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Abstract

The Scottish Curriculum for Excellence (CfE) advocates that the learning and teaching of
mathematicaproblem solving is no longer compartmentalised but is an overarching feature
designed to improve higher order thinking skills at all levels by focusing on conceptual
understanding. Comitantly, a growing body of literature acknowledges the interrelated
eduat i onal benefits of mathematical ©probl er
considered powerful indicators of professional practice and can articulate the positionality of
teachers with regards to curricula reform. Despite their significaressarch into the
implementation of mathematical problem solving and mathematical problem posing is, as yet,
underresearched particularly in Scotland. The main purpose of this study was to investigate
Scottish teachersd bel ipmadtices od mathensascal poldeend
solving and mathematical problem posing. More prosaically, it explored beliefs regarding the

nature of mathematics, the learning of mathematics and the teaching of mathematics.

A mixed method explanatory design consisting of an online questionnaire followed by semi
structured interviews was selected as the instruments to measure and capture espoused beli
and reported practice$his study inwlved a representative sample of 478 participants (229
primary and 249 secondary mathematics practitioners respectgetgratedrom 21 bcal
education authorities in Scotlan@l.supplementary feature of the online questionnaire, which
harvested 87 volunteered commemtsgmentedhe data collection process. Descriptive and
inferential statistics were employed to analyse quantitativewdgtathematic coding used to

organise and interrogate qualitative data.

Factor analysis identified three distinct belief systems consistent with a dominant-learner
centred approach (i.e. social constructivist, problem solving and collaborative orientation),
mainly learnercentred approach (i.e. social constructivist, problemivisg and static
transmissiororientation) and dominant teackegntredapproach (i.e. static and mechanistic
transmission orientation). n ot her wor dreoted bekets dd rotraigh to dore e p
particular group of belief systems but are embeddatlally within a cluster. A mixture of
positive, negative and inconsistent beliefs is reported. Significant dissonance exists betweel
the sectors. Characteristics impacting on beliefs include grade and highest level of

gualification in the field of educitn.



2

This studysuggest that the conceptualisation and operationalisation of mathematical problem
solving and problem posing may be circumscribed in practice and that primary teachers holc
stronger mathematical beliefs than secondary mathematics teachers. Several reasons help
illuminate these findings including a lack of pedagogical content knowledge, ineffective
manifestations of mathematical creativity, low mathematics teachingféeticy and an over
dominant national assessment culture. Implications and recommendati@udi¢y and ITE

are discussed.
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CHAPTER ONE

Introduction

In this preliminary chapter,| introduce a background to the studgngrisingtogether my
own personainterest in the subject field before moving on to the educational and theoretical
justification for the work. This is followed by the presentation of research questions and an

overview of the thesis structure.

1.1 A personal journey

The content and argwents submitted in this thesis matured as a result of widespread
educationalexperience gained as a mathemat&acher Over the years, | havpractised
within the state and independent sectdatainedpromotion toprincipal teacher, angrepared
pupils for a range of Scottish, English and International Baccalaugealiéications.Much of

my time has beeconsumedhinking about the locus of problem solving and problem posing
within the domain of mathematics education. | have conjectured if dlieymakers of
Curriculum for Excellence have created a paragon of autonomous education that empower
practitioners to flourish at the ultimate didactic level and without undue political interference.
My thoughts often deliberate upon the position of Scwtl and our teachefsom an
international perspectiv€€oncomitantly,] have shared classroom experiences and beliefs of
problem solving through the production of various publications (e.g. McDonald, 2006, 2013,
2019).

A decision to enter theeachingprofession arosafter a lengthy period of working in industry
within Scotland, other parts of the UK and Europe. Coupled with enginelenimgledge
acquired from previous employers, | have been ableotaextualie mathematical concepts
and appreciat the importance of possessiagalyticalskills, deductivereasoning and logic

which | have applied to enhance learning within the classroom.

Shortly after completing dMasted slegree, | was awarded Chartered Mathematician status

which acted as a catalyst for my own professional development. Inspiratbtove my
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pedagogical knowledge, kurveyed numerous empirical studies involvingt eac her
mathematical beliefs giroblem soling and problem posingThe impetus forengaging in
suchenquirywas b addressliverse and ofteenigmaticpedagogicaviewpointsexpressed by

both primary and secondargolleagues during multiple professional collaborations.
Curiously, emcompassed withithe nucleus of teachernscluded a eclectic fusiorof grades
ageand experiencéom both sectorsin short,it concernedme thatdissonancexisted with
approachego the learning and teaching of mathematieésrthermore, | was surprised to
discover apaucity of empirical researchinvestigatingScottish teachers compared to other
countries. With this in mind and after careful deliberatibrenlisted as a patime PhD
candidatewhilst continuing my career asfall-time practitionerfor three reasons. Firstly, in
order to fulfil an intellectual challenge secondly, to critically inform my professional
practice thirdly, to accomplish adng term ambition to become an independent researcher.
This has been decision which has resulted in a doctoral experience awash with feelings of

loneliness, isolation, anxietjrustrationand immense satisfaction.

The role of eachers as researchersiithing new (e.g. Elliot, 199McNiff & Whitehead,
2011;Kincheloe2012. By connecting to a research learning commumity,previously held
entrenched views and fragmented philosophies on fundamental constructs have bee
transformed, empowering me to operationalise a wider range of educational perspectives.
have exploed the interface between research and practice, experiencing and augmenting
contemporary dimensions to my teaching. In a paper which addressasthesis otheory

and practice, Beattie (1997) writes:

It seems a little incongruous to suggest thatiteexcwho have not experienced inquirytheir
own lives will be able to create classroom settings which encourage students to question, to
pose and solve problems, and to be-delécted learners (p. 114).

Much time and energyas been engagednealing, thinking, debatinganalysing, discussing,
arguing, evaluating, writing, assessirand reflecting on learning and teaching of
mathematical problem solvingand problem posing. Audiences have included pupils,
colleagues,probationers, studentgarents academics strangers, family and friend$4y

reason for undertaking this study rests on my professional interactions with a range of learner:
with an assortment of abilities who reported feeling disconnected aagliibped in problem
posing and problem solving. These feelings of disconnectidraak of skills and knowledge

often influenced their choices of employment aigher education
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Monitoring the mathematical progress of my own children, as they shuffled through primary
and secondary levels, furnished me with an additional insightoititert e a ¢ espoused
views and enacted mctices.Significantly, this underpinned mspeculativeassessmerihat

the mplementation bmathematicaproblem solving and problem posingay beinfluenced

byi ndi vi du ddliefst eacher so

1.2 Background to the research

Throughout my teaching careamespective of curricula requirementshave exercised the
freedomto engageand motivateyoung peoplewith a repertoire ottlassic andunfamiliar
mathematical problem$egardless of ability, problems can be differentiated or reformulated
to address thenathematicaheeds of all learnerd. have found that entoring pupils for
individual and team competitionshas provided me with goowerful mechanism to enrich
thinking, inspire creativity and reinforce the mastery of desmceptual understaimd).
Various echelonsof ingenuity and complexity are packed into problemsiemantihg
increasing levels of mathematical sophisticatimndact as @reeding ground fodeveloping

flexible, strategic anthdependenthinking.

It is in sharpcontrast to theommonemphasion procedural skills that is encapsulated imith
memorised driveralgorithmic approaches;ootedin traditional mathematicdessonsin my
professionalexperience,the delivery of problem solvingand problem posingis not a
dichotomy shared by all practitionetsconsiderthe beliefsof the teacher instrumenti the
embodimentof such process. Hersh (1986, p. 13arguesthafione 6 s concept i
mathematics s affects onebs conception of how i
presenting it is an indication of what oneslievest o be t he moslthave ss e
theorised thathe positioning oBcottishteachers appear to be inconsistent wighenactment

of policy objectivesand researcHiteratureavailable to themLikewise, probing friends and
colleaguedo elicit the reasons behinitheir incongruencao mathematicaproblem solving

and problem poso producedunexpected resultdt is on this basis that mgnthusiasm
regardingthe mathematical beliefs of teachdras grown, whiclenergisedne to suspectthat

this notabletopic neededurtherexploration.
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1.3 Educational justification for my research
All of this research has been conductesing currentteacherswithin the domain ofstate
schools in Scotlandt is necessarjor me tocontextualisemy researclprior to presening the

rational d my study.

The Scottishperspective

Historically, Scotlandchas always enjoyed an independent educational system and has never
been part of what is erroneously but commonly referred to asitkeCur r i cRol u mé
example, Boaler (205 p. 1), unfittingly used tls designatgsince it doesiot exist) when
implying that the UK education secregaa positionwith a solitaryremit for England, has the
additional authority toamendthe separateeducation systems which are controlled by the
devolved governmestof Scotland, Wales and Northerrelindrespectivelyln fact, Humes

& Bryce (2013 p. 13§ pointoutttat A Educ at i o nbednadentifiedraa adne ofi o r
the three institutions which mark the social and cultural life of Scotland as distinctive,
especially when .dikempeaMeped(20i4pasdsn gl and o

We know thatScotland has had a very distinctive education system throughout the history of
the Union - that is since 1707. And today we can see much that is strong, innoaative
imaginative within Scottish educatipespecially when contrasted with England (p. 29).

Paradoxically participantsfrom Scotland England, Wales and Northern Ireland extegrated

in the UK samplefor PISA, an international survey thaheasuresyoung peopled
performancein reading, mathematics and scien€itical proponents of Scottishupils 6
mathematical performancé$able 1.1)in suchglobalassessments may wish to accentaate
recentdecline d national standardsathough this has to be set agaitistitations of the
survey such as issues involving cultuneethodology,political influence and interference.
Though the scale ofunderachievementannot be overlooked as indicatbeg inspection
reports carried out by Education Scotland. Accordin@ECD (2015, p. 10)fTrends since
2003 in Scotland show a growing proportion of low achievers in maths and a shrinking

proportion of high achieverso.

Table 1.1 Scottish PISA mathematics performances
Year 2000 2003 2006 2009 2012 2015
Mathematics 533 524 506 500 498 491

Moreover, n a brief analysis of pupils achieving selection to represent the UK team at

International Mathematical OlympiadsMcDonald (2013) highlights the prolonged
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conspicuousabsenteeism of &aledonianpresence. This prestigious competitidemand
independent higher order thinkintggetherwith formidable problem solving skillsIs it
conjecturedoy methat a decline in the implementation of mathematical problem solving in

schools may help tdluminatethis phenomeon.

A solitaryexamination board exists smiministerthen a t iqoatifiéasions ensumg fairness

that allcandidates undertake identical external assessmémlike other countries, e ac her
registration and professional standaede regulated bya teaching counciincontrolled by
governmentNot only is theGTCSone of the oldesin the world,it is the first independent
seltregulating body for teachingdumes & Bryce, 2013).

1.3.1 Curriculum for Excellence

During the last hal€entury, Scottish teachers have been on the receiving end of an avalanche
of curriculum reports and policy reforms but nothing as radical as CfE. Implemented in 2010,
this new curriculumhas been heralded by its architects, Scottish Government, (2088 as
Aone of the most ambitious programmes. of
Cremin & Arthur (2014) claim that lhas the potential to engage teachers and to capitalise on

the good practice and emotional investment that already existeanls

However, it has attracted much criticism for its vagueness in terms of contesign
conceptual clarityand lack of articulated theoretical underpinninger example, Priestley
(2010, p. 27)maintainst h a t the Acurriculum model ada
symptomatic of a general amnesia in respect of curriculum theory that arguably underpinnec
earlier d eSineldrlp thene i8 amalisence of angoherentreference to what
Priestley & Humes (2010, p. 346) describe as fieh vein of literature in the field of
curriculum developmento r without due regard to At he
curricul um, whet her from a phil osopMore al ,
recenty, Priestley & Sinnema (2014)nderlineambiguity with its curricular documentation.
Likewise, in their overview of existing Scottish researdPijestley, Minty & Eager (2014

opine that the implementationof the new curriculum depicts amften confusedpicture
pointing to issues such asacheranxiety about assessmenand a misalignmentbetween

teachersé i mplicit theories about knowl e
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NeverthelessCfE has ntroducel distinctive trajectories underpinning jp&ilosophy threeof

which aresalient.

Firstly, and possibly the most ambitious design feature is a new expanded curriculum that
caters for all young people between three and eighteen. Excluding the early years, the need 1
support such a coherent mathematics syllabus rests exclusively with primasgamaiary
mathematics teachers. This accountability has been implemented despite the diversities i
entry and training requirements, classroom practice, ethos and values inherent within bott
professions. It isheorisedoy me that to provide effective lelgeof continuity and progression
across this continuunit will be dependent on the outcome of any cresstor partnership.
Despite the laudable existence of primaegcondary transition arrangements, many teachers
have limited knowledge of the structurgsinciples and philosophies of a sector they have
not worked in (Corrigan, 2013).

Secondly,it is more strongly predicated than thel® curriculum guidelines on a shift in
classroom practices towards more pupil centred approaches to ed(Paigstiey& Minty,

2013). Enshrinedwithin its philosophy isan inherent constructivisview of learning in
contrast with some teachers who perceive knowledge and learning as the transmission o

contentMacLellan & Soden (208) explain that:

This, in a constructivst perspective, is the basis of all subsequent learning and teachers
cannot therefore, assume that one size fits all. In order to manage the sheer range of learnel
variability, it is necessaryor learnersto determine and pursue their ownrposes and
processes of learning through collaborative work, and accept the constructivist assumption
that the locus of intellectual authority resides not in the teacher nor in the resources, but in
the discourse fadiated by both teachers and leam@. 35).

It is regarding the nature of pedagogy that requires a radical change in orientation te practi
on the part of manyand in my view particularly secondarynathematicgractitioners since

it calls intoquestionentrenched traditionassumption®f educationln her paper on quality
assurance in Scottish schooReeves (208 p. 10) maintains i T hnaove to privilege
constructivist/social constructst frameworks as opposed to transmissive and behaviourist
approaches to teaching a#iethe role of teacherand hence the assumptions, skills,
knowledge and tools that they need to employ in their practioefact, Maclellan & Soden
(2008, p. 29contendthatih wi t hout under st anding of how I
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through thinkng and reasoning, and the teacher so
unli kely that the intentions of Curriculur

Thirdly, there is a focusof intent on repositioning teachers as agents of change which
according to Priestley, Biesta & Robinson 120 p. 203)at t e mpetversdid toend of
ongoing deprofessionalization through regimes of testing and inspection and the
establishment of wi d e r Teachers tareactieely encofiragga éa f o
embak on a crusade of independent professional discoursapporttheir critical thinking

and reflection of everydayurricular practices.During the design phase, the Scottish
Executive (2008, p. 4 emphasised the quintessential role of teachers in shaping classroom
practicesb y a i miengage feacbers in thinking from first principles about their
educational aims and values and their classroom practica thrdugtia climate in which
reflectivepractitioners share and develop ideas

With proposed increasenhalleability, it is anticipated that schools and teachers can take
account of local needs when constructing programmes of education, in order to put learning a
the heart of the curriculunThis explicit move away from central prescriptitowards, as
Priestley & Humes (2010, p. 346xpress i a thatoralies Lpomprofessional capacity to
adapt curriculum guidance to meet the nee
feature ofthe new curriculum.Though in terms ofthe enactment ok&xperiencesand
outcomesPriestly (2010, p. 39 insiststhatit h e s e s h o UaVedratherethama mastersa s
of the mai n purTislasepoiot fpartichlalycdtitahimpgoendting docus

on a holistic understanding of the subject matter.

1.3.2 Current position

A dilemma faced by someractitionerss their willingness to create classro@mvironments
whichare constent with theuniversalprinciples of constructivism and collaborative learning
and teachingHowever, resistance to change is eviddmbughout the countryThe latest

SSLN (Scottish Government2016a, p. &) reported the activities in which the highest
percentage of pupils téfsed that themethodsn which theyparticipatedd v e r y wareftd e n 6
0l i st eclassteaocherttaliteo t he c | as s4%alP4 680 in B7 anddBpoiinc 6  (
S2respectivelyand t o oOwor k 9% in P4y56% in P7camd9% in 8§Z. These

findings arecomparable witlprevious reearch(Scottish Government, 2014) and continue to
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suggest a teacheentred approach whidypifies classrooms where mastery of content and
basic skills is emphasised and knowledge is transferred by lectlireg@atition.

The autonomousision of the new curriculunpolicy empowerswhat is deliveredto pupils

and how eéacheramplementit. Within daily practicesa dynamic continuum exists between
exercisingflexible judgmentof te a ¢ h e r i@ rigidi adh&rence tastitutionalschool or

local educatiorauthoritypolicies.Perhapsccountabilityfor professionalearningwill further

seek toimpact on theongoing tension that exists between the relationship betiveea ¢ h e r
beliefs andporactice Fr om my o wn e x pratheneancabeliefs plag ardidale r s 0
role inthe selectiorof pedagogicatlassroomapproachesA number ofresearchrsendorse

this view (e.g. Thompson, 19841985, 1992 Schoenfeld, 1985, 1992, 201Hrnest,1989a,

1991, Cross, 200%Cai & Wang, 2010Beswick, 2012 while others report on inconsistencies
between beliefs and practices (e.g. Cooney, 1985; Raymond, 1997; Skott, 2001).

Regrettably,within the literaturel was unable to detect any previotessearchexplicitly
involving mathematicaproblem solving and problem posibgliefs of bothScottishcurrent
primary and secondary mathematitsachersAlthough, a smallquantityof Scottishstudies
exist thatexaminestudentprimaryt e a ¢ mathemadicalbeliefs (e.g. Machab & Payne,
2003 Henderson & Hudson, 2011Henderson, 20X}, newly qualified secondary
mathematicgeachers beliefs abothe learning and teaching of mathematiesy. Forrester,
2008) primary teache®mathematical beliefs (e.g. Hudson, Henderson & Hudg604.?2,
2015) primary andsecondary e a c bebkefsabdutprofessionablevelopmente.g. Wallace
& Priestley, 2011 Biesta, Priestley & Robinson, 201 5rimary and secondary teach@&rs
beliefs on the arts (e.g. Wilson et. al, 20@8d secondary science araligious education
teacher8 collaboration beliefs (e.g. Hall et.al, 2014). Collectively, thesemiscellaneous
studiessuggestwithin Scottish education, thavestigaton oft e ac h e r s éf interest i e f

all be it on a small scale.

Consequently,in orderto afford this researchmmediatefocus, | offer an unconditional
definition ofteacher8beliefs(I discusghis theme in more detaiithin chapter fouy. | refer

to Kagan (1992), whexpressed



20

Teacher belief is a particular provocative form of personal knowledge that is generally
defined as preor inservicet eacher s o i mplicit assumpt i c
classrooms, and the subject matter to be tajylg566).

For more than half a centuryd@cational researchers haseploredt e a c bebéefsim their
workplace. Several comprehensivereviews of this literature exist which reflect various
approaches to understanding the multiple perspectivestteaaetical nature of teachérs
specific beliefsand their inflences on practicée.g. Kagan, 1992; Pajares, 19920ompson,
1992;Fang, 1996Richardson, 199&hillip, 2007;Fives & Buehl, 201p

It is important to considerin the absence of available research, dperationalisatiorof
mathematical problem solving and problem poswithin Scottish classroom&he OECD

(2015 p. 11)argueghat professionaknowledgemust bebalancedoy researctor evaluation
projectsand enphaticallystate n Ther e i s a <cl ear actuallgbeingo  k
i mpl emented in school s anAccodingtyrmanmpodtulaiegs a c
that byexploringt he nat ur e o f m&henaticabelgefs, enpiecal ovidences 6
will be gathered thacan stimulate our understanding of current professional praxftiCEE

within primary and secondary schookaus, a worthwhileopportunityexists toameliorate
mathematicseducational plicy, which may lead toenhancd future classroom experiences

for all learners.

1.3.3 Learning theories

In this section, loffer a short review of constructivism and collaborative learning,
individually which are driving forces of CfE. In my professional experience, both
multidimensional chilecentred approaches collectively offer rich learning environments to

promote the teaching of mathematical problem solving and problem posing.

However, | begin by justifying the need to engage in such a pedagdgicalirse. First, am
charged witha professional obligation to demonstrate a secure knowledge and detailed
understanding of learning theories (GTCS, 2012), which has been intensified by political and
societal rhetoric to cater for the diversity of learmariability within an ever changing pupil
population. Simultaneously interwoven into this requiremenbwusrt curricula awareness
resonating with a constructivist view s¢hooling (Drew & Mackie, 2011). This is aontras

to the entrenched belief helty some teachers thperceived knowledge and learnirggthe
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transmission of contengPriestley & Minty, 2012) or at best, restricted to a superficial
catchphrase alluded to by Cobb (1994, p.
rejectingt he assumption t hat 6one size fits é
practitioners must think critically about
tools available for analysing the extent to which the necessary conditions Hieviag
speci fic ai ms for l earning ar e present
infrastructure of education is underpinned by the presence of theorisations of learning which
help to facilitate and shape classroom practice. Moreover, it ggalo to posit that
explorations of t eac heconsdnitabtlycl oi nesfisd earb otueta cth
about learning

Learning theories are conceptual frameworks that describe how individuals learn, often by
reference to a particular mod&i human cognition or development (llleris, 2009). There are
many diverse and in some cases opposing philosophies of how humans acquire knowledge
For example, behaviourism has been intrinsically linked with education for many years and
until a few decade ago was the dominant philosophy inltiple dassrooms. Based on the
model developed bySkinner, it attempts to apply the methods of science to the study of
human learning. It is concerned with observable changes in behaviour that results from
stimulusresponse associations made by the leafBehaviourism draws on the common
practice of reinforcement through reward and punishment such as gold stars for good work
and punishment exercises for unsatisfactory behaviour (Lerman, 2014). pkéckioners
possess a theoretical awarenessvafious learning styles this must be reinforced by a
pragmatic perspective that encouragdispupils to think metacognitivelyin order to take
responsibility for their own learnindgdiebert & Grouws (2007, p. 373dd a aveatwithin

mat hemat i cs education: AAl't hough theories

teaching, they do not translate directly i

The theory of onstructivism isat the core of the revised mathematics curiiculn Scotland.
Influenced principally by the seminal contributions of Piaget and Vygotsky, ianis
epistemological position which is concerned with how learners construct their own
understanding and knowledge of an intellectual world, through experngevientsand
reflecting on those experiencé&e nt red on t he | earner, Si mo |

construct our knowledge of our world from our perceptions and experiences, which are
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t hemsel ves medi at ed t hrlbdiffgrdifrono hehaviqurisra v that it s |
guestions the origin of knowledge where knowledge is seen as created rather than receivel
mediated by discourse rather than transferred by teache¥\hlle there are various forms of
constructivism, within education and espfically relevant to this thesis, two branches are

most relevant, namely cognitive constructivism and social constructivism.

Cognitive constructivism

Within the conceptualisation of cognitive constructivism, Piaget developed a theory centred
on how children pass through stages of intellectual developrasnh result of biological
maturation and environmental experientle goal of his theory is to explain the mechanisms
and processes by which the infant, and then the child, develops into an iativitlu can
reason and think using hypothesemget (197 ) advanced the view
construction of knowledge is a se#fgulating process and that knowledge is not passively
received from the world but created as individuals (and groups} talamake sense of their
experiential worlds. In other wordsnowledge is actively built up by a cognising human who
needs to adapt to what is fit and vialet thatan i ndi vi dual 6és knowl
state of change because humans are subject to afilutaating reality (Von Glasersfeld

1991, 1995)Maclellan & Soden (2003) articulate Piagetian theory thus:

I ndi vidual s6 cognit ietablishsar drdeniness and predactability im e m
their experiential wor |l ds. When experienc
cognitive disequilibrium results, which triggers the learning process. This disequilibrium
leads to adaptation. Reflémh on successful adaptive operations (reflection abstraction) leads
to new or modified concepts (accommodation), contributing-egrdlibration (p. 111).

The implication for the classroom is that pupils learn through interaction with peersiand it
this process of collaboration which results in their existing beliefs and assumptions being
challenged, thus initiating change. The role of the teacher is to create stimulating and
resourceful learning environments to facilitate appropriate activibedring about the
challenge. Two points are noteworthy here. One is that the classroom culture contributes tc
learning while the child contributes to the culture of the classroom (Yackel & Cobb, 1996).
Second,during disequilibriuma pupil can often feelanfused and uncomfortable as they
grapple with new concepts for the first time but this can be harnessed positively by the teache

to support learning (Carter, 2008).
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An exponent of cognitive constructivism that is promulgated within CfE is active tegarni
Though there is a lack of conceptual clarity surrounding this construct within national policy
documents (Drew & Mackie, 2011), it is delineated on two occasloitglly, the Scottish
Executive (2007, p . 5) define active |l ear
which engagesandchallengesc hi | dr ends t Hiirfkei nagn du siinmmagg i rnea
Later,to acknowledge secondary educatitme Scottish Goveiment (2008, p. 30) express

that active learninghouldi bui | d upon chil drends enthusi
and Apromote the devel opment of | ogi c-al é
sol ving Apgachodd thé lderature sggsts that active learningan be said to
encompass four dimensions such as behavioural, cognitive, social and affective (Watkins.
Carnell & Lodge, 2007; Drew & Mackie, 2011). Within such topography, Rosenthal (1995)
argues that most mathematicians coniti best way to learn mathematics is by actively
doing mathematics, which includes discussing it with others and by synthesizing fundamental
ideas. Likewise, Ellerton (2013) encourages the active involvement of learners in posing
problems during mathemasién order to demonstrate conceptual understanding and to furnish
individuals the opportunity to solve, critique and reflect on their own mathematical problems

including those of other peers.

Inside a constructivistsetting,to allow for thegreaterparicipation of pupils, the teacher is
someone who promotes and orchestrates classroom discud&@med through the lens of

CfE, Reeves& Drew (2013, p. 38dr aw attention to thewhd unc
must relinquish her central position in tbklassroom; as a source of knowledge, as the most
domi nant speaker and as the ev&éeuea & Drew a n c
(2013) allude that this shift in emphasis has connotations for teacher professional identity anc
classroom controlQuesioning is of paramount importance and can generate fertile learner
experiences. Such rich interactions force pupils to communicate their thought processes t«
represent and reflect on their encounters. The necessity to convegnawer questions
verbally forces them to examine and even revise their concepts of reality (Vygotsky, 1978).
However, eachers must bepenly receptive to the notion that a child mightégard a
mathematical concept in quite a different way than it is perceived and ihdissonance is

not simply reducible to missing pieces or absent techniques or methods (Confrey, 1990).
During thiscommunicatiorpr oc e s s, Confrey (1996ystfgmanl 09
adequate model of t he st ud ethen sust assstythe stuadnt v i

in restructuring those views to be more adequate from the stG@ewtdrom the teachés
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perspective . Il 't may b epupllse@veldot partidipatidn int the dearning process
are inextricably linked to their teaelr s 6 | evel s of cogndtivetlearmngp at
process Practitioners require a high degree of conceptegbertise and pedagogical

knowledge fashioned by a cultusécritical reflection.

Within mathematics classrooms, pupils are activielyolved in constructing their own
mathematical knowledgeopposed to memorising algorithmic procedures or endlessly
practsing a litany of similar examples.erman(1993) whilst contending thabastructivism

offers a justification for mixed ability classeand individualised learningakes a parallel
between apowerful metaphor of childrerdeveloping mathematical structures and the
processes involved during mathematical thinkimpgyrticularly during problem solving
Another influential contribution on thitheme is articulated by Ernest (1991) who makes
explicit reference to problem solving and problem posing. He argues that the aim of teaching
mathematicsis to empower learners to create their own matherabkicowledge and to

developconfidert andautononousproblemsolvers and problem posers.

