that ‘struggle’ is a natural 

component of the learning mechanism during problem solving. While making reference to 

socio-mathematical norms, both Morag and Skye conveyed the message that a child 

struggling during the learning of mathematics is an adverse and sterile corollary. 

Subsequently, such a teacher dominated instructional approach to mathematics eliminates an 

essential ingredient for engendering pupils to think independently by taking responsibility for 

their own learning, developing new thoughts and ideas, making choices and learning from 

their mistakes and most importantly, persevering. Such a representation erroneously conveys 

to young people that solving mathematical problems is achieved by solely following an 

algorithm formulated by someone else, with no obligation to actively engage in any strategic 

and metacognitive process. It will not promote desirable characteristics such as fluency, 

flexibility and creativity. The notion of challenge is underlined by the NCTM (2014, p. 7) 

who opine that “[s]tudent learning is greatest in classrooms where the tasks consistently 

encourage high-level student thinking and reasoning and least in classrooms where the tasks 

are routinely procedural in nature”. 

 

 

In the interest of clarity, the phenomenon of ‘struggle’ (also known as ‘productive struggle’) 

discussed here refers to the intellectual effort pupils expend to make sense of mathematical 
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problems (Hiebert & Grouws 2007). It does not refer to needless frustration or extreme levels 

of challenge created by nonsensical or overly difficult problems but tasks that fall within the 

pupils’ reasonable capabilities (Hiebert & Grouws, 2007), given appropriate time and support 

(Warshauer, 2015). Teachers have a professional obligation to ensure that they encourage 

pupils to persevere when solving mathematical problems irrespective of struggle, since 

putting pupils in such situations where they will experience difficulties and frustrations serve 

as rich learning opportunities (Schoenfeld, 2014; Star, 2015). Likewise, it should also be 

acknowledged that pupils need to harmonise with the systematic engagement of challenging 

mathematical activities (Lester, 1994; Lester & Charles, 2003).   

 

 

This is a rather worrying finding given that secondary mathematics teachers, by the nature of 

their undergraduate training, possess higher levels of mathematical problem solving expertise 

and experience compared to their primary colleagues. A possible explanation for this might be 

that the majority of primary teachers have superior mathematical pedagogical knowledge and 

thus are able to facilitate pupils learning through various strategies. Another alternative cause 

to illuminate my finding is the contextual factor of curriculum accountability. For instance, 

Alasdair indicated reluctance to promote critical thinking because he wanted to circumvent 

another adverse examination results review. Also, Skye defends her decision to teach by rote 

learning based on the presence of an “assessment monster”. In their study of teacher 

characteristics, Clark et al. (2014) maintain that elements such as fast curriculum planning, 

heightened accountability pressures and prevalent tracking policies may negatively influence 

teachers’ mathematical beliefs. 

 

 

Thirdly, it is suggested that time restrictions due to a statutory requirement to incorporate 

national assessments has prevented participants from both sectors in engaging learners in 

regular employment of mathematical problem solving, although this is more notable with 

secondary mathematics teachers. It is postulated that time demands have resulted in an 

acceptance of traditional forms of instruction with an emphasis on high-stakes testing in 

‘order to survive’. Consequently, there is a de-emphasis on aspects of mathematical learning 

such as reasoning, representation, problem solving, communication and making connections, 

since these strands are not tested (Schoenfeld, 2001). The tension between teaching and 

assessment has been widely examined in the literature. In speaking of this custom, Sacks 

(1999) writes: 
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 Schools and teachers, under intense pressure to boost achievement scores, have discovered 

 the educationally dubious practice of teaching to tests. That, in turn, has narrowed [what is] 
 taught... teaching to tests has a dumbing effect on teaching and learning, as worksheets, drills, 

 practice tests, and similar rote practices consume greater amounts of teaching time (p. 156). 

 

In this study, Cormac makes disapproving reference to the pressure of not being liberated to 

teach mathematics, “but the exam techniques that the SQA are looking for”. This narrative is 

commensurate with a recent critical evaluation about the situation of English school 

examinations by Anthony Seldon, who perceptively avowed: “Schools have come under 

unbearable pressure to teach not the academic subject but the exam techniques that markers 

look for” (Thunderer, 2016). In their exploratory study of one Scottish local education 

authority carried out prior to the implementation of CfE, Hayward et al. (2008) report a 

similar assertion: 

 
 The pressure of the examination syllabus is frequently offered as a reason why many teachers 

 are reluctant to move away from traditional patterns of continuous summative assessment and 

 examination rehearsal that could be said to have dominated the upper stages of secondary 
 schools in Scotland for many years (p. 1). 

 

Likewise, the Scottish Government (2010c, p. 2) acknowledged “there is a consensus that we 

focus too much on preparation for examinations as learner’s progress through schools”. It is 

ironic that the same administration has spawned a proliferation of CfE documentation that has 

led to an inexorable development of assessment bureaucracy. 

 

 

Whilst teaching to the test has the potential to produce improved examination results, such a 

pedagogical approach focuses on rote memorisation exercises which do not promote deep 

conceptual understanding or the fabrication of creative and critical thinking skills. The 

evidence implies a systemic perspective on the explicit driving force stimulating this 

didactical tradition in Scottish education; namely that each school is controlled by the 

assessment culture of their respective LEA. It is conjectured that minimum scope exists for 

teachers to exercise freedom to regularly employ problem solving with mathematics.     

 

 

Fourthly, and interrelated to the previous reason, a general apathy subsists amongst both 

sectors that as problem solving is not formally assessed within CfE, there is no requirement to 

engage pupils with this enterprise. For example, Alasdair argues that it is not feasible to 

“assess critical thinking”. However, the Scottish Government (2011b) oppose this viewpoint 
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since they state that “assessment will place a greater emphasis on... higher order skills 

including, creativity” (p. 7) and “Assessment should probe the ability to apply the learning in 

more challenging tasks and in unfamiliar situations” (p. 14). In order for pupils to become 

convinced of the importance of problem solving within mathematics, it is necessary to use 

assessment techniques that encourage and reward the development of higher order thinking 

skills (Lester, 2013).  

 

 

Nevertheless, it is possible that this finding is not an accurate representation and a more 

plausible concomitant explanation might be secondary practitioners feel ‘unsupported’ when 

engaging pupils in problem solving. The manifestation of which is explicit reference to other 

agents that may have rebuffed previous attempts to integrate a culture of problem solving 

within classroom practice. Based on the accounts of Alasdair and Skye, it is conjectured that 

both individuals may have been undermined at some stage in their professional enquiry by 

authoritarian leadership fixated with school improvement agendas. Tension propagates in 

situations where teachers find that their colleagues do not share their zeal for the inquiry or 

feel threatened by it (Drew, Priestley & Michael, 2016). For instance, it may be the position 

for some stakeholders, that procedural knowledge including memorisation of facts is more 

valued than conceptual understanding gained through problem solving. Lester & Cai (2016, p. 

127) assert that “many people, parents and teachers alike, worry that the development of 

students higher-order thinking skills in teaching problem solving comes at the expense of the 

development of basic mathematical skills”. Alternatively, the hierarchical structure of many 

educational establishments may serve to counteract the criticality of research informed 

practice. Theoretically, it is conceivable for an unpromoted teacher to enact positive 

mathematical beliefs of problem solving and still encounter unfounded criticism of their 

enhanced classroom practice by less informed senior contemporaries. It is important to 

consider such an eventuality and how to safeguard the growth of teacher professional enquiry. 

 

 

Fifthly, some primary participants reported possessing weak mathematical content knowledge 

resulting in feelings of inadequacy in teaching how to solve mathematical problems. Having 

low mathematics teaching self-efficacy may serve as a barrier to teacher effectiveness and 

tends to be characterised by totalitarian and teacher centred approaches. The important 

construct of self-efficacy has been explored by many researchers. Grounded on the seminal 
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theoretical contribution to social cognitive theory by Bandura (1977), Tschannen-Moran, 

Woolfolk Hoy & Hoy (1998) observe that: 

 

 Teaching self-efficacy has been defined as both context and subject matter specific. A 

 teacher may feel very competent in one area of study or when working with one kind of 
 student and feel less able in other subjects or with different students (p. 215). 

 

For example, it is possible for a practitioner to have high self-efficacy while teaching 

estimation and rounding but maintain low self-efficacy for teaching expressions and 

equations. Within the domain of mathematics, Hackett & Betz (1989, p. 262) express 

mathematics self-efficacy as “a situational or problem-specific assessment of an individual’s 

confidence in her or his ability to successfully perform or accomplish a particular 

[mathematics] task or problem”. In other words, mathematics self-efficacy may be 

conceptualised as a belief of a teacher for successfully implementing problem solving. If a 

teacher does not believe they are capable of implementing problem solving, they have 

minimum incentive to act (Bandura, 1986). Other indicators of low self-efficacy of 

mathematics teaching include an emphasis on decontextualised conceptual understanding 

such as memorising rules and repeated practice of similar questions, opposed to searching for 

multiple solutions, exploring patterns and formulating conjectures. Arguably, these symptoms 

may also be associated with an instrumentalist philosophy of mathematics.  

 

 

However, it is not clear from the results in this study if primary teachers’ self-efficacy relates 

jointly to solving mathematical problems and to teaching mathematical problem solving. 

Irrespectively, self-efficacy is a critical factor for the effective delivery of mathematics 

teaching and is reflected within a growing body of empirical evidence. For instance, 

Charalambous & Philippou (2010) examined the connection between 151 Cypriot elementary 

mathematics teachers’ concerns about curriculum reform, problem solving and their teaching 

efficacy beliefs. The researchers discovered that teachers’ efficacy beliefs were found to be 

complex and influenced the nature of classroom practice. In her study of mathematics 

teaching self-efficacy beliefs of 33 Turkish primary teachers, Nurlu (2015) reported that 

teachers with higher self-efficacy beliefs were associated with increased effort, persistence, 

openness to new pedagogical approaches and building stronger pupil relationships.  

 

 

Finally, with respect to mathematical problem posing, the initial results from the 

questionnaires suggest that both sectors similarly espouse to hold strong beliefs of problem 

http://link.springer.com/chapter/10.1007/978-3-319-06808-4_5/fulltext.html#CR14
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posing, in spite of this central activity being excluded from curricula guidelines. However, 

during the interviews, participants were generally unable to articulate the intrinsic abstract 

link to problem solving or convey the positive impact of problem posing on pupils’ enriched 

mathematical learning, higher order thinking, creativity and confidence. This rather 

unexpected result was compounded by a common misconception of the problem posing 

construct, including minimum support for the orchestration of problem posing within 

classroom practice. It is likely that this inconsistency between the results for stage one and 

stage two of this study may be attributed to the small sample size of interviewee participants. 

Another possible explanation for this discrepancy is that participants were dependent on 

regurgitating established curricula guidelines and were confused by the non-availability or 

acted in defence of the non-availability of curricula guidelines. 

 

 

Reflecting on the rich data generated in my research, it is suggested that the mobilisation of 

mathematical problem posing in primary and secondary schools may be restricted. 

Furthermore, it is conjectured that teachers’ espoused beliefs are inconsistent with their 

enacted beliefs. Such a finding is in accordance with previous research (e.g. Thompson, 1992; 

Raymond, 1997; Cooney, 1999; Barkatsas & Malone, 2005). 

 

 

As a consequence of these aforementioned reasons, it is believed that this may produce a 

detrimental effect on the quality and nature of the mathematical learning experiences of 

pupils, as teachers’ beliefs have been found to influence their instructional practices 

(Thompson, 1985; Nespor, 1987; Stipek et al., 2001; Wilson & Cooney, 2002). Ebert & 

Risacher (1996, p. 5) argue that: “Teachers’ beliefs about how students learn mathematics, 

their beliefs about mathematics itself, and their knowledge of teaching in general, are likely to 

affect how they design and teach lessons”.  

 

 

Statistical evidence  

The interpretation of statistical significant differences has to be grounded in a meaningful 

context. In juxtaposing a core curriculum subject delivered by non-mathematical specialists 

and mathematics experts, it may be natural to assume that diverse mathematical belief 

systems feature intrinsically. Though, theoretically this view is rejected by the linear 

mechanism of CfE which advocates that the transformation of learning is the responsibility of 
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every practitioner, irrespective of sector. In other words, primary and secondary mathematics 

teachers are challenged to deliver a uniform standard of mathematical experiences. 

Furthermore, both sectors are compelled to operationalise mathematical problem solving 

within their continuum of classroom practice.   

 

 

The first evidence to emerge of significant statistical differences between the mathematical 

beliefs of primary and secondary mathematics teachers is highlighted by findings of the 

questionnaires, which indicated sector agreement with less than one fifth of the thirty-nine 

individual belief statements. This is a troubling result of which, due to time restrictions, I was 

only able to partially explore during the interviews. As a strategy, I concentrated on 

accumulating data from each participant, regarding one or two identical belief statements 

from each of the five belief factors.  

 

 

There is a notable paucity of cross-sector empirical studies focussing specifically on 

investigating the differences between current primary and secondary mathematics teachers’ 

beliefs about the nature of mathematics, the learning of mathematics and the teaching of 

mathematics (Anderson, 2005; Perry, Wong & Howard, 2006; Dede, 2015). In their 

comparative study, Perry, Wong & Howard (2006) compared the beliefs of primary and 

secondary mathematics teachers from Hong Kong and Australia. For comparison purposes, I 

reviewed one statistically significant positive item (Table 8.1) which involved merging the 

results from this study for the response options of ‘strongly agree’ and ‘agree’ along with 

‘strongly disagree’ and ‘disagree’. Whilst this comparison only serves to highlight one 

example, it has provoked me to consider the perpetual internationalisation of mathematics 

education and Scotland’s position within it.        

 

Table 8.1 Comparison of one positive belief statement with Perry, Wong & Howard (2006)  

Belief Statement  

 

Teacher Group Sample Agree 

(%) 

Undecided 

(%) 

Disagree 

(%) 

Teachers should provide 

instructional activities which 

result in problematic 

situations for learners 

Australian Primary 252 87 9 4 

Australian Secondary Mathematics 249 82 15 2 

Hong Kong Primary 377 10 42 48 

Hong Kong Secondary Mathematics 179 12 73 15 

Scottish Primary 229 65 14 21 

Scottish Secondary Mathematics 249 73 13 14 
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Further evidence to emerge of significant statistical differences between the mathematical 

beliefs of primary and secondary mathematics teachers is highlighted by the interesting 

findings of two belief factors.  

 

 

Social constructivism 

Primary teachers hold stronger social constructivist beliefs towards the nature of mathematics, 

the learning of mathematics and the teaching of mathematics, compared with secondary 

mathematics teachers. There are several possible explanations that may help to illuminate this 

finding.  

 

 

The evidence from my study suggests that primary and secondary mathematics teachers’ 

beliefs are not homogeneously compatible with a social constructivist orientation, and reject 

the tacit assumption that teachers’ beliefs were ‘appropriately consonant’ prior to 

implementation of CfE. In the absence of any previous empirical research, it is not possible to 

determine to what extent curricula reform has impacted on Scottish teachers’ beliefs. 

However, it is widely acknowledged that pedagogical reforms cannot take place unless 

teachers’ beliefs about mathematics, the learning of mathematics and the teaching of 

mathematics change (Ernest, 1989a). Simultaneously, accepting that teachers’ mathematical 

beliefs are notoriously difficult to change (e.g. Pajares, 1992; Goldin, 2002; Handel, 2003), it 

cannot be supposed that all changes in beliefs translate directly into transformations in 

professional practice (Richardson, 1996). In other words, it may be conceivable that a 

dissonance between primary and secondary mathematics teachers’ beliefs has perpetually 

subsisted and this study has only served to reveal this reality.  

 

 

My own professional experience informs me that teachers are to some extent institutionalised 

by the contextual constraints of their societal working environment, which due to external 

influences such as colleagues, senior management or national priorities can internalise the 

enactment of individual didactic approaches. Ernest (1989b) states that:  

 
 The socialization effect of the context is so powerful that despite having differing beliefs 

 about mathematics and its teaching, teachers in the same school are often observed to adopt 
 similar classroom practices... The social context clearly constrains the teacher’s freedom of 

 choice and action, restricting the ambit of the teacher’s autonomy (p. 252-253).    
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In other words, teachers’ enacted beliefs may be inconsistent with their espoused beliefs due 

to the context they find themselves working in. In my research, it was found that teachers 

mathematical beliefs are not regarded in insolation but belong to a cluster which form a belief 

system (Rokeach, 1968; Green, 1971; Leatham, 2006). Strongly held beliefs are considered 

more central and further resistant to change, while less firmly held beliefs are deemed 

peripheral (Green, 1971). As was mentioned in chapter five, the relative centrality of beliefs 

varies with context (Green, 1971). From this perspective, teachers’ espoused beliefs are not 

considered indicators of classroom practice. Conversely, classroom practice is determined 

through interactions with context and shifts along a continuum of diverse beliefs. According 

to Beswick (2007, p. 97), the “relative centrality of an individual’s beliefs will vary from 

context to context. Failure to enact a particular belief evident (via words and/or actions) in 

one context or another, can thus be seen as the result of different beliefs taking precedence in 

the different situations”. Likewise, Skott (2009, p. 44) in his instrumental study of a Danish 

novice mathematics teacher called Larry, underlines the existence of multiple, possible 

conflicting, authentic and virtual communities of practice that help to contextualise “the act of 

teaching in intersubjectively established and continually re-generated settings”. Consequently, 

it is argued that the interpretation of enacted beliefs is meaningless without due consideration 

of context (Skott, 2009). In this study, it is robustly contended that assessment demands of 

national examinations have restricted the flexibility of secondary mathematics teachers to 

adopt learner-centred approaches in place of traditional instructional practices. 

 

 

 

In addition, I postulate that primary teachers are more able to assimilate a social constructivist 

approach to the learning of mathematics. It is argued that the structure, ethos and philosophy 

of primary education is more likely to encourage the active involvement of all pupils, where 

feedback is more forthcoming and the multitude of learning activities help to motivate and 

promote relevance. Primary practitioners contribute to the holistic development of children 

and perhaps, are adept to recognise the uniqueness and complexity of learners’ needs, which 

allows for a more accurate diagnostic assessment of prior knowledge. For example, it was 

notable in the case of Morag that she was concerned with children’s confidence for learning. 

Sustaining motivation to learn is strongly dependent on pupils’ confidence (Von Glaserfeld, 

1989).  
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Curiously, only primary participants in my research appear to promote the employment of 

manipulatives in the learning and teaching of mathematics. Manipulatives are physical or 

virtual objects that pupils and teachers use to illustrate and discover mathematical concepts 

(Van de Walle, Karp & Bay-Williams, 2014) and can be utilised to connect ideas and 

integrate knowledge during mathematical problem solving and problem posing (Rosli, 

Goldsby & Capraro, 2013). Much of the literature surrounding manipulatives is supportive as 

they offer powerful visual representations to intangible mathematical concepts (Golafshani, 

2013). In a study of 503 American primary teachers, Uribe-Florez & Wilkins (2010) found 

that teachers’ beliefs of manipulatives were related to the level of classroom use. 

Interestingly, the researchers concluded that “teachers who tend to believe that the use of 

manipulatives with older students is less necessary were found to use manipulatives less 

often” (p. 370).  

 

 

Nevertheless, another possible factor may be that secondary mathematics teachers’ beliefs are 

more resistant to change due to concerns about classroom management. For example, Skye 

defends her teaching approach regarding the need to struggle to avoid pupils “moaning” and 

her professional practice “being criticised”. Thompson (1989) on the theme of mathematical 

problem solving maintains: 

 
 While secondary teachers tend to be stronger than elementary [primary] teachers in their 

 knowledge of the subject matter, I have found secondary teachers generally more resistance 
 to introducing changes into their teaching. Elementary teachers, for the most part, tend to act 

 more enthusiastically to new techniques, but their generally weaker mathematics background, 

 and feelings of inadequacy to handle mathematical problem solving, become serious 

 obstacles (p. 234).  

 

However, in the Scottish context, the construction of mathematical proofs is no longer the 

driving force behind the expansion of mathematical knowledge in schools. Central to the 

proof discourse is the use of appropriate language and diagrams. My research leads me to 

question whether secondary practitioners are more disadvantaged by this pedagogical 

propensity to underuse one of the fundamental constructs within mathematics. From my 

perspective as a practising teacher, I am concerned that pupils are deprived of rich 

enculturation opportunities to actively engage together in conjecturing, exploring, reasoning, 

justifying, verifying and critiquing. Besides, it is unlikely that secondary teachers holding 

instrumentalist or Platonist beliefs about the nature of mathematics will advocate the 

employment of proofs to construct ideas or to extend mathematical thinking within their 

classroom practice.   
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Collaborative learning 

Primary teachers hold stronger collaborative beliefs towards the nature of mathematics, the 

learning of mathematics and the teaching of mathematics, compared with secondary 

mathematics teachers. There are two possible explanations that may help to illuminate this 

result.  

 

 

Firstly, it is suggested that primary teachers are more committed to orchestrating learning 

activities that offer challenge through which pupil understanding is achieved by mathematical 

discussion. It is evident that primary teachers’ beliefs are consistent with the need to promote 

dialogue, which is a critical feature to enhance understanding. For example, Grace asserts that 

a mathematical task should not be decomposable by urging teachers to “choose a task that 

cannot be solved by just one pupil” and complements this by highlighting positive 

interdependence with the observation, “but needs input from others”. Likewise, Morag 

expressed that pupils should not readily accept an opposing view without verification by 

inclusion of the word “equally” in the comment, “they can share success equally with no one 

child to blame for failing to solve a task”. Swan (2006, p. 85) refers to the seminal work of 

Piaget when he reminds us “the most effective form of social interaction is cooperation 

between equals in which each tries to understand and modify the other’s point of view”. This 

perspective resonates with Boaler (2008) and her induction of the term ‘relational equity’. In 

her study of American secondary mathematics teaching approaches, Boaler (2008) uncovered 

excellent societal relations that developed in classrooms among pupils at one particular 

school. In defining the construct, she outlines three important strands: 

 
 1.  respect for other people’s ideas, leading to positive intellectual relations; 

 2.  commitment to the learning of others; 
 3.  learned methods of communication and support (p. 174).      

 

What is fascinating about her findings is that it involved mixed ability groups and challenges 

the conventional belief held by many Scottish mathematics teachers that a heterogeneous 

approach to secondary school mathematics is counterproductive to effective teaching. 

Interestingly, in this study, Isabella advised that collaborative groups should contain “a 

mixture of abilities”, prompting me to acknowledge another possible difference between the 

sectors.    
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Secondly, secondary mathematics teachers appear to hold weak collaborative beliefs towards 

the learning of mathematics and the teaching of mathematics. The main thrust of justification 

for this apathy is grounded on overarching concerns about time constraints and classroom 

management issues. Moreover, there appears to be a lack of cohesion with the principles 

underlying collaborative learning. For example, participants made no reference to an 

interpersonal activity in which pupils are challenged to think for themselves and to arrive at 

understanding through open discussion (Askew et al., 1997) or the potential rich construction 

of multiple solutions or multiple answers during problem solving. Instead, participants 

conveyed an unambiguous message of low expectations of pupils to actively engage in fertile 

discussion during collaborative learning. This was salient in the case of Skye who claimed 

that young people use it as “an excuse to talk about other stuff or take out their phone and do 

absolutely nothing”. Perhaps the most disappointing finding in this matter is derived from the 

narrative of Cormac, who articulates that his pedagogical approach is inhibited by the 

contextual nature of his school. He critically draws attention to an archaic expectation that 

mathematics learning must be overtly conducted within a vacuum isolated from social 

discourse by asserting that a key shortcoming “is noise because classes in this corridor are 

quiet and anytime there’s a din, the PT marches in to see what’s going on!”. The literature is 

replete with hazards of teachers’ overcontrol of interactive classroom discourses. The upshot 

of which is that children’s opportunities of expressing, sharing and communicating 

mathematical ideas about problem solving and problem posing are compromised, producing 

superficial learning cameo roles. 

 

 

Though, what appears to dominate the previous points per se is a disparaging perception by 

participants that not all learners possess an equitable capacity to demonstrate creativity or 

originality, which only serves to perpetuate the myth that imagination is interlinked with 

intelligence or mathematical ability. Furthermore, such a pervasive disjunction will not foster 

motivation or cultivate confidence but will permeate to marginalise pupils within their own 

learning communities. More prosaically, classroom practices may insidiously polarise pupils 

into accepting that equity is not the universal entitlement for all. Schoenfeld (2014) 

demonstrates that one of the dimensions of mathematically powerful classrooms is the active 

engagement of all pupils. In short, it is posited that secondary mathematics teachers may not 

value the contribution of every young person. 
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It is unsurprising that when coupled together, the results for a social constructivist, problem 

solving and collaborative orientation towards the nature of mathematics, the learning of 

mathematics and the teaching of mathematics, show that primary teachers hold statistically 

significant stronger CfE mathematical beliefs than secondary mathematics teachers. It is of 

interest that both sectors share similar ‘neutral’ beliefs of a static transmission and 

mechanistic transmission towards the nature of mathematics, the learning of mathematics and 

the teaching of mathematics. Furthermore, whilst statistically significant social constructivist 

differences exist between the sectors, it is notable that the strength of both orientations is 

considered ‘weak’.  

 

 

These findings are concerning, since from a hierarchical perspective secondary mathematics 

teachers are generally assumed to form a hegemonic group within mathematics education. In 

their exploration of the dynamics of teachers’ beliefs about mathematics, Burroughs & 

Schmidt (2014) illuminate differences between the sectors as follows: 

 
 Secondary mathematics instructors tend to be specialists in their fields. Given their more 

 intensive exposure to mathematics, their attitudes about mathematics instruction may be quite 

 different from those of primary school teachers, who are responsible for giving basic 
 instruction in many subjects. As generalists with what may be only a smattering of math 

 courses during their preparation to become teachers, the cultural background of primary 

 school teachers could play an especially large role in shaping their beliefs. In addition, as  their 
 first exposure to formal mathematics, students attitudes about math may be powerfully 

 influenced by the beliefs of their elementary school teachers (p. 280).  

 

The above statement highlights two main themes that require further examination. To begin 

with, it infers that primary practitioners’ prescriptive espoused mathematical beliefs act as a 

catalyst for the implementation of didactic instructional practices. This perspective resonates 

with previous studies (e.g. Stipek et al, 2001; Beswick, 2005; Cross, 2009). For example, 

Nisbet & Warren (2000) observed that: 

 
 primary teachers hold limited views of what mathematics is – static and mechanistic views, 

 rather than the view as a dynamic problem-driven ever-expanding field of human creation (a 
 view more aligned with the constructivist model of learning) – and this impacts on their 

 approach to teaching (p. 45). 

 

However, such a position is not the exclusive domain of primary teachers. Within this study, 

several mathematics participants professed to enact teacher-centred approaches, in contrast to 

their problem solving orientation towards the nature of mathematics. Perry, Wong & Howard 
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(2006) feature a compelling extract from a secondary teacher, which encapsulates a 

comparable approach: 

 
 Sometimes it is easier and quicker to use a transmission approach to get through the maths 

 content, particularly in Years 11 and 12 [S4 and S5]. The amount of content affects the style 
 that we use to teach. You have to have planning – time and effort – to use child-centred 

 approaches while you cover a lot more and it is a lot easier to use transmission approaches but 

 the long-term results are not as good (p. 445).  

 

The second theme is reference to the influence of primary teachers’ mathematical beliefs on 

classroom practices of future primary teachers; although I suspect that secondary education 

experiences will also profoundly feature in this regard (Handel, 2003). It is evident from my 

study, that teachers’ implicit and explicit beliefs have been fashioned by prior school 

experiences, which is consistent with previous research (e.g. Hudson, Henderson & Hudson, 

2015). Such a finding suggests that multiple long term emotional and cognitive attachments to 

patterns of thinking act as a barrier to the enactment of new techniques of working. To 

stimulate a change in beliefs, practitioners need to critically reflect on their classroom practice 

through professional enquiry. Engaging in research will energise teachers to make sense of 

the misalignment between beliefs and practice. For example, inconsistencies (Cross, 2015), 

problem solving (Andrews & Xenofontos, 2015), multiple solutions (Guberman & Leikin, 

2013), problem posing (Barlow & Cates, 2006) and collaborative learning (Swan, 2006). 

 

 

Notwithstanding any of the previous comments, I now turn my attention to what I perceive to 

be the fundamental issues that may explain the tension between teachers’ beliefs and the 

conceptualisation and operationalisation of mathematical problem solving and problem 

posing. Few studies have examined the role of Scottish teachers’ mathematical beliefs and no 

previous study has investigated the mathematical beliefs of Scottish current primary and 

secondary mathematics teachers. Such a paucity of national research may well enlighten the 

lack of awareness and impetus for raising the profile of teachers’ beliefs within the Scottish 

educational landscape. No formal attempt has been made by relevant stakeholders to 

disseminate any of the localised contributions (e.g. Henderson, 2012b; Priestley & Minty, 

2013; Hudson, Henderson & Hudson, 2015) to school establishments. Surprisingly, Bryce et 

al. (2013), throughout their various editions of work detailing our national educational 

system, fail to acknowledge the important role of teachers’ beliefs, despite the growing body 

of literature including substantive reviews (e.g. Kagan, 1992; Pajares, 1992; Thompson, 1992; 

Calderhead, 1996; Fang, 1996; Richardson, 1996; Philipp, 2007; Fives & Buehl, 2012).  
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While practitioners from both sectors appear to successfully promote numeracy, confidence 

and progression, a political undercurrent overshadows the enactment of mathematical beliefs 

designed to promote relational understanding. Classroom practices are circumscribed by an 

over dominate national assessment regime which mechanically restricts the conceptualisation 

and operationalisation of mathematical problem solving and problem posing. In his review of 

Australian education, Clarke (1987, p. 9) noted that, “schools continue to succeed in the 

teaching of routine computation and to fail in the teaching of such skills as problem solving... 

the maintenance of current assessment procedures serves only to maintain the illusion that 

significant learning is taking place”. It is important to consider to what extent teachers have 

been empowered by the theoretical underpinnings of CfE, while reflecting analytically on a 

formidable capacity to de-professionalise the same teachers by an oppressive culture of high 

stakes testing.  

 

 

8.4 Research question three 

What factors impact on the mathematical beliefs of Scottish primary and secondary 

mathematics teachers?  

 

The results of my research indicate that two factors impact on the mathematical beliefs of 

Scottish primary and secondary mathematics teachers i.e. grade and highest qualification in 

the field of education. In order to provide a more comprehensive overview, beliefs have been 

examined from a cumulative perspective (i.e. TMBS) followed by the impact from each of the 

five belief factors respectively (i.e. BF1, BF2, BF3, BF4 & BF5). 

 

 

Discussion 

Grade and TMBS  

This study indicates that primary deputy headteachers hold significantly stronger 

mathematical beliefs towards the nature of mathematics, the learning of mathematics and the 

teaching of mathematics, than unpromoted primary teachers. What is surprising is that 

primary headteachers’ mathematical beliefs did not differ significantly from any other grade. 

It is difficult to explain the variance between the result for primary deputy headteacher and 

primary headteacher (Figure 6.16), but is might be related to the length of time already served 

by primary headteachers in their current management role. It is important to consider the 

actions of primary headteachers prior to the introduction of GTC professional standards. 
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Secondary mathematics teachers beliefs were found to be unaffected by grade, in particular, 

the position of headteacher. This rather unexpected result might be explained by the 

professionalism and expertise required for leadership and management does not require 

domain subject competence although this is arguable given that headteachers have to evaluate 

effective learning and teaching. Although the small sample size of secondary headteachers 

may explain this statistical anomaly. 

 

 

Grade and Belief Factors 

Firstly, the results suggest that primary headteachers have a stronger problem solving 

orientation towards the nature of mathematics, the learning of mathematics and the teaching 

of mathematics, compared with primary teachers. A possible explanation for this might be 

that primary headteachers are more able to critically engage with literature, research and 

policy. There are, however, other possible reasons. For example, it seems plausible that 

mathematics teaching self-efficacy beliefs may be inconsistent among primary teachers. 

Alternatively, primary teachers’ mathematical beliefs may align with the American 

practitioner represented by Ms. Perry (Aguirre & Speer, 2000). In their study, the researchers 

describe Ms. Perry’s beliefs about the learning mathematics being preoccupied on explaining 

a new concept and ensuing classroom interactions, opposed to focussing on developing her 

pupils’ mathematical thinking.  

 

 

Secondly, my research indicates that primary teachers have a stronger static transmission 

orientation towards the nature of mathematics, the learning of mathematics and the teaching 

of mathematics, compared with primary deputy headteachers. The reason for this is not clear 

but if may have something to do with primary teachers maintaining a prescriptive belief of the 

teaching of mathematics. For example, Morag maintains that it is important to explain in 

detail what pupils have to do to solve problems. This view resonates with the instructional 

beliefs of the practitioner, Lynn (Thompson, 1984, p. 117), who contends that pupils “learn 

mainly by attentively watching the teacher demonstrate procedures and methods for 

performing mathematical tasks and by practicing those procedures”. Another possible 

explanation for this is that some primary teachers may encourage an instrumentalist approach 

underlined by a repetition of arbitrary rules and procedures that reward learners with instant 

success by allowing them to solve similar undertakings without little or no conceptual 

understanding (Ernest, 1991). Morag stressed the importance of children achieving success 
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with the right answer in order to boost their confidence. This mechanical perspective of 

teaching does not promote making sense of mathematics. In this respect, mathematics is 

considered to be uninspiring at best, and mentally and emotionally crushing at worst 

(Schoenfeld, 1992). Perhaps, another possible alternative explanation of this finding is that 

primary teachers lack confidence in teaching mathematics and are drawn to a set of beliefs 

and practices that require relatively less teacher judgment and decision-making (Stipek et al. 

2001). 

 

 

Thirdly, the results allude that secondary principal teachers of mathematics have a stronger 

problem solving orientation towards the nature of mathematics, the learning of mathematics 

and the teaching of mathematics, compared with mathematics teachers. It seems possible that 

this result may be due to the philosophy of mathematics held by principal teachers. In this 

study, Hamish expressed that mathematics is fundamentally about solving problems, which is 

a comparable belief articulated by Jim, an Australian senior mathematics teacher included in a 

study by Beswick (2007). In her research, Beswick (2007, p. 108) reported that Jim was 

particularly happy “when he and the students were engaged in a genuine problem to which 

neither he nor they know the answer”, accentuating a philosophy associated with a problem 

solving view of mathematics (Ernest, 1989a). This result differs from Barkatas & Malone 

(2002), but is broadly consistent with Perry, Howard & Tracey (1999), who found that head 

mathematics teachers (equivalent to curriculum leaders) held stronger learner-centred beliefs 

and weaker transmissive beliefs than mathematics teachers. Though, the study would have 

been more relevant if the authors had selected participants from a wider geographic area.   

 

 

Highest qualification in the field of education and TMBS 

My research suggests that primary teachers holding a Masters in the field of education hold 

significantly stronger mathematical beliefs towards the nature of mathematics, the learning of 

mathematics and the teaching of mathematics than primary participants holding a BEd. 

However, this study indicates that mathematics teachers holding a Masters in the field of 

education hold significantly stronger mathematical beliefs towards the nature of mathematics, 

the learning of mathematics and the teaching of mathematics than participants holding a BEd 

or a PGCE/PGDE. This rather intriguing finding to emerge between the sectors might be 

explained by the fact that primary PGCE/PGDE participants have accumulated Masters 

credits. 
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Highest qualification in the field of education and Belief Factors 

This study indicates that primary teachers holding a Masters in the field of education have 

significantly stronger mathematical beliefs for three of the five belief factors. 