Towards the end of the last century, Ernest (1998) built his theory of social constructivism by
arguing that the learning and teaching of mathematics is indelibly linked to a philosophy of
mathematics. Howeverging furnishedwi t h a new set of theoret
can be empowering for teachers (Prawat, 1992) but may serve to complicate an alread
overloaded working life. More prosaically, constructivism is open to interpretétsoG.obb

(1988, p. @) cautionssi Al t hough constructivism theory
is considered, deepo ot ed problems arise when at tlempt
believe that issues of intersubjectivity can be enhanced by robust pedddogiwvledge.

Cobb (19883 highlights two essential criteritor teachers which includescceptancef the
responsibility tofacilitate profound cognitive restructuring and conceptual reorganisation
along with transferencén the belief of what constitutea successful learning outcome.
Regarding the lattemspect, he avows thabnstrictivism does notassurme a oneto-one
correspondence bet ween pupil sé observabl
structures In other wordsijt is feasiblefor pupilsto use the prescribed methods to solve a
particular sets of tasks on which they have received instruction without having developed the
desired conceptual structur@3obh 1988).
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In my professionalview, t eacher s o beliefs ar e trativist a ct
environments for mathematical learning. Pirie & Kieren (1992) resonate witpetfspective

- drawing upon extensive empirical dathe authors argue that the creatiorcofistructivist
environments can produce improvementshiea mathematicaunderstanding of pupils. Such
claims are supported by other researchers (e.g. Fraser, 2001; Webster & Fisher, 2003
Anot her critical theme of constructivism
topic of assessment. Reflecting on thentcibutions of previous researchers, Confrey &
Kazak (2006) maintain that providing teac
engage them in examining their own beliefs and in looking more deeply into pupil thinking

and reasoning.

Social constructivism

In a similar way that the contribution of Piaget relates to cognitive constructivism, the work of
Vygotsky has greatly influenced social constructivis@rounded on the premise that
development cannot be separated from its sagidlcultural contexisocial constructivism is

a theory ofknowledge that examines the knowledge and understandings of the world that are
developed in harmonisation with human beinds maj or t heme of Vyg
framework is that he believed eything isinternalisedon two levels.Initially, cognitive
growth occursttoughi nt er action with others, and the

structure. According to Vygotsky (19¥8

Every function in the cdrdtwiagkofisst, anuhe soagial kevel, d e
and later, on the individual level; first, between people (interpsychological) and then inside
the child (intrapsychological). This applies equally to voluntary attention, to logical memory,
and to the formation ofoncepts. All the higher functions originate as actual relationships
between individuals (p. 57).

From a mathematics education perspectieejat constructivisntonsidersknowledge to be
drivenby humaninteractionsand cultivated by learningpmmunities composed of individual
mathematicians. Wood, Cobb & Yackel (1995, p. 40&e:f | t is useful to
as both cognitive activity constrained by social and cultural processes, and as a social an
cultural phenomenon that is constitlite by a community of acti v
Such a process furnishes teachers with a
development of knowledge. It requires them to formulate a practice that corresponds with
t heir pupi |reifyanmdehaller@es thenito lea@restruct what it means to know, do
and teach mathematics (Wood, Cobb & Yackel, 198&)est (199)introduced the notion of
mathematical objectivitypy linking subjective and objective knowledge in a cycle in which

each cotributes to the renewal of the othéx practicalillustration of thisconceptcan be
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located duringassessmentor instance, @roaches whiclevaluatemathematical creativity,
posing problemsnd reasoning ability are subjective, whiledit@mnal method that focus on
computationaskills and procedal fluencyare objective.

A major doctr i ne)thedryisvMhe gomdes that the potentiad fér&ognitive
development is |l imited t o (ZRD).dt&aefimed lwyhinaBr o x
fthe distance between the actual developmental level as determined by indepewidlent
solving and the level of potential development as determined through problem solving under
adult guidance, or in collaboration with more capable gg@rs86).In simple terms, it refers

to a range ointernalknowledge that may be out of reach for a pupil working independently
but is accessible if the pupil has support from a teacher or more capable peer (Figure 1.1)
Goos (2004, p. 262points outthat the ZPDii s not a physical Spa
created through the interaction of learners with more knowledgeable others and the culture
t hat precedes t hemo. Embl ematic interacti

graphs, diagrams, etc.pathe culture within and beyond the classroom.

Figure 1.1 Zone of Proximal Development (Vygotsky, 1978)

Problem solving outside

the individual's ability. Level

of problem solving that cannot

be accomplished independently nor
under teacher guidance or with the
help of a more capable peer

Zone of

Independent problem solving Proximal

Development

From a Vygotskian perspectivesachers aid intellectual development in pupils by providing
them with information and temporary structural support in carrying out a task, which is

gradually reduced as pupil competency increases. This instructional technique is universally
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known asl dd sngaf fand has been characterised
concept of working in theZPD (Wells, 1999).From my professionalexperience, many
practitioners endorse this position as according to Hammond (2008turally resonates
withthei r own intuitive ideas of what it me a

learning.

Collaborative learning

The Scottish Governmen2@08,2009)emphasisgthat collaborative learning will encourage
children to reason logically and creatively through discussion of mathematical ideas and
conceptsVNygot skyds theories permeate coll abor e
should have different levels of alyliso more advanced peers can help tegmble members
operate within their ZPD. In itslementaryform, Roschelle & Teasley (1995, p. 70) describe
this approach as fAa coordinated synchrono
toconstrucand maintain a shared conception of
knowledge can be created within a population where members actively interact by sharing
experiences and taking on asymmetry ro@aring successfulcollaboraton, theagent of
inquiry is not the individual, but the knowledgenstructing grouppupilstake responsibility

for knowing what needs to be known and émsuring that others know what needs to be

known (Hargreaves, 2007).

The majority of studies on collaborative learning adopt constructivism, especially theories
from Piaget and Vygotsky, as the theoretical underpinning of peer collaborative learning (e.g.
Fawcett & Garton, 2005) because they focus on building meaning themagpl interactions
(JohnSteiner & Mahn, 1996McCrone (2005, p. 11Xlaimsthat group intgplayc a allowi
students to test ideas, to hear and incorporate the ideas of others, to consolidate their thinkin
by putting their ideas into words, and hence, to build a deeper understanding of key
concept so. Di scussions i nv iwhieh cadn exoser @mmeon t o

misconceptions and lead to stronger connections between mathematical topics.

Orchestrating collaborative learning to accommodate multiple perspectiyeses teachers
to cultivate positive interdependencbe less controlling rad pupils to be autonomous
individuals who take more responsibility for their own learning (and that of their peers). It is

essential for teachers tordgatefrom a procedural driven agenda and embrace a concept
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focused culture that promotes critical tkimy and reflection. Importantly, teachers must be
able to explore meaning and mathematical relationships throughnean dialogue. In my
opinion, collaborative learning is exemplified when presenting opportunities for pupils to
tackle challenging matheatical problems prior to offering them guidance and support. This
encourages leaers to apply prexisting knowledge that can be used to organise a method or
a solution, prior to any intervention. Such an approach is buttressed by exemgiveal
research evidence (Swan, 2006).

However, preparing formative and summative assessment information is probldmatic.
study of Scottish primary teacherso view
McKechan & Ellis (2014) found that practitionease challenged to accumulate and collate
assessment evidence while simultaneously supporting the learning. The researchers sugge

that this tension could be reduced by the use of technology to store data spontaneously

1.3.4 Mathematical problem solving

Mathematics as deading subject within Scottish education has been revitalised by the
development of a pronounced emphasis and increaggdisanceof mathematics within
learning.It has been proclaimed by the Scottish Executive (B006 p . 18) thehat
challenges of the 21century, each young person needs to have confidence in using
mathematical skills, and Scotland needs both specialist mathematicians and a highly numerat

p o p u | .8n theotlmeme adeveloping effective autributors,they declare:

Mathematics offers a host of different contexts to apply skills and understanding creatively
andlogically to solve problems. Working on suitably challengprgblems individually and

in groups helps to develop resilience and gives opportunitiesnbmunicate solutions. The
future prosperity of Scotland withia competitive globakconomy will depend upon high
levels of numeracy across the population and significant numbers of ong yeople with

the mathematical competence to operate in specialist contexts such as research an
development environments (p. 19).

The conceptualisation ahathematicabroblem solving is no longer considered a separate
componentbut has beeemphasisd as fundamental taeffectivelearning and teaching in all
aspects of mathematicand i ts assimilation 1s fAaddr e:s

rat her than appearing as a separate el emer
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It is recognised that pupils need support in improving their mathematical problem solving
competenciesShortly after the implementation of Cfievidence provided byducation
Scotland (2012, p. 1cknowledged n t he 2011 SSLN t Wehand i t
young peopl eds r es posirengtisen theicdpaciyto solvepmoldemd s a
Teachers have a shared responsibility to ensure they addregedhigogicalequirement.
Halmos (1980, p. 523yarnst h a t nit i s achdnse anddaf toyrse debichess|of
mathematics in particular, to expose their students to problems muchsoboré a n f ac
Mathematical problem solving is pivotal to doing, learning and teaching mathematics
(Schoenfeld, 1992) and is a central goal ¢E.CThe Scottish Government (2040p. §
assegsthatafipr obl em solving approach is at the
mat h e mé&urtheomere, gidelines offered to practitioners (Scottish Government, 2010b,

p. 8) instruct teacherstbe mbody problem solving as an i
appr oaHalmesg1®85p. 323 highlightsthat: i Ateacher who is not always thinking
about solving problems ones he does not know the answei tis psychologically simply

not preparedo teach problem solving to his students

In spite of a wealth of internationditerature being readily available for the learning and
teaching of mathematical problem solving (€2glya, 1957 Schoenfeld, 1985Silver, 1985
Schroeder & Lester, 198%tanic & Kilpatrick, 1989 Lester & Charles, 2003; Schoen &
Charles, 2003Posamentier & Krulik, 2008Mason, Burton & Stacey201Q Lester & Cali,
2016, no manifestation of thistheoretical influence has beenarticulaked within any
mathematicscurricula documentationFor example, no effort has been made to detee
construct ofa mathematical problenin his analysis of American research, Lester (1994, p.
661) professed that #Aproblem sol vingeahtas
under st ood, topic in the mathematics <curr

mathematical problem solving fisobilisedwithin Scottish schools.

1.3.5 Mathematical problem posing

On review of CfE mathematical framework, no explpstdagogical provision is specified for

the conceptualisation and operationalisation of mathematical problem posing. Nevertheless, i
Is widely accepted within the mathematéxiucation research community that problem posing

iIs regarded as a vehicle f@aromoting conceptual understandjngroblem solving and
creativity (Cai et al., 2015)I reject the purported notion that problem posing is considered

implicit or tacit mathematical knowledge enacted by all teachers but instead argue that it is
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deemed a fieldn its own right. Consequently, posit that mathematical problem posing
requires to beembeddedwithin CfE and present a rational for its formal inclusion in this
thesis. An illustration of where mathematical problem posing may assimilate within CfE is
displayed in Figure 2.

Figure 1.2 Proposed location of mathematical problem posing within CfE experiences and
outcomes
. L
Mathematical | Mathematical |
Problem : Problem |
Solving | Posing :
e o — =
A
Number, Money Shape, Position and Information
and Measure Movement Handling

As in the case of mathematical problem solving, it is unknown to what extent mathematical

problem posing is being currently mobilised in Scottish schools.

1.4  Aims of the research

Within the structureof CfE, responsibility forthe learning and teaching afathematics is
shared reciprocally between primary and secondaryestablishments.This crosssector
accountability transmitgo primary and secondary mathematieachergespectively despite

the diversitiesin entry requirements and trainingequired forboth interrelatedprofessions.
There are two primary aims of this studyirstly, to critically examinea reconceptuatation

of the existing mathematics curriculum by addressipgley gap initiated by themissionof
mathematical problem posin§econdly, toprovideempiricalevidenceo f Scot t i s h
beliefs and espoused classroom practicesnathematicalproblem solving and problem
posing. It is suggested that the evidence gathered can help tmdtencurrent professional
practice and shape future policy. Some of the variables that impinge upon the optimisation of

integrating mathematical problem solving and problem posing are identified.

In order to attempt to highlight some of the dynamic¢ thamay i ndirect |l y i
mathematical beliefs in Scotland, | have provided a simplistic schematic overview illustrating

the conventionalposition of a teacher within the national framework of CfE (FiguB. 1t



31

may be observed within this Inggchical structure, both mathematical problem solving and
problem posing are not included rretional assessment components by the SQA.

Figure 1.3 Overview of teacher within the national framework of CfE
Curriculum | Scottish | National Curriculum R CPD
Policy Design Government Guidelines Development
Responsibilit
for what is LEA Autonomy
taught
Targets
School Teacher .
Leadership Faculty Head Beliefs Attainment

Professional Enquiry

Mathematical i Mathematical
Problem ——> Research «———  Problem
Solving : Posing

Improvement
Agenda

Not Assessed——» SQA [+—Not Assessed

1.5 Research questions

This study sought to answer the following sfiecesearciguestions:

Question 1

To what extent lgould mathematical problem posirtge embedded withithe mathematical

frameworkof Curriculum for Excellence?

Sub questions

(@) What would be the value for learnersasfiphasisingnathematicaproblemposingin
the curriculunt?

(b) What would be the implications fdr e a ¢ prefessiodalpracticeof implementing

mathematical problem posing in thepedagog¥
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Question 2

Are there any differences in theathematical beliefs o$cottishprimary and secondary
mathematics teachers?

Sub questions

@ What is the importance of |l earning thec
(b)  Whatare € a ¢ hbelifsaboutmathematicaproblemsolving?

Question 3

What factors impact onthe mathematical beliefs of primary and secondary mathematics

teachers?

Sub question

(@) What are the practical characteristics that support or constrain the development of
t e aclebkefs’s 0

In order to address these research questiomsitidlly conducted a literature review of
mathematical problem solving, mathematical problem posing and teadiedisfs. This

served tqrovideseverakheoretical framewokfor this research

1.6 Methodology

This study involved two strategies. First, a systematic literature review was undertaken to
search for empirical evidence of the educational benefits of mathematical problem posing.
Second, anixed methods explanatory desigvas employed usinguestionnaire andsemt
structured interviews as the instruments to measathematicabeliefs and capture levels of
current professional practices. Descriptive and inferential statistios.g( bar graphs,
histogramsfactor analysisindependent sampledésts and ANOVA) wereutilisedto analyse

guantitative dataThematicanalysiswasused forthe interrogationof qualitative data.

1.7 Outline of the thesis

Prior to providing an outline of the structure of the thesis, it is necessary for clegitpthe
nature of the research containeerein. This research iswofold. First,it seeks to address a
legitimate gap in knowledgegeneratedby the mathematicpolicy of CfE which failed to

encapsulate changes in contemporary knowledge and emerging redeamththe
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mathematics education communityhe contributionto knowledgewill be a compelling
argument for the inclusion of mathematical problem posiitgin CfE. Secondthis research
sanchored on the premise that teacherso |
intertwinedwith their professional practicdt seeks to explorenaimportantgap in knowledge

in Scottish edcation by capturing Scottish teacheésmathematical beliefs and espoused
professionalpractices The contribution to knowledge will be to proviéenpiricalevidence

that can serve as importance indicators of current levels claissroom pretices of
mathematicaproblem solvig and problem posingnterpretation of findings from the data
collection process will be evaluated against existing policy including previous research, from
which, it is anticipated that recommendations will emerge that will improve the standard of
ScottisheducationFollowing on fromthis introductory chaptethis thesis iorganisedhus:

ChapterTwo provides a literaturereview of mathematicaproblem solvinglt addresssthe
conceptualisatiorof problem solving making reference to theéheoreticalwork of Folya
(1957) and Schoenfeld1985, 1992) among others. It examines the relationship between
heuristicsand pupil performance,the use of multiple sations and faairs conributing to
successful problem solvingicluded is a discussiasf the three types of teaching approaches

to problem solvinglescribedy Stanic & Kilpatrick (1989and consideration of assessment

The third chaptefocusseson introducingthereader to the conceptualisationroathematical
problemposing Building on theearlywork of Kilpatrick (1987) andBrown & Walter 005,
it discusses the importance of problem posing in school mathematics and illusintitele
theoreticalperspectives anframeworks.Incorporatedis an examinatiorof the advantages

and limitationsof problem posingndjustificationof why it is a rich area for research.

ChapterFour contains aiteraturereview ofthe construct of e a ¢ h e r Aasdorerlent e f s
of theoreticalperspectives ioffered that emfnasise the profoundhfluence of this critical
dimension. Discussion 6 the impact oft e a c Ibaliefssafd the relationship between

practicess presented.
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The fifth chapter is concerned with methodology and methods. | have attempted to illuminate
the core components of research such as ontology and epistemology that have afforded m
research objectivity. Documented is a narrative of my research position and assessment of tf
interdisciplinarity of this study. Previous empirical studies measuring teaghe bel i e
listed. Justification of the methods selected for each research question including results of :
systematic literature review is provided. Information on design, development and piloting are

integrated. Ethical considerations asglained in detail.

ChapterSix analyses the data gathered from the questionnairesdahndsses thsecond and
third research questions. resentghe statistical results of phase one of the mixed methods
explanatory design. Encompassed is validatibthe parametric testanda briefdescription

of volunteeredarticipans 6Gomments.

Chapter Seven analyses the results of interviews undertaken and addresses the second &
third research questions. It presents the qualitative results of phase two of the mixed method

explanatory design. Participant information @amlergenthemes arelepcted.

The eighth bapter presents the findings of the research, focusingeach of thethree

research questionkdiscuss the lessons fropneviousresearcho make comparisons.

In the finalchapter, Idraw together the variousrahds of the thesis in order tendermy
conclusions. This consists of limitations of the stadywell asmplications for policy and
practice.Recommendationsna suggestions for further research are proposed. The ultimate

section is devotetb a synops of what | have learned as a doctoral student.

In summary, his chapterhas laid he foundationsfor this thesis. The following chapter

provides a literature review of mathematical problem solving.
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CHAPTER TWO

Mathematical Problem Solving

During the last fifty years or so, a considerable amount of literature has been published or
mathematical problem solving. In this chapter, | attempt to outline the key ideas and theories
In the first section, it is necessary to offer a background inr e¢odeontextualise my research.

2.1 Introduction

For more than two thousand years, mathematics has provided a powerful universal languag
which has acted as an essential ingredient of the anthropological search for knowledge an
understanding. It is umdpinned bypatterns,rigorous proofs andbeautifultheorems which
postulate truths of mathematical statements, conjectures and by intellectual and logical
arguments. During the last century, the accumulation of mathematics and its applications ha
accelerated resulting in the emergence of contemporarcheanof mathematics such as
game theory, quantum mechanics, computational mathematics, operational research and graj
theory. Intriguingly, mathematics has been portrayed by Carl Frederick Gauss as the queen c
sciences, opined as an art (Lockhart, 200@) @aradoxically, by Bertrand Russel§ cited by
Garni er & Tayl or (2010, p . 52) , being dntl
talking about, or whet IDevlin (2008 &lbquently captures the a y

essence of what mathematis all about:

As the science of abstracttmans there is scarcely any aspect of our lives that is not
affected, to a greater or lesser extent, by mathematics; for abstract patterns are the ven
essence ahought, of communication, of computatiad,scciety, and of life itself (p. 7)

Mathematical advances have derived both from the attempt to explain the natural world anc
from the desire to arrive at a form of inescapable truth from careful reasoning. These remair
rich and influential motivatios for mathematical thinking. Mathematics has been successfully

applied to solve numerous complex and profound aspects of the human and societal domair
Archetypal il lustrations i nclude biol ogi
development of thenternet, predicting population growths, synthesis of new materials,

warfare systems design, analysis of traffic patterns, forecasting earthquakes and modelling @
social phenomena. Skemp (1987) emphasises the importance of mathematics to society ar

drawsattention to practical applications:
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Mathematics is the most abstract, and so the most powerful, of all theoretical systems. It is
therefore potentially the most useful, scientists in particular, but also economists and
navigators, businessmen ando mmuni cati ons engineers, -find
processing system) for their work (p.-18).

Today, mathematics remains as a crucial device for shaping the future of mankind, whilst
maintaining a prevalent influence on daily life. Mggeominently, it is perceived to be a
major factor which contributes to the wealth of a nation. Napoleon, as cited by Boyer &
Mer zbach (2011, p . 423) famously procl ai
mathematics are intimately connected with the pgosp t y o f the state
attempting to raise national awareness of mathematics, The Scottish Governmeh} (2016
war n: nlt iI's essential t hat our wor kforc
economy is to continue to compete internatnal | y 0 (p. 26) . Co
administration recognises the grave intrinsic challenges that remain by acknowledging our
dismal public image of mathematics. Thearnt h a t nScotland has a
many of us are happy to label ourselves afino good with numb-er s.

rooted and is holding our country back edul

The responsibility of mathematics education is designed towards tackling contemporary
problems, nurturing creative and criti¢hinking skills and cultivating productiveethodsof
acquiring and retaining new facets of analytical information within a constantly changing
dynamic environment. In schools, pupils need to develop more than tangible mathematical
knowledge; transferrdd skills such as the ability to reason logically, in order to prepare for a
fluctuating competitive market place, particularly as the exponential growth of technology is
making larger quantities of information more accessible. On leaving school, youplg peo
need to adapt further to unfamiliar or capricious situations (compared to their counterparts in
the past) and be equipped with the ability to provide innovative and resourceful solutions to a
wide range of challenges. Therefore, schools have an dbliged empower learners to
become creative and critical thinkers as well as mathematically literate citidansally,

such a desired outcome is only plausible if pupils are furnished with a myriad of mathematical

problem solving skills.
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2.2  Problem solving and mathematics education

It is important to consider the position pfoblem solving within mathematiasducation
Castaneda, Gibb & McDermit (1982, p . 22)
progress can be attributed to the unicplslity of people to solve problems. Not only
problemsolving ability critical to human progress and even to survival itself, but is one of the
mo st i mportant aspects of mathematicso. G
expresses the view that problem solving is the highest form of mathematical learning.

In the same vein, Krulik & Rudlik (1993, p. 9) assert that problem solvirg ligetime
activity and that all/l ot her activities ar
solving should be continuous. Discussion of problems, proposed solutions, methods of
attacking, et c. s h o ul dTheéauthors ondeslinedhatr peindary a t
practitonershave the responsibility for initiatd.
for building the childds capacity tsaving e al
e n ¢ 0 u nlikewmse, bester & Lambdin( 2 0 0 4, p . 192) bel i eve
mathematics learning are understanding and problem solving, and that these goals ar
inextricably related because learning mathematics with understanding is best supported b
engaging i n pSinuldly, prominsnbnhatheématgian. Paul Halmos emphasises
the significance of problem solving in schools and argues that it is the responsibiidyhof

sectordo promote. Halmos (1980) maintains:

The major part of every meaningful life is the solution afijems; a considerable part of the
professional life of technicians, engineers, scientists, etc., is the solution of mathematical
problems. It is the duty of all teachers and of teachers of mathematics in particular, to expose
their students to problesrmuch more than to facts (p. 523).

However, it is essential to distinguish between problem solving as a separate activity and a
an approach to mathematics (Schoenfeld, 1982ysequently, it is of no surprise that for
educational systems throughout the world, the conceptualisation and operationalisation o

mathematical problem solving is a foremost pedagogical curriculum objeEtiveexample,

Xenofontos & Andrews (2012, p. 7ai nt ai n t hat : Al n many E.L
solving and its related skills form key expectations of the intended curriculum for students of
al | d me seon.gl and, the Cockcroft Report (169
teaching at al |l |l evels should iBotle Austchla o p

(Australian Education Council and Curriculum, 1991) and America (NCTM, 1980, 1989,
2000 2010, 2019 have strongly recommended that the learning and teaching of school
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mathematics should be centred on problem solviiige NCTM (2000 postulatesiunless

student s

can solve probl ems, the fact s, c

(p- 182) Significantly, they articulate thap r obl em sol ving [

S

mathematics learning, not an isolated part of the mathematics piiograra that

Al nstructional programs should

enabl

through problem solvingo (p. 52)

e

an

al

Similarly, in Singapore, problem solving is the overarching approach to primary and

secondary mathematics educatemd at the heart of learning and teachijRggure 2.1). As
p .

explicitly outlined in the Ministry of Edewt i on ( MOE,

2007,

3)

central to mathematics learning. It involves the acquisition and application of mathematical

concepts in a wide range of situations, including-rautine, operended and readorld

probl ems. 0 T lmeshipi batwveemmaathematicseahdaproblem solving was further

strengthened in 2011 with the introduction of a research project known as MProSE. Its vision

is to integrate problem solving into the everyday teaching of mathematics in all Singaporean

schools, egardless of ability or sector.

Figure 2.1 Singapore mathematics curriculum framework (Ministry of Education, 2007)

Beliefs
Interest Monitoring of one’s own thinking
Appreciation Self-regulation of learning
Confidence
Perseveranc

Numerical calculation
Algebraic manipulation
Spatial visualisation

Data analysis
Measurement

Use of mathematical tools
Estimation

Reasoning, communication
and connections

Thinking skills and heuristics
Application and modelling

Numerical
Algebraic
Geometrical
Statistical
Probabilistic
Analytical

2.3 Conceptualisation

Whilst the portrayal of mathematics is universally known to all, many researcher

educationalistshave describedn assortment oflifferent representationsf mathematical
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problem solving without agreeing oncanceptualdefinition (Lesh & Zawojewski, 2007;
English & Sriraman, 2010; Lester, 2013;hoenfeld, 201)3 Critics such adMamonaDowns

& Downs (2009 maintain that the formatioaf an undisputediescriptionof mathematical
problem solvingmay beelusive whilst othersbelieve thatsomeexplanationsare outdated

(e.g. Lesh, Zawojewski & Carmona, 2003r hawe different inferences (e.g. Wilson,
Femandez & Hallaway, 1993)Given innumerablaneaningsalready in use, Grugnet&

Jaquet (2005)as cited by Chamberlin (200®. 2, i sugge st t hat a corm

mat hemat i cal problem.solving cannot be prc

The researchso far has tended to focus on expandingc@lection of illustrations. For
example,mathematicaproblem solving is engaging in a task for which a solution is not
known in advance (NCTM, 2000$choenfeld (198 p. 4] declareshata fipr ob |l em i
problem (as mat hematicians use the word)
problem that has no 6surprisesod6 in store,
procedures (no matter how difficult!) is an exer@ linterestingly, Schoenfeld (198%. 71)
provides an alternativev i si on of problem solving as fia
i ndividual and the task that .BankadysOrtbrh& t a
Frobisher (2005p. 29 prod ai m t hat Afa mat hemat i cal pro
exer ci se .fWhat is aistioctive abouthe previous twodefinitions is that they
recognise the person experiencing problematieitiyich raises an obvious questifnom a

t e ac h e redide abput hosvpo classify such a tasRolya (1981)conveysproblem

solving as deatureof humanendeavourby stating that

Solving a problem means finding a way out of a difficulty, a way around an obstacle,
attaining an aim which was not immediately attainable. Solving problems is the specific
achievement of intelligence, and intelligence is the specific gift of manghathtiem solving

can be regarded as the most characteristically human activiky. (p.