Correspondingly, mathematics participants, have significant stronger mathematical beliefs for 

all five belief factors. The findings reported here suggest that a higher educational degree does 

not impact on primary teachers’ mathematical beliefs aligning to a social constructivist and 

collaborative orientation to mathematics, the learning of mathematics and the teaching of 

mathematics. Instead, these findings provide support for the premise that primary teachers, in 

general, hold stronger CfE mathematical beliefs than mathematics teachers. 

 

 

Collectively, these results support the view that a Masters level qualification in the field of 

education is positively linked to more robust mathematical beliefs. Although, there is already 

a wealth of anecdotal evidence that undertaking postgraduate research and study at Masters 

level significantly changes how teachers interrelate with aspects of learning and teaching 

(Edwards, 2008). However, this finding is consistent with previous research. For example, in 

a study of South Korean primary teachers, Kim, Sihn & Mitchell (2014) found that 

practitioners holding a Master’s degree in mathematics education had significantly stronger 

mathematics teaching efficacy beliefs than colleagues with a Batchelor degree. Likewise, 

Beswick (2004) illustrates the case of Andrew, a mathematics school coordinator with a MEd, 

who held a problem solving view of mathematics and a social constructivist view of learning. 

Moreover, reflecting on my own Masters experience, it activated me to critically engage with 

ideas and debates in mathematics education research, which reinvigorated my professional 

practice by forcing me to question my existing beliefs and pedagogical approaches. 

 

 

Factors which did not impact on teachers’ mathematical beliefs 

The results for both sectors show gender, age and teaching experience did not influence the 

dimension of teachers’ mathematical beliefs. I will now discuss each characteristic in more 

detail. 

 

 

Gender 

This finding broadly supports the work of other studies but that inconsistencies exist within 

the literature. For example, in a study of 39 Malaysian mathematics teachers’ beliefs about the 
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nature of learning and teaching of mathematics, Zikre & Eu (2016) found no significant 

differences between male and female participants - although, the study suffers from limited 

sample size. Gender was not found to be a feature in the study carried out by Marshall et al. 

(2009) of 1,222 American primary and secondary science and mathematics teachers’ beliefs 

about the use of inquiry in the classroom. Similarly, in their study of 521 Norwegian primary 

mathematics participants, Thorndsen & Turmo (2012) found no significant differences 

between male and female teachers’ beliefs about instruction. In a cross-national investigation 

of mathematics teachers from England and China, Yu (2008) observed that gender did not 

have a significant influence on teachers’ beliefs regarding the nature of mathematics, the 

teaching of mathematics and the purposes of mathematics education. Bayaga, Wadesango & 

Wadesango (2015) revealed that gender did not impact on the beliefs on mathematics 

education in their study of 183 South African prospective teachers. Likewise, gender was not 

significant in a study of mathematical problem solving beliefs of 138 Turkish prospective 

primary teachers by Bal (2015). Previous Turkish studies involving teachers’ beliefs have 

described similar results (e.g. Memnun, Hart & Akkaya, 2012; Saglam & Dost, 2014). 

 

 

In contrast, Zakaria & Musiran (2010) reported in their study of 100 Malaysian prospective 

mathematics teachers, that gender was a significant factor regarding beliefs about the nature 

of mathematics and the learning of mathematics but not involving the teaching of 

mathematics. In their study of Australian primary and secondary mathematics teachers beliefs 

about the learning and teaching of mathematics, Tracey, Perry & Howard (1998) found that 

female teachers’ beliefs were more ‘child-centred’ regarding the teaching of mathematics. 

The researchers indicated that male teachers “may well base their teaching on their past 

experiences in classes where power relationships and the delivery of information 

(transmission of information) was the preferred mode of delivery by their teachers” (p. 619). 

However, the study makes no attempt to distinguish the effect of gender between sectors. In 

another study, Barkatas & Malone (2002) found that Greek female mathematics teachers’ 

placed more emphasis on a social constructivist view of the nature of mathematics, the 

learning of mathematics and the teaching of mathematics. Yuzici & Ertekin (2010) observed 

that Turkish prospective primary male teachers had stronger instrumentalist beliefs 

concerning the learning of mathematics. In their study of 72 Mexican secondary mathematics 

teachers’ beliefs, Canto-Herrera & Salazar-Carballo (2010) noted significant differences 

between male and female ‘teaching styles’ but not significant for any of the four belief 

categories under investigation. In a cross-national study of 181 Australian and Israeli 
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mathematics teachers perceptions of mathematics, Forgasz et al. (2015) reported no 

differences in the views of Australian teachers but that Israeli males appeared to hold more 

traditionally gender-stereotyped views than their female counterparts. In her seminal review, 

(Li, 1999) suggested that female teachers are more likely to promote a collaborative learning 

environment than male teachers but this was not supported by empirical evidence.  

 

 

Age 

This finding is consistent with that of Yates (2006) who found that age was not a factor in her 

study of 127 Australian primary teachers’ beliefs about the nature mathematics, the learning 

of mathematics and the teaching of mathematics. This result corroborates the outcome of 

Bayaga, Wadesango & Wadesango (2015). Similarly, Canto-Herrera & Salazar-Carballo 

(2010) reported that age did not impact on teachers’ beliefs. Moreover, in a study of 390 

Latvian mathematics teachers’ beliefs of effective teaching, Sapkova (2011) stated that 

although constructivist beliefs of teachers’ grew more distinctly with age, her results did not 

produce any significant differences.  

 

 

Teaching experience 

This finding is in line with those of previous studies (e.g. Nisbet & Warren, 2000; Yates, 

2006; Yu, 2008; Marshall et. al, 2009; Zakaria & Maat, 2012). Nisbet & Warren (2000, p. 41) 

found that “beliefs about teaching mathematics are not significantly influenced by the number 

of years a teacher has been teaching”. However, this outcome is contrary to other studies such 

as Barkatsas & Malone (2002) who observed that experience did significantly influence 

teachers’ mathematical beliefs for one of five belief factors. The researchers concluded that a 

social constructivist orientation towards the nature of mathematics, the learning of 

mathematics and the teaching of mathematics was related to experience at junior high school 

level but that the results were found not significant for experience at senior high school level 

for all five belief factors. The study would have been more convincing if the authors had 

employed more than three categories to delineate a range of 45 years of experience. In their 

study of 258 Turkish primary teachers, Isiksal-Bostan, Sahin & Ertepihar (2015), found that 

participants with more than 16 years’ experience held significantly more favourable beliefs on 

using inquiry-based instructional approaches than participants with 6 to 10 years. However, 

the researchers found that experience was not a factor in other relationships, suggesting this 

particular finding was not archetypal.  
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This outcome reinforces the conjecture that teachers’ deep rooted mathematical beliefs are 

constructed early, well established prior to entering the profession and highly resistant to 

change during their careers (Kagan, 1992; Richardson, 1996; Lerman, 2002; Wilson & 

Cooney, 2002). Pajares (1992) offers a myriad of fundamental assumptions including the 

view that: 

 

 Beliefs are formed early and tend to self-perpetuate, preserving even against contradictions 

 caused by reason, time, schooling, or experience... The earlier a belief is incorporated into the 
 belief structure, the more difficult it is to alter... Belief change during adulthood is a relatively 

 rare phenomenon, the most common cause being a conversion from one authority to another 

 or a gestalt shift... Beliefs about teaching are well established by the time a student gets to 
 college (p. 324-326).  

 

The narratives of Hamish and Morag exemplify this supposition, irrespective of the 

contrasting nature of their early school experiences as pupils. In the case of Hamish, he 

revealed his beloved topic of algebra was established by an inspiration primary teacher and 

that a subsequent mixture of education and work experiences failed to alter his preference. 

Similarly, in the case of Morag, she described her adverse school mathematical encounters, 

including reference to an unpleasant childhood memory. Morag identified that her apathy 

towards mathematics was fashioned by anxiety as a young learner being coerced into 

responding to indiscriminate questions in front of her peers, despite having the confidence to 

sing to large audiences. This outcome is consistent with the study by Uusimaki & Nason 

(2004) who illustrate the case of Rose, an Australian prospective primary teacher. The 

researchers describe that Rose felt most anxious about mathematics when she had to verbally 

communicate her mathematical knowledge in some way. Uusimaki & Nason (2004) suggest 

that negative beliefs and anxiety about mathematics are most often shaped in primary school, 

as a result of negative experiences as learners, and that the main contributory factor for the 

dislike and fear of mathematics is the teacher. An intriguing point highlighted by Morag is 

criticism of the praxis of setting in secondary school mathematics, which resonates with the 

view expressed earlier by Angela (Hudson, Henderson & Hudson, 2015), who describes being 

traumatised by the unfavourable effect of labelling. It is conceivable that other practitioners’ 

beliefs may have been adversely affected by this practice, triggering an evolution of negative 

images of mathematics.  

 

 

Lortie (1975) portrays the influence of early school experiences on the belief construct as a 

formidable contributory source of the formation of teachers’ mathematical beliefs. As Ball 

(1988, p. 40) points out: “Long before they enrol in their first education course or math 
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methods course, they have developed a web of interconnected ideas about mathematics, about 

teaching and learning mathematics, and about schools”. Likewise, Beswick (2012) notes from 

her case studies of two secondary mathematics practitioners that more attention needs to be 

paid to the beliefs about the nature of mathematics that teachers have constructed as a result 

of the cumulative experience of learning mathematics in primary and secondary schools. 

Teachers in this study have spent thousands of hours as pupils, and, through observation of 

and participation in the educational process, formed beliefs about the nature of mathematics, 

the learning of mathematics and the teaching of mathematics. It is therefore important to 

consider the impact of early school experiences on teachers’ deep rooted mathematical 

beliefs. Though, Biesta, Priestley & Robinson (2015, p. 626) argue that it is more precise to 

focus on “influences from the past, orientations towards the future and engagement with the 

present”.  

 

 

Although several participants indicated that they suffered adverse school encounters with 

mathematics as former pupils, it was reassuring that they were determined not to perpetuate 

their anxiety within their own classes. I would argue that such a desire to instil more positive 

notions of mathematics than afforded to themselves is a testimony to their professionalism 

and commitment. It is possible, therefore, that having negative childhood experiences might 

not have a detrimental long lasting effect on practising teachers' beliefs about the nature of 

mathematics, the learning of mathematics and the teaching of mathematics. This finding is 

consistent with that of Gujarati (2013) who investigated the inverse relationship between the 

mathematical identities and classroom practices of three American early career primary 

practitioners. Gujarati (2013) describes the formative experiences of Andrea, Lisa and 

Melody. For instance, in the case of Andrea, it is reported that her school experiences with 

mathematics were all unconstructive. However, Gujarati (2013, p. 641) states that “despite 

negative experiences, she [Andrea] put extra effort into her mathematics practices to ensure 

that her students would not dread mathematics as she did, have a positive image of it, and 

would be successful at it”. Gujarati (2013) argues that the key to changing teachers’ negative 

beliefs is to invite teachers to reflect on their own histories. In order to begin evaluating the 

complex factors that influences their classroom decisions, she points out that it is critical to 

explore mathematics identities as early as possible in teachers’ careers to potentially impact 

learners more positively. 
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8.5 Summary 

This chapter has discussed findings from each of the three research questions. Mathematical 

problem posing can help improve pupil learning and is supported by a growing body of 

empirical evidence at different educational levels. Teachers’ beliefs are shaped by previous 

school mathematical experiences (Lortie, 1975; Thompson, 1992; Handel, 2003) and 

constrained by the context in which they are situated within. Inconsistencies exist between 

espoused beliefs and professed classroom practices. Changing classroom practices will 

depend on changing teachers’ beliefs (Lerman, 2002; Wilson & Cooney, 2002). Primary 

teachers hold stronger positive mathematical beliefs than secondary mathematics teachers. 

The conceptualisation and operationalisation of mathematical problem solving appears to be 

compromised by an incoherent theoretical mathematical framework coupled with an over 

dominant national assessment culture. Teachers’ beliefs of mathematical ability are illustrated 

by association with examination performance opposed to levels of critical thinking. 

Characteristics of gender, age and teaching experience do not positively impact on teachers’ 

beliefs. Whilst grade has a modest influence on both sectors, a Masters qualification in the 

field of education has a considerable impact on primary teachers’ beliefs and an overarching 

impact on secondary mathematics teachers’ beliefs. 

 

 

The next chapter will present the implications and recommendations for current policy and 

practice. Furthermore, it will list relevant limitations of this study and suggest themes for 

future research.  
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CHAPTER NINE 

 
Conclusions 

 

 

9.1 Introduction 

This study was motivated by two aims. The first aim was to examine critically a 

reconceptualization of the existing mathematics curriculum by addressing a policy gap 

originated by the omission of mathematical problem posing. This study set out to explore to 

what extent mathematical problem posing should be embedded within the current 

mathematics policy of Curriculum for Excellence. The second aim was to obtain empirical 

evidence of teacher’s beliefs and espoused classroom practices of mathematical problem 

solving and problem posing. This study set out to provide the first cross-sector account of 

Scottish teachers’ beliefs and professed classroom practices to determine levels of enactment 

of mathematical problem solving and problem posing. 

 

 

Several tentative conclusions can be associated with the research reported within this thesis. 

The use of a theoretical framework initially formulated using Ernest (1989a) and later 

expanded with reference to Barkastas & Malone (2005) has helped to shape the facilitation of 

multiple perspectives in interpretation of the data. In summary, this study has produced five 

main findings.  

 

 

Firstly, this study appears to be the first study to examine the legitimacy of infusing 

mathematical problem posing within the national curricula of Scotland. The result of this 

research is relevant to both practitioners and policy makers and supports the idea that to 

improve pupil learning, mathematical problem posing should be embedded within Curriculum 

for Excellence. This finding resonates with previous research which advocates that 

mathematical problem posing should be an integral component of school mathematics 

(Stoyanova, 2003; Bonotto, 2013; Singer, Ellerton & Cai, 2013; Leung, 2013, 2016; Cai et al., 

2015).  
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Secondly, factor analysis has identified that teachers’ beliefs align to three distinct but not 

mutually exclusive, mathematical belief systems as follows: 

 

1.  A social constructivist, problem solving and collaborative orientation towards the 

 nature of mathematics, the learning of mathematics and the teaching of 

 mathematics;  

 

2.  A social constructivist, problem solving and static transmission orientation 

 towards the nature of  mathematics, the learning of mathematics and the teaching of 

 mathematics;  

 

3.  A static and mechanistic transmission orientation towards the nature of mathematics, 

 the learning of mathematics and the teaching of mathematics.  

 

This finding strengthens the idea that teachers’ mathematical beliefs are not held in isolation 

but are embedded within clusters which coalesce to form an interconnected and structured 

belief system (Rokeach, 1968; Green, 1971; Leatham, 2006). Teachers’ beliefs are extremely 

complex. Some are more central and influential than others. They are formed early (e.g. 

during schooling) and are highly resilient and resistant to change. Belief systems include a 

compendium of positive and negative cognitive positions towards the nature of mathematics, 

the learning of mathematics and the teaching of mathematics. Likewise, belief systems align 

with conceptualised personal philosophies designated as instrumentalist, Platonist and 

problem solving (Ernest, 1989a). 

 

 

Thirdly, this study indicates that primary and secondary teachers hold significantly different 

mathematical beliefs. As both sectors share mutual responsibility for the learning and 

teaching of mathematics, this finding is particularly noteworthy. That is, if the cross-sector 

relationship is disconnected, such an imbalance may adversely affect continuity and 

progression of the educational experience afforded to all learners. Moreover, limited support 

for teaching mathematics through problem solving exists including a widespread belief that 

problems can be solved by using standard algorithms. Some practitioners from both sectors 

conceive of problem solving as an irregular follow on step after learners have acquired 

mastery of basic numerical and computational skills coupled with procedural understanding. 

Modest encouragement is present for the promotion of multiple solutions. Overall, it was 
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found that, when judged against the mathematical philosophy as championed by CfE, primary 

teachers hold stronger beliefs than secondary mathematics teachers. 

 

 

Fourthly, it was discovered that gender, age and teaching experience had no discernible 

influence on teachers’ mathematical beliefs. While the evidence indicates that grade was 

significant in some cases, it is possible that these results merely reflect a selection effect. 

However, one factor to emerge that significantly impacted on both primary and secondary 

teachers’ beliefs is post-graduate study at Masters level within the field of education, although 

the exact domain is unknown. 

 

 

Fifthly, it is suggested that the conceptualisation and operationalisation of mathematical 

problem solving and problem posing is restricted in practice. A number of variables impinge 

on the process which inhibits teachers’ functioning capabilities such as a scarcity of a shared 

understanding of what constitutes a mathematical problem and the theoretical structure of 

problem posing. In other words, emergent beliefs have provided a practical awareness of the 

professional contexts within how teacher operate and help to make sense of the multifaceted 

terrain of classroom situations. Inconsistencies between teachers’ espoused beliefs and 

reported practices, are manifested by an over dominant national assessment culture, which 

promotes attainment of localised and national targets at the expense of the development of 

critical and independent thinking. Such contextualised inconsistencies are similar to previous 

research studies (e.g. Cooney, 1985; Raymond, 1997; Skott, 2001; Beswick, 2012).  

 

 

In guiding the research process, teachers’ espoused beliefs have an overwhelming influence 

on the degree of enactment of the mathematical philosophy advocated by CfE. Prior 

mathematical experiences have strongly impelled teachers’ perspectives on the nature of 

mathematics, which have fashioned the disposition of mathematical orientations surfacing in 

classrooms.  

 

 

Given the international dimension and theoretical significance of mathematical problem 

solving and problem posing, it is a major concern that the implementation of both elements 

appear to be restricted in practice. Whilst a number of constraints have been identified that 
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help to explain this phenomenon, it will require more than rhetoric to reverse this situation. In 

Scotland, the accountability for mathematics education firmly rests with local education 

authorities and schools, whilst taking account of national guidelines and advice.  

 

 

A particular strength of my study is the high rate of volunteered comments obtained during 

phase one. A total of 87 participants (18% of main study) generated a combined narrative of 

over 6000 words providing a rich constellation of perspectives about the belief statements. 

This contribution included cross-sector representation from all grades which facilitated the 

triangulation of the results of phase two, thus improving the overall reliability of this study. 

 

 

In short, the evidence provided in this study allows me to justify the claim that I have made a 

contribution to knowledge. Firstly, I have undertaken a systematic literature review which has 

explored changes in contemporary knowledge and emerging research that has engendered 

empirical evidence for the inclusion of mathematical problem posing within Curriculum for 

Excellence. Secondly, I have acquired an understanding of the cross-sector beliefs and 

espoused professional practices of Scottish teachers regarding mathematical problem solving 

and problem posing.    

 

 

9.2 Limitations of the study 

This study was subject to a number of potential methodological limitations which need to be 

considered. First, the decision to restrict the pilot study to an individual LEA may have 

affected the measurements obtained during the initial design phase. In retrospective, I should 

have employed more than one LEA to enrich the data collection process thus simultaneously 

increasing the potential to obtain a larger sample size. 

 

 

Second, during phase one of the study it was not possible to implement any probability 

sampling technique in the field. Research requests involving practising teachers are initially 

controlled by individual LEA’s, who subsequently grant or refuse approval for researchers to 

contact corresponding school establishments. Nevertheless, upon conferring consent an 

additional layer of administration rests with each respective Headteacher who govern if staff 

can participate. Ultimately, the final decision rests firmly with the individual practitioner. An 
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overview of the research engagement process is shown in Figure 9.1. The concern raised here 

is that direct access to the research field is negated as this route is managed by the 

Headteacher. In this study, all 32 LEA’s were formally approached for access to the research 

field. The outcome of this process is as follows: 

 

 Pilot study access granted by LEA (1) 

 Access granted by LEA and quantity of participants over 25 (7) 

 Access granted by LEA and quantity of participants between 10 and 25 (12) 

 Access granted by LEA and no participants (2) 

 Restricted access granted to a single school establishment selected by LEA (1) 

 Restricted access granted to a single participant selected by LEA (1)   

 Access refused by LEA (3) 

 No engagement by LEA (4) 

 

Figure 9.1 Process for gaining research access to teacher population  

 

Researcher LEALEA Application

Headteacher of school 
establishment

Access granted

School Application

Consent 

Teachers

No consent 

Restricted 
access granted

Access refused 

No participationParticipation

 



286 

 

 
 

In two instances, it is not possible to explain why LEA access was granted but no participants 

followed after a number of school establishments were approached. Likewise, I am unable to 

provide any reason why four LEA’s did not interact with numerous research request 

communications, other than by recognising the enormous workload demands made on 

teachers in all roles within our education system. Speculating on both concerns does not 

outweigh the reflection on my positionality and identity as a researcher in the field. 

 

 

With no influence over the target population, I depended on a suitable random sample size 

being generated to produce a range of participants with the desired demographic 

characteristics. As a consequence, the determination of a response rate was not feasible. On 

reflection, a sample size of 478 is respectable given the circumstances, although arguably this 

quantity produced a mean of 23 participants per accessed LEA, which may be considered 

modest at best. However, it was not possible to attract any teachers’ holding a doctorate in the 

field of education. Whilst it is unknown the extent of individuals with this qualification, it is 

conjectured that such practitioners may have enriched the process due to their multifaceted 

theoretical knowledge and understanding of contemporary issues. Furthermore, the grade 

distribution of participants reveals that the balance of Principal Teacher is skewed towards the 

secondary sector. Conversely, the balance of Headteacher is skewed towards the primary 

sector. Although the equilibrium of unpromoted teachers to promoted teachers is comparable 

for both sectors, it is deliberated that an unequal spread of both Principal Teacher and 

Headteacher may affect the generalisability of the results.   

 

 

Third, during phase two, with the exception of one case, each interview was restricted to a 

maximum of 40 minutes due to the workload commitments of the participants. In fact, of the 

eleven interviews conducted, eight were organised during lunchtimes or between teaching 

periods. In one case, a participant had to reschedule the interview to a different date due to a 

last minute ‘please take’. Unfortunately, I had already travelled sixty miles to the venue and 

was only informed of this change on arrival. Given the complexity of the nature of this 

research, it is reasoned that an extended time period would have allowed for a more in-depth 

discussion of the factors influencing teachers’ mathematical beliefs and the underlying 

philosophy of CfE. Whilst recognising that access to the field was granted to me by the 

majority of LEA’s, it is suggested that Headteachers could have afforded their staff more 
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flexibility to engage professionally with the practical mechanism of educational research, free 

from time restrictions, where possible. 

 

 

Fourth, phase two of this study shared a common problem with other qualitative research, in 

that it was not free from being “impressionistic and subjective” (Bryman, 2012, p. 405). 

Personal bias that the researcher imposes can be present during the interview and data 

analysis process (Creswell & Clark, 2011). In this study, although considerable effort was 

made to minimise bias, it is acknowledged that complete objectivity is impossible. It is 

conceivable that my secondary teaching background and research inexperience may have 

influenced the formulation of interview questions and the interpretation of thematic codes 

emerging from analysis of the qualitative data. 

 

 

Fifth, concerning the reported inconsistencies between teachers’ espoused mathematical 

beliefs and professed instructional practices, it may be plausible that as a novice researcher, I 

have not searched profoundly enough to locate the intricacies manifested within the context of 

classroom life (Fang, 1996). Grounded on the premise that teachers are ‘inherently sensible’, 

Leatham (2006) underlines the notion that potential inconsistencies should not lead directly to 

a supposition but instead be inferred as opportunities for further investigation. He warns 

researchers to probe deeper “for we must have either misunderstood the implications of that 

belief, or some other belief took precedence in that particular situation” (p. 95).  

 

 

Sixth, it is speculated that since English was the sole language employed by me during the 

research process, I may have inadvertently marginalised a minor group of teachers working 

exclusively within Gaelic medium education. It is important to acknowledge that in Scotland, 

mathematics in primary and secondary schools is delivered either in English or in the national 

idiom of Gaelic.   

 

 

Finally, due to restrictions of combining part-time doctoral study with full-time employment, 

the phase two interviews were conducted within a relatively short period with only 

transcription time in between. It is purported that a longer reflection period to deliberate 
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between interviews would have been useful. For example, increased cognisance of the 

‘interviewer effect’ may have ameliorated the quality of the data (Denscombe, 2014). 

 

 

9.3 Implications for policy and practice 

The learning and teaching of mathematics is a politically charged arena. This thesis purports 

that there is a need for a transformational change in the mathematical beliefs of primary and 

secondary mathematics teachers. One factor which has precipitated this notion is the 

prescriptive framework supplied by the Scottish Government which does not adequately offer 

a suitable theoretical template from which teachers can easily advance the conceptualisation 

and operationalisation of mathematical problem solving and problem posing. What is required 

is not a particular methodology but a sustainable set of pedagogical practices that will 

improve the standard of mathematical interactions and experiences for all learners. The initial 

step to ensure teacher change is to provide practitioners with valuable professional 

development opportunities to reflect and absorb theoretical knowledge that will help underpin 

their enactment of any new instructional approach (Lerman, 2002; Wilson & Cooney, 2002; 

Hudson, Henderson & Hudson, 2015; Fullan, 2016). However, the key is not merely 

providing courses, as Clark et al. (2014, p. 275) point out: “simply giving teachers more 

mathematics or mathematics education courses may improve their mathematical and 

pedagogical knowledge, yet these courses will not necessarily influence teachers’ beliefs and 

awareness”. For professional development of teachers to be considered effective, Day (1999) 

argues that individual modifications must be internalised and teachers must ensure 

participation and ownership of the decision-making change process. Otherwise, as Handel & 

Herrington (2003, p. 62) indicate, that without shifting teachers’ beliefs, change can “be 

cosmetic, that is, a teacher can be using new resources, or modify teaching practices, without 

accepting internally the beliefs and principles underlying the reform”.   

 

 

Concurrently, a governmental change of focus is required encompassing the indoctrinated 

high stakes assessment culture that currently permeates both sectors. Our examination system, 

saturated with uncompromising targets, places teachers under unrealistic pressures of time 

and pupil performance. Such demands make it difficult to engage learners in rich 

mathematical experiences. Mason (2016, p. 110) counsels that “[t]he force of tests and 

examinations is to impel teachers to get students to practise routine procedures in an attempt 

to score highly, even though such ‘learning’ may not be robust or stable over time”. Teachers 
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should be enabled to reconceptualise the educational priority of inculcating in all pupils the 

growth of critical and independent thinking skills. Solving and posing mathematical problems 

is an indispensable life skill that must be encouraged and nurtured from the early years 

through to when young people leave school. It should be embedded as a creative endeavour 

and core national outcome in which practitioners contribute to ameliorating pupils’ deep 

learning of mathematics.  

 

 

Innovative methods of assessing mathematical achievement present alternatives to rewarding 

the recall of routine algorithmic procedures. Local education authorities should support 

teachers in a systematic development of new curriculum materials aimed at fostering and 

assessing mathematical problem solving and problem posing. Logically, having ready-made 

resources available would facilitate teachers’ engagement of problem solving and problem 

posing activities in their classrooms. Though, it would also be important for teachers to have 

sufficient understanding on how to employ these resources effectively. Moreover, it is worthy 

to consider if current CfE textbooks embody the intended curriculum.   

 

 

Initial Teacher Education 

With any proposed change of practice for current teachers, it is necessary to review the 

framework for initial teacher education to reflect such a stimulus. ITE is the first phase of a 

career-long continuum which provides theoretical and practical pedagogical training for 

prospective teachers. According to Green (1971, p. 48), teaching involves the development of 

beliefs and “is an activity which has to do, among other things, with the modification and 

formation of belief systems”. It is hoped that my research might help to influence this 

provision, in order to augment the future quality of learning and teaching of mathematics that 

can be offered to pupils.  

 

 

Within this domain in Scotland, a paucity of empirical studies exists that explore the nature of 

prospective primary or secondary mathematics teachers’ beliefs. Such studies (e.g. Macnab & 

Payne, 2003; Henderson & Rodrigues, 2008; Henderson & Hudson, 2011) help to collectively 

enrich the knowledge of the views of teacher candidates which may in time assist in 

identifying and confronting misconceptions and negative beliefs, prior to entering the 

profession (Raymond, 1997). For instance, one main obstacle to overcome is challenging the 
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widely held hierarchal ‘building block metaphor’ image of mathematics (Hewitt, 1987). 

However, by exploring conceptualisations of the nature of mathematics, teacher educators can 

anticipate possible implications for the learning and teaching of mathematics. Naturally, such 

a strategic process is futile without gathering beliefs from all relevant students.  

 

 

In the same vein, complementing the empirical evidence presented earlier in this thesis, is 

growing endorsement from the research community advocating for prospective primary and 

secondary mathematics teachers to be exposed to and supported through mathematical 

problem posing experiences (e.g. Leung & Silver, 1997; Crespo, 2015; Ellerton, 2015; 

Hospesova & Ticha, 2015; Osana & Pelczer, 2015; Rosli et al., 2015). For prospective 

teachers to prepare for future school communities, they require representative practical 

experiences (Putman & Borko, 2000). Typically, such experiences must empower teachers to 

deliver mathematics in an effective way. That is, simultaneously promoting mathematical 

problem solving and problem posing within all stages and ability. 

 

 

9.4 Recommendations 

The findings of this study have a number of practical implications for policy, professional 

learning and initial teacher education. Whilst I am confident that these findings enable me to 

make useful recommendations, at the very least I hope that my research will help to stimulate 

discussion at various levels. I draw on the contribution by Atkinson (2000, p. 328) who 

reminds us that: “[t]he purpose of educational research is surely not merely to provide 

‘answers’ to the problems of the next decade or so, but to continue to inform discussion, 

among practitioners, researchers and policymakers, about the nature, purpose and content of 

the educational enterprise”.   

 

 

Policy  

The mathematical framework of Curriculum for Excellence could be restructured to introduce 

the interplay between problem solving and problem posing as an overarching feature of 

mathematical learning. This can be realised by combining three distinct elements as follows: 
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Firstly, I would recommend embedding specific theoretical references to mathematical 

problem solving in curricular documents. For example, an opportunity should be taken to 

provide a conceptual definition in order to ensure a transition to more authentic and 

cognitively demanding tasks. Derived from my research, I would propose the following as a 

description: 

 

 Mathematical problems can be posed in various formats such as words, shapes, 

 graphs, multiple solutions, alternative answers and should be unfamiliar to the learner. 

 It offers challenge and cannot be solved quickly by simple computational or 

 algorithmic procedures. Several key  ingredients differentiate a mathematical problem 

 from routine textbook exercises; it requires critical thinking and perseverance, whilst 

 provoking originality.  
 

This may be supported by citations to the literature and illustrations of problem solving 

strategies (e.g. Polya, 1957; Schoenfeld, 1985; Mason, Burton & Stacey, 2010). Moreover, 

any definition should make explicit what the structural difference is between computational 

exercises commonly found in curriculum materials such as textbooks with the typical 

characteristics of non-standard problems. Also, an emphasis of the importance of encouraging 

teachers to promote multiple solutions should be presented along with samples of suitable 

problems that allow for this facilitation.  

 

 

Secondly, if mathematical problem posing is to be woven smoothly into the fabric of CfE then 

this may require the enculturation of practitioners. Initially, the conceptualisation of problem 

formulation, including the connection to problem solving, could be disseminated to all 

schools by highlighting the endorsement of Kilpatrick (1987) and bolstered with the assurance 

of future professional development activities. Thereafter, this may be supported by citations to 

the literature and listing examples of mathematical problem posing activities and theoretical 

frameworks that illustrate seminal research contributions (e.g. Freudenthal, 1973; Silver et al., 

1996; Stoyanova & Ellerton, 1996; Cai, 1998; Cai & Hwang, 2002; Brown & Walter, 2005; 

Ellerton, 2013). The interaction between problem solving and problem posing should be made 

explicit. Likewise, it is essential that mathematical problem posing is perceived by teachers as 

a mechanism to nurture creativity, independence and originality. 

 

 

Thirdly, while the above two recommendations are designed to raise the profile and increase 

national awareness of both constructs, they are of little use as leverage tools without a change 
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to current assessment procedures. I would argue that our national examinations and internal 

assessments do not test individual mathematical problem solving and problem posing 

abilities. It is therefore proposed that for SCQF level 6 and 7 (i.e. Higher Mathematics and 

Advanced Higher Mathematics), the existing internally assessed component should be 

revised. Currently, this component consists of three unit assessments within which a candidate 

has to achieve a minimum competency standard, the success of which has no connection with 

the final overall grade. Whilst accepting the merit of such tasks as a practical method of 

gathering evidence and of ongoing progress, in practice it is arguable if whether such a model 

has the ability to strengthen or enrich a candidates understanding and appreciation of 

mathematics which is any different to that already offered by traditional external examination.  

 

 

An alternative approach for how we elicit and interpret evidence of mathematical learning is 

required. Time-restricted objective tests that demand recall of previously learned facts and 

rehearsed procedures is out of alignment with the principles of a social constructivist 

conceptual framework (Goos, 2014). In fact, such tests only serve to perpetuate the 

institutionalised societal notion that higher order thinking and creativity are fruitless, or in 

some ways unnecessary tenets of mathematics.  

 

 

I have argued throughout this thesis that the operationalisation of mathematical problem 

solving and problem posing is restricted without the accompaniment of a corresponding 

assessment system that is consistent with their goals. It is necessary to give recognition to all 

valued learning experiences as this communicates most clearly to learners which proficiencies 

are important. My preferred model of assessment would be a formative portfolio evaluation 

designed to contain a diverse assortment of rich productions that can demonstrate factors such 

as critical thinking, active learning, achievement, creativity, engagement and mathematical 

literacy. Suitable exemplars include a mathematical problem solving and problem posing 

journal to formally encourage pupils to reflect on their personal development and on their 

critique of the work of their peers. This may refer to heuristics, multiple solutions, unsolvable 

problems, investigations, conjectures, arguments, problems with more than one answer, 

interdisciplinary collaborations, creation of interesting problems, reformulation of previous 

problems, observations, discussions, etc. Portfolio work should infuse the entire curriculum. It 

could be internally assessed and externally moderated by the SQA. In terms of feedback, 

teachers should provide written comments on pupils work as the sole vehicle of offering 
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advice and setting targets (Hodgen & Wiliam, 2006). Naturally, to reflect the significance of 

this recommendation, it is essential to attach an appropriate weighting. To begin with, I would 

suggest 20%, therefore generating a revised external assessment element weighting of 80%. 

For example, assuming no alteration to paper 1 and paper 2 for Higher (130 marks), the 

portfolio would be scored out of 32½. In regulating this result, intersubjectivity is necessary 

for successful negotiation of teacher consistency.  

 

 

Finally, for mathematical problem posing to play a prominent role in primary and secondary 

classrooms, teachers must have straightforward access to relevant resources. In particular, 

mathematics curriculum materials should feature a wide representation of problem posing 

activities (Cai et al., 2016). 

 

 

Professional learning 

Beliefs are a fundamental construct in teachers’ professional development, particularly during 

educational reform (Roesken, 2011). The success of recent national initiatives such as those 

orchestrated by the University of Dundee (Hudson, Henderson & Hudson, 2012a, 2015) has 

helped to develop mathematical thinking in Scottish primary classrooms, whilst challenging 

the existence of adverse beliefs. Based on my findings, that negative mathematical beliefs 

impregnate both sectors, a similar enterprise would stimulate mathematical thinking in 

secondary classrooms. Leatham (2006) advocates that:  

 
 Teacher educators should provide teachers with opportunities to explore their beliefs about 
 mathematics, teaching and learning. Teacher education strategies such as critiquing tradition, 

 demonstrating by case and example, and encouraging rigorous discussion take on new 

 meaning when beliefs are explicitly examined. In the process, teachers acquire terms and 

 expressions requisite for ongoing, meaningful reflection on their beliefs and practice (p. 100). 