Alternatively, Mayer (1985 p. 123 succinctly statesthai A pr obl em occur s

confronted with a given situation| et 6 s cal | iTtandtyduewany anetleen s
situationi | et 6 s cal | ti bu theretishne obgicuaway attomlishing your

g o0 aAccording to Cai & Lester (2) p. 22) problem solving Ais

individual to engage in a variety of cognitive actions, each of which requires some knowledge
and skill, and s o me Maidod (W/B8j pc 185 caitinesmatherhaticalo u t

problems as Athose tasks where the situat.
no obvious al gor it hbkewise rPosanfedtier & Kruléd €008, p.t1p U
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asserts t haasituétian thatrconfsdnte anpensas, that requires resolution, and for
which the path to the solution is not | mme

In contrast, Verschaffel, Greer & De Corte (2000, p. ix) highlight a commisnonception
amongst teacherthat word probée ms ar e fAver bal description
one of more questions are raised for which the answer(s) can be obtained by the application c
one or more mathematical operations to the numerical data available in the problem
st at e Wvbah is doubling about this definition is that does notrefer to cognitive
thinking and presumeghat a solution isasily achieved byapplying a stawlard procedure
Previously,Smith (1986 p. 1§ warns practitioners to exercise better judgment in interpreting

fa set of words which are wrapped around ¢

Cai & Nie (2007 p. 47) argue thaproblemsolving acivitiesare viewed as a gbto achieve

and as arnstructionalapproactsupported byexperiencefiThe purposeof teachingproblem
solving in the classroom is to develspudenté problemsolving skills, help thenacquire

ways ofthinking, form habits ofpersistenceand buildtheir confidence with dealing with
unfamiliar s i t u a Howewers @rton (2004 p. 39 takes into account the cognitive
processes involved armbntendd hat fAsuccessful solutions o
learner not only having the knowledge and skills required but also beingoatalp into the
relevant net wor ks an dVhilst,tLestec & Keahle $2003) rincludeh e

reference taearlierexperiences, howledgeand cognitive actions:

Successful problem solving involves coordinating previous experiences, knowleddier fam
representations and patterns of inference, and intuition in an effort to generate new
representations and related patterns of inference that resolve the tension or ambiguity (i.e.
lack of meaningful representations and supportive inferential moves) that promoted the
original problemsolving activity (p. 510).

This definition is inadequate since dnly serves to account for effective problem solving.
Provocatively,Stanic& Kilpatrick (198, p. 1) cautionthat fiproblem solving has become a
slogan, encompassing different views of what education is, of what schooling is, of what
mathematics is, and why we should teach mathematics in general and problem solving ir
particulan. Undersandably, withthe diversity ofoperationaldefinitions, Schoenfeld (1992)
stronglyrecommends that clarification is requiréte writes

The term [problem solving] has served as an umbrella under which radically different types
of research have been conducted. At minimum there should be a de facto requirement (now
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the exception rather than the rule) that every study or discussion of problem solving be
accompanied by an operational definition of the term and examples of whaiutiner
means...Great confusion arises when the same term refers to a multip®noétimes
contradictory and typically underspecified behaviors3G8-364).

It has been established thabblem solving encompasses more than a special importance in
mathematics educatioand is generally accepted as a means of advamcitical thinking

skills (Schoenfeld, 1985}t is the heart and soul of the work of mathematicians, engineers,
scientists, economists, computer programmers, including all other poofesisat require the
utilisation of higherorder cognitive processeSakshaug, Ollson & Olson (2002) portray the

mathematical problem solving process experience as a mission that:

encompasses the acts of exploring, reasoning, strategising, estimating, conjecturing, testing
explaining and proving. It is a very active process for those involved. Through the problem
solving, we are challenged to think beyond the point where we wieea westarted, we are
challenged to think differently. We are challenged to extend our thinking about a situation in
a way that is new or different (pi).

What is appealing about this definition is thaadgknowledges manyathematial functions.

In contrast, the following definition offered by Lesh & Zawojewski (2007, p. 782) is intended
to embracecreativet hi nki ng: A Aliredted sadtivity becomesgao mablem (or
problematic) when the dAprobl em s ofbpeaalists) ( w
needs to develop a more producti vé&Vhilsvay o
multiplicity of definitions of mathematicaproblemsolving have been suggested, this thesis

will use thedefinition submittedby PISAwho saw it as

isan individual 6s <capacity t ondestargl eaagderesdlva c
problem situations where a method of solution is not immediately obvious. It indlugles
willingness to engage with such asacohstructivda o n s

and reflective citizenQCED, 2014p. 30).

This delineationcaptures a number of important featumsch as the employment of a

strategy, the noalgoithmic nature of the solution and the need for perseverance

2.3.1 History of mathematical problems

Mathematical problems have existed for thousands of yaads have been enriched by
various contributions from the likes of Babylonian, Egypti@neek and Islamic sources.
Eucliddés Dat a, whi ch i s ¢ onuslid dsea elkction lofe p

geometrical problems. During tiedieval European mathematics perieéthonacciposed
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A certain man put a pair of rabbits in a place surrounded on all sides by aaalimany
pairs of rabbits can be produced from that pair in a year if it is supposed that every month
each pair begets a new pair, which from the second month on becomes productive?

This famousproblem directed Fibonacci to the introductiortleg Fibonaccisequencewhich

has beersubsequentlyapplied tothe curvature of naturally occurring spirat@mbinatorics

and stock market analysi©ne of my favouritemathematicalproblems involving the
transcendentatumberQwas posed during the scientific revadut. Joseph Fourier proved
that'Qwas irrational by using contradictioim modern times, t&he beginning of the twentieth
century, David Hilbert, outlined twenty three unsolved mathematical problems to the
International Congress of MathematiciansPiaris.Severalof his problems have since been
sol ved ( s u clastthesem by Andnewt Vdilgs partially disentangledr remain
unanswered(e.g. Riemann hypothesis).Today, many problems remain unsolvedn

mathematics, ainly attributedto thecontinuous formatioof new problems.

Interestingly, countless historicalexamples exist where observation and intuition have
directed mathematicians to offer logical amcturate solutionto problems. However, there
are cases where it hasavigatedto wrong suppositions orincomplete or erroneous
mathematical proofsFor example, Eulebnce conjecturedthat the Diophantineequation,

0 0 0 O , has no solution ipositiveintegers Remarkably,titook more thatwo

hundred years fahis statement to baisprovel (Elkies, 1988).

It is disingenuous to suggest that inaccurate solutions to mathematical problems are of nc
intrinsic educationalvalue. On the contrary, they catimulaterich classroomnteractionsin
order tostrengthe deepconceptual understandisgWithin my ownprofessional mactice, |
haveregularlyposel the fashionablelivision by zero fallacyds1 + 1 = 1 a tr u
It has generateda positive learning experience whilsinticipating pupils recognimg the

invalidity of line five, as follows:

>

>‘ >‘ >‘ g
> >
>
>
>
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It is essentiato consider if thiorevious taskcan be classified aslegitimate mathematical
problem By undertaking such deliberation it focusses attention on tlyeneric structuref
mathematicalproblens. Unequivocally, 1 is a genuinemathematical problensince it can
foster reasoncommunicaion, interest and curiositywhile developing a positivdisposition

towards mathematics.

Furthermore unsuccessful attemptat solving such a problem or in fact any historical
problem is ot unproductiveIn a studyof 25 American undergraduatesnducted by Moser

et al. (2011),tiwas found thaindividuals with a growthmind-sethad a greater awareness of
errors than individuals with a fixed mirsgt and thus were able tcebound better from
mistakes. Exhibiting sich atendency during mathematical problem solving can help to
promotehigher order thinkingskills. In describing mathematical thinking processes, Mason
(1999) professes that:

Failure can be more useful than success. One challenging problem tgactias more than
many easy problems. Getting stuck gives you gpoadunity to learn when ideas come too
readily, you have no marker to return to, no peg from which to extend your network of cues
and triggers (pix).

2.4  Fundamental characteristics

It is imperative that a worthwhile mathematical problem shaitdr a suitable challenge
while simultaneously providingn opportunity to learn important mathematigsicha task
shouldinitiate disequilibrium and perplexity (Lambdin, 2003), ibériguing, invite hard work
and direct pupils to investigate mathemdticieas and methodsof thinking towards the
learning goal (Lester & Cai, 2016). lendorsingthe mandatorynecessityof challenge,
Schoenfeld (1985contends that théask should be an intellectual impasse rather than a

computational one



44

However, notall mathematical problems argermane for classroomuse. Some are
contextualised within artificial situations which erroneously promote eimploymentof
algorithmicexercises. Pupils are constrained to implentevitl procedurs and manifest the
false epectation that a readily available solution exists for every probra. resulting
vulnerability of learners is being 4équipped in confronting authentieal life mathematical
problems, where the solution method is not immediately obvious (Schoeniféd®).
Practitionersmust consider the needs @ill learnersbefore implementing any taskrton
(2004) cautions thasensible attentiotve afforded when selecting a mathematizek for

instruction. He argues that:

One aspect of problesolving in mathematics is thaften the problems are divorced both
from the mainstream subject matter and also from the real world. Such puzzles may contain
great interest for some children, but others may not see the point ateinogivated. Such
puzzles are unlikely to produce knowledge or rules which are useful or applicable elsewhere

(p. 26).

Nonethelessin order tonurture a community of learners, primary and secondary mathematics
teachers should follow the wisdom obliza (1957), who advocates great opportunity that

awaits

If he [teacher]fills his allotted time with drilling his students in routine operations, he Kkills
their interest, hampers their intellectudevelopment, and misuses his opportunity. Buteif h
challenges the curiosity of his students by setting them problems proportionate to their
knowledge and helps them to solve their problems with stimulating questions, he may give
them a taste for, and some independent means of, independent thinkixg)(p.

Selecting an interesting and challenging problem that can stimulate mathematical learning is «
fundamentakkill for any teacher. Too oftelyoung peopleare presented with the exclusive
drudgery of following o6dril | aagmencgmputatonal c e ¢
skills whilst instantaneouslylisengaging learners. Schoenfeld (189d. 60)forewarnsall
teacherof this danger fi Wh e n aties asttaughtnas dry, disembodied, knowledge to be
received, it is | earned ( dtiab beerothoggbttthatgmod o r
problem can be justified by successfully applying the augmentation and proof strategy of

6convinkfe, yoamngience a friend, convi2®de an

By directing attention to théype of suitablemathematical probles) focus is drawn to the
subjective views of teachers. In shdhis places moremphasion the role of theeacherto
select and develogvorthwhile mathematicatasks that create opportunities fopupils to

developmathematical understandings, competence, interest and dispo@WiGm$/1, 1991).
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In searching for a definitive set of criteria for definitige chalcteristicsof a worthwhile
problem,the NCTM (2010)refer tothe work of Lappan & Phillips (1998). The authors offer
excellent guidelines in the shape of ten criteriihaugh theyemphasise that it is not
reasonable to expect that every problem selected satisfies all the criteria but should be
dependent on practitionerdnstructional goals:

The problem has important, useful mathematics embedded in it.

The problem requires high&vel thinking and problem solving.

The problem contributes to the conceptual development of students.

The problem creates an opportunity for the teacher to access what his or her students ar
learning and where they are experiencing difficulty.

The probém can be approached by students in multiple ways using different solution
strategies.

The problem has various solutions or allows different decisions or positions to be taken and
defended.

The problem encourages student engagement and discourse.

The probém connects to other important mathematical ideas.

The problem promotes the skillful use of mathematics.

0 The problem provides an opportunity to practice important skill§-g).

PwWDNE

o

©

The NTCM (2010) highlight that the first four criteria should be considered essential in the
selection of all mathematical problems. Nevertheless, an important caveat to acknowledge i
that an appropriate choice of problem does not guarantee that sulcceatiiematical
learning will occur (Lester & Cai, 2016). In npyofessionaéxperience, this will depend on a
number of interrelated dimensions but in particular, the kind of classroom discourse and
intervention that normally takes place during mathemdggsons between teacher and pupil.
For examplesometeachers do not share the belief or have the patience to allow pupils to
struggle with challenging mathematical problems, thereby eliminating the requirement to

stimulate independent and higher levahking (Stillman et al., 2010).

In her informative analsis of problem based learning, Sockgdim (2015)provides a
valuable insight into the structural elements of a problem. She draws on a previous study o
34 Singaporean biomedical undergraduatkeieh identified eleven characteristics grouped by
6featured and @f However,i hernconclysiens gvauld ehave2 been more

persuasive if she had considered studies involving mathematics problems.
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Figure 2.2 Function and feature characteristics of problems (Adapted from Sockalingam, 2015)
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2.4.1 Classification

One of mysatisfying childhood memores was solvingthe classic puzzle involving a man
who has taransporta fox, a chicken and a sack of corn across a river using a rowing boat,
which can only carry him and one othshject. The circumstances dictated that if the fox and
the chicken are left together, the fox will eat the chicken and if the chicken and thareor

left together, the chicken will eat the coktow does the man do it? While such puzzles are
designed to manifest reasoning and thinking processes (Joanssen, 198&patablef their
content neutraland decontextualized nature, evident in mamages are relevant to the

promotion of mathematical problem solving.
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Nevertheless, its important tounderstandhe classifcation of mathematical problems that

can bepresentedo learnerdn order toidentify the type of solution required (Polya, 1981).
Thus far,a number of studies hawdassifiedmathematical problem types usedsthools.

The threemo s t cited studies-romaftfemedbopdoblemee
@pen and c| (Boaed @998andoMell aadnilss t r uct ur edd pr obl
1997) Arguably, d mathematical problems servevaluablepurpose butlifferent categories

of problens will accomplish differentlearning objectives.Specific problems requirean
element ofrecall andformulag some stimulateahe need for divergenstrategies,others
depend on logic and reasonirsglectechave multiple solutionsr demand decision making

and creativityJonassen, 1997).

24.1.1 Routine and non-routine

Critically, teacheramust be hle to distinguish betweenoutine mechanicaklgorithmictasks
accentuatedby factsor proceduresandunfamiliar activitiesdesigned tdhelp pupis constuct

a deepr understandingf mathenaticalideas(e.g.Polya, 1957; Schoenfeld, 198Stanic &
Kilpatrick, 1989;Krulik & Rudnick, 193; Mayer, 2003; Orton & Frobisher, 2006tason,
Burton & Stacey, 2010)Schoenfeld (1988) makeswaluablecontributionto this argument.
Based on hisAmericancase study of secondapypils, he found that although learning and
teaching was successful from a curriculyerspective learnersdeveloped a frgmented
conceptual understanding includinflawed beliefs about mathematicgor example,
participantsbelievedthat mathematical problems caa bolved within minutes and that it is
acceptable to give uguickly. If anadivity is reducedo replicatingthe techniquemposedby
theeducatorjt can creatan illusionof mathematical competence by simple mesiogi and
reproducing the correchethodto manipulate symbols, anday evencome topromote the
believethat obtainingthe correctatnswerexceeds the neddr understanihg (Goos, Galbraith
& Renshaw, 2004)As Yeo (2007)reminds us:

If a teacher does not know the differences between the types of mathematical tasks, how is h
or she to use them to cultivate different types of skills and thinking? If a teacher refers to

standard mathematics textboskshaskd asolope
she may not realise that practising this type of task is not mathematical problem solMing (p.

If by poor judgement or otherwise, practitioners respigbilsto repetitive and computational
tasks, many will be unpreparedto solve genuine mathematical problems whilst

simultaneously extinguishing their motivation amaturalcuriosity.
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Before proceeding to examireher classificationsit is necessary to providéustrationsof
archetypal tasks found withimathematis textbools active within Scottish primary and
secondaryschools (Figure 2.3).The provision of a reallife context is emblematidut
surveyedas asolitary feature;its inclusion does not impact on the level @hallenge
implanted withinthe parameters alignéd amathematical task

Evaluation of thesix mathematical tasks illustrated in Figure 2.3, reveal that in spite of the
varying levels of complexity, a shared commonality exists with each solution in that a
standard procedure cae applied to obtain a correct answer. Such routine tasks resonate with
the objective articulated by Lester (1980
standard mathematical procedures, for example, computational algorithms, and use o
formula s ©he first taskis found by multiplying the area of the grass lawn by the unit cost
per square meter to obtain £99Me next taskequires knowledge of rounding and awareness
that the numbers must be whole numbers i.e. 85 ant@@4third task can banswered by the
summation of (18 x £0.45) + (6 x £0.30) + £3.99 = £13.89. The fourth task is a recurrence
relation which begins with the sequente =0.7% + 20, whered = 160 ml. The amount

of drug remaining is calculated by finding (105 ml). The fifth task employs a standard
integration formula for volume of solid of revolution to obtain 2570 .chine final task may
appear sophisticated sinpeoofs tend to x@end mathematical thinking due to an array of
theorems, axioms and infel@s whichare required toconstruct arigorous argument
However, in this standard case,= 1lis initially provedand an &éi nduct i on
establish any arbitraryalue. Logically, the degree of challenge within a proof question will
determinethe nature of classification, although evaluation may be subjective. Proofs that
require the creation of new mathematical concepts or derive novel theorems are obviou:s

exemplars of mathematical problems (Powell et al., 2009).

Figure 2.3 Examples of mathematics textbook tasks

Taskl The plan of arectangular grastawn is showrbelow. Find the total cost of the lawn
given that the cost per square matfgrasdawnis £13.75. [Third level]

4m

18m
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Task2 Write down the lower and upper bounds of a crowd of people estimated at 90 to the
nearest 10 people. [Second level]

Task3 An Isle of Lewis photographer charges the following rates:

A45p per photograph for the firé8 photographs printe
A30p~per photograph for any further photographs printed
A 3-99for a CD of the photographs

How much will it cost to hav24 photographs printed plus a COFourth leve]

Task4 A patient is injected with 160 ml of a drug. Every six hours 25% of the drug passes
out of herbloodstreamTo compensate, a further 20mls#s given every 6 hours.
Calculate the amount of drug remains after 24 hophggher]

Task 5 A plasticbowl is modelled by rotating the curde '‘Q betweenw= 15 andw= 30
through 2 radians about thexaxis as shown in the diagram. Find the volume of the
bowl. [Advanced Higher]

V X
4 y=e'?
‘:
0 15 30 x
Task6 Prove by mathematical induction
£ & .
22 P e
C

[Advanced Higher]

Notwithstanding the actuality that any standard mathematical textbook task may be
considered O6sophisticatedo if vi ewed t hro
someone lacking confidence wiperforming routine procedures (Schoenfeld, 1985; Orton &
Frobisher, 2005), | will proceed with a trajectory to establish additional boundaries between
familiar constructs associated with mathematical problem solving. Justification for doing so is
furtherunderlined by the misappropriation of terminology such as task, problem, activity and
investigation engrained within various CfE narratives (e.g. Scottish Government, 2009,
201(n, 20113, 2014. For example, in a professional learning resource for praosts,
Education Scotland (261 p. 2) reiterate their conceptualisation of numeracy by expressing
its detachment from mathematics followed by an inference that numerical skills are

exclusivelyas soci ated with sol v iNangeraay&s thdt enipa subseta |
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of mathematics... We are numerate if we have developed: The confidence and competence |
using number which wil!/ a | Sushwcontradidtorylanguage | s
only serves to confuse teachers and highligingencyfor conceptual clarityFurthermore,

this issue is compounded by the fact that no universally accepted definition exists for eacr
term (Powell et al., 2009).

As explained earlierword problems are not mathematical probldmas are moreaccuratéy
compartmentalizedhs routine mathematical tasks. her study ofAustralian primary and
secondarynathematics teacher&nderson (2005) found that mapgrticipantsbelieved they
were implementingnathematicaprodem solvingbased on curriculum guideks However,
it transpiredthat many of the examples provided to heguired lower level thinking.
Education Scotland (2015) offers the followistrategiesfor practitioners, whichhelp to
promote the use of word problemsd thus impede thmplementation of problem solving:

Learnersdé skills in, and application of, €
learning. Progression in estimation should involve learners taking account of the impact of
real life contexts and usinthis knowledge when communicating their understanding. For
example, when solving word problems, such as those involving division, where the
interpretation of the context is required to gain a reasonable afsv8r

2.4.1.2 Open and closed

In her casestudes of two English secondary schools, Boaler (1998) draws our attention to
alternative pedagogicahathematicamethodologiesPhoenix Parkmplementedoperended
projects such asirhe volume of a shape is 216, what can it&dpils were encouraged
search out multiplesolution methods andnawers This approach accommodates diverse
learning styles and can help popomoterich and deegonceptuaunderstanding (Bzker &
Shimada, 1997; Hbertet al., 1997)Conversely in Amber Hill, pupils followed traditional
practices which focussed ooutinetasksfeaturingonecorrectanswer, whichs characterised

as O0closedd (Becker & Shimada, 1997) .

However, a interesting dilemmarises when a gquesti@montainsmultiple correct responses
For example Bolve the equatioy = 7af By factorising wecanobtainw=0or @ X.
Both values ofvare required to formulate the correct answer. Similar cases will adwem

polynomials, inequalities, trigonometric functions or complex numiaeesinvolved.Yeo
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(2017) argues that such cases eomsidered c | osed 6 si nc eanswerkanbeu | t i
determined.

2.4.1.3 Well- and ill-structured

Much controversyhassurroundedwvell-structuredand ilkstructuredproblems Simon (1973)
foundit impossibleto construct a formal definition ofiell-structuredproblens andopted for
acollection ofpotentialcharacteristicsin the same vein but with less detdinassen (1997)

offerssimilar characteristicsas listed in Tabl@.1

Table 2.1 Characteristics of well-structured problems (Adapted from Jonassen, 1997)

1 Present all elements of the problem.

1 Are well-defined with a known solution

1 Engagethe application of a limited number of rules and principles that are organized in a predictive and
prescriptive arrangement with welkfined, constrained parameters.

1 Involve concepts and rules that appear regular and-strelttured in a domain of knowledge that also
appears welbtructured and predictable.
Possess correct, convergent answers.
Possesknowable, comprehensible solutions where the relationship between decision choices and all
problem states is known or probabilistic

1 Have a preferred, prescribed solution process.

Other authorspoint to a clearly specified initial state, goal state aat of operationse(g.

Mayer, 2003)Ki | patrick (1987, p . 134) sdadvedghy the t |
application of a known algorithm, and have criteria available for testing the correctness of a
s o | u tWelhsiractured problemsan be charaterised as routine rathematical tasks
Examples includdinding themean number of goals scored in a football competitemyth

of an unknown side of a triangldjstance travelled by a projected objextiface area of a
cuboid,roots of a polynomiafunction lines of symmetry of a rhombasdexterior angles of

a polygon.

In contrast,ill-structured probles) havevagely defined goalsjncompleteor ambiguous
information generatemultiple solutionsor no solution at all angossessincertainty about
which concepts, rules and principles are necessary for resol@iowirf, 1973;Jonassen,
1997, Mayer, 2003 Typically, they resembleeal world situationsandin which the solver

may not know when they have obtained a final solution (Kilpatrick, 1¥8®@mples include
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building aswimming pool using &udgetof less thar£30,000anddesigning &0 metre long
bridge that can hold a 200 kg weight

Let us now considemathematical problems thean be employed to engage pupils in higher
order thinking.l present six examples from my own professional practice (Figure 2.4) that |
haveused extensively across a continuumg@gdsand hilities. From adidacticalperspective
each problem can bsuccessfullyattemptedby any pupil as nospecific background is
required.Such an intrinsic feature is essentialedchersvant to pomoteinclusion, as many
practitioners hold the common view that only high achieving pupils can particip#tes in
form of mathematicainstruction.The initial problem is welktructured and opeended since
it contains multiple answer3he second and fourfbroblems are welstructured and closed
since they contain a unique answer. In the third problem, the sum of any five odd numbers is
odd and therefore cannot be solvedespectively it offers an excellent platform to launch
basic number theory, whichmtde developed to define odd and even numbers in terms of any
integer. More critically, as a learning objective, it skilfully alerts pupils to the possibility in
mat hemat i cs that we can | egitimat el ysetesbt a
helpful when discussing future linear equations of the form:

LW PTT WW p TW
which produces a false statement (i.e. 10)=08 explaining roots of quadratic equations
whereA 1 A A 18 In sum, this problem is defined as anmsilfuctured problem. Théfth
and sixth problems are wadiructured and closed since they contain a unique answer

multiple solutions are possible.

Figure 2.4 Examples of mathematical problems

Problem 1 Is it possible to put the numbers 1, 2, 3, 4, 5, 6 in the circles so that the sums of the
three numbers on either side of the triangle are the same?

O
O O
O O O
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Problem2 A palindromic number is one which reads the same when its digits are reversed, for
example19391. What is the largest sikgit palindromic number which is exactly
divisible by 15?
Problem 3 Find five odd numbers whose sum is 100.

Problem 4 Identify the value of the letters inthe equatitr2 / 3 2/ ! $3$! . ' %2

Problem 5 Four straightines intersect as showwhat is the value okl ¢ ¢i  cie

Problem 6 In aclassoom with 10 people, everyone shakes hands with everyone else exactly
once.Find the total number dfandshakes

2.4.2 Problems and investigations

Whilst the conceptualisation of problems has penetrated deep into mathematics educatione
discourse, the relationship between problems and investigations highlight inconsistencies ir
the literature. Orton (2004, p. 85) argues thatidact distinction beveen an investigation

and a problem has rarely been clarified by advocates of their inclusion in the curriculum, and
it still not always clear what is meant when either is being discussedotaddyiit is clear

that either or both may be developed frdra same basic idea or situatioRrobisher (1994)
assertgihere is no doubt that a great deal of overlap ex{gts152) but thafia distinction
should be made between (problem solving) tasks which lead to investigations, and...
investigations which havtheir own existenge(p. 158).Alternatively, somescholarsclaim

that nothing can be gained from establishing any differences. Pirie (198@gci®d in Yeo

& Yeap (2009) maintains thdino fruitful service will be performed by indulging in the
'investigation' versusproblemsolvingd debaté. On the other hand, considerable support
exists for associating investigations with having no clear specified goal in the statement.
Orton & Frobisher (2005, p. 32) claim thd@an open problem is another narfee an
investigation whilst an open problem is a process problem which gives rise to further
problems®. The implication of problem posing as an integral component of investigations is
reinforced by others (e.g. Cai & Cifarelli, 2005; Yeo & Yeap, 2009; Y84d2). Yeo & Yeap
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(2009) llustrates the relationship between mathematical investigation as an activity,

mathematical investigation as a process and problem solving as a process (Figure 2.5).

Figure 2.5 Investigative activity for open investigative tasks (Adapted from Yeo & Yeap, 2009)

Problem Solving (Process)

Other phases

Solve by

Problem Mathematical su_ch s
: S understanding
Posing Investigation the task and
(Process) looking back

In practice, many primary and secondary mathematics teachers have a propensity to viev
problems and investigations as one of the sabmo( & Frobisher, 2005)Nationally, this
situation isexacerbatg by the Scottish Government (2009, p.\8ho do not advocate any
dissonance between the tvaativities byencouragg practitioners to promote learners to

finvestigate mathematical probletns

However, | firmly believe that problems and investigationsdiséinct activities due to the
unrestricted nature embedded within investigati@don & Frobisher (2005, p. 32) opine

that: fiAn investigation provides learners with the freedom to determine the goals they wish to
attain. This independence and autonomynot postble in problems having a precise and
unambiguous goal with a known and weditablished method of soluti@nFrobisher (1994)
fostersthe disparity betweenproblem solving as aconvergent activitypased on unique
solutionsandaninvestigaton deemeda divergent advity characterised bynultiple solutions

and outcomesHe emphasises that both pedagogical approaches to learning mathematics
should be welcomed by pupils and fAnot jus

normal curriculumb e comes dreary and tiresomeo (p. 1

Around ten years ago, | successfully introducqmr@minentmathematical investigation into

my professional practice of which | have shared with n@rigaguegMcDonald, 2006)
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Investigate hownanysquaresre on a chessboafthe answer is not 6}

The first goal is clearly defined and on obtaining the desired 204p(i.e.q o 1
v @ X Y squares, pupils can extend their mathematical thinking by posing a

different problem whichinvolves finding a general rule for any £ chessboardi.e.
P ¢ o 8 & -&& pct ph phen. 8Neverthelessthis is not

obvious to all pupils since it is not explicitly specified in the stateméns. an important
characteristic that demonstrates that an investigation does not depahetberthe activity

has a closed or open goal (Yeo & Yeap, 2009).

2.5 Heuristics

As highlighted in chapter one, Curriculum for Excellence advocates that prebleimg is

no longer compartmentalises a detached entibut integrated into all levels of learning and
teaching of mathematics. Howeveanextricably absent from this explicit directive are
guidelines for practitioners on how to orchestrate this pmgiagl approach into practice. In

this section, the role of heuristics is introduced followed by a brief discussion of two seminal
theoretical frameworkand a brief summary of whether teaching heuristics improves pupil

performance.

The conceptualisation of heuristics has been synthesised over the years wittonféoyng

descriptionsavailable. For examplecaording to Blya (1957 p. 112:A The ai m of h
I's to study the methods anWerschaffel¢1999m 21§ di s
defines heuristic met hods as Asystematic

t r ansf abenBaro(l384 m 10 suggests thahe idea of heuristicBincludes all those
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aspects of thinking that cannot fited into mahematical formulations Martinez (1998 p.

606) c | a i msHeutishca &re drucial because they #re tools by whichproblems are
solved. Wilson, Fernandez & Hadaway (199B. 63 consider heuri st
information, available to studentsnmaking decisions during problem solving, that are aids to
the generation of a solution, plausible in nature rather peaispective, seldom providing

i nfallible guidance Whis a anoreva@mtempobaly eperspeativerie s
presented by Lés& Zawojewski (2007) who argue that heuristics involve strategies:

intended to help problem solvers think about, reflect on, and interpret a problem solving
situation more than they are intended to help them decide widtioh e n 6 st uc k 6
solution attempt (p. 768).

2.5.1 Polya (1957)

Mathenatician and educationalist, Geordeolya, is universally famous for his work on
mathematicaproblemsolving The emphasis ofd¥a's work focussed on the elements of
plausible reasoning that lead to the discovery of mathematical assertions to which he referre:
to this type of reasoning heur i sti cs o, ot her wi se known
useful in theprocess of solvip mathematical problemsn his pioneeing book dHow To

Solve 1§ (Polya, 1957) proposed four explicit phases to provide a more systematic or planned
process approach to mathematigaibblem solving (Figure 2.6) and which €elies on a
repertoire of pasexperiencesA myriad of academics have grounded their research on this
book which Schoenfeld (198%. 17 el oquently proclaims as

problems ol vi ng introspectiono

Worldwide, many countries have woven inextricably togethe influential works of Polya
within their educational systems. For example, in the USA, the NCTM (2000, p. 53) advocate
t hat : AOf t he man ysoldmng stategiep, some af the best kngwvn cab lbee |
found in the work of Bl y a ( 1 9esestingly, his linfitkence is not confined to
mathematics education. For example, within the field of artificial intelligence (amongst other
disciplines) his contribution to heuristics is well regarded. Minsky (1961, p. 28) articulates

that fAevekwowet 8howbdk of Polya on how to

I wi || examine Polyads (1957) four phase r
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First Step- Understanding the problem

It may be obvious but this initial operation is crucial to fully understand the given information
and the ultimate goal (Lesh & Jawojewski, 2007). Polya (195® maintains thatii | t IS
foolish to answer a gquest Theraforef ibia essential to d
appreciate what a problem is asking. For example, what are the unknown, available data an
conditions? This may require becoming mor
some cases, drawing a sketch or a diagrashtov connections and relationships, making a
table, using a model, working backwards or using a variable. Polya (1957, p. 33) suggest:
Afattention bestowed on the problem may al
recol l ect i on Mdre speeificaly bracomnemdseaches toselect problerms

which arechallenging but accessible.

Figure 2.6 Steps to follow when solving a mathematical problem (Adapted from Polya,1957)

Understand the
problem

A 4

Devising a
plan

A 4

Carrying out
the plan

A

Looking back

Second stepDevising a plan

Many differentstrategicappoachesareavailable athis stagesuch asa guesssearching for a
pattern or connection between the data and the unknown or recalling a similar solved
problem. On the theme of a guess and check stra®eg (1957, p. 9posi t s t hat
guess has turned out t o be wrong but. ne

Conversely, Malloy & Jones (1998. 149 arguefii f a st udent guessed
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the solution or did not use the guess to verify the salutioe guess was not considered a
str atadyg($9%7,p.8st at es that a suitable plan is
least in outline, which calculations, computations, or constructions we have to perform in
order to obt aHowevat ihreay herapparenttinadthe selected strategy needs
modifying or to be discarded entirelifhe application of pastxperiencesnay help to relate a
similar problem that can be solved (Mayer, 2003)e mechanisno transfer knowledge of
related problems requires analogicalasoming A beautiful illustration of analogical
reasoning is presented by Polya (1957) in his solution to solving the centre of gravity of a
homogenous tetrahedron fayming a solution using triangle.Thus, a constant review of the
chosen plan is necessary during implementation of this phase.

Third Step- Carrying out the plan

Considered to be the most challengaognponenbf the solution.Pupils must be prepared to
validate each stage tife plan and modify anglementof the strategy when it is obvious that
it will not advance the desired outcomelyR (1957) statethat:

To devise a plan, to conceive the idea of the solution is not easy. It takes so much to succeec
formerly acquire knowledge, good mental habits, concentration upon the purpose, and one
more thing: good luck. To carry out the plan is much easier; what we nemdnity patience

(p. 12).

Polya (1957 p. 13 counsels practitioners to insist that fearnershould examine each part
of the processind in certain casedemonstratéii f t hey can prove th
Suchattention to detail requires perseverance and an awareness that modifications to the pla

may result in the abandonment of the mrég strategy and the creation of a new approach.

Fourth Step Looking back

This is deemed the most critical staged extends beyond checking tlamswer Detailed
examination of the solution will reveal if the argument candaéied, generalisedenhanced,
derived differentlyor applied to another problenfPolya (1957) warns that pupils have a
tendency to stop when they have obtained
phase of tl4).eHe adoiseskt@achérpto impress on stements th@otionthat no
problem whatsoever is completely exhausted as there remains always something to do an
believes that Awe could i mprove any solut
under st andi ng Ib) This iesvpist B sharédiby Wabdson(&Mason (20@56
xiii-xiv) who advocate thati No mat t er how profoundly one

always possible to probe more deeply .land t
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other words, reflection is fundantal to the process order to solidify mathematical
understandingLesh & Zawojewski (2007p. 77Q note thatn By descr i bing
processesstudents can use their reflections to develop flexible prototypes of experiences that
can be drawnoniruft ur e pr o b The knowedygé gained gapking backnurtures
an investmentin long time memory Hat can facilitate forthcomingproblem solving

encounters (Silver, 1982).

One of thecommonmisunderstandingsf Polyad snodelis thatit is a linear procedurethat

can be memorised, practiced and habituaMdre accurately, it should be designated as
dynamic, cyclic and iterative. However, Schoenfeld (19982 353 whilst accepting the
validity of Polyads wor k themamount af deras that woald [
enabl e people who were not already familizeé
and suggests they are fAdescriptive rather
Sriraman (2010p. 264265 are mostlyii j u s t names for | arge <cat
than beingweld e f i ned pr oc e s keshs& Zawojewsk: (2007 .e76Qvolies &

broaderperspective on® yads heuristics fAas not only

carrying out procedures n d rul es (i . e. , dutdadso magya meama toth e r
developing systems for interpreting and de
AlthoughPl ya did not include the term Omet aco.

four step model of mathematical problem solving are metacognitive in nAtutas point in

this thesis,| feel it pertinent to provide a definition of metacognition aefer to Flavell

(1976):
Met acognition refers to oneds knowledge ¢
products or anything related to them, e.g., the learning relevant properties of information or
data.. Metacognition refers, among other théngto active monitoringand consequent

regulation and orchestration of these [cognitive] processes in relation to the cognitive objects
or data on which they bear, usually in the service of some concrete goal or objective (p. 232).

Silver (1982 p. 23 reinforces this viewpoint when he declares thatl f we ado
metacognitive perspective, we can view many afl B a 6 s heuristic

met acognit.iive promptso
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2.5.2 Schoenfeld (1985)

In his book, &VMlathematical Problem Solvidg Schoenfeld(1985) offers a comprehensive
overview of his framework and methodological approach to the exploration of undergraduate
mathematical problem solvingf which canbe respectivelyapplied to schooiathematics.

On reflection,Schoenfeld (201,3p. 10 describeghis publicatonasia f r a mewor k
analysis of the success of failure problem solving attempts, in mathematics and hypothetically

in all problem solving domainso

Schoenfeld1985) proposes anodel grounded on the theory tlrealearned s abi | ity
problems is determined by their individual functioning cognitive and emotional characteristics
and identifies four categories of knowledge and behaviour fundamentahdtrematical
problem solving performance (Figuger). In essencehe argues that it is possible to explain

an individual 6s success or fail uraetegomes tr yi

Figure 2.7 Framework for solving mathematical problems (Adapted from Schoenfeld, 1985)

Problem Solving

Performance

A A

Resources Heuristics Gontrol Beliefs Systems

A A

Strategies and hy&@av T KSY H i €

techniques for making Decisions regarding L ona RS
Mathematical progress on unfamiliar the selection and ﬂo?ﬁo??z;gﬁet
knowledge possessed or non-standard implementation of conscious) y
by the individual problems; rules of resources and determinants of an
thumb for effective strategies VRO PP
problem solving P@ 0K GRdby
Resources
According to Scherfeld (1985, p. 17), hese refer tofi a n i nventory of
procedures, and skilisi n s hor t |, t he mat hemati cal know

of bringing t o bear . Examples inguder intuitons, iafermalp r ¢
knowledge, algorithmic procedures, ralgorithmic procedures and understandings about the

agreedupon on rules for working in the domain.
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Heuristics

Much development work is based on promoting these types of strategic proEesseglars

I nclude Afexploiting anal ogi es, I ntroduci
auxiliary problems, arguing by contradiction, working forward from the datayndeasing

and recombining, exploiting rel ated?23prob
Schoenfeld discusses a series of major obstacles tasttendancyf heuristics strategies

such as the lack of prescriptive detail afforded to strategiesbyiang fAt hat t he
are too vague to serve a(@ 9% Mgeoved le entpleasisesh e i
the need to have a strong gener al knowl ed:

heuristics cannot be expected to replacgekly mast ery of 9% ubj ect m:

(Metacognitive)control

This classification of behaviour deafwi t h t he way t hat I ndi vi
potentially at 27t héwolvesidp |sgpmmiratdrgg alidpassessment,
decisiomnma ki ng and consci ou db). Saaeafeddd?Bh) submitstlee a C |
view that @yood problem solvers metacognition differs i gni f i c @aotvli p ¢hé 6 0 M
efficacy of their metacognitive strategiede reinforces thepositionthat i One o f t
hall mar ks of good Ipehavidutisehat, vhite theyeare sndhe eidsh of r o
working problems, such individuals seems to maintain an internal dialogue regarding the way
t hat t heir solutions e v oyl areemore (Skiled atldafaping |
different mathematical resources. Lester (1994666 arguesthati e f f ect i ve met
activity during problem solving requires knowing not only and when to monitor, but also how
t o mo.rni sung Mmeétacognition plays critical role in successful problem solving (e.g.
Lester, 2013).

Belief systems
These signify an individual 6s mat hemati ca

approaches mathematical and mathematical tasks... Beliefs establish the wahiexthich
resources, heur i st i46).ghensmape thedkmotvledgel drawnpupon and e «
the mobilisation of that knowledgeschoenfeld(1985) emphasised the need for future
research on metacognition and beliefigain findings arsing from his studies include
AExplicit heuristic instruction doe®lifgor ¢
per f or ma2i% & o dctudénts in a problensolving course can learn to employ a

variety of heuX@stic strategieso (p.
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Schoengld (1985)offers a schematic outline of a problem solving strategy used with his own
students (Figur@.8) and makes reference ¢aploratonrwh i ch he designat e:s
heart of the strategy, for it is in the exploratory phase that the magdrptyoblemsolving

heuristics come into playo (p. 110).

Figure 2.8 Schematic outline of problem solving strategy (Adapted from Schoenfeld,1985)

( GIVEN PROBLEM >

ANALYSS M ibl
. ore accessible
Understanphng the statement ¢ Related problem
Gomplying the problem or new information

Reformulating the problem

Useful formulation:
Accessto principles
and mechanism

DESGN EXPLORATION
Sructuring the argument . o Essentially equivalent problems
Hierarchical decomposition: < Minor/Major difficulties— Sightly modified problems
global to specific Broadly modified problems

Schematic solution

IMPLEMENTATION
Sep-by-step execution
Local verification

Tentative solution

VERIACATION
Secifictest
General tests

< VERIAED SOLUTION >

However,two limitations are notable. Firstly, the participants worked in isolation thereby

minimising social interactions. Secondly, all of the mathematical problems were supplied by

the researcher which constrained the potential outcome as the objectives alglishest in
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advance. In short, Schoenfeld did not offer a theory of mathematical problem solving but a

framework for analysing the success or failure of problem solving within a wide domain.

More recently, Schoenfeld (2011) provided an updated theoretical lens from which to explain
how and why problem solvers make decisions that shape and guide their problem solving
behaviours. The basic structure offered is recursive where individuals arigitiidtions and
decide (on the basis of beliefs and available resources) how to pursue their goals. If the
situation is familiar, they implement familiar routines; nfechanismsare unfamiliar or
problematic, they reconsideAn interesting characteristic of this theoretical work is that
although mainly designed for primary and mathematics teachers, it can be applied to analys:
and predict the behaviours of other professions. | have summarised the framework used b
Schoenfeld2011) in Figure 2.9.

2.5.3 Does the teaching of heuristics improve pupil performance?

In this subsection, | make two assumptions. Firstly, pupil performance is concerned with
conceptual understanding that leads to improved problem solving rather thzedymad
knowledge. In this case, Foong (1991, p. 45) argues that to become effective problem solvers
instructional activity must build "a repertoire of heuristics that are likely to be useful in a
variety of problem situation, along with meta (cognitikepwledge about situations in which
specific heuristics are appropriate”. Secondly, pupils cannot become successful problen
solvers overnight (Hbert, 2003; Lambdin, 2003; Lester & Cai, 2016). Considerable

institutional investment is required throughottary and secondary levels.

Whilst it may be plausible to anticipate that evidence supports the teaching of heuristics, the
literature suggestsonly a weak correlation exists at best (Schoenfeld, 1979, 1985, 1992;
Charles & Silver, 1988; Lester, 199esh & Zawojewski, 2007). According to Lester &
Kehle (2003, p. 508): "Teaching students about problem solving strategies and heuristics an
phases of probleraolving does little to improve students' ability to solve general mathematics
problems". Previouseports concur with this claim. In his robust assessment of the research,
Silver (1985) suggests that even in studies where some positive learning has been reporte

the transfer of learning was insignificant. Likewise, Beagle (1979drbée:
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A subgantial amount of effort has gone into attempts to find out what strategies students use
in attempting to solve mathematical problems... no aeardirections for mathematics
education are provided... In fact, there are enough indications that prebleimg strategies

are both problem and student specific often enough to suggest that hopes of finding one (or
few) strategies which should be taught to all (post) students are far too simplistic (p. 145).

Figure 2.9 How things work (Adapted from Schoenfeld, 2011)

C GIVEN PROBLEM >

Initial resources, goals
and orientation

ORIENTATION
Information and
knowledge become salient
and are activated

A

GOALS
Established or reinforced

QGonsciously or unconsciously

Iterative DEQSONS
prooess Direction and resources

A

IMPLEMENTATION
\ Routines aimed at particular goals have sub-routines, which have their own
MONITORING subgoals; If asubgoal is satisfied, the individual proceeds to another goal
- . or subgoal; If agoal isachieved, new goalskick in viadecision-making; If
Whether it iseffective [« _ . . o
the processis interrupted or things doné seem to be going well, decision-
or not NS . . ) ;

making kicks into action once again. This may or may not resultin a
change of goals and/or the pathways used to try to achieve them.

However, the success of any problem solving experience is interrelated to the pedagogica
skills of the teacher involved. Although this has to be balanced againsttieeablenature

of the research litetare on mathematical problem solving. In practical terms, this translates
to how effectively teachers can delineate generalisations in order to impact regular
professional practice. A major caveat for teachers to consider is the link between theory anc
practice which is unclear (Lesh & Zawojeswki, 2007; Lester, 20&3ter& Cai, 2016).
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Irrespectively, in a study of 28raelicurrentteachersKoichu, Berman &Voore (2003, p. 7)
concluded that Aheuristic training of stu
heuristic training of their teachers, induced either by personal problem solving experience or
by learning through teaching of regular curriculwith deliberate emphasis on heuristic
approach in problem solvingo. téanteithererpedytba g o ¢
improving the problem solving performance of learn&®ugh given that aopiousamount

of research on learning and teaching of mathematical problem solving has already beer
conducted over the la80 years or so, it would appear unlikely that the teaching of general
heuristics has little effect on improving problem solving sKillester & Cai, 2016) Still,
Ambrus & BarcztVeres (2016) challenge this view based their recentstudy of 16
Hungariansecondary pupilsTheresearchersoted that themplementatiorof open prokems,

guestioning and cooperative techniques had a positpact on student achievement.

2.6  Multiple solutions

The beauty ofelegantly designednathematical problems leads to the facilitation of an
assortmenbf multiple solutions. Leikin (2013p. 38§ def i nes a mul t i pl e
assignment invhich a student is explicitly required to solve a mathematical problem in
di f f er e Actordingaty Iseikin (2011), solutions to the same problems are considered
different when they involve (a) different representations of concepts (b) different tlseeorem
mathematical relationship® support conjectureéc) different conceptual argumentand
reasoning.All too often, pupils embrace the misconception that there is onlypoeese
methodto approach and solve a problem and fail to develop flexibifityformulating,
selecting appropriate strategies and searching for alternative solutions (Cai & Nie, 2007). Fot
example, to solve a system of two linear equati@angraphicalsolution can be provided
Alternatively, we can usealgebra (elimination or subgition method), matrices or trial and

error.

Engaging learners with problems that may be approached by employing different
representations is widely accepted as fostering good practice (Tsamir et al., 2010) anc
entrenched within the looking back step o Pol yabés (1957) heuri s
constituent of any mathematics classroom as incorporation of these problems will deliver a
vehicle for pupils to construct rich mathematical connections. Silver et al. (20@88p.

maintain that learners profit from comparing, reflecting on and discussing multiple solution
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met hods and claim that ddifferent solutio
different elements of knowledge with which a student may be famihareby strengthening

net wor ks of related ideaso. When regul ar
strategies, pupils leardifferent approacheand are more efficient in selecting appropriate
methodgo elucidate problems (Dowker, 1992) and saive problems with greater ease and
flexibility (Siegler, 2003). The NCTM (2000) designated that students should develop their
Aflexibility in exploring mat hemati cal i d
educators should cultivate thei st udent s capacity Ato | ink
understanding of how more than one approach to the same problem can lead to equivaler
resul t s, even though the appr oa Simagy, temi gh
Scottish Govenment 009, p. 2) assert that an important featwteffective learning and
teaching of mathematics@hld ensure that primary and secondary pupisx p|l or e al t
solutiaegaedbrandpportunities fipresentiwngot he

Not all mathematical problenwffer multiple solutions butsome branchegresentmorerich
opportunities than othergVhilst the power of algebra and calculus cannot be underestimated,
LevavWaynberg &Leikin (2012a) argue that geometry is a fertile ground to search for
problems that encompass more than one sol
al most any geometrical problem in a regul
36) md Ageometry contains a rich variety of
| ear ner sHowevas, whirBr2yProfessional practidehaveemployedproblemsfrom

a wide spectrunof mathematics including many originating from otimationalsyllabuses.

My favouriteis a comhmation probleminvolving ten people where everyone shakes hands
with everybody else exactly once, where the objective is to determine how many handshake
take place. One of the solutions ipmacticalapproachensuring thathis problem iswithin

reach ofall secondary pupilsin order to illustratea task which offers multiple solutions,
consider the following problenMcDonald, 2014) which is accessible tthe majority of

secondary pupilsicludingwell ableprimary pupils

1 Example
It is projected that the worth of a lump sum investment is 5% more than its value in the previous yea

Find in as many ways as possildlee number of years that it will take for the investment to double.
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Solution 1  Computationally

Since no value for the investment is specified, we can choose any number to represent thi
unknown amountSelecing £100 andncreasing by 5% each yeaill produce:

Year Investment (£)

0 100.00
1 105.00
2 110.25
3 115.76
4 121.55
5 127.63
6 134.01
7 140.71
8 147.75
9 155.13
10 162.89
11 171.03
12 179.59
13 188.56
14 197.99
15 207.89 By considering only complete years, our answer is 15 years

Solution2  Graphically

In order to find armapproximatesolution, we mustdraw thefunctionw p8tuv andw ¢8

The intersectiomoint is dependent on tliegree of accuraayf thegraph produced.

3 ¢ Investment

16 Point of intersection lies between 14 and 14.5 years

Time (Years)
5 10 15 20

G

For a more accuraggraphicalsolution, we can use @DC (e.g. TENspire)
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Double Lump Sum — {ﬁﬂ
Investment
I 2(x)=2 Point of mrerseoﬁﬁn/
—

- /‘ 1
/‘ 14.2,2)
tflx)=(1 05)*
11 ; . 20
I Time | Years)

Solution 3 Algebraically

Let cobe the initial lump surwhere¢ E tine in years,

it wp TBLU cw

t p8t v q
t &1 p8tu g
& ¢
1€ p8T L

t ¢ pRBR WAAOO

Solution4 ICT (e.q.TI-Nspire)

Whilst this approachs deemed a differenttrategy, it only serves to generateagorithmic

solutionwhich does noaugmentthe development of problem solving skilldeverthelessl

have foundthis to bea valuableinstrument during class discussionben comparingother

solutions.

[n:][ 14 206699082891] [ nSolve((l_os)x=2,x) 142066990829
|
|
|
|
|+

3]

I%): |5 |

PV: | -1

Pmt: 0.

Fv: |2

PpY: |1
Finance Solver info stored into

tvm.n, tvm.i, tvm.pv. tvm.pmt, ... 1799
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Solution 5  Trial and error

If we letp8t v ¢, whereg is the number of yearshen we candetermine the value @fby
continually improving our guesspmething likehis:

€ p8t v Comment
20 2.6 Too big
10 1.639 Too small
15 2.079 Too big
14 1.9890 Too small
14.5 2.029 Too big

14.5 2.004 Too big
14.22 2.001 Too big

14.21 2.000 Solution

2.6.1 Teachers and multiple solutions

Whilst there is a growindpody of evidence that suggests thia¢ engagement ahultiple
solutions can improveupil learning €.g. Stein & Lane, 1996Silver et al., 2005; Rittle
Johnson & Star, 2007Star & RittleJohnson, 2008 considerablyfewer studies exist that
have examined thenpact onteachergegardingthe instructional procesg&or example, Ma
(1999)found that Chineseeacherenhancedheir mathematicaturriculumknowledge while
Stigler & Hiebert (1999) noted in their international comparative analysis of practitioners
from America, Germany and Japan, the quality of teaching impramaduingly, from a
primary perspective Shimizu (2003 p. 206 reports that AJapanes
schools often organize an entire mathematics lesson around multiple solutions to a single
problem in a wholelass instructionamode. This organization is particularly useful when

i ntroducing a new concept or a new proced
This pedagogical approach is common in ofPkESA high performingountries such as China

and Hong Kong (Stigle& Hiebert, 1999; Cai & Nie, 2007).

In contrast, othestudies havédentified concerns fromractitionerswhich have impacted on
their engagemenbf multiple solutions. In their study of 1@mericanmiddle and secondary
mathematicgeachers, Silver et al. (2005¢porteduncertaintiesregardingperceivedtime
constraints and that more than one approach coajesceto confuseless ablelearners.
Equally, Leikin & Levaw-Waynberg(2007) discovered that in their studytbe professional
development ofl 2 | srael.i mat hematics t e a expestises ,

coupled with weak pedagogical content knowledge prevented them from using multiple
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strategiesBased on astudy of 92 Americart e a ¢ hieavs abdut teching with multiple
strategies, Lynch & Star (2014) argue thatligide exists betweerthe views ofprimary
teachersand that of middle and secondary mathematics teachers. The resehypothesise
there may be seral contributing factorsincluding different amounts of contact time with
pupils in the sectors.

Solving mathematical problenusingdifferentmethodscanalsoserve as a didactical tool and

as a diagnostic assessment technique (-&Vaynberg & Leikin, 2009). Nevertheless,
teachers are only too aware of the general apathy for some learners to disengage after securi
a solitary outcome to a given problefihis disengagement mayssibly be as a result of
practitioners failing to encourage thebitaof searching for multiple solutions or simply not
regularly employing a variety of methods or approaches in the classWerare reminded

by Polya (1957p. 173 t hat Ait should not be forgott
know some mathemas and that a teacher wishing to impart the right attitude of mind
towards problems to his student sindfériopguinisd h
own experience, Schoenfeld (1#)4dvocates that he prefgggblems that can be solved, or

atleast approached, in a number of whgsause:

It's good for students to see multiple solutions, since they tend to think, on the basis of prior
experience, that there is only one way to solve any given problem (which is usually the
method the teacher has just demonstrated in class). | need for them to understand that thi
"bottom line" is not just getting an answer, but seeing connections. Moreover, on the process
level, the possibility of multiple approaches lays open issues oligxealecisions what
directions or approaches should we pursue when solving problems, and wé§)? (p.