 

The effective delivery of mathematical problem solving and problem posing is multifaceted 

and cannot be mastered instantly. It demands interrelated abilities such as an awareness of the 

structure of problems, heuristics, metacognition, robust pedagogical content knowledge and 

general didactical skills. Equally, adoption of any instructional strategy may only realistically 

surface if practitioners possess a theoretical understanding of the principles that underpin 

those approaches (e.g. Beswick, 2012; Singer, Ellerton & Cai, 2013).   
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It is therefore proposed that, to influence teachers’ beliefs and to prepare individuals from 

both sectors for delivering mathematical problem solving and problem posing, a Masters level 

module be designed to advance this critical objective. Prendergast & Roche (2017, p. 214) 

argue “the provision of high-quality CPD is essential so that teachers are supported in keeping 

abreast of the on-going changes to their profession”. Perhaps, infused within the theoretical 

content could be a practical way of instructing mathematics via problem solving, exploring 

issues of national and international mathematics education and how to encourage learners to 

pose mathematical problems. Together, it is expected that this module would create a 

professional opportunity to invigorate thinking towards a change of mathematical beliefs by 

energising teachers to develop and evaluate their own practice.   

 

 

Initial Teacher Education  

It is recommended on entry, that an investigation is undertaken to determine the domain 

specific beliefs of the nature of mathematics and how the subject could and should be 

delivered, for each prospective primary and secondary mathematics practitioner. This would 

contribute to analytically identifying at an early stage, variations in individual beliefs, which 

may allow respective institutions ample opportunity to engage in ways to attempt to reverse 

any imbalance by at least instigating explanation and critical thinking. However, it is arguable 

if this can be successful within the duration of any PGDE programme and may well require 

further strengthening during later years. Thompson (1992, p. 135) emphasises that the “task of 

modifying long held, deeply rooted conceptions of mathematics and its teaching in the short 

period of a course in methods teaching remains a major problem in mathematics teacher 

education”.     

 

 

An underlying requirement of any mathematics education course is to allow future teachers to 

engage critically with the literature on problem solving. This will foster debate and lead to an 

evaluation of theory, research and current curriculum policies. Based on the assumption that 

this is already occurring in Scotland, it is suggested that this provision be extended to embed 

the literature on mathematical problem posing which features the interplay with problem 

solving (e.g. Polya, 1954; Kilpatrick, 1987; Brown & Walter, 2005; Singer, Ellerton & Cai, 

2013; Cai et al., 2015). Moreover, it is proposed that the treatment of mathematical problem 

posing is afforded equivalent status to that of problem solving to ensure that both components 

are viewed as subsets of each other. 
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9.5 Further research 

There is a universal requirement to expand our understanding of teachers’ mathematical 

beliefs and their relationship to classroom practice. With increased knowledge of teachers’ 

beliefs, we can enrich the quality of our educational system. It is recommended that further 

research be undertaken in the following areas: 

 

1. Further cross-sector research could be carried out to collect individual observational data 

(e.g. longitudinal studies or case studies) in order to explore the relationship between 

Scottish teachers’ espoused beliefs and enacted beliefs. Thompson (1992, p. 135) argues 

that “investigation of teachers’ mathematical beliefs should examine teachers’ verbal data 

along with observational data of their instructional practice or mathematical behavior; it 

will not suffice to rely solely on verbal data”. One particular focus of enquiry is to 

investigate the constructivist praxis of teaching mathematics via problem solving 

(Schroeder & Lester, 1989). 

 

2. Teachers’ beliefs have a critical role in the integration of mathematical investigations. 

More research could be undertaken at all stages of Scottish education to determine the 

nature of mathematical problem posing as a source of mathematical inquiry.    

 

3. Further work is needed to examine the mathematics teaching self-efficacy beliefs of 

Scottish primary teachers, in order to fully understand the underlying barriers to 

orchestrating mathematical problem solving.  

 

4. As a common resource, textbooks present learning trajectories that heavily influence how 

Scottish teachers interpret and implement mathematical curricula understanding (Scottish 

Government, 2014, 2016). CfE caters for all stages from ages 3-18. It would be 

worthwhile to investigate what kind of knowledge is prioritised at the different stages and 

to what extent mathematical problem solving strategies and mathematical problem posing 

tasks are embodied within commercially produced classroom textbooks. 
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5. More research could be undertaken with Scottish teachers to establish the composition of 

their Masters qualifications in the field of education. My research has shown that these 

qualifications have a significant impact on teachers’ beliefs. The influence of specific 

courses and research led critical enquiry could be investigated. This could also be 

extended to compare degrees offered in different institutions. 

 

 

6. The Scottish Government (2008, p. 11) contend that CfE encapsulates “the totality of 

experiences which are planned for children and young people through their education, 

wherever they are being educated”. However, with autonomy extended to each LEA, it is 

questionable whether uniformity can subsist between pedagogical approaches to learning, 

teaching and assessment. Teachers’ beliefs may already be contextualised by the 

conceptualisation and operationalisation of mathematical problem solving adopted by 

their corresponding LEA. A future study should assess the validity of this claim.    

 

 

7. Internationalisation and globalisation has projected awareness that other countries have 

diverse mathematics curricula which may yield fruitful rewards on inspection. Such 

research into teachers’ beliefs underlines the contextual nature as a factor that may 

influence the enactment of teachers’ beliefs (e.g. Andrews, 2007; Cai & Wang, 2010). A 

natural progression of this work is to conduct cross-cultural comparative studies of 

Scottish teachers’ mathematical beliefs.  

 

 

9.6 Autobiographical reflection 

Undertaking this thesis has been a rich, engaging but lonely experience. I have developed a 

firm understanding of the interconnected nature of educational research and of the cyclical, 

sometimes frustrating, multilayered landscape of the investigation process. For example, I 

have discovered that it is not always possible to establish methodological control. 

Retrospectively, I have considered how different my research would have been if I had 

selected an alternative paradigm to describe my research topic. Unquestionably, this would 

have modified my research design and produced different outcomes in fieldwork, findings 

and conclusions.  

 

 



297 

 

 
 

During the research I came to recognise the value of practitioner research. In particular, the 

empowerment of possessing increased levels of criticality and scholarship with regards my 

own professional practice together with enhanced self-confidence in debating hierarchical 

policy issues. Being able to manage the acquisition of current knowledge as it emerges has 

stimulated the growth of my pedagogical expertise. Conversely, this has highlighted my 

previous acceptance of a transmissive structure underpinned by the filtering down of 

fragmented elements of undisclosed information.  

 

 

What surprised me about mixed methods research was the diversity of knowledge required to 

analyse both quantitative and qualitative components. As a result of this study, I have learned 

to appreciate the synergy that can be gained by the additional work of employing both 

quantitative and qualitative techniques. This experience has motivated me to develop a broad 

set of methodological skills. Likewise, it has fuelled an increase in the rigour of my own 

conceptual thinking by widening awareness of further areas of challenge and potential 

research questions in mathematics education and in education more generally. 

 

 

Viewing mathematical problem solving and problem posing from a wider perspective has 

validated my commitment towards teaching in a way that would have been previously 

impossible. I have been propelled through a continuum of conceptual transformations that 

have enlightened my classroom practice. Consequently, I believe that mathematics should not 

be characterised as a fixed body of knowledge requiring memorisation, mastery of algorithms 

and available only to a selected few. In contrast, it is a dynamic learner-centred activity built 

on a premise that success is grounded on critical and independent thinking interspersed with 

varying levels of creativity, originality and collaboration that is accessible to all.    

 

 

During the research, I uncovered the acute nature of teachers’ beliefs which are fundamental 

to educational reform and classroom practice. Initially, I considered teachers’ beliefs to be 

compartmentalised within a study of mathematical problem solving and problem posing. 

However, with further reading I eventually recognised that teachers’ beliefs are an important 

theme in their own right. Furthermore, as an unexpected derivative of rummaging through the 

literature, I expanded my abstract understanding of Vygotskian ideas on enriching 

mathematical thinking. In particular, theoretical underpinnings connected to how learners 
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develop higher mental functions and reasoning through societal and collaborative activities. 

Juxtaposed with my findings of teachers’ beliefs, is the tacit recognition that the success of 

any whole class mathematical activity is entirely dependent on the individual in charge. 

Almost certainly, practitioners choose to strengthen pupils’ mathematical thinking or, 

otherwise, hinder and obstruct opportunities for its growth. Within my own professional 

setting, I have enhanced my sensitivity towards advancing young people’s mathematical 

thinking by attending more to their strategies. By transferring further attention to producing 

sophisticated interpretations of their existing understandings, I have been able to respond 

more effectively.  

 

 

The challenges such as a continuous shift in academic writing presented by part-time doctoral 

study have led me to assert that I would not easily advocate this approach to practising 

teachers. Moreover, factors impinging heavily on personal time and space, a perpetual need to 

reappraise priorities and review accepted patterns of work and home life, require careful 

consideration.  

 

 

Nevertheless, my major transformation is in the positionality of my epistemological beliefs 

and ontological world views about learning and teaching. My current thinking was provoked 

during the phase two interviews, when I began intensely reflecting on my own accumulated 

experience and previously held paradigms. Comparing the beliefs of other practitioners 

helped me appreciate the multiple barriers that have to be overcome to allow the 

implementation of theoretical perspectives in Scottish classrooms.   
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Instrument(s) Focus of Inquiry Participants Reliability Validation Study 

      
Action Research Teachers’ beliefs about 

teacher identity 
50 Canadian practising elementary 
teachers 

Credibility by 
description of 
length of study 

Researcher 
immersed in 
research setting 

Goodnough (2010) 

      
Blogging & Social 
Networking  

Teachers’ beliefs about 
reform-based science practices 

15 American practising secondary 
science teachers 

Inter-rater Online inspection Luehmann & Tinelli (2008) 

      
Case Study 
 
 

Inconsistency between 
teachers’ mathematical beliefs 
and classroom practice 

6 American practising elementary 
teachers (Main focus on single 
teacher) 

Peer review Triangulation  Raymond (1997)  

      
Case Study 
(Multiple) 
 

Teachers beliefs structures and 
their influences on practice  

5 American practicing secondary 
mathematics teachers 

Dependability audit Triangulation 
through multiple 
data sources 

Cross (2009) 

      
Classroom  
Artefact  

Teachers’ beliefs about 
documentable practices 

57 American pre-school teachers  Triangulation McMullen et al. (2006)  

      
Concept-
Mapping, Journal 
Writing & 
Interview 

Teachers’ beliefs about 
effective teaching. 

51 Turkish student mathematics & 
physics teachers 

Member checking Triangulation 
through multiple 
data sources 

Ozgun-Koca & Sen (2006) 

      
Drawing & 
Interview 

Teachers’ beliefs about field-
based teaching experiences 

16 USA student secondary science 
teachers 

Closed questions Triangulation Hancock & Gallard (2004) 

      
Essay & Interview Teachers’ beliefs about school 

practices 
48 Turkish student social studies 
teachers 

 Open-ended 
questions 

Güven (2004) 

      

Ethnography 
 

Teachers’ beliefs about 
mathematics teaching and 
learning 

7 Norwegian practising 
mathematics teachers 

 Focus group Kleve (2009) 
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Instrument(s) Focus of Inquiry Participants Reliability Validation Study 

      
Grounded Theory 
 

Teachers’ beliefs about source 
and stability of teaching 
knowledge 

110 American student & practising 
teachers 

Audit trial Coded for 
emerging concepts 

Buehl & Fives (2009) 

      
Interview 
 

Teachers’ treatment and 
beliefs of mathematical proof 

10 Italian practising secondary 
mathematics teachers 

 Coded for 
emerging concepts 

Furinghetti & Morselli (2011) 

      
Life History Impact of life experiences on  

teachers’ science beliefs and 
practices 

2 American practising elementary 
teachers 

  Smith (2005) 

      
Longitudinal 
 
 

Teachers’ beliefs about the 
role of teachers 

80 Estonian student teachers Member checking SPSS analysis Löfstöm & Poom-Valickis (2013) 

      
Narrative 
Research 
 

Teacher beliefs about teaching 
pupils identified as having a 
disability 

1 American practising secondary 
English teacher 

 Inductive analytic 
approach 

Del Rosario (2006) 

      
Observation, 
Interview & 
Video Scenario 

Teachers’ beliefs about 
teaching and learning of 
mathematics  

3 Scottish practising secondary 
mathematics teachers 

 Triangulation Forrester (2008) 

      
Phenomenology 
 
 
 

Change in teachers’ beliefs 
after first year of teaching 
 

12 Turkish practising middle grade 
mathematics teachers 

Clear outline and 
defining of steps 
involved 

Purposeful drawn 
sample; 
Themes selected 
as they emerged 

Haser & Star (2009) 

      
Portfolio & 
Interview 

Teachers’ beliefs about 
environmental education and 
its relationship with classroom 
practices 

6 Pakistani practising secondary 
science teachers 

Document analysis Peer review & 
Triangulation 
 

Khan & Begum (2012) 
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Instrument(s) Focus of Inquiry Participants Reliability Validation Study 

      
Portraiture 
 

Relationship between 
teachers’ mathematics 
identities and classroom 
practices 

3 Amercian primary teachers  Cross-checking 
Member checking 

Triangulation Gujarati (2013) 

      
Questionnaire 
 
 

Teachers’ beliefs about 
mathematical problems and 
the nature of problem solving 

244 Turkish student primary 
mathematics teachers 

Cronbach’s alpha Peer review, 
2 Pilot studies & 
SPSS analysis 

Kayan Fadlelmula & Cakiroglu 
(2011) 
 

      
Questionnaire & 
Interview 
 

Teachers’ beliefs about the 
role of problem solving in 
learning mathematics 

162 Australian practising primary 
teachers 

Previous study SPSS analysis 
Triangulation 

Anderson, Sullivan & White 
(2004) 

      
Questionnaire & 
Case Study 
 
 

Teachers’ beliefs about 
learning and teaching 
mathematics 

465 Greek practising mathematics 
teachers 

Cronbach’s alpha SPSS analysis 
Triangulation 

Barkatas & Malone (2005) 

      
Questionnaire, 
Interview & 
Observation 
 

Teachers’ mathematical beliefs 
and their connection to 
practice 

25 Australian practising secondary 
mathematics teachers 

Cronbach’s alpha Pilot study 
SPSS analysis 
Triangulation 

Beswick (2005) 

      
Scenario, 
Interview & 
Observation 

Teachers’ belief structure and 
teacher growth 
 
 

2 Canadian practising mathematics 
teachers 

 Triangulation Chapman (2002) 

      
Tests & 
Questionnaire 
 

Teachers’ problem posing and 
problem solving beliefs 

128 Chinese student and practising 
elementary teachers 

Previous study SPSS analysis 
Multiple 
researchers 

Chen et al. (2011) 
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Instrument(s) Focus of Inquiry Participants Reliability Validation Study 

      
Videotaping & 
Interview 

Teachers’ beliefs about the use 
of metacognition and 
heuristics related to problem 
solving 

2 Flemish practising sixth grade 
teachers 

Inter-rater  
Member checkijng 

Content analysis 
 

Depaepe, De Corte & 
Verschaffel (2010) 

      
Vignette 
 
 

Teachers’ beliefs about key 
issues in teaching of 
mathematics  
 

30 American practising pre-school 
teachers 

 SPSS analysis Lee & Ginsburg (2007) 
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Study Title  Source Country Sector Participants Research Method Major Finding(s) 

        
Abu-Elwan 
(2002) 

Effectiveness of problem  
posing strategies on 
prospective mathematics 
teachers’ performance 

Journal of Science 
and Mathematics 
Education in S.E. 
Asia 

Oman  Secondary 50 ITE 
mathematics 
students 

Experimental 
design  

Significant improvement in problem 
solving and problem posing performance 
for the experimental group compared with 
the control group. 

        
        
Akay & Boz  
(2009a) 

The effect of problem 
posing oriented calculus-II 
instruction on academic 
success 

Journal of the 
Korea Society of 
Mathematical 
Education Series D: 
Research in 
Mathematical 
Education 

Turkey Primary 79 ITE students Experimental 
design 

Significant improvement in mathematics 
performance for the experimental group 
compared with the control group. 

        
        
Akay & Boz 
(2010)  

The effect of problem 
posing orientated analyses-
II course on attitudes 
towards mathematics and 
mathematics self-efficacy 
of elementary prospective 
mathematics teachers  

Australian Journal 
of Teacher 
Education 

Turkey Primary 82 ITE students Experimental 
design 

The attitude toward mathematics was 
significantly more positive for the 
experimental group than for the control 
group. Furthermore, mathematics self-
efficacy beliefs were significantly stronger 
for the experimental group than for the 
control group. 

        
        
Chen, 
Dooren & 
Vershaffel 
(2015) 

Enhancing the development 
of Chinese fifth-graders’ 
problem-posing and 
problem-solving abilities, 
beliefs, and attitudes: A 
design experiment 

Book chapter China Primary 69 pupils (5th 
grade) 

Experimental 
design 

The originality of the problems posed by 
the experimental group was significantly 
better than for the control group. Further 
evidence included significantly better 
problem solving performances and more 
positive beliefs and attitudes towards 
problem posing and problem solving. 
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Study  Title Source  Country Sector Participants Research Method Major Finding(s) 

        
Demir 
(2005) 

The effect of instruction 
with problem posing on 
tenth grade students’ 
probability achievement 
and attitudes towards 
probability 
 

Unpublished 
Masters’ thesis 

Turkey Secondary 82 pupils (10th 
grade) 

Experimental 
design 

Significant improvement in probability 
attainment for the experimental group 
compared with the control group. Further 
evidence noted improved attitude 
towards probability and mathematics. 