However, ina study involving Turkish primary teachers, Bingolbali (2011) found that many
participants during the implementation of a new mathemlatarriculum did not value
alternativesolutions andreportedexperienmmgd i f f i cul ti es i n eval u;
solutions. His findings reveal a significant variation in the grading of different solutions
resulting in practitionersonveyng mixed message® their pupilsby promoting effort at the
expense of matimeatical accuracyMany valid reasons may exist to explain why teacher
nuancesexist in this regard. Oneogsille reasorcould bethat some teachers do reitae the
samemathematicabeliefs about problem solving as others Baorton (1984 p. 23 warns

t hat nif your pupils never see you engage
what goes on in your <c¢l assroom, .iAkernatiely,not

some teachensmay not support the notion that promoting multiple solutiorgeometry is an
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effective use of their time in order to providéeneft to their pupils learning of mathematics
(LevavWaynberg & Leikin, 2012a)

2.6.2 Mathematical creativity

The literature contains numerous contrasting structural mo#tifaceted definitions of
mathematical creativityMann, 2006; Sriraman, 2009Q)eikin et al. (2013) refer to the work

of Guilford (19673 when distinguishing between convergent andedjent thinking of
creativity. They argue thahe act of convergent thinking involves seeking a single, precise
solution to a problem, whereas divergent thinkiegthe creativeproduct that generags
multiple solution strategiedn the same veinlLeikin (2013) in ler theoreticalmodel of
mathematical creativityexpandsthe connectionbetween creativity and divergent thinking
basedon an explicit requirement to solve mathematical problems in multiple wiayshis
thesis, | will use the definition of mathematical creativity first suggested by Silver (1997, p.
75) who s aoventation oradsspositiamtowards mathematical activity that can be
fostered broadly i n t Mg maierdoe usiad thissdefimion is p
centedona belief that every child has the potential to be creative and that sehealbliged

to fashionan educational environmend promote independent thinkirtg develop creatity

skills (Education Scotland, 2013).

Mathematics educational research is plentiful with the influence of constructivist concepts
t hat strongly value | earnerdéds individual I
perpetuate the solving of mathematical problems exercising multipletiosd (e.qg.
Schoenfeld, 1983Silver, 1997;Leikin et al.,, 2006 Sriraman, 2009; é&vav-Waynberg &
Leikin, 2012, 2012k. The significanceof solving mathematical problemssing multiple
methodscan promote advanced mathematical thinking amongst p#pusetskii (1976) and
Ervynck (1991) link the concept of mathematical creativity to multiple solutions. Leikin &
LevavWaynberg (2008p. 234 ar gue t hat #Asolving probl en

the devel opment of sttubdiemktionsgdocr eati vity ar

However, it is evident that the dynamic perspective surrounding mathematical creativity is not
encouraged by the lack of formal evaluation in national examinations (e.g. Scotland).
Chamberlin & Moon (2005p. 42 | ament t h ade ofictedtiaty irs sclgonli f i

mathematics may be minimised because it is not formally assessed in standardized test:
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which purport to thoroughlSjverfi®¥ p.u’9 eounsetst h e
that whil st figenui ne atagintéreonea with craativiiyaschoalingi t
provides most students with little opportunity to experience this aspect of the domain of
mat h e m&rbunded an the work of Torrance (1974), he strongly advocates that téachers
nurturecreativity through mdtematical problem solving by promoting fluency, flexibility and
novelty and illustratesHigure 2.10) the relation of problem solving instructional activities to

core components of mathematical creativity.

Teachers must encourage, support and cultivthée rich development of mathematical
creativity by engaging learners in imaginative exploration during the integration of problem
solving. Shriki (2010 p. 16162) warns thati Ref r ai ni ng from devel c
the classroom conveys the impressithat mathematics imerelya set of skills and rules to
memori ze, and in doing so, many studentso
mi g ht .\Reasonatsdghwvaith this advice is Nickersd2011) who assertghat to enhance
creativity in he classroompractitionersneed tonurturetheir learners especially with ideas

that are unconventionaie makes a poignant remark thainhsure all teachs canrelate to:

Failureto promote creativity in the classroom may well be due sometimes to recognition of
the increased challenge that creatively expressive children represent to classroom order an
teacher authority (p. 414).

In the course ofeachingmathematical problem sahg, | have observed children give up
after a period of intense efforAs a responsd, normally introducean alternative appeech
such agiime oubor provice an unrelatedhctivity. Occasionallyon return to the problenit

hasstimulated @reakthrouglwhich has produced a creative piece of work.

Figure 2.10 Problem solving and creativity (Adapted from Silver, 1997)

Goblem Solving and Oeativ@

| }

AUBENCY AEXIBILTY NOVETY
Sudents explore open-ended Sudent solve (or express or Sudents examine many solution
problems, with many justify) in one way; then in other methods or answers (expressions
interpretations, solution methods ways and discuss many solution or justifications); then generate
or answers methods another that is different
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Nevertheless| suspect thasometeachers do not acceptetiview thatevery pupil has the
potential to demonstrate mathematical creativity. In a study of priotalgren Kattou et al.
(2013) found a strong positive correlation between mathematical creativity and mathematical
ability. The reearcherssuggested that mathematical creativity is a subcomponent of
mathematical abilityLikewise, in another study involvingecondarypupils Leikin & Lev

(2013) noted that gifted pupils (high 1Q) outperformed all other pupils on every measured task
involving mathematical creativityMore recently in a further study of secondary pupils, Lev

& Leikin (2017) assert that expertise in mathematics is a prerequisite fodigidual to be
creative.Together, these studies indicate ttreg imaginativgoromotionof multiple solutions

during problem solving will stimulate and develop creativity skills

2.6.3 Mathematical competence

In this section, | focus on three criticalementsof mathematical competence which are
intrinsic to generating multiple solutiongithin problem solvingi.e. procedural knowledge,
conceptual knowledgand procedural flexibility Procedural knowledge isxpressedas an
integrated and functional grasp afathematicalideasthat can beutilised as an action
sequence for solving probler(iKilpatrick, Swafford & Findell, 2001Rittle-Johnson Siegler

& Alibali, 2001). In contrast, onceptual knowledge is considereapkcit or implicit
understanding of the principles that govern a domain and the interrelationships hedwsen
of knowledg in a domain(Rittle-Johnson, Siegler & Alibali, 2001 More prosaically, it
refers to the richness of the mathematical relationships and range of connectenest (&i
Leferve, 1986).Over the years, much debate has taken plagarding the significamc of
drill and practicemethodsversus theoreticalnderstandingln their impressive review of the
literature, Hebert & Grouws (2007)concluded that bothprocedural and conceptual
knowledge werecrucial for successful mathematidastructionto take place. Procedural
flexibility incorporates knowledge of multiple approaches and a propensity to select the most
appropriate solution based orspecific problem characteristics Kilpatrick, Swafford &
Findell, 2001 Star, 2005).

Comparing different solution

During mathematicalproblem solving, it ishighly likely that multiple solutions will be
generated and thusunchesa suitable platform for pupils to compare different solutions
(assuming that they know that mathematical problemdheaa more than orsolution) It is

this action of comparingifferent solutions that will helextendknowledgeby linking new

knowledgeto prior knowkedge. Goldstone, Day & Son (2010, p. 103) note that comparison is
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one of the most fundamental components of human thought afir esear ch has
that the simple act of comparing two things can produce important changes in our
k nowl e@egnero(2005, p. 251) maintains thai: Co mpar i son i s a g
process that can promote deep relational learning and thelogenent of theory level

e x pl an &ittle-Johmso, Star & Durkin (2012valuated 19&merican pupildearning

of multi-step equation solvingl'hey found that whilst comparing procedures hddnited

impact on conceptual and procedural knowledg®cedural flexibility was significait

improved

Thus far, a number of studies have explored the relationship betwa#ple solutions and
mathematical competendrittle-Johnson & Star (2007) found thattheir study of American
children,comparing and contrasting solution methods was more effective than reflecting at
same solution methods one at a time with respect to procddwadedgeand flexibility.
However,the study would have been more interesting if it madrporatedhonalgorthmic
proceduresLikewise, inanotherexperimentastudy, RittleJohnson & Star (2009)iscovered
that comparing solutions of the same problamgmented conceptual knowledge and
procedural flexibility, than comparing solutions os$imilar problems with equwalent
mathematical structureSimilar evidence suggested that presenting multiple solution
strategies simultaneously is better than presenting them sequeriti@lyesearcherslraw
attention tothe role ofprior knowledgeand note that learning gaimsay bemore beneficial

for pupils with low prior knowledge.

Star &Rittle-Johnson (2008) showed theicouragingAmericanelementaryearnergo solve
linear equations using different methods impropediceduralflexibility in problemsolving
Schukajlow & Krug (2014) argue that teachers should supmanhg peoplen developing
multiple solutions during problem solving. In their study of German secomulgys, the
researchers investigated the influence of promgaagerdo construcinultiple solutions for
realworld problems with vague conditions gupilsd interest in mathematics as well as on
their experiences of competence and autonam/the number of solutions developed. They
revealedthe positive influence of promptingupils to find multiple solutions onndividual
interest in mathematicén a further study of American pupils, Star, Rittlohnson & Durkin
(2016)discovered that comparing different ségies for solving thesameprodem improved

learning. Whilst the premise for this research was to simplifgtructional methods for
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teachers the main weakness of the study was the infrequent ofismaterials by the

participants.

2.7 Problem solving as an overarching goal of mathematical learning

In manytraditional classrooms an emblematpproach tantroducing a newmathematical
concept encompassesteacher leddemonstration of a computational algorithm, supported
with the decontextualizedreatmentof someworked examplesfollowed by the repetitive
setting of numerousanalogousexercisesfor pupils to develop procedural knowledge.
Typically, through a lack of challengaanychildren acquiraveakconceptual understanding
and attemptto subsistby memorisingmechanicaltechniques Whilst the requirement to
enhancemathematical knowledge iscogniseda powerful opportunity to presepiipils with

the tools to discover the rictonceptualmasteryis lost. We areremindedby the NTCM
(2014, p . 17) that fAdms w&hera ihentgskzingsterglyereca@utages t
high-level thinking andreasoningand least in classrooms where ttasks are routinely
procedural in natuce Hiebert et al. {997, p. 1) encourage the need for pupils to learn
mathematics with understanding aacjuet h a t Athings | earned wi
used flexibly, adapted to new situations, and used to learn new things. Things learned witl
understanding are the most usef ul t hings
Grounded on researchat eaching with a clear focus on understanding caltivate the
development ofp u p imlateeénaticalproblem solving abilities (Hiebert, 2003; Lambdin,
2003, this section attempts to explofee instructional options for operationalising problem

solvingin schools.

2.7.1 Instructional approaches

Teachershave long beerfiaced with a dilemma ofiow to coalescemathematicalproblem
solving into their professional practiceGiven that problem solving is a complex and
challenging mathematicanterprise(Lester, 2013)practitionersneed tounderstand how to
orchestratean approach hat will stretchand sustairthe limit of pupil thinking. Various
textbools have6 st or vy [solatetat theremnd of eacmstructionalchapter and thus
concomitantlyserve to perpetuate the notion tpabblem solving is aimplevoluntary add

on task.Previousclassroomencounters mayemind educatorsof the difficulties that are
apparent when catering fdearnerswith an eclectic mix of mathematicalabilities and

experiences.
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However, ppils must have a positive attitude towards the regular engagement of challenging
activities (Lester & Charles, 2003; Schoen & Charles, 20Q&ewise, all primary and
secondary mathematitsachersnust be able to sustain a leteympedagogicatommitment

to developingearner8 abi | i t i es $uch as abligatien ispnecessarygaressure
that every child, regardless of stagand capability, istaughtusing a methodhat fosters
understanding of concepfsrocedures andolving problems (Lester & Cai, 2016}rucially,
practitionersshould be experienced problem solvers and should have a firm grasp of what

successful problem solving involves (Lester, 20dBapman, 2015

In their interesting analysisSchroeder &Lester (1989)describea theoreticalframework
outlining three distinct classroonmnstructional approaches tosupport teachers with

mathematicaproblem solving:

1. Teachingmathematicsfor problem solving

In this approachSchroeder & Lester (1989. 32 maintainnt he t eacher conc
in which the mathematics being taughh & applied in the solution of both routine and-non
rout i ne pamdbli@msvwdent s are given many 1| nst e
structures they are studyirand many opportunities to apply that mathematics in solving
pr o bl €hatsishproblem solving is undertaken after nemathematicalconcepts and
procedures have beemastered.For example, in calculus pupils learn the rule for
differentiation and then gty this technique to solve optimisation problems. Although, this
method is engrained as the conventianatructionalapproach to problem solving, it requires
that all learners have the necessaigrgitnowledge to understand new conaepiypically, it
involves a teacher presenting ormaethodto perform a procedure which may disadvantage
pupils who possess alternative solutiokan deWalle, Karp & Bay-Williams (2014 p. 59

warn that this one dimensionctici c an communi cat e \Wwayttsolvé her
the problem, a message that misrepresents the rule of mathematics and disempowers studel
who naturally may want .Anaherdrawbackisdhatdupilsmaly t h
be affordedexcessivehelp which will eliminateany cognitivedemand andhie necessityto

0 st r uHiebelt et @l. (1997¢ontendrich mathematical ideas are generated as a product of
problem solving experiencethat offer challengeopposed tothe execution of tandard
algorithns. Learners need texplore problemsituations and invent strategies to solve
problems (Cai & Lester, 2016).
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Neverthelessit is purportedthat this method has mer@nd with the colossal pressure to
prepare pupils fohigh stakesexaminationswill probably ensure that this approach will
continue forsometime. For exampleteaching for problem solving the desiredapproach

within CfE. The Scottish Government (2009, p. @nphaticallystate thati Mat he mat i ¢
its most powerful when the knowledge and understanding that have been developed are use
t o s ol v e Mpreoeehthe&Soorish Govement (2014, p. 4 emphasie development

of higherder thinking skills fthat enable the learneto identify which particular
mathematical techniques can be appropriately applied in order to progress towards a solutio
t o a p HovevergSieroon (1986, p. 35)acitionst h ats pteandii t he maj or
time fAidoing mathemaéencdoasodo]jtwhia aAapwahpbker
interesting appendage, actively acts against encouraging a preldemv i ng .a@hspr o
perspectiveesonatesvith Cai (2010) who warns thaeparatingearningskills and concepts

from problem solving des notcontribute to improvingpupil learning.

2. Teachingabout mathematical problem solving

This processwill seek to develop and encourage an awareness of mechanisms that will allow
pupils to access a range of appropre&tategieto attempt to solve problems, at the expense

of learning mathematics (English, Lesh, & Fennewald, 2008). For exaympileg people are
taught Plya style heuristics such as draw a picture, make a table, organise a list, look for a
pattern, write an equatip etc.Paradoxically, while thisequiresa significantinvestmentof

time to illuminate anddemonstrateelevantprocessesit is worthwhile as without problem
solving skills, pupilsneeda prolonged period to solyeroblemssuccessfullylLeong et al.
(2016)maintain that the language of problem solving can be easily transferred and reinforced
when solvingfuture problems However, Schroeder & Lester (1989, p. 34aution that

Ai nstead of problem sol vi ngatics s learnechand appdied,a ¢
it may become just another topic, taught in isolation from the content and relationships of
mat h e méntorder t® dircumvent such amdesirableutcome, Leong et al. (2016) argue
that teachers should employ problems cdmtay mathematical conditionshat require
mathematical solutions. This will alloyupils to link their conceptual and procedural
knowledge to a cycle of thinking and asking questions, &schniqueto augmenttheir
generic ability.One methodto ensure that teachers have allotted time forithérvention is

to include a structural change to the planned mathematidsidum through the introduction

of a formal component (Leong et al, 2018hough asindicatedearlier,the main limitation

of this approachs that pupils are unable tsolve all types ofmathematicaproblems(Lester,

1994).
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3. Teaching mathematicsthrough problem solving
In this rewarding approach, problem solving and learning mathematics are interdependent
(Lambdin, 2003].esh & Jawojewski, 20075 droeder & Lester (19§Tontendthat

problems are valued not only as a purpose for learning mathematics but also as a primary
means of doing so. The teaching of a mathematical topic begins with a psithlation that
embodies key aspects of the topic, and mathematical techniques are developed as reasonak
responses toeasonable problengp. 33)

Similarly, individuals are forced into a state of needing to connect what they know with the
problem at handLambdin 2003). For example, in exploring the vertex of a quadratic
function, pupils are led to discover the procedure for completing the square and how to
identify the axis of symmetry.

To date, a number of studies have suggested thatapisisoach as ammportant linkage
between theoretical research and effective practice which fosters learners problem solving
abilities, reasoning skills and mathematical conceptual understar{@ag 2003 Lester &

Cai, 2016; Leong et al., 2016)ester & Lambdin(2004) draw a parallel with consictivism

and maintain hat pupilsbecome active participants in the creation of knowledge rather than
passive receivers of rules and procedurester & Charle2003 p. xi) argueshatasyoung
childrenattempt to solveproblens, fithey come to understand the mathematical concepts and
methods involved, become more adept at mathematical problem solving, and develop
mathematicahabits of mind that are useful ways to think about any mathematical sitiation
What is consistently underpinned is the interplay between problem solving ability and
mathematicalunderstanding Significantly, learners are affordemiore chancesto express

their mathematicaldeas and justify their answers verballygluding increasepporturities

to engage in cognitively demanditasks(Lampet, 199Q Hiebert & Wearne, 1993).

However, in my professional experienslving mathematical problems is not perceisd
teacherdn the same light as computational skilexjuired tofind the equationof a circle,
simplify an expressiorby applying he laws of logarithmsor using integration to find the
areaof a function below the araxis. From a pedagogical gmspective, teaching through
problem solving requires a paradigm shift in the phifgscal role of the teacheEnhanced
responsibility to select appropriate quality tasks thaturemathematical knowledge blended

with strategic questioning and a&ffective understanding of when to extend and formalise
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pupil thinking, will place arincrease on the demand of the teachMan(deWalle, Karp &
Bay-Williams, 204). Coordinatingclassroom discourse iswltifacetedand requires high
cognitive levels while pupils are learning and validating mathematical concepts ,(Smith
Hughes & Engle2009 Kilic et al., 2010Q. In his discussion on the Japanese school approach
Shimizu (2009p. 10Q concludesthati | n or der to be successful
wel | the relationship between the matghe ma
about the problem to be posed. Anticipating stusl@esponses to the problem is the critical
aspect of |.Msch encourpgeraent mnd rsup@ort is requiredofactitionersto

learn thisrole which cannot beasilyaccomplished through attesmace at training courses but
primarily through professionafteractionswith colleaguesind research.

Moreover,there may be occasions where this approach is ngirdferredmethodto teach
mathematicsL e ong et al . (2016) argues that S 0om
introduced by statinglefinitions with suitable examples andhus shift the emphasison
utilising the knowledgeof thesedefinitionsin problemsolving. For example, in the folloing
problem it is more pragmatic to help pupils learnpherequisitd er m o medi and w

with the first instructional approach (i.e. teachingthematis for problemsolving):

1 Example
Given that thenedianis 5 for the data se®, 15, 6, 11,10, 1, 7,9, sate theminimum value

of a8

2.7.2 Therole of problem solving in school mathematics

In their classic critiqgue Stanic & Kilpatrick (1989 p. 1) state emphatically thafiProblems

have occupied a central place in the school mathematics curriculum since antiquity but
problem solving has noOnly recently have mathematics educators accepted the idea that the
development of problem solving ability deserves special attenfidre authorsighlight the
historical limited view of learning and mathematical problem solving ahdllenge us to

fully examine why we should teach problem solvifidney promote the incorporatioof
problem solving as a vehicle for acquiring new mathematical knowledge by encouraging
pupils to develop logical reasoning skills and take responsibility for their own lea8tangc

& Kilpatrick (1989) identify three differentinteractivethemes abouthe role of problem

solving in school mathematics
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In the first themeStanic & Kilpatrick(1989 describe problem solving asi@ontexty when it

Is employedto reach and facilitate other valuable ends. In such cases, problem solving can be
used to justify the teaching of mathematics, to motiyateils and capture their interestin
mathematics, to stimulate further this gained interest; problem solving sarb@lused as
recreatiorto have funwitand even as a vehicle fAthrough
be |l earnedo (p. 14) . Problem solving as
situations in which problem solving is used to reinforce gmactice previously taught
concepts and skillsSchoenfeld (1992) maintains that problem solving itself is not usually
seen as a goal but solving problems is seen as facilitating the achieving of other goals.

As a second them&tanic & Kilpatrick (1989) represenfproblem solving as &skilld The
authors warn that employing problem solving in a hierarchgoofipetenceo be gained by
p u p ilehdd $0 certain consequendes the role of problem solvingn the mathematics
curriculum.Stanic &Kilpatrick (1989 contendthat:

Oneconsequences that within the general skill of problem solving, hierarchical distinctions
are made between solving routine and -noutine problems. That is, napoutine problem
solving is characterized as a highevel skill to be acquired after skill at solving routine
problems (which, in turn, is to be acquired after students learn basic mathematical concepts
and skills)(p. 15).

As was mentioned in the previous sectitims should be learned explicitly qmrt of the
curriculum Translating this into teaching terms, problem solving should be promoted as a set
of explicit thinking routines, such as drawing a diagram, finding a pattern, logical reasoning,

etc., which should be part of the repertoire of instional practices.

In the final themeStanic& Kilpatrick (1989) refer to the rich work of élya in portrayng
problem solving as éighly creative proce&6sT he aut hors express fdpr
the most defensible, the most fair, and the most promising. But at the same time it is the mos
problematic theme because it is the most difficult to operationalize in textbooks and
cl assr oo mstanic & Kilpatritk7(3989)underlinethe challenges for teachers to
developa practicalartistic ability in pupilsand cite Polyad €1981, p. xi)comparison that
problemsolving should be deemed@ar act i c al art | skiing, oriplaying e s

thep i a nrboagh it is necessary to point out that creative skills are often presented as



81

separate entities to be learngidiactically and applied without any theoretical justification
(Lesh & Zawojevski, 2007; English & Sriraman, 2010; Lester, 2013).

In short, within an ever changinworld, the function of mathenaticalproblem solving igo
empowerpupilsto manage theomplexitiesand norroutine cognitivereallife challenges that
await themwithin the future workplacendependent criticaand creativehinking skills will
help generate solutions to novel mathematical problems #naibt be solved by selecting
previously learned concepts and rulese OCED (2014) assert that:

Forstudentst o be prepared for t o meothan thevdasterywa r | d
repertoire of facts and procedures; studen
unfamiliar situations where the effect on their intervention ispnetlictable. When asked to
solve problemsfor which they have no readwadestrategy they need to be able to think
flexibly and creatively about how to overcome the barriers that stand in the way of a solution

(p. 26).

In a study of Swedish primary teacheian Bommel & Palmer (2015) report that a
coll aborative professional devel opmetthe i n
problem solving themes introduced by Stanic & Kilpatrick (1989i)denced by the quality of

produced lesson plans.

2.8 Assessment

There is agrowing demand from employers and universities for school leavers to be able to
apply their mathematical knowledge to problem solving in varied and unfamiliar contexts
(Lesh & Zawojewski, 2007; English & Sriraman, 2010; OCED, 2@bfies, Swan &ollitt,

2014; ACME, 2016English & Gainsburg, 20)6Assessment will impact on what is taught

in the classroom and should be driven by mathematics that is valued and expected of
modern mathematics educatigBuurtamm et al., 2016)Silver (2013, p. 23) reminds
practitionerghati f or st udents to become convinced ¢
that a good probleraolving program promotes, it is necessary to use assessment techniques
t hat rewar d iewet in this waythe eésessment of problem solving is
essential in order to ensure the effective learning and teaching of problem solving throughou
primary and secondargducation (ACME, 2016)Lesh & Zawojewski (2007, p. 794) posit
that At here 1 s a geries msnmich (and is orgving) between the lova t
level skills emphasized in tedtiven curriculum materials and the kind of understanding and

abilities t hat ar e n e e d eHbweverpschools matheneascs b
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examination instruments are tgplly dominated by short, structured questions that fail to
assess problem solvinKi{patrick, 1992;Jones & Inglis, 2015).

In Scotland, the centrality of problem solving is recognised astensic feature within the
learning and teaching of mathematics (Scottish Government, 200®ugh illogically,
dischargedirom any form of assessment accountability. Ironically, this delineated position
was implicitly bolsteredduring a recent report estalled to transform the status of
mathematics in Scotland by not appearing in any of the ten recommendations highlighted for
change (Scottish Government, 20L6It is important to consider how to interpret the
common theme to emerge from narratives emphmegsitie indispensable role of problem
solving along with the current assessment arrangements that are integral to CfE. As &
practising teacher, 1 am cognisant of the issues of bureaucracy and lack of clarity which
underminesour nationalassessment systenuthrefuseto supplement anyhetoric to this

topic. Instead, | wii focus my attentiorbriefly on exploring how mathematical prtdm

solvingcan be evaluated within a suitabtarhework.

Kilpatrick (1992) suggested that @ssessnathematicalproblem solvingeffectively, the
narrowing effects of current testing practice and the continued pressure for efficient
measurementmust be addressedSince this proposition, multinational comparative
assessmentsuch asTIMMS and PISA haveinfluencedpolicy makers throughout the world
leading to political agendas fueled with neoliberal ideolodieseasingoperationis being
made of external assessmemts gauge mathematical knowledge and continue to serve
different purposs to the design goalsrshrinedwithin the multidimensionality o€lassroom
assessments (Suutamm et al., 2018)Scotland,l believe the functionality of data from
external assessments ultimately serves to
detriment of assaesent for learning (Hodgen & Wiliam, 20063till, this scenario would not
exist if national assessments abgrwith curriculum goals andtonically may beheld as a

positive practice (Swan & Burkhart, 2012).

Notwithstanding theuanceghat arise fronassessing complex processe®iued in solving
mathematicaprodems Szetela & Nicol (1992presentfour categorieshat teachers can use

as a marking rubric; answers, answstatements strategy sekction and streegy
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implementationThouwgh, it is argued thathis methods unable taeliably capturethe level of
divergentthinking involved since thinking is not easily communicated to produce clearly
formulated response Polya (1954, p. 154highlights thati The f i nal form
may be recorded, yet the changing plans and the arguments for and against them are mostly
ent ir el y Sihceauthemtic tprelem .solving tasks require an extertited period

(since theyare not suited to a timed @xination)and observatiorio access evidence of
processthe challenge i® design suitable mathematical problems that can be assegised

acontrolledtime.

Monaghan et al. (2009) argue that ojstgrt mathematical problems offer a practical means

to achieve this objectivendencapsulate the type of problems involved:

1 The mathematicaknowledgeneededo solve theproblemmustalreadybe known securely:
this is notaboutassessingurriculumcontenti it is about assessing tadility to deploysuch
knowledge

1 Theproblemsolver must not bé&miliar with a similar problemi theessence f  &éstpaermt 6
is that it is not clear where to start and recall sinailar siltation would compromise this.

1 It would not be clear at the outset whether stategy will work, and it will have to be
accepted by the problesolver that further attempts may be needed (p. 26).

The authorssuggest that mucklevelopmentwork is requiré to implementthis form of
assessmentWhile no marking schemecan circumscrib all conceivable answersthat
examinationcandidatesmight offer, Monaghan et al. (200@nticipatethat thiswould not
pose an issue faypenstart problemsin my view, teir contributionwould have been more

convincing if thgg had provided some empirical evidence.

In their study involving the design of a problem solving examination paper, Joheglig&
(2015) administered a test to 750 English secondary pupils of varying mathematical ability.
The participants work was assessed by experts using comparative judgement in addition to
specially designed resource intensive marking procedure. Thdrweinef comparative
judgment has an underlying theoretical basis grounded within a-estalblished
psychological principle that people are more reliable when comparing outputs concurrently
than when they are asked to judge something in isolation. Imem&nglish study, Jones,
Swan & Pollitt (2014) demonstrated that comparative judgement was not a barrier to
assessing mathematical problem solving. Results obtained from a review of a sample o

examination scripts derived its validifyfom what is valuedand expected by mathematics
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professionals, rather than what can be precisely captured in scoring rubricsloBeth &

Inglis (2015) and Jones, Swan & Pollitt (2014) found that comparative judgment was
successful and raise the possibility of a richer dfemathematical assessments anchored on
holistic relatively unstructured tasks being available to future Scottish pupils. However, if the
goal of developing proficiently in mathematical problem solving is to be realised, its
importance must be communicatem pupils, teachers and the general public through the
assessments that are offered (Silver & Kilpatrick, 1989). Moreover, the main summative
assessment challenge for stakeholders in Scotland is not novel planning or periphera
methodology concerns butdgviation from traditional measurements fixated by the recall of
facts and fluency of procedural knowledge.