        
        
Dickerson 
(1999) 

The impact of problem 
posing intervention on the 
mathematical problem 
solving achievement of 
seventh graders  

Unpublished 
doctoral thesis 

USA Secondary 200 pupils (7th 
grade)  

Experimental 
design 

Significant improvement in problem 
solving achivement for the experiemtal 
group compared with the control group. 

        
        
English 
(1997b) 

The development of fifth-
grade children’s problem-
posing abilities 

Educational Studies 
in Education 

Australia Primary 27 pupils (5th 
grade)  

Experimental 
design 

In comparison to the control group, the 
experimental group appeared to show 
substantial development of (a) recognition 
and utilisation of problem structures (b) 
perceptions of, and preferences for 
different problem types (c) diverse 
mathematical thinking. 

        
        
English 
(1998)  

Children’s problem posing 
within formal and informal 
contexts 

Journal for 
Research in 
Mathemaitcs 
Education 

Australia Primary 54 pupils (3rd 
grade)  

Experimental 
design 

The experimental group demonstrated a 
significant improvement in the ability to 
generate mathematical problems 
compared with the control group. 
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Study Title Source  Country Sector Participants Research Method Major Finding(s) 

        
Fetterly 
(2010) 

An exploratory study of the 
use of a problem-posing 
approach on pre-service 
elementary education 
teachers' mathematical 
creativity, beliefs, and 
anxiety 

Unpublished 
Doctoral thesis 

USA Primary  32 ITE students Experimental 
design 

Problem posing can foster and sustain 
mathematical creativity. Problem posing 
had a significant positive impact on 
mathematical beliefs and reducing 
mathematical anxiety for the experimental 
group compared with the control group. 
 

        
        
Guvercin, 
Cilavaroglu 
& Savas 
(2014) 

The effect of problem 
posing instruction on 9th 
grade students’ 
mathematical academic 
achievement and retention 
 

The Anthropologist Kazakhstan Secondary 60 pupils (9th 
grade) 

Experimental 
design 

Significant increase in mathematical 
academic achievement of the 
experimental group compared with the 
control group. Further evidence included 
significant visual effect on retention and a 
positive attitude towards mathematics. 

        
        
Guvercin & 
Verbovskiy 
(2014) 

The effect of problem 
posing tasks used in 
mathematics instruction to 
mathematics academic 
achievement and attitudes 
towards mathematics 

International 
Online Journal of 
Primary Education 

Kazakhstan Secondary  54 pupils (8th 
grade) 

Experimental 
design 

Significant increase in mathematical 
academic achievement of the 
experimental group compared with the 
control group. Further evidence included 
positive attitude towards mathematics 
and increased levels of motivation and 
cognitive thinking. 

        
        
Haghverdi & 
Gholami 
(2015) 

A study of the effect of 
suing “what if not” strategy 
in posing geometry 
problems 

Conference Paper Iran  Secondary 29 pupils 
(unspecified 
stage) 

Experimental 
design 

Significant increase in the quantity of 
relevant problems posed by the 
experimental group compared with the 
control group. Futhermore, problem 
posing strengthened the connections 
between geometric concepts.  
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Study Title Source Country Sector Participants Research Method Major Finding(s) 

        
Kesan, Kaya 
& Guvercin 
(2010) 

The effect of problem 
posing approach to the 
gifted student’s 
mathematical abilities 

International 
Online Journal of 
Educational 
Sciences  

Kazakhstan Secondary 40 pupils (8th 
grade) 

Experimental 
design 

Enhanced motivation and improved 
flexible thinking of the experimental group 
compared with the control group. 
Futhermore, greater classroom interaction 
resulting in increased mathematical 
performance. 

        
        
Priest (2009) A problem-posing 

intervention in the 
development of problem-
solving competence of 
underachieving middle-year 
students 
 

Unpublished 
Doctoral thesis 

Australia Primary 
 

31 (Year 7) Experimental 
design 

The intervention facilitated the re-
engagement of pupils from the 
experimental group compared with the 
control group. Further evidence included 
improved problem solving competence 
and the facilitatation of developmental 
learning. 

        
        
Toluk-Ucar 
(2009) 

Developing pre-service 
teachers understanding of 
fractions through problem 
posing 

Teaching and 
Teaching Education 

Turkey  Primary  95 ITE students Experimental 
design 

The experimental group demonstrated a 
positive impact on the understanding of 
fractions and on views about what it 
means to know mathematics compared 
with the control group. 

        
        
Walsh 
(2016) 

Pre-service primary 
teachers’ understandings of 
mathematical problem 
posing and problem solving: 
Exploring the impact of a 
study intervention 

Unpublished 
Masters’ thesis 

Ireland Primary 415 ITE students Experimental 
design 

The intervention greatly improved the 
conception of what constituted a 
mathematical problem for the 
experimental group compared with the 
control group. 
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Study Title Source Country Sector Participants Research Method Major Finding(s) 

        
Xia, Lu & 
Wang (2008) 

Research on mathematics 
instruction experiment 
based problem posing 

Journal of 
Mathematics 
Education  

China Secondary 540 pupils (Junior 
high &  9th grade) 

Experimental 
design  

Significant effect on interest in learning 
mathematics, posing problems and ability 
to learn mathematics was discovered for 
the experimental group compared with 
the control group. 
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PHASE TWO QUESTIONNAIRE INSTRUMENT 
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TEACHERS’ MATHEMATICAL BELIEFS QUESTIONNAIRE 

Please read carefully before completing 

My name is Paul Argyle McDonald and I am a fellow teacher and part-time PhD student within the College of 
Social Sciences, School of Education, University of Glasgow. 
 
I am very interested in the mathematical beliefs of primary and secondary mathematics practitioners (including 
promoted staff). Your participation is most appreciated and will help to enrich the knowledge of what is 
considered a critical area of educational research within Curriculum for Excellence. Additional information 
regarding this research can be found in the accompanying participant phase one information sheet. 
 
This questionnaire has been designed to take around 15-20 minutes to complete and is in three parts as 
follows: 
 
Part A Demographic information 
 
Part B Teachers' mathematical beliefs 
 
Part C Interview option  

 

Part A Demographic information 
 
 
1. Please state your gender 
 

o Male 
o Female 

 
2. What sector do you work in? 
 

o Primary 
o Secondary 
 

3. How old are you? 

o Under 25 
o 25 to 34 
o 35 to 44 
o 45 to 54 
o 55 or over 

 
4. What is your mode of working? 

o Full-time 
o Part-time 

 

5. Please state your employment type 

o Permanent 
o Temporary 
o Teacher Induction Scheme 
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6. Did you complete your teacher training in Scotland? 

o Yes 
o No 

 
7. What grade are you? 

o Teacher 
o Principal Teacher 
o Deputy Headteacher 
o Headteacher 

 
8. Which LEA are you employed with? 

o Inverclyde 
o Renfrewshire 
o West Dunbartonshire 
o East Dunbartonshire 
o Glasgow 
o East Renfrewshire 
o North Lanarkshire 
o Falkirk 
o West Lothian 
o Edinburgh 
o Midlothian 
o East Lothian 
o Clackmannanshire 
o Fife 
o Dundee 
o Angus 

o Aberdeenshire 
o Aberdeen 
o Moray 
o Highland 
o Na h-Eileanan Siar 
o Argyll and Bute 
o Perth and Kinross 
o Stirling 
o North Ayrshire 
o East Ayrshire 
o South Ayrshire 
o Dumfries and Galloway 
o South Lanarkshire 
o Scottish Borders 
o Orkney Islands 
o Shetland Islands 

 
9. To the nearest year, how long have you been teaching?  
 

o 5 and under 
o 6 to 10 
o 11 to 15 
o 16 to 20 
o Over 20 

 
10. Please state your highest level of qualification in the field of education 

o BEd 
o PGCE/PGDE 
o Masters in Education 
o Doctorate in Education 
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Part B Teachers’ mathematical beliefs 

 
Item  Statement  SA A U D SD 

1. Ignoring the mathematical ideas generated by the students can 
seriously limit their learning. 
 

1 2 3 4 5 

2. Preparing learners to think critically about mathematics is more 
important than success at national examinations. 
 

1 2 3 4 5 

3. After solving a problem, students should be encouraged to search 
for alternative solutions. 
 

1 2 3 4 5 

4. Teachers should encourage their students to strive for elegant 
solutions when they solve problems. 
 

1 2 3 4 5 

5. Justifying the mathematical statements that a person makes is an 
important part of mathematics. 
 

1 2 3 4 5 

6. A person who does not understand why an answer to a 
mathematics problem is correct, has not really solved the problem. 
 

1 2 3 4 5 

7. Mathematical knowledge is the result of the learner interpretation 
and organising the information gained from experiences. 
 

1 2 3 4 5 

8. The priority in teaching mathematics is to ensure students develop 
confidence in problem posing and problem solving.   
 

1 2 3 4 5 

9. Mathematics learning is enhanced when students are encouraged 
to take part in challenging activities within a supportive 
environment. 
  

1 2 3 4 5 

10. Teachers should be experienced problem solvers and should have 
a firm grasp of what successful problem solving involves. 
 

1 2 3 4 5 

11. Teachers should provide instructional activities which result in 
problematical situations for learners. 
 

1 2 3 4 5 

12. Teaching mathematics through problem solving is the best method 
to help students learn. 
 

1 2 3 4 5 

13. I provide opportunities for the development of students’ 
mathematical creativity. 
 

1 2 3 4 5 

14. Teachers always need to hear students' mathematical 
explanations before correcting their errors. 
 

1 2 3 4 5 

15. Mathematics is a dynamic continually expanding field of human 
creation and invention. 
          

1 2 3 4 5 

16. Problem posing is beneficial for developing students’ 
mathematical skills and investigating their understanding of 
mathematics. 

1 2 3 4 5 

 
17. 

 
It is important for students to create and solve their own problems 
 

 
1 

 
2 

 
3 

 
4 

 
5 
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Item Statement SA A U D SD 

18. Mathematical problems can only have one final correct answer. 
 

1 2 3 4 5 

19. The most effective way to learn mathematics is by listening 
carefully to the teacher explaining a mathematics lesson. 
 

1 2 3 4 5 

20. Mathematics is an accumulation of facts, rules and skills. 
 

1 2 3 4 5 

21. The primary purpose of teaching problem solving is to equip 
students with a collection of skills and processes. 
 

1 2 3 4 5 

22. Mathematics is computation. 
 

1 2 3 4 5 

23. Good mathematics teachers are the ones who show students the 
exact way to answer the mathematics questions they will be 
tested on. 
 

1 2 3 4 5 

24. You explain in detail what the students have to do to solve 
problems. 
 

1 2 3 4 5 

25. Students learn best by doing lots of exercises and practice. 
 

1 2 3 4 5 

26. A mathematical problem is the description of a situation involving 
stated quantities, followed by a question about some relationship 
among the quantities. 
 

1 2 3 4 5 

27. The memorisation of mathematics facts is important in 
mathematics learning. 
 

1 2 3 4 5 

28. Teachers or the textbook - not the students - are the authority for 
what is right or wrong. 
 

1 2 3 4 5 

29. Mathematics is a collection of procedures and rules that specify 
how to solve problems. 
 

1 2 3 4 5 

30. Problem solving should be a separate distinctive part of the 
curriculum. 
 

1 2 3 4 5 

31. Mathematics is a static but unified body of knowledge. 1 
 

2 
 
 

3 
 
 

4 
 
 

5 

32. 
 

When there is more than one way of solving a problem, it is 
generally safer to practice just one of the approaches. 
 

1 2 3 4 5 

33. To be good at mathematics you must be able to solve problems 
quickly. 
 

1 2 3 4 5 

34. Any problem can be solved if you know the right steps to follow. 
 

1 2 3 4 5 

35. An effective way to teach mathematics is to provide students with 
interesting problems to investigate in small groups. 
 

1 2 3 4 5 

36. Students are rational decision makers capable of determining for 
themselves what is right or wrong. 
 

1 2 3 4 5 
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Item 
 

Statement SA A U D SD 

37. All students are able to be creative and do original work in 
mathematics. 
 

1 2 3 4 5 

38. It is critical for students to view themselves as mathematical 
problem posers rather than to wait for problems from external 
sources such as a textbook or teacher. 
 

1 2 3 4 5 

39. Students should share their problem solving thinking and 
approaches with other students. 
 

1 2 3 4 5 
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Part C Interview option 
 
Phase two of my research study is to conduct a sample of individual interviews. 
 
It is expected that each interview will last between 30 and 45 minutes. In any publication arising from this 
research, participants will be referred to by a pseudonym. 
 
Please note that you can withdraw from the interview stage at any point and without providing a reason. 
 
Would you be willing to take part in a follow up interview to this questionnaire? 
 

o Yes 
o No 

 
If yes, please provide a contact email:  
 
 
 

Comments are welcome here regarding any aspect of this questionnaire 

 

 

 

 

 

 

 

 

 

 

Many sincere thanks for taking the time to complete my questionnaire! 
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Interview Schedule 

 

Part A Introduction and background information  

 Formal introduction, rapport and outline of interview plan 

 Discussion of phase two information sheet 

 Completion of ethics consent form 

 Determination of age, length of teaching experience, range of qualifications, ITT & CPD.  

 

Part B Standard questions 

 What is the nature of mathematics? 

 Describe your personal experiences of school mathematics as a pupil  

 What is the definition of a mathematical problem? 

 What are important characteristics of a good problem? 

 How do you rate your own ability to solve mathematical problems? 

 Do you incorporate mathematical problem solving into your practice? 

 How do you assess pupils’ problem solving ability? 

 What do you understand by mathematical problem posing?    

 Do you ask pupils to pose mathematical problems? 

 Are there any constraints imposed upon your professional practice that affect any aspect 

of the learning and teaching of mathematics?   

 

Part C  Questionnaire responses 

Participant will be requested to elaborate on a small sample of individual responses (a copy of 

each participants’ responses will be made available). The objective is to provide a rational to 

help illuminate the choice of response.   

 

Part D  Exploration of emergent themes and ideas 

If relevant, appropriate questions will be posed and responses probed.  
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RESEARCH REQUEST TO HEADTEACHER OF  
INDIVIDUAL EDUCATIONAL ESTABLISHMENT 
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Subject:  CfE: Relationship between teachers’ mathematical beliefs and their 
   engagement of problem solving and problem posing (Provisional  
   title)   

   
Sent:   Date 
 
To:    Email of Headteacher/School Establishment  
 
Attachments  Phase One Information Sheet 
 
Dear Headteacher, 
 
As a fellow teacher, I am hoping to enlist your support with my professional learning (PhD 
research, College of Social Sciences, School of Education, University of Glasgow) of which I 
obtained written approval to contact you from [Head of Service and Name of LEA inserted 
here]. 
 
Teachers’ mathematical beliefs are widely considered to play a central role in their practice 
and have been long regarded as critical to the reform of mathematics education. My 
research will attempt to enrich the knowledge of this important facet of educational 
research within Scotland.  
 
Participation (see the link below) is voluntary and should take each of your [mathematics 
inserted here for secondary Headteachers] staff around 15-20 minutes to complete. All 
promoted members are encouraged to take part.  
 
Please note that I am fully committed to strict confidentiality and anonymity (i.e. no staff or 
individual school will be identified).  
 
Further participant information is attached (Phase One Information Sheet) for your interest. 
 
Your help will be very much appreciated. 
 
Warm regards, 
 
Paul Argyle McDonald  
 
https://www.surveymonkey.com/s/teacherq 
 
 
 

 

 

 

https://mail.student.gla.ac.uk/owa/redir.aspx?SURL=5616ypv10XIcF9NWcpQB6i9sjIbJqV4xBQAFGyBPPh0_fh-GJJvSCGgAdAB0AHAAcwA6AC8ALwB3AHcAdwAuAHMAdQByAHYAZQB5AG0AbwBuAGsAZQB5AC4AYwBvAG0ALwBzAC8AdABlAGEAYwBoAGUAcgBxAA..&URL=https%3a%2f%2fwww.surveymonkey.com%2fs%2fteacherq
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PHASE ONE INFORMATION SHEET (Questionnaire Participants) 
 
Study title (Provisional) 
CfE : Relationship between teachers’ mathematical beliefs and their engagement of problem solving and problem posing. 
 
Researcher details 
My name is Paul Argyle McDonald and I am a full-time teacher and part-time PhD student within the College of Social 
Sciences, School of Education, University of Glasgow. 
 
I would like to invite you to take part in the first phase of a research study for my own doctoral thesis.  
 
Purpose of the study 
Research indicates that teachers’ mathematical beliefs can have a significant impact on classroom practices. In Scotland, 
both primary and secondary mathematics practitioners have responsibility for delivering mathematics within Curriculum for 
Excellence. Understanding the nature of teachers’ mathematical beliefs may help to explain why different experiences exist.  
 
Research criteria 
I am keen to recruit primary and secondary teachers who have responsibility for delivering the subject of mathematics within 
Curriculum for Excellence to participate in my study. If you would like to receive a summary of the findings of this research, 
please email me at the address below. 
 
Voluntary participation 
Please note that participation is completely voluntary. Even after deciding to participate, you are still free to withdraw at any 
time and without giving a reason. This includes withdrawing any data previously supplied.  
 
Research involvement 
Your participation will involve completing one online questionnaire (web link). The time taken to fill the questionnaire will be 
approximately 15-20 minutes. An opportunity to take part in an individual interview at a later stage is optional and completely 
voluntary (Part C of questionnaire).  
 
Strict confidentiality 
All information obtained from you as a research participant during the course of the research will be carefully safeguarded, 
dealt with anonymously and will be destroyed upon completion and award of degree. 
 