2.9 Factors contributing to successful mathematical problem solving

| commencethis section by referring to the o c i a | C @t 4 ture édad (1892) o
identified attitude along with beliefs and emotions as one of three key affective paradigms in
mathematics educatioill practitionerscan relate toclassroom experiences whepapils
display a range of differerttehaviourismgowards mathematicalprodem solvingwhich are
generally construed acrossantihuumof positive andnegative dispositions. They can have

an affective and emotional character, while on the other hand, are of cognitive Bagin
many years, this phenomenon was surprisingly neglected by a lack of a theoretical frameworl

and new methods of inquiry.

A seminal study in this area is the work of Di Martino & Zan (2010) who collected and
analysed autobiographical narratives verittby 1662 Italian pupils whose school levels
ranged from early primary to the end of secondary. The results of the study showed tha
almost allof the participants describe their relationship with mathematics along at least one of

the following thredrajectories

emotional dispositioiowards mathematics
vision of mathematics
perceved competence in mathematics

= =4 =4

Di Martino & Zan (2010) present a multidimensional model characterised by three strictly
interconnected dimensions that pupils recognise asiatrin their development of their

relationships with mathematics (Figurd D).
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Figure 2.11 The three dimensional model for attitude (Adapted from Di Martino & Zan, 2010)

BEMOTIONAL
DIMENSON

VISON OF PERCEVED
MATHEMATICS COMPETENCE

Di Martino & Zan (2010) suggest the need for a regproach about the positive/negative
portrayal of attitude and offer a definit.i

The multidmensionality of the model underlines the ieqiacy of the positive/negative
dichotomy for attiude refered to only to the emotional dimension (like/dislike), and
rather suggests considering an attitude as negative, when at least one of the dimensions i
negative. In this way, we can outline profiles of negative attitude, depending on the
dimension that gpears to be negative (p. 44).

In a study of 16 Belgium secondarghildren Op 6 t B¢ Carte & Vershaffe{(2006)
examined the relationship betweemathematical related beliefs, emotions and problem
solving behaviour. They found that the nature and intensity of emotion experienced during
problem solving fluctuated between participants. One significant aspect to emerge from the
results was the levelf@onfidence. Guven & Cabakor (2013) investigated factors influencing
mathematical problem solving achievement of 115 Turkish secondary pupilsesSg@chers
discovered that se#fficacy, beliefs and mathematical anxiety wageworthy. However,

the stidy suffers from poor external validitin a study of 20 Israeli primarghildren Prusak,
Hershkowitz & Schwarz (2013) explored the culture of problem salviigy noted the
success of their findings heavily relied on five principdesh as ecouragemet to produce
multiple solutionscreating collaborative situationsycialcognitive conflicts providing tools

for checking hypothesiand invitingstudents to reflect on solutions.

In a review of the locus of problem solving within mathematics auitrios of Australia, UK,
USA and Singapore, Stacey (2005) asserts that successful mathematical problem solvin
depends upon many factors which have distinctly different characters, illustrated in Figure
2.12. A morecomprehensivgaper would includé&cotland(since a UKcurriculumdoes not

exist) andnonEnglish speakingountries.A number ofscholarsarguethat pupils should
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solvea wide range of types g@roblems and beegularly exposedsystematicallyto planned
problemsolving instructione.g.Lester, Garafolo & Kroll, 1989;ester, 19942013 Boaler,
1998, Cai, 2003; Lesh & Zawojeswski, 2008choenfeld (20112013 maintains that
learnersrequire deepmathematicaldomain knowledge, heuristic strategies, metacognitive
skills and relevanbeliefs. Likewise, Goldin (1998) opines that beliefs systems are powerful
facilitators of problem solving success, or otherwise, as obstacles to it. Firestgr (2013)
points to the importance aftuition while Boaler (2016) advocates a growth mind se

Figure 2.12 Factors contributing to successful problem solving (Adapted from Stacey, 2005)

Deep mathematical
knowledge

General reasoning
abilities

Personal attributes Solving problems
e.g. confidence . - .
persistence successfully regwres a Heuristic strategies
organisation range of skills

Helpful beliefs
e.g. orientation to
ask questions

Abilities to work with
others effectively

Communication skills

| now turn my attention to thenultifacetedrole of the teachefLortie, 1975) From my
professionakxperiencethe selection of anathematicaproblem is critical to the succdgk
outcomeof any lessonTo ensureequitableengagement of all levels of ability, suitable
problens must present opportunities to be solved or at least partly attempted bgnfident
learners.Accessibleproblems shouldntegrate enabling prompts fopupils experiencing
difficulty and extending prompts fopupils who have completed the taskdiebert et al.,
1997;Sullivan, 2011; Van de Walle, Karp & BaWilliams, 2014) An overarchingability to

chooseappropriateproblems is interrelated twontentknowledye and proficiency of solving
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mathematical problemsacluding anunderstandin@f how young peoplehink about problem
solving(Chapman, 2015)f teachersre unable toelatefirst hand to the tension and triumph

of discovery engendered by solving problems, they are unlikely to be adept at fostering
mathematical problem solvingDuring classroom discourse rggtitioners bould solicit
guestions that unpagk u p ithinlsng andpress for them to explain their reasoning behind
the process (Rigelman, 2007)Similarly, a resilient dexterity to identify common
misconceptionss essentialSchoenfeld (1992encapsulates widely recognispdpil beliefs

about mathematics which without approach, form a batdethe effective learning of

mathematical problem solving

Mathematics problems have only one and only one right answer.

There is only one correct way to solve any mathematics prolilensially the rule the

teacher has most recently demonstrated to the class.

1 Ordinary students cannot expect to understand mathematics; they expect simply to memorize
it, and apply what they have learned mechanically and without understanding.

1 Students who havenderstood the mathematics they have studied will be able to solve any

assigned problem in five minutes or less.

The mathematics learned in school has little or nothing to do with the real world.

Formal proof is irrelevant to processes of discovery ogntien(p. 359).

=a =

=a =

2.10 Summary

The centrality of ppblem solvingin mathematics isncontrovertible.Ilt can promote deep
conceptualunderstanding, critical and independethinking, habits of persistence and
curiosity, confidence in unfamiliar situations that will serve pugrisatlyin everyday life and

in the future workplace [ester, 1985NCTM, 200Q Cai, 2010. No universally accepted
definition of mathematical problersolving exists or the imminent prospect of a construct
being agreed (English & Gainsburg, 2016). Mathematical problemsompass many
characteristics and are classified in different walke learning of problem solving is
extremelycomplex and multidimesional with muchnterplayrooted in the field of cognitive
science.lt can nurture creativity, flexibility and mental fluency (Silver, 1997; Guberman &
Leikin, 2013). Considerable research has focussed around the theoretical framework
introduced by Polya(1957). Schoenfeld (1985) established that resources, heuristics,
metacognitive control and beliefs systems are fundamem&thanisms of successful

mathematical problem solving.

The role of the teacher is instrumental in supporting learners to dehiglogr order thinking

skills throughgeneratingmultiple solutions and providing rich opportunities for comparing



88

andreflecton. Continued support exists for teaching mathematics using problem solving as a
vehicle (Lester & Cai, 2016).Here is little ewdence to suggest that demonstrating heuristics

to pupils leads to greater success in solving problems (Lester, 2013) although some strategie
have merit.Although there is no obligation for practitioners to be expert problem solvers, a
degree of mathematt proficiency blended with skilful pedagogical knowledge is required
(Lester, 2013; Chapman, 2015). Concomitantly, tension of-stigkes national mathematics
examinations which exclusively concentrate on assessing basic skills place educators in a
undegable position inconsistent with curriculum objectives (English & Sriraman, 2010).
Such a misalignment with classroom practice suggests that a review of the philosophy of
external assessment withifECmay bedesirable.

New directions and perspectivem@&ging from the literature (e.g. English & Gainsburg,
2016) has proposed thafuture mathematical problem solvingesearchbe converged on
modelling. Whilst | welcome such a move, it is debateable if modelling is a division of
problem solving or a sepaeaentity that requires a diverse set of skills. Likewise, there is a
request for the recontextualisation of school mathematical problems so as to offer more
cognitively challenging dynamic tasks that authentically simulate demands®afeRtury

work andlife.

However, | believe that in order to advance the mathematical problem solving skills of all of
our young people, research has to coalesce within two interrelated domains. Firstly, that o
mathematical problem posing due to the valuable learningfienhat subsist. Secondly,

teachersé beliefs since they appear to sic

The next chapter offsian introductoryliterature review of mathematical problem posing
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CHAPTER THREE

Mathematical Problem Posing

The aim of this chapter is to provide antroductoryreview of theinterrelated multiple
perspectivesurrounding mathematical problem posikgrst, it is useful tofamiliarise the
reader since problem posing is not encompassed withen nththematical domain of
Curriculum for Excellence. Second, an appropriate backgraumelpful h advance othe
systematic literature review of mathematical problem poaimgngedor chapter five.

3.1 Nature and definition

In Kilpatrickb §1987)landmark paper, hprovides a valuable insight into our perception of
the origin of good mathematical problenMore recently, Brown & Walter (2005tate that
mathematical problems appear during schooling, predotyn&om textbooks and to a
much lesser extent from teachemngyhlighting an issuewith existing classroom practic&éhe
authors encourage us to shift our thinking from solving predetermined problems to
constructing and designing our own problems ange that withoutengaging withthis
powerful form of mathematical inquirypupils will be unprepared irdapting to future
workplace challenges.Unequivocally, without posed problems, there would be no
mathematical problems to solve (Singer et al.,, 2Hlerton, 2013 As highlighted in
chapter three, mathematical problems can be described astmetured, structured, or-ill
structured. Drawing on the work of Frederieks(1984), Kilpatrick (1987) distinguishes
between the categes as follows: Wellstructured problems are clearly formulgtedn be
solved by the application d a known agjorithm and have criteria available for testing the
correctness of a solutiontrectured prblems are similar to wellstructured problems but
requre the solver to contribute in some way to the solutitb¥structured problems lack a
clear formulation, a procedure that will guarantee a solution and criteria for determining when

a solution has been achieved.

A number ofresearcherdiave reported hat prollem posingis a cognitive activitywhich
encompasseloth the generation of new problems ahdreformulation of given problems
(e.g. Silver, 1994; Silver & Cai, 1996 English, 2004 Whitin, 2006) Silver (1994)suggests
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that the generation of neproblems carmccurbefore or after the problesolvingprocessand

that reformulationfollows when the original mathematical problem is formulated or
transformed into different version Kilpatrick, Swafford & Findell (2001, p. 124) associate
problem pomg with strategic competence amxpresst hi s as fAt he abil
mat hemat i cal probl ems, r Ppie @02 p.t929diudena an
classification of a problem type when sHescribespr obl em posing as
guestions in a mathematical context andthe formulation, for solution, of iétructured

exi sting This delntatoms imadequate sincés does not provide clarity on

previous knowledge.

In this thesis, | will adpt thedefinition offeredby Stoyanova & Ellerton (1996, p. 518) who
refer to the practice of problem posing a:
experience, students construct personal interpretations of concrete situations and formulat
them as meaningful mathent i c al  pVihat ib dppeatingdabout this definition is that it
clearly links constructivism to problem posirighe researchersffer atheoreticalframework

by classifying threecategories of problem posing situations; free, s&mictured and
structured In free situations,pupils design problems from a real life context without
restrictions(seeExample 1 below) Semistructured problem posingccurs when pupils are
Agi ven stumtioroapdeare invited to explore thetructureand to commte it by
applying knowledge, skills, concepts and relationships frotheir previous mathematical

e X per i(prb20kIsbelieve that thissituation has the potential tonaximise creatig
thinking (see Example 2 belowginally, structured problem posing activities aemtredon a
specific problem that requires completion oreformulaion (see Example 3 below) This
approactresonates witlBrown & Walter (2005w h o i nt r o d u-tf-B d tstbategy. A W

All three exampls are taken from my professional practice.

1 Example 1
Heatherhas 145 marblefRuairidhhas 114 marbles anfallacehas 220 marbles. Write and

solve as many problems as you can using this information

1 Example2
In the following diagram, there is an equilateral triangle and its inscribed circle. Make up as

many problems as you can that are in some way related to this diagram.
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1 Example 3
The gradient of atraightline is %2 and passes through the point A @), Write and solve as

many problems as you can using this information.

Neverthelessproblem posings not an original concept. Eminent physicist, Albert Einstein

(Einstein & Infeld, 1938xhampionedhe notion when he famously stated:

The formulation of a problem is often more essential that its solution, which may be merely a
matter of mathematical or experimental skill. To raise new questions, a new possibility, to
regard old problems from a new angle, requires creative imagiratghmarks real advances

in sciences (p. 92).

Historically, this view has been shared by many others ade placed greater emphasis on

the value of posing meaningfulquestions than on attempts to solve thdtar example,
Singer, Ellerton &Cai (2013, p. 2) remirgdus that Socrates (4799 9 B C) Nfestabl
efficient method of learning through a continuous dialogue based on posing and answering

guestions to stimulate critical thinking &

In recent times,a focus onthe idiosyncratic nature of critical thinking has continued
establishing this intrinsiteatureas a highly desiredharacteristicProminent mathematicians
and mathematics educationalists (d?glya, 1954 Freudenthal, 1973, 198Halmos, 1980
Kilpatrick, 1987; Moses, Bjork & Goldenberg, 19%ijver, 1994 Brown & Walter, 2005

Cai et al., 2015; Ellerton, Singer & Cai, 2Q1&onsiderproblem posing to be an essential
mathematical curriculurnomponentind advocate that pupils are afforded extensive problem

posing opportunities.
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During the last three decadessearch of mathematical problem podieg gainedncreasing
awarenessalthougha lack of breadth may limit its future development. It has lseggested
that problem posingas an emerging paradighas been marginalised by the mathematics
educationcommunity (English, 1998;Crespo, 2003; Leung, 201Land be afforded similar
researchstatus asnathematicalproblem solving(Silver, Kilpatrick & Schlesinger, 1990;
Pirie, 2002;Stoyanova, 2003Xilver & Cai, 200%. Concerrs have been raiseavith the lack of
opportunitiesprovided to pupils (e.g. Ellerton, 1986Silver et. al, 1996;Leung, 2013).
However, recent studieshave attempted tobestow further evidenced based strategies for
classroomntegrationand withininitial teacher education (e.g. Singer, Ellerton & Cai, 2015).

3.2 Therole of problem posing in school mathematics

The literature has emphaeal the importance of problem posingttee learning and teaching

of school mathematicsor examplePolya (1957, p. 68positedt h a t At he mat
experience of the student is incomplete if he never had an opportunity to solve a problerr
invented by himelf. 0 S i milpatreck (1987, p. 123 argued that wblemposingshould

be afundamental mathematical curriculum objectmed st at e d expedence éft h e
di scovering and <creating oneds own mathe
s t u & edudatida Interestingly, both expressed views do specifygenderageor ability

which suggestghis activity s accessible to allearners Consequently, pupils any stage

may feel encouraged to develop their mathematigebsity which can acas a motivational

catalyst for further learning.

It has been established from a variety of sources that problem posing can offer valuable
benefits for both teachers and pupils alike. Practitioners are able to create interesting problem
for children which can shape and cultivate mathematical learningpelpdhem develop into
stronger problem posers (Crespo, 2003; Olson & Knott, 2013). The operationalisation of
problem posing provides a |l ens through whi
understanding, problem solving and creativity (Elerton, 1986; Kilpatrick, 1987Silver &

Cai, 1996;English, 1997a, 1997b; Silver, 199Cai & Hwang, 2002 Lowrie, 2003. It
supplies rich opportunities for pupils to connect their own interest with all facets of
mathematical education. Teachers can challenge learners to think deeply about what they al
doing rather than mechanically respond to a set of questions withparg@detechnique or

algorithm. Other authors highlight the empowering aspect of problem posing which
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encourages pupils to construct knowledge (Ergest, 1991English, 1997a) and decide on
guestions to be solved thus rejecting the assumption that sherdyionemethodto solve a
problem and that all problems have one correct answer (Fox & Surtees, 2010).

Based on fostering mathematics asagnitive activity and grounded on a constructivist
perspective(Silver & Cai, 1996 Cai, 1998, initiatives hae recommended that problem
posing play a pivotal role within the learning and teaching of school mathenTdtissview

is supported bysilver (1994, p. 19who notes h a t Afcontemporary con
teaching and learning require that we amkifedge the importance of student generated
problem posing as a ¢ o mpowitlkeimmy oerf professisnalr u c
practice, problem posing has created a dynamic learning environment where children are
inspired to take more risks and are laBsid to make mistakes. Whitin (2004, p. 129) asserts

t hat It can enhance the atmosphere of ev
strategy that builds a spirit of intellectual excitement and adventure by legitimizing asking

guestions and fréeg learners fromtheor@n s wer syndr omeo.

Given its potential to augment the learning and teaching of mathematics, it is unsurprisingly
that problem posing has featured within many curriculum reforms around the ivdvic
beenshown thaturriculumreformis apowerfuldriver forimplementinginstructional change
within educational systems (e.g. Cailfowson, 2013)For examplethe NCTM (1989 p.

138 promulgate the importance of having secondary pupils immerse themselves in some o
the problem posing aspects involved in the work of professional mathematicians by
advocating t hat -1Xishduld diso rhave somenexpgrierecal recogdising and
for mul ating their own probl ems, an abDuting vit
a later reform, the NCTM (2000) declared that the function of the classroom teacher is to
orchestrateopportunities forall learners to construct their own mathtaioal knowledge
emphasising that the formulation and modification of problemswithin and outside

mathematics

Stoyanova & Ellerton (1996) reped that the Australian Education Council (1991) offers
strong support for the use of opended problemsn mathematics classroomin Asia,

assimilating problem solving within Chinese schools has a long history and continues to be
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part of contemporary mathematical thinking (Cai & Nie, 2007). Since the start of the twenty
first century, China has witnessdtetdevelopment of using opemded or redife problems

and accordingly, of paying further attention to problem posing activities opposed to problem
solving activities €.g. Cai & Nie, 2007). The standards for problem solving in the Chinese
National Currculum Standards on Mathematics (Ministry of Education of Peoples Republic
of China, 2001, p . 7) emphasise that pupi
mathematically, apply basic knowledge and skills to solve problems and develop application
avarenesso (as cilleWihibthe Sgapone Mathematids .Curricidudn
Framework, pupils are explicitly encouraged to extend and generate problgnidigistry

of Education, 200). Leung (203B) testifies that curriculum standards amgtruction in
Taiwan emphasise the importance of problem podttayvever, Leung (2@, p. 105) warns

t hat i n At he mat hemati cs curriculum refo
unprecedented challenges to change the way they teach, includingoratmg problem
solving and posing by <childreno. She ref
inexperience of practitioners in posing activities and that such mathematical activities are
difficult to implement €.g.Leung, 1994) and counsdbr the provision of problem posing

training and access to suitable resources for teachers.

Various countries including Italye.g. Bonotto & Del Santo, 2015and Turkey(e.g. Kilic,

2013) have introduced curriculum reforms to embed problem posing actithtzsdevelop
conceptual understandingvithin different levels of mathematics educatiomhis has
challenged the capability of teachers to pose valid and interesting tasks for pupils, including
refining their ability to pose better problems. Research hassiigated the problem posing
performance of prospective amdrrent primary and secondary mathematics teachers (e.g.
Crespo, 2003; Koichu & Kontorovich2013. Whilst, in general, it was found that
practitionersare capable of posing worthy and qualityopiems, it appears that this may be
connected to problem solving experienddoreover, due toworkload demands, teachers
require accessible classroom resources such as sample problems in order to implement
practice.Though, it is possible for reliablergblems to be generated from other sourtes.

their study of 70 Portugueggospectiveprimary teachers, Barbosa & Vale (2016) explored
authertic contextsoutside the classroooontribuing to the posingof mathematical problems
Drawing on the work of Silver (1997) and Stoyanova (1998), the researahalhgsed
personal interpretatiorend formulationof real situationsnspired by the local environment.

They found that participants displayed a more positive attitude towardsigand teaching
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of mathematics by acquiring a wider view of the possible connections between the natural
worlds. It is anticipated that this pedagogical change will help promote conditions for young
children to discover and construct their own knowledge.

3.3 Relationship between problem posing and problem solving

Whilst it is acknowledged thairoblem posing and problem solving are not entirely diverse
cognitive behavioursthey are nevertheless closely related (Lowrie, 2002). Fox & Surtees
(2010 maintain hat the twoare finextricably linke@d whilst some scholars arguehat
problem posing is dispecial case (Kontorovich e t al ., 2012) or Ao
(Kilpatrick, 1987;Bonotto, 2010)pf probdem solving.Brown & Walter (2005)lluminate the
overarchingconnection by asserting thatoplem posing is deeply embedded in the activity of
problem solving in twacontrastingways Firstly, it is impossible tosolve anew problem
without reconstructing the tasind secondly,understanithg a solutionis typically enhanced

after the generabn andanalyss of a new poblem Regarding this lattepoint, Brown &

Walter (2005p. 123hi ghl i ght t hat #fAwe need not wait
generate new questions; rather, may be logically obligated to generate a new question or
pose a new problem in order to be authdére t ¢
skilfully illustrate ter p ower -IBN o tfAioWhtah iseldctingy agpedialcase of the
guadraticequation @ @ p T and solving it by an unorthodox method to generate a

continued fraction.

It may be reasoned that within the domain of problem posing, individuals have to
productively engage in a higher level of intellectual or creative thouglteps.Appraised

from a physics perspectivdjedre (20@, p. 15) contends that as a cognitively challenging
under t & Wwduld gat befvery difficult to argue that posing meaningful, interesting
problems igntellectually a more demanding task thanvea problems Moreover, esearch
suggests that problem posing activities help to diminish puipiathematical anxiety while
simultaneously foster a more positive disposition towards mathematics and may also improve
| earner &8s ¢ onc e p probiem solvingabiity (Silvea, 4994 Emgiish,al 90d@;

NCTM, 200Q Brown & Walter, 200%.
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In chapter twoof this thesis| refer to the problem solving framework offered by Polya
(1957) which connecta journey back and forth through four phases. Leung (2013) presents a
similar four phase cycle to incorporate problem posing and problem s@amth@rgues that

the decisions and actions of posing and solving can be interrdlaigare 31). If an
individual is solving their own generated problem, the initieindersand phase is
considered &Poséphase. Consequently, problem posing earergeat any time, before or

after solving A broader perspective has been adopted by Gonzalez (1998) who describes
problem posing as t he fndfigdapengehten pmctitioners P o |
providing worthwhile problems.However, it may be argued that the interaction between
problemposi ng and problem solving is strobngl
what constitutes a suitable problem.

Figure 3.1 Four phases in problem posing and problem solving (Adapted from Leung, 2013)

Understand
(POSE

A 4

A 4 A 4

Look Back Plan

4 A

A

Carry Out <

Severalstudies have probed the interactions between problem posing and problem solving
with mixed results (e.gkllerton, 1986 Silver & Mamona, 1989Silver & Cai, 1996 Cali,

1998; Qespo, 2003 Chen et al., 207). In this remainder of this section, centred on a
theoretical argument presented by Kilpatrick (1987) that the quality of posed problems is
directly linked to individual mathematical problem solving ability, | examine farmmous
studiesinvolving pupils.In this first study, the problem posing and problem solving tasks are
mostly unrelated. Whilst the tasks in the second study are considered to be identical in

mathematical and contextual structure.

Silver & Cai (1996)

In this study, the researchers Bsad the responses of 509 American secondary pupils who

were asked to complete a problem posing task which consisted of generating three questior
based on a driving situation. Posed problems were analysed by type, solvability and

complexity. This outcomavas compared with the results from eight cpeded problem
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solving tasks involving fractions, geometry, number theory, patterns and relationships,
ratio/proportion and statistics. Silver & Cai (199ficovered thap upi | sO6 pr obl
performance wa highly correlated with their problem posing performanbtareover,
compared to less successful problem solvers, good problem solvers generated more problem
and their problems were more mathematically complex. What is interesting about the study is
thatthe participants were not selected on the basis of obvious mathematical ability.

Cai & Hwang (2002)
This crossnational comparative study examined American and Chipesearyp u pi | s ¢

mathematicaperformances. A total of 98 American and 155 Chiredskelrenparticipated in

the research which involved three pairs of problem solving and problem posing tasks. The
results Ashowed differential relationship
US and Chinese studentpspiea(rp.t o4 10e . r ellhaet eddi
differing strategies. Chinese pupils tend to choose abstndcsymbolic representations while
American students favour concrete strategies and drawing imhgehort, there was a
stronger connection between predol posing and problem solving for the Chinese sample.
Overall, the findings of this study are similar to Cai (1998) which located a positive

correlation between problem posing and problem solving from a-oeigsal perspective.

Whilst both the stud® of Silver & Cai (1996) and Cai & Hwang (2002) provide some
evidence that #inkage exists between problem posing and problem solving, further research
is required to explore this compleand multidimensionalrelationship in more detail.
Recently, Silver(2013, p. 160) in himbservationof previous research in the field, asserted

t h grogrels has been stymied by the lack of an explicit, theoretically based explanation of
the relationship between problem posing and problem solving that is consisteakisithg
evidence and that coul d Ib partidularstheeeds scdrg ofn e w
research involvingractisingteachers (e.gsilver & Mamoma, 1989Silver et al., 1996Chen

et al., 201}

3.4  Creativity
The operationalisation of creativity isdasiredoutcomewithin any mathematical educational
setting. Sriraman (2009, p. 18mphatically states thét mat he mat i c a l creat

growth of the field of mathematics as a wl
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in modern society have been owed to the inspirational creativity of scientists and professiona
mathematicians (Nadjafikhan,aftian & Bakhshalizadeh, 2012n Scotland, ceativity has a

high profile in edication and fits very well within the broad framework of C#ithough
ironically, the vast majority of pupils would not associate the domain of mathematics with

creativity.

Neverthel ess, numer ous pupi | s éentalWwoakeg witb o0 m
practitionerdriven material andequentiatasks or being passive observers of mathematics
(Boaler, 1997).Based on her ethnographic case studies of teaching appsoathsvo
different English secondary schools, Boaler (1998, p. 59) cautions agairsetéetypical
limitations of using onlystandarctnat he mat i cal met hods when sh
an inert, procedural knowledge that was of limited use to theranything other than

t ext book Offet thadreativensde ofmathematicseducation isneglected,as
instruction normallyhas an imitative and reproductive character since it is focussed on
rudimentaryactivities with a dependencyn routine skills, where pupils are encouragedo

think in narrow domaingHaylock, 1987).