Research results  
Your data will be collected and used to calculate a range of statistical results. The findings of these results will help to 
establish possible connections involving other groups of teachers. Any subsequent conclusions will be included in the thesis 
produced at the end of the research.  
 
Ethics review and further contact details 
This research study has been approved by the College of Social Sciences Research Ethics Committee. Ethics contact 
details - School of Ethics Forum, Dr Muir Houston: email - Muir.Houston@glasgow.ac.uk 
 
Research supervisors – Dr Catherine Fagan: email - Catherine.Fagan@glasgow.ac.uk  and Dr Fiona Patrick: email -  
Fiona.Patrick@glasgow.ac.uk 
  
If you have any concerns regarding the conduct of this research project, please contact the College of Social Sciences Ethics 
Officer by contacting Dr Muir Houston, College of Social Sciences Ethics Officer: email -   Muir.Houston@glasgow.ac.uk or 
Telephone 0141 330 4699. 
 
For any queries and summary of findings, please contact Paul Argyle McDonald: email - p.mcdonald.1@research.gla.ac.uk 
 
 
 

mailto:Muir.Houston@glasgow.ac.uk
mailto:Catherine.Fagan@glasgow.ac.uk
mailto:Fiona.Patrick@glasgow.ac.uk
mailto:Muir.Houston@glasgow.ac.uk
mailto:p.mcdonald.1@research.gla.ac.uk


371 

 

 

 

 

 
APPENDIX G 

 
PHASE TWO INFORMATION SHEET FOR INTERVIEW PARTICIPANTS 
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PHASE TWO INFORMATION SHEET (Interview Participants) 
 
Study title (Provisional) 
CfE : Relationship between teachers’ mathematical beliefs and their engagement of problem solving and problem posing. 
 
Researcher details 
My name is Paul Argyle McDonald and I am a practising full-time teacher and part-time PhD student within the College of 
Social Sciences, School of Education, University of Glasgow. 
 
I would like to invite you to take part in the second phase of a research study for my own doctoral thesis.  
 
Purpose of the study 
Research indicates that teachers’ mathematical beliefs can have a significant impact on classroom practices. In Scotland, 
both primary and secondary mathematics practitioners have responsibility for delivering mathematics within Curriculum for 
Excellence. Understanding the nature of teachers’ mathematical beliefs may help to explain why different experiences exist.  
 
Research criteria 
I am keen to recruit primary and secondary teachers who have responsibility for delivering the subject of mathematics within 
Curriculum for Excellence to participate in my study. If you would like to receive a summary of the findings of this research, 
please email me at the address below. 
 
Voluntary participation 
Please note that participation is completely voluntary. Even after deciding to participate, you are still free to withdraw at  any 
time and without giving a reason. This includes withdrawing any data previously supplied.  
 
Research involvement 
Your participation will involve taking part in a face to face interview with the researcher. The duration of the interview is  
expected to last between 30 and 45 minutes. A consent form is required to be completed by you prior to taking part.   
 
Strict confidentiality 
All information obtained from you as a research participant during the course of the research will be carefully safeguarded, 
dealt with anonymously and will be destroyed upon completion and award of degree. 
 
Research results  
Your data will be collected and used to calculate a range of statistical results. The findings of these results will help to 
establish possible connections involving other groups of teachers. Any subsequent conclusions will be included in the thesis 
produced at the end of the research.  
 
Ethics review and further contact details 
This research study has been approved by the College of Social Sciences Research Ethics Committee. Ethics contact 
details - School of Ethics Forum, Dr Muir Houston: email - Muir.Houston@glasgow.ac.uk 
 
Research supervisors – Dr Catherine Fagan: email - Catherine.Fagan@glasgow.ac.uk  and Dr Fiona Patrick: email -  
Fiona.Patrick@glasgow.ac.uk 
  
If you have any concerns regarding the conduct of this research project, please contact the College of Social Sciences Ethics 
Officer by contacting Dr Muir Houston, College of Social Sciences Ethics Officer: email -   Muir.Houston@glasgow.ac.uk or 
Telephone 0141 330 4699. 
 
For any queries and summary of findings, please contact Paul Argyle McDonald: email - p.mcdonald.1@research.gla.ac.uk 

 

 

mailto:Muir.Houston@glasgow.ac.uk
mailto:Catherine.Fagan@glasgow.ac.uk
mailto:Fiona.Patrick@glasgow.ac.uk
mailto:Muir.Houston@glasgow.ac.uk
mailto:p.mcdonald.1@research.gla.ac.uk
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PHASE TWO RESEARCH ETHICS INTERVIEW CONSENT FORM 

     

Study title (Provisional) 

CfE : Relationship between teachers’ mathematical beliefs and their engagement of problem solving 

and problem posing. 

 

Researcher details  

Paul Argyle McDonald, part-time PhD student within the College of Social Sciences, School of 

Education, University of Glasgow.   

 

  Please initial box 

1. I confirm that I have read and understand the information sheet for the above 

study and have had the opportunity to ask questions. 

 

   

2. I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving reason. 

 

   

3. I agree to take part in the above study. 

 

 

   

4. I agree to the interview being audio-recorded. 

 

 

   

5. I confirm to the use of anoymised quotes in publications. 

 

 

 

 

Please complete below:   
   

 
 

 

Full name of participant Date Participant signature 

 
Paul Argyle McDonald 
 

  

Full name of researcher Date Researcher signature 
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TABLE OF TOTAL VARIANCE EXPLAINED  
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Total Variance Explained (Extraction Method: Principal Component Analysis) 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 7.932 20.338 20.338 7.932 20.338 20.338 

2 4.457 11.429 31.768 4.457 11.429 31.768 

3 2.760 7.078 38.845 2.760 7.078 38.845 

4 1.379 3.536 42.381 1.379 3.536 42.381 

5 1.291 3.311 45.692 1.291 3.311 45.692 

6 1.157 2.967 48.658 1.157 2.967 48.658 

7 1.036 2.657 51.315 1.036 2.657 51.315 

8 1.016 2.606 53.921 1.016 2.606 53.921 

9 .971 2.490 56.411    

10 .905 2.321 58.732    

11 .876 2.246 60.977    

12 .821 2.106 63.083    

13 .805 2.064 65.147    

14 .790 2.025 67.172    

15 .774 1.986 69.158    

16 .729 1.870 71.028    

17 .681 1.745 72.773    

18 .661 1.696 74.469    

19 .640 1.640 76.109    

20 .616 1.578 77.687    

21 .614 1.574 79.261    

22 .597 1.531 80.792    

23 .571 1.465 82.257    

24 .556 1.425 83.682    

25 .536 1.374 85.056    

26 .517 1.327 86.383    

27 .511 1.311 87.694    

28 .484 1.241 88.935    

29 .472 1.209 90.144    

30 .459 1.177 91.321    

31 .447 1.147 92.468    

32 .417 1.069 93.537    

33 .399 1.024 94.562    

34 .393 1.007 95.569    

35 .382 .979 96.547    

36 .369 .945 97.493    

37 .354 .907 98.400    

38 .317 .813 99.213    

39 .307 .787 100.000    
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TABLE OF OUTPUT FROM PARALLEL ANALYSIS  
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Output from Parallel Analysis 
 

27/03/2015   22:27:22 

Number of variables:     39 

Number of subjects:     478 

Number of replications: 100 

 

Eigenvalue       Random Eigenvalue     Standard Dev 

      1               1.5790               .0423 

      2               1.5147               .0284 

      3               1.4693               .0225 

      4               1.4276               .0222 

      5               1.3872               .0222 

      6               1.3509               .0206 

      7               1.3188               .0181 

      8               1.2861               .0188 

      9               1.2537               .0167 

     10               1.2250               .0176 

     11               1.1958               .0163 

     12               1.1687               .0153 

     13               1.1423               .0154 

     14               1.1167               .0147 

     15               1.0905               .0143 

     16               1.0681               .0141 

     17               1.0443               .0134 

     18               1.0196               .0133 

     19               0.9965               .0126 

     20               0.9739               .0132 

     21               0.9505               .0125 

     22               0.9305               .0132 

     23               0.9089               .0136 

     24               0.8883               .0135 

     25               0.8658               .0125 

     26               0.8450               .0128 

     27               0.8221               .0140 

     28               0.8013               .0134 

     29               0.7818               .0136 

     30               0.7615               .0136 

     31               0.7414               .0129 

     32               0.7204               .0125 

     33               0.6961               .0132 

     34               0.6723               .0135 

     35               0.6496               .0143 

     36               0.6231               .0146 

     37               0.6001               .0168 

     38               0.5733               .0164 

     39               0.5393               .0199 

27/03/2015   22:27:45 

Monte Carlo PCA for Parallel Analysis 

©2000 by Marley W. Watkins. All rights 
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Item Description Loading 

   
Belief System 1: A social constructivist, problem solving and collaborative orientation towards the nature of 
mathematics, the learning of mathematics and the teaching of mathematics. 

   
1 Ignoring the mathematical ideas generated by the students can seriously limit their 

learning. 
.662 

17 It is important for students to create and solve their own problems. 
 

.661 

38 It is critical for students to view themselves as mathematical problem posers rather than 
to wait for problems from external sources such as a textbook or teacher. 

.654 

12 Teaching mathematics through problem solving is the best method to help students learn. 
 

.620 

2 Preparing learners to think critically about mathematics is more important than success at 
national examinations. 

.617 

16 Problem posing is beneficial for developing students’ mathematical skills and investigating 
their understanding of mathematics. 

.599 

35 An effective way to teach mathematics is to provide students with interesting problems to 
investigate in small groups. 

.583 

39 Students should share their problem solving thinking and approaches with other students. .575 
   
   

Belief System 2: A social constructivist, problem solving and static transmission orientation towards the 
nature of mathematics, the learning of mathematics and the teaching of mathematics. 

   
15 Mathematics is a continually expanding field of human creation and invention. .669 

   
5 Justifying the mathematical statements that a person makes is an important part of 

mathematics. 
.644 

10 Teachers should be experienced problem solvers and should have a firm grasp of what 
successful problem solving involves. 

.637 

18 Mathematical problems can only have one final correct answer. 
 

.594 

6 A person who does not understand why an answer to a mathematics problem is correct, 
has not really solved the problem. 

.577 

11 Teachers should provide instructional activities which result in problematical situations for 
learners. 

.574 

   
   

Belief System 3: A static transmission and mechanistic transmission orientation towards the nature of 
mathematics, the learning of mathematics and the teaching of mathematics. 

   
20 Mathematics is an accumulation of facts, rules and skills. 

 
.708 

26 A mathematical problem is the description of a situation involving stated quantities, 
followed by a question about some relationship among the quantities. 

.588 

29 Mathematics is a collection of procedures and rules that specify how to solve problems. 
 

.562 

27 The memorisation of mathematics facts is important in mathematics learning. 
 

.541 

21 
 

The primary purpose of teaching problem solving is to equip students with a collection of 
skills and processes. 

.528 

 
Extraction Method: Principal Component Analysis.  

Rotation Method: Oblimin with Kaiser Normalization. Rotation converged in 18 iterations. 
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THE STRUCTURE MATRIX 
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Component 

1 2 3 

Item 38 .677 .272 .202 

Item 17 .673 .316 .109 

Item 12 .653 .259 .271 

Item 1 .648 -.041 .013 

Item 2 .601 -.272 .053 

Item 16 .599 .399 .003 

Item 32 .584 .156 .215 

Item 35 .568 .066 -.025 

Item 37 .567 -.205 .175 

Item 39 .561 .249 -.071 

Item 36 .560 -.159 .207 

Item 13 .548 .079 .146 

Item 19 .542 .031 .396 

Item 23 .539 .041 .438 

Item 3 .521 .418 .132 

Item 33 .520 -.187 .103 

Item 28 .481 -.021 .360 

Item 9 .476 .263 .080 

Item 7 .455 -.068 -.053 

Item 14 .424 -.073 .047 

Item 8 .386 .283 .021 

Item 15 .118 .699 .298 

Item 5 .129 .648 .097 

Item 10 .092 .636 .065 

Item 18 -.071 .629 .369 

Item 6 .059 .585 .130 

Item 11 .288 .582 .075 

Item 31 -.140 .539 .497 

Item 4 .020 .431 .286 

Item 20 .105 .227 .726 

Item 26 .029 .342 .615 

Item 29 .257 .284 .614 

Item 27 .248 -.134 .536 

Item 22 -.135 .400 .532 

Item 25 .407 -.240 .512 

Item 24 .366 .013 .510 

Item 34 .017 .222 .506 

Item 21 -.023 -.002 .504 

Item 30 .097 .106 .448 

 
Extraction Method: Principal Component Analysis.   

Rotation Method: Oblimin with Kaiser Normalization. 
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THE RESULTS OF THE QUESTIONNAIRE 
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Item SA 

f (%) 

A 

f (%) 

U 

f (%) 

D 

f (%) 

SD 

f (%) 

Mean Standard 

Deviation 

1. 132 (27.62) 278 (58.16) 29 (6.07) 39 (8.16) 0 (0.00) 1.95 .814 

2. 78 (16.32) 174 (36.40) 69 (14.44) 117 (24.48) 40 (8.37) 2.72 1.234 

3. 71 (14.85) 277 (57.95) 59 (12.34) 71 (14.85) 0 (0.00) 2.27 .891 

4. 42 (8.79) 179 (37.45) 91 (19.04) 158 (33.05) 8 (1.67) 2.81 1.045 

5. 94 (19.67) 313 (65.48) 42 (8.79) 29 (6.07) 0 (0.00) 2.01 .727 

6. 57 (11.92) 267 (55.86) 47 (9.83) 103 (21.55) 4 (0.84) 2.44 .984 

7. 59 (12.34) 293 (61.30) 69 (14.44) 55 (11.51) 2 (0.42) 2.26 .835 

8. 54 (11.30) 279 (58.37) 72 (15.06) 70 (14.64) 3 (0.63) 2.35 .886 

9. 147 (30.75) 298 (62.34) 17 (3.56) 15 (3.14) 1 (0.21) 1.80 .669 

10. 120 (25.10) 286 (59.83) 24 (5.02) 46 (9.62) 2 (0.42) 2.00 .852 

11. 50 (10.46) 281 (58.79) 63 (13.18) 83 (17.36) 1 (0.21) 2.38 .898 

12. 22 (4.60) 173 (36.19) 110 (23.01) 164 (34.31) 9 (1.88) 2.93 .980 

13. 40 (8.37) 317 (66.32) 74 (15.48) 44 (9.21) 3 (0.63) 2.27 .768 

14. 89 (18.62) 261 (54.60) 39 (8.16) 87 (18.20) 2 (0.42) 2.27 .981 

15. 105 (21.97) 253 (52.93) 77 (16.11) 40 (8.37) 3 (0.63) 2.13 .870 

16. 111 (23.22) 273 (57.11) 45 (9.41) 49 (10.25) 0 (0.00) 2.07 .856 

17. 96 (20.08) 276 (57.74) 44 (9.21) 61 (12.76) 1 (0.21) 2.15 .895 

18.* 14 (2.93) 117 (24.48) 47 (9.83) 225 (47.07) 75 (15.69) 2.52 1.110 

19.* 9 (1.88) 106 (22.18) 62 (12.97) 262 (54.81) 39 (8.16) 2.55 .985 

20.* 36 (7.53) 269 (56.28) 43 (9.00) 112 (23.43) 18 (3.77) 3.40 1.043 

21.* 103 (21.55) 301 (62.97) 33 (6.90) 41 (8.58) 0 (0.00) 3.97 .793 

22.* 8 (1.67) 119 (24.90) 76 (15.90) 226 (47.28) 49 (10.25) 2.60 1.022 

23.* 6 (1.26) 75 (15.69) 33 (6.90) 268 (56.07) 96 (20.08) 2.22 .982 

24.* 24 (5.02) 185 (38.70) 43 (9.00) 204 (42.68) 22 (4.60) 2.97 1.096 

25.* 33 (6.90) 202 (42.26) 67 (14.02) 163 (34.10) 13 (2.72) 3.17 1.060 

26.* 10 (2.09) 196 (41.00) 97 (20.29) 153 (32.01) 22 (4.60) 3.04 .999 

27.* 77 (16.11) 300 (62.76) 34 (7.11) 65 (13.60) 2 (0.42) 3.81 .882 

28.* 3 (0.63) 81 (16.95) 36 (7.53) 282 (59.00) 76 (15.90) 2.27 .946 

29.* 21 (4.39) 236 (49.37) 75 (15.69) 133 (27.82) 13 (2.72) 3.25 .998 

30.* 14 (2.93) 85 (17.78) 55 (11.51) 254 (53.14) 70 (14.64) 2.41 1.034 

31 * 6 (1.26) 92 (19.25) 80 (16.74) 233 (48.74) 67 (14.02) 2.45 1.034 

32.* 10 (2.09) 106 (22.18) 30 (6.28) 260 (54.39) 72 (15.06) 2.42 1.056 
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Item SA A U D SD Mean Standard 

 f (%) f (%) f (%) f (%) f (%)  Deviation 

33.* 0 (0.00) 113 (23.64) 42 (8.79) 268 (56.07) 55 (11.51) 2.45 .976 

34.* 30 (6.28) 254 (53.14) 63 (13.18) 116 (24.47) 15 (3.14) 3.35 1.015 

35. 90 (18.83) 305 (63.81) 28 (5.86) 54 (11.30) 1 (0.21) 2.10 .842 

36. 28 (5.86) 255 (53.35) 83 (17.36) 108 (22.59) 4 (0.84) 2.59 .929 

37. 51 (10.67) 204 (42.68) 63 (13.18) 147 (30.75) 13 (2.72) 2.72 1.093 

38. 47 (9.83) 233 (48.74) 95 (19.87) 99 (20.71) 4 (0.84) 2.54 .955 

39. 214 (44.77) 247 (51.67) 7 (1.46) 9 (1.88) 1 (0.21) 1.61 .637 

 

Note:  SA – Strongly Agree 

  A – Agree  

 U – Undecided  

 D – Disagree  

 SD – Strongly Disagree    

 

Totals of percentages are not 100.00 for every item because of rounding. 