It is important toreflect onwhat isepitomised by mathematical creativityrevious research

has suggested that it may benfined to the employment of professiomaathematicians
when they formulate a problem that has not been soleémrd(Hadamard, 1945; Poincare,
1948).However, he conceptualisation of creative learning fluctuates due to the diversity of
perspectives of creativitfervynck (1991)deemshat matlematical creativity cannot occur in

a vacuum and needs a context in which the individual moves forward through previous
experiences which provide a suitable environment for creative developBmeptck (1991)

assertghatcreativityplays a vital role irthe full cycle of advanced mathematical thinking

It contributes in the first stages of development of a mathematical theory when possible
conjectures are found as a result of individual experiences of the mathematical connects; it
also plays a part in the formulation of the final edifice of mathematics as a deductive system
with clearly defined axioms and formally constructed proofs (p. 42).

Silver (1997) views creativity as an orientation or disposition towards mathematicatlyacti
that can be fostered in the general school populatitenproclaimst h e Aconnec:H
creativity lies not so much in problem posing itself, but rather the intebgtwyeen problem

posing and problem solving. It is in this interplay of formulatingerapting to solve,
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reformul ating, and eventwually sol vi nSgvera pr
discusses previous research®gtzels & Jackson (1962Balka (1974) and Skinner (1991)
amongst others whiclklemonstratevaluable samplesof problem posing. He proposes a
didactical paradigm in which classroom practitioners can relate to three practical core
assessment components of creativity i.e. fluency, flexibility and origingtioyelty) as
displayed inFigure 32. However,Kontorovich et al. (2011) argues that these indicators do
not fully capturethe s sence of pupilsd creati viasyn anc
additional quantitative evaluatioilver (1997)presers a task which requires showirttpat

the prodat of any four consecutive integers is divisible by. 2&hist this particular
illustration is more emblematic of problem solving, it can desily adaptedo provide a
problem posing activityFor example, gnerate as many problems as you can using thester
60fourdé, O6éconsecutive integer so, stiiraighthe gse b | ¢
of aninquiry based approacli,t eacher s can assist students
and strategi fluency and flexibility and more creative approaches to their matheahatic

activityo.

At school levelJenson (1973naintainsthat mathematically creatiygupils should be able to
pose mathematical questions that extend and deepen the original pasblezii as solve the
problem using multiple methodsLikewise, Krutetskii (1976) portrayed creativity in the
context of problem formation, invention, independence, originality and associates
mathematical creativity with giftedness. In a studgs® Cypriot pupils (aged 912 years) by
Kattou et al. (2013Xhe researcheffeund a strongpositive correlation between mathematical
creativity and mathematical ability. In contrast, Skemp (1987, payesthat all learners
have the ability to demonstrate tha¢ mat i cal <creativity HAsince
by the method of concefuilding consists of the formation by individuals of new ideas in
their own minds, it i s lothesaneiveing Mahrr (2006) waime i r
that withaut providing for creativity in teaching mathematics, all learners are denied the

option to appreciate the beauty of mathematics.
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Figure 3.2 Core indicators of creativity (Adapted from Silver, 1997)
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Logically, in order to cultivate mathematical creativity, teachshieuld selectcontexts that

offer pupils opportunities to pose their own problen®&nger & Voica (2015) found that
within the context of problem posing, mathematical creativity is a special typ&imgqu
abstraction and generalization. Jay & Per
formulating a problem is a key aspect of creative thinking and creative performance in many
fields, an act that is distinct fr oAmotharnd
illustration of creativity is found in the work of Runco (1994, p. ixX) when he expressed
creativity as a multifaceted ceemgent thinking: i
problem finding and problem solving, selkpression, intrinsic motivation, @uestioning
attitude, and sef onf i denceo. Al ternativel vy, Torran

almost limitless and occurs whenever a solver hasaraée solution for an existing problem.
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While a number of researchers (e.g. Cai & Cifarelli, 2005; Singer et al., 2011; Siswono, 2011)
have endorsed the connection betweerativity and problem posinghis perspective is not
universally shared (e.g. Hagk, 1997; Leung, 1997)uan & Sriraman (2011, p. 25)ote
Aithere might not be consistent correl-atioc
posing abilities or at least that the correlations between creativity and mathematical problernr
posingabili i es are compl exo.

Within my professional practice, | have adapted two problem posing activities (Figure 3.3)
from Christou et al. (2005b) that have stimulated the developmental growth of mathematical
creativity between S1 and S2 pupils. Whilst | canverify the impact of such creativity on

achievement, these tasks have promoted deep critical thinking and have generated mar

interesting and enjoyable learning experiences.

Figure 3.3 Examples of problem posing activities (Adapted from Christou et al., 2005b)

@) Write a question to the followingtoryso that the answer to the problen®is poundé :
Lachlam had 150 pounds. His mother gave him some more. After buying a book for 25

pounds he had 200 pounds.

(b) Write an appropriate problem fidne following:
(2300 + 1100y 790 =n

3.5 Technology

The integration of technology has a loagd prominenthistory in mathematics education.
Since the introduction dfasiccalculators in the 1970spmputers equipped with increasingly
sophisticatedsoftware, graphice al cul at or s t h a all-plrppsébandhadr p h €
devices assimilating graphical, symbolic manipulatiorstatistical and dynamic geometry
packages, and wdiased applicationsoffering virtual learning environmentshave
transfomed the learning and teachinglandscape(Goos, 2010).Concrete and virtual
manipulatives reinforce mathematical concepts andecdancenathematicakense making,
communicationproblem solvingreasoningandfacilitate the tangibleemegence of complex

and abstract ideas
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The application oftechnology provides a range ofich and profoundproblem posing
opportunitiesthat allow learners tanake conjecturesgesign theirown explorations and
createreinterpretation®of existing conceptsMore importantly, it can reliably provoke the
stimulation of mathematical thinking due to the extensigsortmenbpf ideas that can be
instantaneously generategilpatrick (1987)helped champion thiiture use of computers in
problem formulationHowever the role oftechnologyin problemposinghas yielded few
secondarystudies, andeven lessinvolving primary pupils (Abramovich & Cho, 2015)
Researchhas focussean electronic spreadsheets (e.g. Abramoyiz@06; Abramovich &
Cho, 2008), graphingoftware (e.g. Christou et al., 2@3.avy & Shriki, 2010; Leikin,
2012) computer algebra systems (e.gor@&movich & Norton, 206) and modelling (e.g.
Abramovich & Cho, 2012)

Engagement in npblem posingactivities using dynamic geometry softwamean produce
powerful learning environments where problems or relationships can be generalised or the
validity of a new problem can be examined. This technolaggycesunique interactions
between thes o f t wirderfac® and ther s e actiois andundersandings resulting from

visual reasoning@nhancedy dragging facilitieqLavy, 2015). In astudy usng this software,
Contreras (2003claimed that all mathematical problems contain some known information,
some unknown information and sometimes explaitimplicit restrictions By illustrating

with parallelograms and angle bisectof3ontrerasdescribes how to generataultiple
geometricproblemsby varying the type of problem information and considemtiger types

of problems He maintains that such technologysam ow finot only how we
become better problem posers but also how the teacher can use a proligragmsach as

an instructional tool to help stu@erLs spe

Class discussions of problem posingidties using dynamic geometry softwaserve asa
valuable mechanismfor evaluatingaccuraenessof generalisationsThe exchange of ideas
regarding the attributes and interrelations of mathematical objects imsgectionmay also

stimulate the development of individual reflection by both teacher and pupil (Lavy, 2015).

In a later studysing dynamic geometry softwar€ontreras (2007advocatedhat all pupils

should have extensive experiences posing proof problPnming is anessentialfeature
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intrinsic to understandingnathematicsandprovides the quintessential methoadlf establising
propositions as result&reeno (1994p. 274 ar g u e s stuteats to ledrnosathematics
without coming to appreciate the role of proof seems as impoverished as it would be for a
student to learn cgence without coming to appreciate the role exhpirical evidenoe .
Contreras (2007underlinedthat reformulating a problem as a proof problem involves more
than alteringthe syntactic structure of the problerdt requires an assumed degree of
mathematical knowledge, sinees either know that a pro@dxists or we can develoguch a

proof. In her study o222 prospectivelsraelimathematis teachersLeikin (2015) highlighted

the effectivenesf problem posingnvestigations in a dynamgeametry environmentas a
pedagogicainstrument Shefoundthat themajority of text book problems lead ferforming
mathematicdgertile in surprisesdiscoveriesand proofsNeverthelessLeikin (2015)cautions

that theoperationalisatiom f pr obl em posing is dependent
aligningwith the suitabilityof suchapproaches and tleeitical provision of rich tasksin the

same veinAbramovich & Cho (2015) illustrate the importance of future practitioners being
equipped with conceptual understanding of didactic issues related to problem posing with

technology.

3.6 Assessment

Although assessmern$ conducted fordifferent reasonsit may beargued thatits central
purpose should be to support and enhance learning. Based on this premise, problem posir
has been meaningfully employeéd assess multiplenathematical constructs generated by
pupils (e.g. Kantorovich et al. 2011; Van Harpen & Presn2€d.3; Singer & Voica, 2015
Munroe, 2019 andprospective teachers (e@tespo& Sinclair, 2008; Osana & Royea, 2011;
Tisha & Hospesova, 2013inger, Voica & Pelczer, 20L7Pelczer & Rodriguez (2011)
formulatedcriteriafor assessing \eels of creativitygenerated by a problem posing tasktlos

topic of sequences. Thowest level was based on the application of a domain specific
algorithm. A middle level was similar to the lowest level but was combined with some other
form of knowledge The highest level was categorised as usmgvative knowledge from
outside the topicKilic (2015) usedsemistructured problem posing activities determine

prospective Turkish primary teachersé6 knov

Other researchers have designed frameworks or performance rubrics to support teachers

their assessment of problem posing tasks (e.g. Stoyanova & Ellerton, 1996; Leung, 1996
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Leung & Silver, 1997; Lowrie, 2002; Lin, 2004few studies exist that have fesed
specifically on the assessment of <childre
Moreover, an extensive range of curricul@ssessment&mainunderdeveloped foschool
mathematics(Rosli, Goldsby & Capraro, 2@L In this next section, | daw on two
assessment toadle stimulate a discussion of characteristics and didactic competences.

Whilst promoting creative, flexible and higherder thinking, it may be argued that a degree

of subjectivity exists due to the opended nature of problem posing tasks. Shriki (2013)
points out that creativity imsdisddyereeddethe o
mathematical abilities of a group. Likewise, Silver & Cai (2005, p. 131) warn that although
considerablevariability is commonn the responses thatipilsgenerate it dan often present
challenges from an assessment perspeactwéhile the researchers make a valid point, it
cannot be underestimated the significance of obtaining a diversity of problems from pupils.

Problem posing represents @ssentiaform of authentic mathematical inquiof which the
basic tenets the reformulaton or generation ohew problemsl believe that the main thrust

of assessment should includarly deduction of ilstructured andinsolvableproblems in
addition to evaluatingdifferent levels of mathematicakophistication Silver & Cai (2005)
propose threeriteria that can becoalesced formssessing npblem posing abilitywithin a
classroomsetting; quantity, originality and complexityQuantity relates to the number of
valid responses and fluency of generated proban$elp toestablishcreativty. Originality

is an obvious measure ofreativity and a welcomedttribute However,the emergence of
originality may depend on working with large groups of pupils so as to distinguish between
atypical response3.he complexity of pupils posed problems is a feature that is likely to be of
interest to all teachers. Silver & C&O005) provide agoodillustration of a problem posing
task employed in a previous studysilver & Cai, 1996)which can be used to evaluate

complexity of pupil responséfigure 3.4).

Figure 3.4 Task for evaluating pupil response (Adapted from Silver & Cai, 2005)

Write three differenproblems with the given situation:

Donald, Coinneach and Eilidiook turns drivinghome from a tripEilidh drove 80 miles more than
CoinneachCoinneachdrove twice as many miles &»nald. Donaldirove 50 miles.
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Silver & Cai (2005) draw our attention to the aspect of linguistic complexity and suggest that
this may be judged by focusing on lingugsstructures, such as the presence of assignment,
relational and conditional propositions in mathematical problem statements. The researcher
extend this perspective to consider fundamental semantic structural relations in order tc
analyse complexity in ore detail and offer a framework for assessing the complexity of pupil
generated problems (Figure 3.5).

Figure 3.5 Framework for assessing complexity of pupil generated problems (Adapted from
Silver & Cai, 2005)

NonMathematical All Statements
Questions Responses

A 4

Mathematical

Questions » NonSolvable
A 4
Solvable
Complexity Complexity
A 4 A 4 A A 4
Sophlstlcatlpn of Problem Linguistic Mathematical
Mathematical Difficulty Complexity Complexity
Relationships P P

In another study Kwek (2015) explored the use of problem posing tasks as a formative
assessment tool to examine thinking processes, understandings and compeiéncies
secondary pupilsHer specific focus was onthe cognitive demands omathematical
complexity which included aspects of knowing and doing mathematics, such as reasoning,
performing procedures, understanding concepts or solving problems. diag&yed a rubric
(Table 3.1) tocategorise thredevek (low, moderate and highdf complexity of posed
problems Low complexityproblens are usually solved by recalling and recognising facts or
having a onestep solutionProblems that are categorised with moderate levels of complexity
generallydemand a combination of mathematics skills and knowledge. Efghplexity

problems emphasisesourcefuthinking by engagingolvers n a multitude of demands.
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Rubric for evaluating the complexity of posed problems (Adapted from Kwek, 2015)

Low complexity

Moderate Complexity

High Complexity

This category relies heavily ot
recall and recognition of previo
learned concepts. ltems typi
specify what the solver is to
which is often to carry out s

Items in the modefatomplexit
category involve more flexibili
thinking and choice am
alternatives than do thosehn
low complexity category. T

Higficomplexity items make he
demands on solver, who r
engage in more abstract reasc
planning, analysis, judgment,
creative thought. A satisfac

é procedure that can be perfor require responses that may response to theniterequires thi
.2 mechanically. It leaves little rgo beyond the conventional appr« the solver think in an abstract
% creative solutions. The followin or require multiple steps. The s sophisticated way. The follo
8 some, but not all, of the dem is expected to decide what tc illustrate some of the demands
that items in the leemplexit using informal methods of reas items of high complexity
category might make: and probleiolving strategies. T make:
following ustrate some of t
demands that items of moderat
complexity might make:
ARecall or recognize a fact, terr ARepresent a situation ADescribe how different
property mathematically in more than on representations can be used t
ACompute a sum, difference,  way solve the problem
product, or quotient AProvide a justification for steps APerform a procedure having
- APerform a specified procedure solution process multiple steps and multiple deci
S ASolve a oiistep word problem Alnterpret a visual representatic points
£ ARetrieve information from a gri ASolve a multigtéep problem  AGeneralize a pattern
T table, orfigure AExtend a pattern ASolve a problem in more than
f’z) ARetrieve information from a gr. way
E table, or figure and use it to solh AExplain and justify a solution t
2 problem problem
o Ainterpret a simple argument  ADescribe, compare, and contrz
solution methods
AAralyse the assumptions made
solution
AProvide a mathematical
justification
3.7 Theoretical frameworks

During the lasttwenty years, anumber oftheoretical frameworks have emergedhat

conceptualis@roblem posingrom an arrayof perspectivesd-or examplecognitive processes
(e.g. Silver et al., 1996; Pittalis et al., 200&hristou et al., 200% Chua & Wong, 2012;
Kontorovich et al., 203), assessment of problems posed (&iyer & Cai, 2005; Kwek,

2015), strategic approaches (e.§ilver, et al., 1996Brown & Walter, 2005; Contreras,
2007) complexity in small groups (e.g. Kontorovich et al., 201&@)nnection to problem
solving (English, 1997a, 1997b)earning opportunities (e.gLowrie, 2002; Crespo &

Sinclair, 2008), mathematt modelling (e.g. Bonotto, 20103reativity (e.g.Leung, 1997;

Silver, 1997 Siswono, 201), andsituations ofproblens posede.g. Stoyanova & Ellerton,
1996.
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My main curiosity in problemposingrests with the professional despinent of teachersln

order for problem posing to be mobilised within classrooms, | believe that it is essential for
practitionersto appreciatethe pedagogicahature of problem posing and are competent in
demonstrating the mathematical processes that defindlthough sone research has
highlighted teachers6 di fSiveretall 19968mchunHarelh p -
& Manaster,2013; Singer & Voica, 2(), severalstudies have noted that withtérvention,
teachers can lead to improvptbblemposingperformancege.g. Abu-Elwan, 2002,Crespo

& Sinclair, 2008 Chapman, 201)2

In my personalview, the Active Learning Famework intioduced by Ellerton (2013) aligns
exactly witha constructivist orientationof learning and teaching mathemati€entral to this
framework is the active engagement of pupils posing problems in paralletavigsponding
problem solving activitiegFigure 3.6). It is this seamlespositioningof problem posing that
Ellertonargues if excluded frorachool curricula, W deprive children of rich mathematical
experiencesk-or problemposing to be introducecbnsistentlyinto classroors teachersnust
acquire skillsand confidencewhich may be achievday conceptualisationf problem posing
within primary and secondarynathematicsinitial teacher education programes or

embedded within professional learning opportunities.

In a recent studgmployingthe same framework,Ellerton (2015 derived that time consumed

on posing mathematical problems should not be isolated frometipendedn mathematics.

Shei nsi sts that it shoul d be seen by all
mathematics, and should not be seen as an impogti an extra that somehow needs to be

included inanalfeadg usy curriculumo (p. 527).

Teachers are continually required to engage learners in worthwhile mathematical experience
but such provision is influenced by the efficiency to select, creatpose appropriate
problems. In a study af0 Canadiarstudent primaryeachersChapman (2012) investigated
methods of making sense of problem posing. By providing the participants with a range of
assignments, she was able to analyse problem posing behaviour by task type. Chapmsa
identified five perceptions on problem posing held by the teachers. Firstly, the paradigmatic

perspectivee mp hasi ses Acreating a pr obl paniculari t h
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solution and an independent exi stence fr
objectivist perspective illustrates working backwards by beginning with a mathematical fact
(e.g. 5 x 10 = 50) and then constiogta problem by providing edext. Thirdly, the
phenomenological perspective characterises problem posing that is meaningful from the
i ndividual sé point of view and which <con
Fourthly, the humanistic perspective is similar to pirenanenologicalperspective but the
cont ext reflects the individual sé persona
interested in tennis, they might pose the following problem: A badminton club has 31 playing
members. 27 play singles and 15yptioubles. How many play both singles and doubles?).
Finally, the utilitarian perspective emphasises problem posing as an instrument to focus
attention on the mechanics of mathematical thinking. Chapman statdbehagrspectives
Aprovi de a ark ans urpack tieeir wagsnop problem posing. All five need to be
explored in order to allow the teachers to understand how each could support or inhibit
studens mat hemati cal under stand(png4d.and mat he ma

Figure 3.6 Framework for locating problem posing in mathematics classrooms (Adapted from
Ellerton, 2013)
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| believe that collectively, theframeworks offered by Ellerto(2013) and Chapmar2012)
offer both primary and secondary mathematiesmchers asuitable starting point in their
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development of problem posing knowleddf@ntorovich et al (20129 present an insightful
analysis ofcollaborativeproblem posingconsisting of aframework which integrates five
operationally defined facet&igure 37) such agask organisatiorknowledge base, problem
posing heuristics and schemes, group dynamics and interactions, and individual

considerations of aptness.

Figure 3.7 A confluence framework for handing the complexity of problem posing (Adapted from
Kontorovich et al., 2012)

Knowledge Base

Mathematical factsdefinitions,
protypical problems
competence of mathematical
discourse and writing

Task Organisation Heuristics and Scheme
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Processes of social nature
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A

PROBLEM POSING
PRODUCTS

Kontorovich et al. (2012 p. 153 def i ne considerations of
comprehensions of explicit and implicit requirements of a prolgiEsing task within a
particular context; they also reflect his or her assumptions about the relative importance of
t hese r equi stiaglye thares@archeridasdrilger déferent types of individual
considerations of aptness in problem posing such as aptness to potential eyalaatbes
poser6s assumptions savmadtd low!l aottatbher tihedipw
and perbrmanceincludingapt ness to group member s inote.

the idea suggested by the poser would be acknowledged by members of the group.
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Kontorovich et al. (2012, p. 160)maintain that teachers should provide pupils wiim
oppatunity to employ considerations of aptness to potential sqQhasrghis many lead to
improving the quality of the problem posing prodactds ugge st t hat Apec
should probably be invested in designing such situations, in which considsratiaptness

wi || be a d d r e b speadtical etermps| iteactetrchny attempt to evaluate
considerations of aptness based on observation of the interactions that takes place withi

groups and judgthe quality of the problem posing ideas and resulting problems.

3.8 Professional reflection

This chapter hasttempted to provide a summary of tiverks relating to mathematical
problemposing from both a teacher akghrner perspectivén doing so, it hapresented a
rationalefor the conceptualisatiomndoperationalisatiof mathematicaproblemposing.In
sum, t advocateghe view thatproblem posingis of central importance in theodhain of
mathematic&nd tothe nature otritical thinking (Silver & Cai, 1996 Silver et al., 1996and

endorses thetancefrom Ernest (1991, p.@&) t hat ischool mat he ma
centrally concerned with human mAtotdiegrnat i c
Christou et al. (200% p . 149): AProblem posing is a

applied mathematics and an integral part of modelling cycles which require the mathematical

idealizationofreawor | d phenomenao.

Intertwined with problem solving, theformulation ofexisting problems and the geration

of new problems have the dynamic @pability to increase conceptual mathematical
understanding and to empowehildren to nurture their own innate creativity. Authentic
problem posing activities can unleash a powerful connection betsebenlmathematics and
the real world including beingaccessible to all learners irrespective of ability.essence,
problem posingwith all its complexitieshas thepotentialto redefine in a radicahanner
independen learning, where pupils are energised to take a more active role in their

mathematicatlevelopmen{Brown & Walter, 2005).

One criicism o much of theliteratureon prollem posng is that it does not helfp explain
the dynamics ohow teacherscan supportyoung peoplenvho reject or resist inquiry based
pedagogy. Whilst problem posing activities promote autonomousirigeeind can empower

pupils to interact more with mathematics, some children do not hawdeisire or motivation
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to engage with the cognitive demands of this instructional approach (Silver & Mamona, 1989
Silver, 1994. Characteristically, sucpupils are products of previous mathematical success
through the medium of teacher centred learnmigch delimits the enactment of higher order

thinking.

However, while problem posing is recognised as fundamental to the learning and teaching o
mathematics, it remains on the periphery of school curricula (Ellerton, Singer & Cai, 2015).
Arguably, without an official mandate, the injectioof problem posing into classrooms
appears to be fragmentetMore concerning may be thatl practitionersare not fully
equippedto pose worthwhile problemse.Qg. Koichu, Harel & Manaster, 2013; Singer &
Voica, 2013)

| believe that if problem posing is tbe interwoven within the fabric of mathematical
instruction, thecritical role of teachers nesdo be examinedSince the enactment of any
didactic vision is influenced by the beliefs of those charged wiits implementation
practitionersmust berobustlyconvinced of theheoreticalmeritsand educational benefitd
problem posingLikewise, teachersneedsufficient training to acquirethe vital pedagogical

skills to allow them tocultivate problem posin@ practice. Crespo & Sinclair (2008, p. 412)
contend fAthat in order for teachers to s
problem posingg x per i e n c e Abdu-Elean $2607)\ws@ggests that through technology
guidarce, it is possible to change the beliefs of teachers towards the role of problem posing in

mathematics education.

Recently, as part gbractitioner enquiry towards professional learning, | examined a rich
problem posing activity k n o wexpeaescedprimay 0 B |
colleaguesBoth individuals claimed no previous experience in mathematical posing problem
and indicatd a desire to collaborate in order to develop pedagogical knowledge of an
innovative approach to teaching mathematics. The Billiard task has besedutiliprevious
studies involving prospective angractising mathematics teachersSifver et al, 1996
Cifarelli & Cai, 2005; Koichu & Kontorovich, 2013) and can stimulate the generation of
interesting problems and conjectur@ur interactionsfocusedon considerations of aptness

relating to individuaunderstandingf an interesting problem and which problems would be
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suitable for potential learner&Kg@ntorovich & Koichu, 2009; Kontorovich et al.,, 2012)
Crucially, the outcome of the discourpeomptedme tosearclstudies repoimg an elemenof
ill-structured or cogtively undemanding problemesreatedby teachers (e.gSilver et al.,
1996;Crespo & Sinclair, 2008}t is useful to considewhat factors may inhibit theapability
of teacherdo pose authentic problengs.g. poorconceptuaknowledge of the underlying
construct) and correspondingly, how to prepare teachersptoduce interesting and
challengingproblemsto cater for multiple levels gupil abilities. Regarding this last point,
in the absence of any recogniddfiA mandateand within a climate of political and education
insecurity it is difficult to envisage a provisioof learning opportunitiegor primary and
secondary mathematics teachers to devpitoplem posing skills.

A morerealistic window for achievingthe future integration of problem posing iScottish
schoolsmay have its origin in theeducationof new recruits since the persistence of
classroom norms operate against many teachers attempting to improve their professione

practice Ellerton (2013) maintais that:

Perhaps the only way that problem posing hashanceof being seriouslyintroducedinto school
mathematicgurriculaand classroom practices would fog young teachers tacquire problenposing

skills and confidence iproblem posingthemselvedo the pointwherethey would becapableand

willing to help their studentsto poseproblems The simplestway to movetowardsachievingthis

would beto focus attention on thidssuein early childhood, primary, and secondarymathematics
teacher education programs (p. 100).

Naturally, the overarching goal for the international research community is to generate
empirical evidence of improved pupil mathematical learning (e.g. English, 1997b, 1998)
alongside other benefits such asrturing creativity. The mandate for such evidence is
similarly pertinent forengagingprospective and current teachers in order to strengthen
knowledge and understanding that can be applied to raise professional standards. Harvestir
empirical evidenceof problem paing will help prompt relevant stakeholders and policy
makers to take notice given that Scottish education is committed to drive forward
improvements utilising evidence based research as an approach to classroom practice ar
curricula reform.Building on this professional reflection it seems important to move to a
researcherés interrogation of the ideas.
The next chapter of this thesis presents ¢

epicentre of this research.
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CHAPTER FOUR

Teachers6Beliefs

4.1 Introduction

Much societal and political rhetoric has positioned teachers asritiwal variable in the
successful development of learning of all childr&ince | began researching my own
practice, | have become increasingiyware of the richness attached to critiques of
mathematics education by colleagu€sough, what continues to resonaehe diversity of
beliefs heldregardingmathematicaproblem solving anehathematicaproblem posing.

Over thirty years ago, Thompson (1985) highlighted the disproportionately small amount of
attention that researchers hestowedo the role of the teacher. Similarly, Grouws (1985)
emphasised his concern with thack of research on howpractitioners corceptualise
mathematicaproblem solving and how they attempt to teach it. In recent years, there has
been an increasing interastthe potential of research to inforckassroonpractice.Pajares
(1992, p. 307pmssest h dhe befiefs of teachershouldbe a focus of educational research
and can inform educational practice in ways that prevailing resegehdas have not and

cannod .

|t is the premise of this thesis that i n
influential factor in the concentration of learning and teaching of mathematical problem
solving andmathematicaproblem posingln other words, how a teacher coptglisesthe

nature ofmathematics has a direct impact on what is delivered to pupils and therefore any
changes will require an analysis of professed beliefs, actual balefscurrent practices.
However, Forrester (2008p. 25) points out thati Wh e tolrern ot a teacheil
successfully transl ated into practice, t !

i ntentions. for the futureo



114

Within CfE, the mantra of increased autonomy to teachers as agents of change has been we
broadcasté. Castle (2006) contends thaitanomous practitioners learn to make enhanced
instructional decisions by undertaking their own critical thinking about educational matters
andopinesthat teachers, who are not autonomous, depend on others to commwhigate

do. Scottish teacherheoretically enjoythe dynamicpedagogical freedom to exerciseflect,
research and develop their own perspectiveshenlearning andeachingof mathematics,
thusconnecting belief$o professional practicéAs was pointé outin chapter one, with no

available empirical data to analyse it is unknown what the nature of this relationship is.