 

* These items are negatively stated and have been reversed in scoring. Therefore, a higher mean value indicates participants 

disagree with the statement.  

 

** The minimum possible mean value is 1 and the maximum possible mean value is 5.  
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APPENDIX N 

 
THE RESULTS OF THE QUESTIONNAIRE BY SECTOR 
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Item Sector  SA 

f (%) 

A 

f (%) 

U 

f (%) 

D 

f (%) 

SD 

f (%) 

1. Primary  88 (34.4) 127 (55.5) 12 (5.2) 2 (0.9) 0 (0.0) 

 Secondary 44 (17.7) 151 (60.6) 17 (6.8) 37 (14.9) 0 (0.0) 

2. Primary  52 (22.7) 112 (48.9) 34 (14.9) 30 (13.1) 1 (0.4) 

 Secondary 26 (10.4) 62 (24.9) 35 (14.1) 87 (34.9) 39 (15.7) 

3. Primary  36 (15.7) 139 (60.7) 24 (10.5) 30 (13.1) 0 (0.0) 

 Secondary 35 (14.1) 138 (55.4) 35 (14.1) 41 (16.5) 0 (0.0) 

4. Primary  9 (3.9) 54 (23.6) 63 (27.5) 97 (42.4) 6 (2.6) 

 Secondary 33 (13.3) 125 (50.2) 28 (11.2) 61 (24.5) 2 (0.8) 

5. Primary 42 (18.3) 131 (57.2) 33 (14.4) 23 (10.0) 0 (0.0) 

 Secondary 52 (20.9) 182 (73.1) 9 (3.6) 6 (2.4) 0 (0.0) 

6. Primary 26 (11.4) 106 (46.3) 27 (11.8) 69 (30.1) 1 (0.4) 

 Secondary 31 (12.5) 161 (64.7) 20 (8.0) 34 (13.7) 3 (1.2) 

7. Primary  40 (17.5) 148 (64.6) 32 (14.0) 9 (3.9) 0 (0.0) 

 Secondary 19 (7.6) 145 (58.2) 37 (14.9) 46 (18.5) 2 (0.8) 

8. Primary 27 (11.8) 132 (57.6) 35 (15.3) 34 (14.9) 1 (0.4) 

 Secondary 27 (10.8) 147 (59.0) 37 (14.9) 36 (14.5) 2 (0.8) 

9. Primary  91 (39.7) 121 (52.8) 10 (4.4) 7 (3.1) 0 (0.0) 

 Secondary 56 (22.5) 177 (71.1) 7 (2.8) 8 (3.2) 1 (0.4) 

10. Primary  43 (18.8) 126 (55.0) 21 (9.2) 38 (16.6) 1 (0.4) 

 Secondary 77 (30.9) 160 (64.3) 3 (1.2) 6 (3.21) 1 (0.4) 

11. Primary  22 (9.6) 126 (55.0) 31 (13.5) 49 (21.4) 1 (0.4) 

 Secondary 28 (11.2) 155 (62.3) 32 (12.9) 34 (13.6) 0 (0.0) 

12. Primary 10 (4.4) 94 (41.1) 54 (23.6) 69 (30.1) 2 (0.9) 

 Secondary 12 (4.8) 79 (31.7) 56 (22.5) 95 (38.2) 7 (2.8) 

13. Primary  21 (9.2) 176 (76.9) 25 (10.9) 6 (2.6) 1 (0.4) 

 Secondary 19 (7.6) 141 (56.6) 49 (19.7) 38 (15.3) 2 (0.8) 

14. Primary  60 (26.2) 124 (54.2) 19 (8.30) 26 (11.4) 0 (0.0) 

 Secondary 29 (11.7) 137 (55.0) 20 (8.0) 61 (24.5) 2 (0.8) 

15. Primary  37 (16.2) 107 (46.7) 53 (23.1) 30 (13.1) 2 (0.9) 

 Secondary  68 (27.3) 146 (58.6) 24 (9.6) 10 (4.0) 1 (0.4) 
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Item Sector 

 

SA 

f (%) 

A 

f (%) 

U 

f (%) 

D 

f (%) 

SD 

f (%) 

16. Primary  60 (26.2) 126 (55.0) 28 (12.2) 15 (6.6) 0 (0.0) 

 Secondary 51 (20.5) 147 (59.0) 17 (6.8) 34 (13.7) 0 (0.0) 

17. Primary  58 (25.3) 132 (57.6) 20 (8.7) 18 (7.9) 1 (0.4) 

 Secondary 38 (15.3) 144 (57.8) 24 (9.6) 43 (17.3) 0 (0.0) 

18. Primary  12 (5.2) 88 (38.4) 25 (10.9) 91 (39.7) 13 (5.7) 

 Secondary 2 (0.8) 29 (11.7) 22 (8.8) 134 (53.8) 62 (24.9) 

19. Primary  4 (1.8) 33 (14.4) 21 (9.2) 143 (62.4) 28 (12.2) 

 Secondary 5 (2.0) 73 (29.3) 41 (16.5) 119 (47.8) 11 (4.4) 

20. Primary  17 (7.4) 145 (63.3) 29 (12.7) 32 (14.0) 6 (2.6) 

 Secondary 19 (7.6) 124 (49.8) 14 (5.6) 80 (32.1) 12 (4.8) 

21. Primary 55 (24.0) 143 (62.5) 18 (7.9) 13 (5.7) 0 (0.0) 

 Secondary 48 (19.3) 158 (63.5) 15 (6.0) 28 (11.2) 0 (0.0) 

22. Primary  4 (1.8) 82 (35.8) 46 (20.1) 89 (28.9) 8 (3.5) 

 Secondary 4 (1.6) 37 (14.9) 30 (12.1) 137 (55.0) 41 (16.5) 

23. Primary 3 (1.3) 15 (6.6) 14 (6.1) 141 (61.6) 56 (24.5) 

 Secondary 3 (1.2) 60 (24.1) 19 (7.6) 127 (51.0) 40 (16.1) 

24. Primary  12 (5.2) 68 (29.7) 23 (10.0) 109 (47.6) 17 (7.4) 

 Secondary 12 (4.8) 117 (47.0) 20 (8.0) 95 (38.2) 5 (2.0) 

25. Primary  7 (3.1) 75 (32.8) 34 (14.9) 104 (45.4) 9 (3.9) 

 Secondary 26 (10.4) 127 (51.0) 33 (13.3) 59 (23.7) 4 (1.6) 

26. Primary  7 (3.1) 109 (47.6) 57 (24.9) 51 (22.3) 5 (2.2) 

 Secondary 3 (1.2) 87 (34.9) 40 (16.1) 102 (41.0) 17 (6.8) 

27. Primary 38 (16.6) 138 (60.3) 22 (9.6) 31 (13.5) 0 (0.0) 

 Secondary 39 (15.7) 162 (65.1) 12 (4.8) 34 (13.7) 2 (0.8) 

28. Primary  1 (0.4) 21 (9.2) 12 (5.7) 146 (63.8) 48 (21.0) 

 Secondary 2 (0.8) 60 (24.1) 23 (9.2) 136 (54.6) 28 (11.2) 

29. Primary  11 (4.8) 118 (51.5) 42 (18.3) 54 (23.6) 4 (1.8) 

 Secondary 10 (4.0) 118 (47.4) 33 (13.3) 79 (31.7) 9 (3.6) 

30. Primary  6 (2.6) 45 (19.7) 27 (11.8) 124 (54.2) 27 (11.8) 

 Secondary 8 (3.2) 40 (16.1) 28 (11.2) 130 (52.2) 43 (17.3) 
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Item Sector  SA 

f (%) 

A 

f (%) 

U 

f (%) 

D 

f (%) 

SD 

f (%) 

31. Primary  3 (1.3) 69 (30.1) 55 (24.0) 91 (39.7) 11 (4.8) 

 Secondary 3 (1.2) 23 (9.2) 25 (10.0) 142 (57.0) 56 (22.5) 

32. Primary  4 (1.8) 31 (13.5) 13 (5.7) 135 (59.0) 46 (20.1) 

 Secondary 6 (2.4) 75 (30.1) 17 (6.8) 125 (50.2) 26 (10.4) 

33. Primary  0 (0.0) 23 (10.0) 19 (8.3) 155 (67.7) 32 (14.0) 

 Secondary 0 (0.0) 90 (36.1) 23 (9.2) 113 (45.4) 23 (9.2) 

34. Primary  11 (4.8) 139 (60.7) 45 (19.7) 32 (14.0) 2 (0.9) 

 Secondary 19 (7.6) 115 (46.2) 18 (7.2) 84 (33.7) 13 (5.2) 

35. Primary  62 (27.1) 141 (61.6) 10 (4.4) 15 (6.6) 1 (0.4) 

 Secondary 28 (11.2) 164 (65.9) 18 (7.2) 39 (15.7) 0 (0.0) 

36. Primary  15 (6.6) 150 (65.5) 36 (15.7) 26 (11.4) 2 (0.9) 

 Secondary 13 (5.2) 105 (42.2) 47 (18.9) 82 (32.9) 2 (0.8) 

37. Primary  36 (15.7) 122 (52.3) 30 (13.1) 36 (15.7) 5 (2.2) 

 Secondary 15 (6.0) 82 (32.9) 33 (13.3) 111 (44.6) 8 (3.2) 

38. Primary 34 (14.9) 117 (51.1) 44 (19.2) 34 (14.9) 0 (0.0) 

 Secondary 13 (5.2) 116 (46.6) 51 (20.5) 65 (26.1) 4 (1.6) 

39. Primary  123 (53.7) 103 (45.0) 2 (0.9) 1 (0.4) 0 (0.0) 

 Secondary 91 (36.6) 144 (57.8) 5 (2.0) 8 (3.2) 1 (0.4) 

 

Note:  SA – Strongly Agree  

 A – Agree 

 U – Undecided  

 D – Disagree  

 SD – Strongly Disagree    

 

Totals of percentages are not 100.00 for every item because of rounding. 
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APPENDIX O 

 
GROUP DIFFERENCES BY SECTOR 
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 Primary Secondary     

Item M SD M SD df t p Cohen’s d 

1. 1.69 .612 2.19 .898 439.635 -7.206 .000 .687 

2. 2.20 .951 3.20 1.268 457.863 -9.886 .000 .924 

3. 2.21 .863 2.33 .914 475.645 -1.473 .141 .135 

4. 3.16 .948 2.49 1.028 476 7.359 .000 .675 

5. 2.16 .840 1.88 .572 397.358 4.314 .000 .433 

6. 2.62 1.047 2.27 .890 449.330 3.977 .000 .375 

7. 2.04 .687 2.47 .907 459.436 -5.765 .000 .538 

8. 2.34 .888 2.35 .887 476 -.104 .917 .010 

9. 1.71 .693 1.88 .636 462.877 -2.821 .005 .262 

10. 2.25 .962 1.78 .663 400.377 6.168 .000 .617 

11. 2.48 .949 2.29 .840 457.042 2.324 .021 .217 

12. 2.82 .945 3.02 1.004 476 -2.273 .023 .208 

13. 2.08 .583 2.45 .870 436.146 -5.456 .000 .523 

14. 2.05 .895 2.48 1.012 475.257 -4.928 .000 .452 

15. 2.36 .933 1.92 .749 437.162 5.684 .000 .544 

16. 1.99 .806 2.14 .897 476 -1.858 .064 .170 

17. 2.00 .835 2.29 .927 475.797 -3.533 .000 .324 

18.* 2.98 1.106 2.10 .933 447.682 9.382 .000 .887 

19.* 2.31 .925 2.77 .989 475.864 -5.221 .000 .479 

20.* 3.59 .911 3.23 1.126 468.551 3.819 .000 .353 

21.* 4.05 .739 3.91 .835 476 1.940 .053 .089 

22.* 2.93 .978 2.30 .968 471.831 7.107 .000 .654 

23.* 1.99 .830 2.43 1.061 464.216 -5.150 .000 .478 

24.* 2.78 1.111 3.14 1.053 476 -3.710 .000 .340 

25.* 2.86 1.022 3.45 1.015 476 -6.368 .000 .584 

26.* 3.27 .916 2.83 1.027 475.554 4.990 .000 .458 

27.* 3.80 .875 3.81 .889 476 -.150 .881 .014 

28.* 2.04 .821 2.49 1.004 469.583 -5.289 .000 .488 

29.* 3.34 .949 3.16 1.036 475.993 1.938 .053 .178 

30.* 2.47 1.020 2.36 1.046 476 1.207 .228 .111 

31.* 2.83 .959 2.10 .893 464.824 8.683 .000 .805 

32.* 2.18 .963 2.64 1.092 475.212 -4.888 .000 .448 

33.* 2.14 .779 2.72 1.055 455.169 -6.862 .000 .643 

34.* 3.55 .824 3.17 1.135 452.121 4.136 .000 .389 

35. 1.92 .682 2.27 .860 475.940 -4.741 .000 .435 

36. 2.34 .800 2.82 .981 469.268 -5.812 .000 .537 
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Primary Secondary 

Item M SD M SD df t p Cohen’s d 

37. 2.35 .996 3.06 1.070 475.928 -7.474 .000 .685 

38. 2.34 .907 2.72 .963 475.729 -4.470 .000 .410 

39. 1.48 .543 1.73 .693 476 -4.377 .000 .401 

 

Note: * These items are negatively stated and have been reversed in scoring. Therefore, a higher mean value indicates 

 participants disagree with the statement.  

 

 ** The minimum possible mean value is 1 and the maximum possible mean value is 5.  
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APPENDIX P 

 
HISTOGRAMS AND NORMAL Q-Q PLOTS FOR  

TOTAL MATHEMATICAL BELIEFS SCORES 
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A. Histograms and Normal Q-Q Plots for TMBS with respect to gender 

 
 
Figure 10.1 Histogram of TMBS for male participants 
 

 
 

 

Figure 10.2 Histogram of TMBS for female participants 
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Figure 10.3 Normal Q-Q Plot of TMBS for male participants 

 

 

 

 
 
 
Figure 10.4 Normal Q-Q Plot of TMBS for female participants 
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B. Histograms and Normal Q-Q Plots for the TMBS with respect to age (years) 

 

Figure 10.5 Histogram of TMBS for participants under 25   

  

 

 

Figure 10.6 Histogram of TMBS for participants 25 to 34  
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Figure 10.7 Histogram of TMBS for participants 35 to 44 

 

 
 

 

Figure 10.8 Histogram of TMBS for participants 45 to 54 
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Figure 10.9 Histogram of TMBS for participants 55 or over 

 

 
 
 
 
Figure 10.10 Normal Q-Q Plot of TMBS for participants under 25 
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Figure 10.11 Normal Q-Q Plot of TMBS for participants 25 to 34 
 

 
 

 
 
Figure 10.12 Normal Q-Q Plot of TMBS for participants 35 to 44  
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Figure 10.13 Normal Q-Q Plot of TMBS for participants 45 to 54  
 

 
 
 
 
Figure 10.14 Normal Q-Q Plot of TMBS for participants 55 and over  
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C. Histograms and Normal Q-Q Plots for the TMBS with respect to grade 

 

Figure 10.15 Histogram of TMBS for teacher grade participants 

 

 

Figure 10.16 Histogram of TMBS for PT participants 
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Figure 10.17 Histogram of TMBS for DHT participants 

 

 
 

 

Figure 10.18 Histogram of TMBS for HT participants 
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Figure 10.19 Normal Q-Q Plot of TMBS for teacher participants 
 

 
 
 
 
Figure 10.20 Normal Q-Q Plot of TMBS for PT participants 
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Figure 10.21 Normal Q-Q Plot of TMBS for DHT participants 
 

 
 
 
 
Figure 10.22 Normal Q-Q Plot of TMBS for HT participants 
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D. Histograms and Normal Q-Q Plots for the TMBS with respect to teaching experience 

 

 

Figure 10.23 Histogram of TMBS for participants with 5 years and under teaching experience 

 
 
 
Figure 10.24 Histogram of TMBS for participants with 6 to 10 years under teaching experience 
 

 
 



406 

 

 

 

 

Figure 10.25 Histogram of TMBS for participants with 11 to 15 years teaching experience 
 

 

 
 
 
 
Figure 10.26 Histogram of TMBS for participants with 16 to 20 years teaching experience 
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Figure 10.27 Histogram of TMBS for participants with over 20 years teaching experience 

 

 
 
 
 
Figure 10.28 Normal Q-Q Plot of TMBS for participants with 5 years or under teaching experience 
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Figure 10.29 Normal Q-Q Plot of TMBS for participants with 6 to 10 years teaching experience 
 
 

 
 
 
 
Figure 10.30 Normal Q-Q Plot of TMBS for participants with 11 to 15 years teaching experience 
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Figure 10.31 Normal Q-Q Plot of TMBS for participants with 16 to 20 years teaching experience 
 

 

 
 
 
 
Figure 10.32 Normal Q-Q Plot of TMBS for participants with over 20 years teaching experience 
 

 
 
 



410 

 

 

 

 

E. Histograms and Normal Q-Q Plots for the TMBS with respect to Highest Level of 

 Qualification the field of Education 

 

 
Figure 10.33 Histogram of TMBS for participants with BEd  

 

 
 
Figure 10.34 Histogram of TMBS for participants qualified to PGCE/PGDE 
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Figure 10.35 Histogram of TMBS for participants qualified to Masters 
 

 

 
 
 
 
Figure 10.36 Normal Q-Q Plot of TMBS for participants qualified to BEd  
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Figure 10.37 Normal Q-Q Plot of TMBS for participants qualified to PGCE/PCDE  
 
 

 
 
 
 
Figure 10.38 Normal Q-Q Plot of TMBS for participants qualified to Masters   

 

 