In this chapter, | will briefly review key theoretical perspectives and important contributions

that have advanced researchonteachs 6 bel i ef s. I n doing so,
i mportance of teachersodo beliefs with refer
42 Defining the fAbeliefo construct

Extensive academic debates attempting to define a precise universal conceptual definition o
the belief construct has yet to be established within the research literature. Possibly as a rest
of researchers assuming that readers already know what laekef$hompson, 1992) or the
flexibility of the belief construct is accommodating to many (Goldin, Rosken & Torner,
2009).Alternatively, Leder & Forgasz (2002) contend that it is not easy to produce a precise
definition because the belief concept is naedily observable and is inferreblowever,

Fives & Buehl (2012) argue that the difficulty lies not in the definition since several authors
have provided so but instead encouraging researchers to consistently define and use su
terms within and across gnrelated fields. Nevertheless, a mosaic of overlapping constructs
populated within a densely and uncertain world of interchangeable conceptualisations exist
ThoughWilson & Cooney (2002hdvise thatt is more germane to be acquainted vilie
influenceof teacherbeliefsrather tharseekingharmonyon a definitionMcLeod & McLeod
(2002, p . 120) propose fithere is no singl
true, but several types of definitions that are illuminative in different situats o . For e

Pajares (1992) expresdde view that beliefs include:

attitudes, values, judgments, opinions, ideology, perceptions, conceptions, conceptual
systems, preconceptions, dispositions, implicit theories, explicit theories, personal theories,
internal mental processes, action strategies, rules of practice, practical prinmpdpectives,
repertoires of understanding, and social strategy @. 30
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AccordingtoHer mans, van Braak & Van Keer (2008,
representations which store general knowledge of objects, people and events, and the
character i st iCooss (2015,ap L76nagithinsthat belie f s  eanboelied i
conscious and unconscious ideas and thougl
it developed through membership in various social groups, which are considered by the
i ndi vi dualTilegma (1994)avdwstibat ieliefs erve as filters which screen new
information and ultimately determine which elements are accepted and integrated in their
knowledge base. Similarly, Clark & Peterson (1986) advocate beliefs act as a monitor which
practitioners make their decisions ratheart just relying on their pedagogical knowledge or
curriculum guidelines. What is notable about this definition is that is recognibkeat t e ac
beliefs can influence classroom practice irrespective of the written wurmc In contrast,

Perry, Wong &Howard (2006)warnthat beliefs are@ooted ancconstrained byhe culture of

the societyand educational systermswhich the teachers are livirnd working.

Unsurprisingly, with so many different perspectives, Mason (2004, p. 347) calls for the

ressa ch community fAto work out what beliefs
alphabet of associated ter mso. Skott (201
its conceptual and met hodol ogid lelefs,phowever, e m:

is still somewhat underspecified, and the discussion continues on how to distinguish it from
knowl edge, concept i on s nstamomm ttheio study, of Americanv a |
primary teacher sd pedangea agli(198}Hescdbeprattisoners ad e | |
individuals who rely on their knowledge and beliefs to understand and interpret the rapid flow
of events in a classroom, make decisions and act on their interpretations. Peterson et a
(1989) empl oyl e@¢dgee 6t ewhm cbhk nroeM at es to Oped
illustrated by Shulman (1986) but appear to attempt to coalesce knowledge and beliefs into
common constructWhile some support remains for this conception (e.g. Pajares,; 1992
Calderhead, 199@ther researchers have at least attempted to distinguish between beliefs anc
other suppositions such as knowledge, affect, valaamtions,etc. (e.g. Nespor, 1987;
Kagan, 1992; Thompson, 1992; Calderhead, 1996; Richardson, 1996; Handel, 2003; Philipp
2007).

Beliefs have been extensively portrayed from a mathematical perspéatilcin, Rosken &

Torner (2009) argue that beliefs are fundamental to the discussion of problem solving
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approaches in mathematics education and are necessary componenpsyeclitbéogy of how

mathematical problems are solve8.c hoenf el d (1992, p . 358)
I ndividual 6s understandings and feelings
conceptualizes and enga g essmpartant breansideretimtthei ¢ a

nature of the classroom environment that the teacher creates can shape learners beliefs abc
the nature of mathematics (Schoenfeld, 199ewise, Lester, Garofalo & Kroll (1989, p.

77) articulatet h a't ARbel i efs aasn subjectiveu knewledgen abouti self i v
mat hemati cs, problem solving, and the top

vein, Hersh (1986, p. 1¥)vites us to examine our mathematical pedagogy and alludes to the

critical nature of a philosophyfo mat hemati cs when he quest:i
what 1Is the best way to teach? But, what I

In sum up, Skott (2015) in his analysistbé conceptualisation @f e a ¢ bekefssoiacluded
that there appears to be four key aspdsitst, beliefs are used to describe individual mental
constructs that are subjectively true for the person in question. S¢berelare cognitive as
well as affective aspects to beliefs. Third, baliafe considered stabdend may stem from
schooling, life experiences teacher education programmes andllaborations with
colleaguesThey tend to be resistant to changeurth, beliefs are expected to significantly

influence classroom practice.

43 Te ac h eelief gystéms

Within the literature, there is considerable agreement thata c ekefsarénot regarded in
isolation but consist of various substructungthin a multidimensional systerfereen (1971)
identified three theoretical dimensiond belief systems, which have become fertile ground
for researchers (e.&choenfeld, 1983yespor, 1987; Pajares, 199thompson, 1992Cross,
2009 Braunling & Eichler, 201p He postulated that beliefs are not compartmentalised but
are in fact interrgted in elaborate waysirstly, there is thequastlogical relation between
beliefswhich are depicted as eithprimary or derivative Thompson (1992) illustrates this
hierarchical dimension by considering a teacher who believes that it is importaesentp
mat hematics fdAclearlyodo (primary belief) ani
be readily prepared to answer pupil questions (both derivative belfspndly,based on

their psychological strengthsome bkefs are considerectentral or peripheralRokeach
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(1968), as cited in Pajares (1992), maintains beliefs vary along a esettiieral

continuum, where the more central a belief is situated, the more resistant it is to change.

Thirdly, beliefs can beheld in clustersand may coexist without conflict insolation This

would explain why some individuals can hold incompatible or inconsistent views without any
sense oflivergence. Thus, belietge not considerenhutually exclusive as teacheramchold
overlapping viewssimutaneously and overtm&Nonet hel es s, teachers
when they are afforded effective opportunities to reflect and challenge those beliefs (Wilson
& Cooney, 2002).

In her case study ofive American mathematics teachers, Cross (200ghlights the
diversity among practitionersoé6 beliefs by
she describes the parallel belief systems of Mr. Henry, Mr. Brown and Ms. Reid, unfolding
that these individuals deem mathematical knowledge resalzsolute established set of
concepts that are rigid and infallible, with their classroom practices reflecting those beliefs.
Secondly, in the example of Mr. Simpson, the researcher accounts that although his
mathematical beliefs differed considerablyrfréhe other teachers, they did cluster in similar
ways. Cross (2009) describes Mr. Si mpisgono6.
perspective, not as fragmented groups of isolated facts and concepts but as an interconnectir
and evolving set afelationships. Finally, in the case of Ms. Jones, the researcher conveys her
mathematical beliefs as a conglomerate of viewpoints grounded on the importance of problen
solving and critical thinking, coupled as a vast reservoir of knowledge rooted in rauiviber
Jones believed th#twas vital she possessed an informatiaseto teachpupilshow to solve
problems, identify errors, ardemonstraténow to correct themCross (2009) concluded that
her participantsd bel i ef s ttheores about lgaming ane d
teaching of mathematics were derived from their core mathematical beliefs. Furthermore, in
the case of Ms. Jones, her opposing pedagogical views did not appear to present any intern

conflict.

In another study, Braumlg & Eichler (2015) investigated the belief systems of six recently
qualified German primary and secondary mathematics teachers, which focused on the

learning and teaching of arithmetic. Based on the analysis of Mrs. A, the researchers werce
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able to distingish her espoused central beliefs, peripheral beliefs and the assorted
interrelationships between them. However, the study would have been more convincing if the
authors had used a larger sample.

From my own collaborations of working with colleagyesyvo classifications b belief
structures appear to dominate the teaching of mathematics within Scottish schools. Both
orientations sit at the opposite ends of a spectithe. first systemis where teachers have a
direct transmigionist view of learning where knowledges communicated in an explicit and
structured way, where pupi&ge presented with demonstrationscofrect solutionsogether

with a provision of unsophisticatedathematicaproblems.Teachers resolutely believe that a
quiet classroom is required for effective teaching. In contrast, the second systemaadopts
constructivistview of learning whichfocuses orchildren not as passive recipients but as
active participants in thenanagemenbf acquiring knowledgePractitionersholding this
perspectiveemphasis the facilitation of pupilinquiry and provide challenging mathematical
problems to cultivate knowledge. Individuals offer the minimum of support in orddiow a
pupils more freedonto execute aractive independentole in their thinking and reasoning

processes.

A number of researchers have pr omathematdal d i f
beliefs systems (e.g. Skemp, 1987; Lerman, 1989, 1990; Askew et al, 1997; Chapman, 200z
Speer, 2005Beswick, 2012. One wellknown review that is often cited isuks & Ball

(19869 who draw our attention to the connection betweere ac her s 6 ma t
conceptualisations and their instructiomaéthods by identifyingdur overriding approaches

to the teaching of mathematics. The first is a description of teaching as content focussed witl
an emphasis on performance, which has been expressed as instrueagntay (Skemp,
1978) anctalculationalbrientation (Thompsaret al., 1994 Here, pupils are taught to follow

and master rules and procedures without acquiring any conceptual understavitking
memorisation of mathematical facts stressed.The second approach is a description of
teaching as content focussed with an emphasiensaringconceptual understanding. The
third arangementis focussed on contextvhere the classroom structure and organisation
strongly influences student learning.n&ily, the last approach is learner focused and is
underpinned by a socia&bnstructivist view of learning (Thompson, 1992). This method is

characterised by engaging the learner with activities that expdiseover,formulate ad
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constructa wide range ® mathematical ideasT hi s i s si mi |l ar to Sk
concept of mathematics.

In his major contribution, Ernest (1989a) suggests that acceptance of teaching mathematics
through problem solving depends fundamentally on profound changes ®wac her s 6
system. He argues that mathematical instruction is dependent on several key elements, but
particul ar on the practitionersd concept.:
models of learning and teaching of mathematics. Awacls 6 conception o
mathematics may be considered as conscious or subconswous perceptions, values,
guidelines, mental images and preferences concerning the discipline of mathematics
(Thompson, 1992).

Ernest (1989aposits three distict philosophies of the nature of mathematics that are held by
teachers as individual beliefs syster@sst, the instrumentalist view regardatinematicas

an accumulation of facts, rules and skills in férsuance of some external erichus
mathematics ighoughtto be a set of unrelated but utilitarian rules and faRtutinely,
teachers expect pupils to listen, participate in didactic interactions and then replicate
computational algorithms that have bemonstrated. Such a positibas been the object of
much criticism by mathematics educators (Thompson, 1992). Secon®latmnist view
considers rathematicsto be astatic but unified body of certain knowledge. this case,
mathematics is discovered (noteated) by humans throughathematical investigation.
Third, the problem solvingor social constructivistyiew deems midnematicsasa dynamic,
continually expanding field of human creation andention, a cultural product. Mathematics

is believed to bea process of inquiry ancbming to know, not a finished produ@trucially,

its results remain open to revisioRroficiency in mathematics is equated with autonomous
problem solving and problem posing. The former two views assimilate within the domain of
absolutism while the latét one within the domain of fallibilismrompson, 1992Ernest,
2014).

Ernest (1988) proposes three instructional models to reflect the diverse roles a teacher might
play within a classroom, which has been encapsulated by Leatham (2002) in his doctora

dissertation (Table 4.1Both instrumental and Platonist views and their respectiviveder
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teaching strategies present narrow views of mathematics, compared to a problem solving

perspective which promotes a chddntred and inquiry based approach (Schoenfeld, 1992).

Table 4.1 Ernest models as summarised by Leatham (2002)
Phenomena Instrumentalist Platonist Problem Solving
Nature of An accumulation of facts, r. A static but unified body of A dynamic continually
mathematics and skills certain knowledge expanding field of human
creation and invention
Teac her (lInstructor Explainer Facilitator

Intended outcorr Skills mastery with correct Conceptual understanding' Confident problem posing ¢
performance unified knowledge problem solving

Use of curricular Strict adherence to a text o Modification of the textbook Teacher, student, or school

materials scheme approach, enriched with  construction of the
additional problems and mathematics curriculum
activities

Ernest (1989a) outlines the relationship between beliefs and their impact on classroomn
practice by illustrating how teacheroés vi
mental modes of the learning and teaching of mathematics (Figure 4.1)véftowe model
proposed by Ernest (1989a) is not universally shared by all. For example, Skott (2013, p. 548
rejects such models and argues that t his
assumption that t eac her s ationadl elange, fasd thatrbeliefsa

research may remedy what is generally refe

Figure 4.1 Relationship between beliefs and their impact on practice (Adapted from Ernest, 1989a)
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nature of
mathematics

Espoused model of
"| teaching mathematics

Espoused model of|
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of teaching
mathematics

Enacted modeél
of learning
mathematics

Ernest (1991) defines three distinctive interpretations about the role of problem solving in the

mathematics curriculum. First, he argues that problem solvingisect ed by il
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trai nerso as inappropriate anmathématlicyimbebafs b
absolute decontextualized but utilirian truths and rudes] that its central function is to
inculcate basic skills.Second, he suggests bothO| d humani st so and
p r a g maonsidert psoblem solving aglditional catent and implemented a&sechanical
objects of inquiry used to enrich teachikgnally, Ernest argues thétPr o gred s ca tver <
and A Rdibd a tview prablem solvingas pedagogical approaches to the whole
curriculum, and not just as an additioBuch ideologies arise from philosophies of
mathematics whickdeemit a growing field of knowledge, if not as social construisin and
maintainfull incorporation of these processes into the curriculum, including problem posing,

leads to a problem solvirend investigational pedago@yrnest, 1991).

4.4 Theimportance of teachers @nathematical beliefs

The thrust of research into mathematics related beliefs has centred on beliefs about the natu
of mathematicandthe learningand teachingf mathematic§Thompson, 1992Beswick &
Callingham, 2013 A growing number oempiricalstudies (e.g. Thompson, 1984; Cooney,
1985; Chapman, 1999Aguirre & Speer, 200, Beswick, 2@4; Speer, 2008 have been
propelled by the suppositionthat theresubsistsa positive correlationbetweenespoused
mathematicabeliefs andnstructionalpractices. In otherwords, there has been a plethora of
research on t eache rpesunptibnethat eHatsteadherss elbve ésna  t
powerful indicatorin selecting whamathematicds taught,how it is deliveredand what is
learned in the classroom (Wilson & Cooney, 20B8swick, 2006; Skott, 20)5The research

has advocated that beliefs are one of the major components influencing pedagogical practic
and should not be underestimatédipatrick (2003) informs us that beliefs influence the
choice of curriculum materials and therefore affect the tgpenathematical ideas and
opportunities offered to pupils. In the same vétajaras (1992, p. 329rgues thafi b e | i e f
are instrumental in defining tasks and selecting the cognitive tools with which to interpret,
plan, and make decisions regarding suatks$; hence, they play a critical role in defining

behaviors and organizing knowledge and inf

In their researchof 21 Americanprimary teachers, Stipek et al. (2001) foumdonsistent
association between mathematical beliefs and observedradas practicesLikewise,
Zakaria & Maat (2012)noted a positive connectionbetween mathematt beliefs and

reported pedagogicatethods in theistudy of51 Malaysian secondary mathematics teachers
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In herrenownedcase studies of thremericanjunior highschool mathematiggractitioners,
Thompson (1984) described teacher named Kay who perceived mathematics as
continuously expanding and changing to accommodate new developmenis.ekpgused
views about mathematics were consistent with legooused views about teaching
mathematicsa n d wi t h Thompsonos observat i)oghne . ‘
employed a variety of approaches to stimulate intenestiding encouragg pupils to ask
guestions, guess, dlrise, and be wnag; used appropriate examples and nReramples;
provided a variety of justifications; shoed applications of the topics tauglnd mobilised

games and puzzles as motivational devices

Other studies havieeenilluminating in comparablavays. Forexample, inan investigation of
problem solving and problem posing ability and beliefs of 128 Chipesspectiveand
currentpr i mary teachers, Chen et al. (2011) f ¢
strongly influencd their evaluation of pupilattemptsto solve and pose mathematical word
problems Sivunen & Pehkonen (2009) analysed the mathematical beliefs on teaching
problem solving of 42 Finish primary teachers. The researchers learned that practitioners hel
a limited knowledge of instructi@htechniques and were dependent on available resources. In
an nternational comparative studfambo & Hong (1996jound that South Korearteachers

held stronger viewshan American teachers regarditige importance of being a proficient
problem solverprior to teachingproblem solving The researchalludedthat South Korean
educatorglid notpromotemultiple solutions much preferringingle solution paths in order to
minimise learneruncertainty However, suchraadversebelief is at the expense of foatey

creativemathematicathinking.

By acknowledging the importance of beliefs in shaping teachers characteristic patterns of
instructional behaviour, it is possible farmulatesteps tamprove the quality of mathematics
educationThompson (1984forewarnsthat failuretorecogee t he r o | ebeltefs at
might play indeterminingtheir professionapracticeis likely to result in misguided efforts to
improve the standard of mathematics instruction in school¥he delivery of school
matheméics has been compared with the workpobfessional mathematicians/ several
scholars (e.g. Ernest, 1991; Beswick, 2012; Boaler, 2015b). Boaler (2015b) argues tha
teachersodé traditional beliefs of the lmratsul

image of the subject. She suggests that for pupils to appreciate and enjoy mathematics, the
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need to be regularly exposed to authentic ways in which mathematicians operate such a
Aposing probl ems, maki ng guess dising alead, antl 0 n |
di scussing ideas with otherso (p. 31).

4.5 Inconsistencies betweent e a ¢ hbelieks @nd practice

While miscellaneoustudies have found onsi st enci es bet ween tea
and instructional practices, more oftessearch has revealed a misalignment between the two
features (Thompson, 1992, Phillip, 200The correlation between mathematical beliefs and
mathematics teaching are multifaceted, dialectical and can be influenced by a structure o
reciprocal factors. flese may be rationalised through the anxiety and unpredictability of
classroom life, external pressures and constraints placed on teachers that compromise the
contemporary views of education in place of more traditional metHadslarifying such
incongstencies, Beswick (2006) draws on the notion of clustering, citing Green (1971). She
mai nt ains that Abeliefs within a system c
beliefso and fAa person may hol d ngawaneefthe t

contradictiono.

In herrenownedcase study of novice Americgmimaryteachers, Raymond (199@gscribed

the case of Joanna who held traditional beliefs about mathematics btradional beliefs

about learning and teaching of matleims. Raymond (1997)determined that this
inconsistency arose from various factors amndduceda theoretical framework (Figure 4.2)
towards understanding the complex nature of the interrelationship betwatematical
beliefs andclassroonpractice. Shavarns stakeholdensot to overlookmultiple factors that
teachers ardrequently exposed to Moreover, Thompson (1984 p. 124 maintains that:
iMany factors appear to interact with the
teaching inaffecting their decisions and behavior, including beliefs about teaching that are not

specific to mathematicso.
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Figure 4.2 Model of relationships between mathematics beliefs and practice (Adapted from
Raymond, 1997)

Past school experiences Teacher education program Social teaching norms —— ¢S OKSNDa A

‘ slight influences
moderate influences moderate influences

strong influences e————moderate influences—fj
Mathematical beliefs ————strong influences Mathematlc_s teaching
practices
- S strong influences o
slight influences  slight influences slight influences
. . Immediate classroom Studentslives outside Personality traits of the
Early family experiences| L
situation school teacher
T—moderate influences—‘
Mathematics beliefs: Sudefet sd | i
About the nature of mathematics and mathematic Home envi ronment , par e
pedagogy school and mathematics)
Mathematics teaching practice: Teacher education program
Mathematical tasttiscourse, environment and Mathematics content courses, methods courses, 1
evaluation experiences, student teaching
Immediate classroom situation: Past school experiences

Students (abilities, attitudes and behaviour), time Successes in mathematics as a student, past teat

constraints, theathematics topic at hand.

Social teaching norms: Early family experiences

School philosophy, administrators, standardizedt Par e nt s &h evnagd w cesf, matr en

curriculum, textbook, other teachers, resources  background, interaction with parents (particularly
regarding mathematics)

Teachers life Personality traits

Daytoday occurrences, other sources of stress  Confidence, creativity, humour, openness to chan

In a studyof a novice Danish teacher, known as Christopher, Skott (2001) investigated the
relationship between the beliefs of mathematics, learning and teaching of mathematics an
that of classroom practi-mat héddmat int¢ s cidmez @ @ :
teachersé6é idiosyncratic properties in rel:
and the teaching and | earning of mat he mat

Chr i st op hmathénmtics imdges ovére highly compatibléhvaspects of the reform
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discourse but this relationship with classroom practice was very different in contrasting
situations. However, what is distinguishing about the study is that is challenged much of the
underlying reasoning and evidence from previbouss ear ch i n the field
choosing not to instinctivelyxploit apparentinconsistencies, Skott attempted to rationalise
the dissonance between beliefs and pracBgeeflecting on his own position as a researcher,

he was able to &cnowl edge t hat his i1nitial as s umg
mathematics wuld have been the driving force behind his pedagogical decisions. Instead, the
more centrally held belief for Christopher wasminated by an emphasis on thdividual
learner, sometimes at the expense ohfashematical beliefs

The outcomeof the study helped influence Philipp (2007)p@posethat as researchense
must assume that contradictions betTalengn t
this stance, Philipp (2007, p. 276)aintainedi when we obser ve appar e
would assume that the inconsistences exist only in our minds, not within the teachers, anc
would strive to understand the teenacle&Eisos O

i mpressive anal y deathano(2006p. ®2 anbheretss éensible systaars s |,
theoreticalframework on thundamentabssumption thafteachers arénherently sensible

rat her t han i .rPatdiffesently,tindriduals belefs arg arganised in systems
that make obvious sense to thelbeatham (2006underlinedthe need forresearchers to
follow a process of exploring and explaining apparent inconsistencies rather than simply
indicating conflicts so as to faciliata deeper understanding of the nature of beliefs and how

they are held.

Furinghetti & Morselli (2011)in their casestudes of four Italian secondary mathematics

t e a c tremtmen® of proof, focussed on the detection of the reasons behind instructional
practices.To unravel the dilemma of inconsistencies, the authors introduce the construct of
|l eading beliefs which they defi ne tatsachérh el |
that seem to drive t he wa yruringheadti &tMeraedi (2611)s t
claim thatthrough the construct of leading belief they were able to divert attention away from

inconsistencies.
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Likewise, during acase studyf two Americanelementaryteachers, Cross (2015kilfully

looked beyond perceived inconsistencies to gain a better understanding of the nature o
mathematics beliefs and how they were organised. Drawing on the tenets of a sensible
systems framework (Lelaam, 2006) anditilising both contextualisedand decontextualised

data sources, Cross (201und thatobserved practices were aligned with other sets of
beliefs. These aligned beliefs were personal and external factors including beliefs not directly
related to the teaching of mathematid® ensure that researchdpstter understand the
complexities of individual beliefs systemSross (2015, p. 198)ighlights the requirement

Aito expand the scope of their axamnagtheiraeat i

ofmacrcand mircofactors on instructiono.

What is apparent from the case studiescdlesd in this section is the need for researchers to
attempt to fullyunderstand the complexiti@d interactionshat manifest themselves within

the context ofs c h o o | and classroom cultures. Tea
pedagogical practice but a direct causal relationship cannot be asddutigule factors may
influence both professional practice atfte institutional context (Cooney, 1985; Hoyles,
1992).

46 Changingt eachersoé beliefs

It is a widely held view that e a c Ibekefs aré slow to form but once established are highly
resistant to change. According to SchomiAdins (2004, p. 22), thefiar e | i ke ol
once acquired and worn for a while, they become comfortable. It does not make any
difference if theclothes are out of style or ragged. Letting go is painful and new clothes
require adjustmerd.Furthermore, teachers may not be camssly aware of the underlying

beliefs that underpin their practice (Schoenfeld, 2015).

Though it is asserted hyiljedahl (2010)that the trajectoryof hange i n teache
practices can also be rapid and profaumdhis researclstudyof mathematics professional
activities set within Canada, Liljedahl (2010) identifies five distinct mechanisnigelcdf
change (1) conceptual change (2) accommodating outliers (3) reification (4) leading belief
change (5) pushull rhythm of changeWithin this chapter, | haveeferredto conceptual

change and leadingelief changes Liljedahl (2010)illustratesa leading belief change by
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describing the case of Phil, a primary teacher and problem solving workshop participant. As a
consequencef being deephaffected by one experience, Phil made a significant change to his
belief system and evaluation practic&his transformation wasxpeditedoy Phi | 6 s a

critically examinehis professionapractice.

In another study involving practising secondary mathematics teacherdjedahl (2011)
strengthenshis argumentsurroundingteacher change as conceptwadiange All of the
participants weraituated within a professional learning environment argjestedover time

to interventions designed fwomote cognitive conflict within thetore beliefs aboutarious
aspects of mathematics educati@ased orthe results Liljedahl (2011) ontends thathe
theory of conceptual change may act as a frameworkchangingt e a c bhetiafssAd
intriguing outcomeof this studyrevealed that participants not only rejected beliefs pertaining
to their current practice but often did so without replacemElmis can beexemplified by
reference to an assignment tasked watviewing Boaler (1997) and her dichot@us settings

of Amber Hill and Phoenix ParkWhile many of the participants were quick to reject the
teaching practices of Amber Hill, they werduatantto embracehe paradigm extolled in the

descriptions oPhoenixPark which integratedproblem posing.

I will now review two studies that feature specific mathematical domain beliefs about

problem solving and problem posing. Emenaker (1996) and Barlow & Cates (2006).

In the first study, Emenaker (1996) analysed the impact of a problem solving based
mathematics course on 137 Americgnospectivee | e ment ar vy teacher .
mathematics and the teaching of mathematigor to launching e course, hdound
considerablesupportclusteredaroundbelief misconceptionsisted as (1) If a matlematics
problem takes more than1® minutes, it is impossible to solN2) Mathematicsis mostly
memorgation (3) All problems can be solved using a stgpstep algorithm or a single
equation(4) Only geniuses are capable of creating or understanding formulas and equations
(5) There is only one correct way to solve any problédm completion of thecourse,
Emenaker (19963 etectedpositive alterationgo participantsbeliefs manifestedprimarily
through three underlying themes. First,certain problems containmultiple solutions and

alternative answersSecond,conceptial understandg is more important than memeaing






