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Summary

GAB A is one of the two main inhibitoiy neurotransmitters in the central neiwous system, CNS 

(along with glycine, which has a major role in the brainstem and spinal cord). G ABA regulates a 

number of functions in the CNS, and in the spinal cord, it is responsible for presynaptic inhibition 

of primary afférents and postsynaptic Inliibition of neurons. G ABA is produced by 

decarboxylation of L-glutamate by glutamate decarboxylase (GAD). Two GAD isoforras have 

been identified, GAD65 and GAD67.

Antibodies raised against glutaraldehyde conjugates of GABA have been used to 

investigate the distribution of GABAergic cell bodies, whilst the distribution of GABAergic 

terminals has been examined with antibodies against GAD. Although GABAergic cell bodies are 

detected throughout the spinal grey matter, these are concentrated in laminae I-III of the spinal 

dorsal horn. GAD is present in axon teiminals in all laminae of the rat spinal cord, but only a few 

immunoreactive cell bodies have been detected in the superficial dorsal horn. This differs from 

the situation in the brain, where many GAD-immunoreactive cell bodies can be found. Studies in 

the brain suggest that while most (if not all GABAergic neurons) synthesise both GAD isoforms, 

many have relatively high levels of one or other isofoim. It is not known whether this is the case 

in the spinal cord. Until recently, most studies that have looked at the distribution of GAD have 

used antibodies that do not differentiate between the two isofoims, and such studies in the spinal 

cord have been qualitative and no attempt has been made to quantify GAD levels in individual 

laminae, or examine the co-localisation of GAD isofbrms in individual boutons. The recent 

availability of antibodies that are directed against each isofoim separately enables detailed studies 

to be performed that compare the distribution and co-localisation of the two isofbrms. In this 

study, immunocytochemistry and confocal microscopy were used to examine the distribution and 

co-localisation of GAD65 and GAD67 in individual axonal boutons in each lamina of the rat 

spinal grey matter. The main finding of this part of the study was that although most GAD-



immunoreactive boutons were labelled with both GAD65 and GAD67 antibodies, some showed 

similar intensities of both types of immunoreactivity whilst others appeared to have relatively 

higher levels of one or other of the GAD isoforms. This suggests that GAD-immunoreactive 

neurons are a heterogeneous population. Also, GAD-immunoreaetivity differed between each 

lamina of the spinal cord e.g. in the superficial dorsal horn, boutons that had relatively higher 

levels of either GAD65 or GAD67 were frequently found. In contrast, most boutons in the ventral 

horn displayed relatively high levels of GAD67, although discrete clusters of boutons that had 

high levels of GAD65 immunoreactivity were detected in lamina IX. Very few GAD- 

immunoreactive cell bodies were detected, and those that were found were generally GAD67- 

immunoreactive.

Populations of GABAergic neurons in the dorsal horn that differ in their neurochemistry 

have been identified. These have specific laminar distributions and are thought to be functionally 

different. GABAergic cells can be classified aecording to their enrichment with other substances. 

In many neurons, glycine co-localises with GABA, and at some synapses in the spinal cord, they 

may be released from the same vesicles. Therefore, GABA and glycine may act as co-transmitters 

at some inliibitory synapses in the CNS. The co-localisation of each GAD isofonn with GLYT2 

(a marker for glycinergic axons) was examined. In this study, no relationship was detected 

between GAD and GLYT2 expression in the dorsal horn, as some GLYT2-immunostained 

profiles showed strong GAD65-immunoreactivity whilst others displayed relatively higlier levels 

of immunoreactivity for GAD67. In contrast, in the ventral horn, boutons that were 

immunoreactive for GLYT2 were more likely to have relatively high levels of GAD67- 

immunoreactivity whilst those that were GLYT2-negative were more likely to have relatively 

stronger GAD65 -immunoreactivity.

The relationship between PV and NOS (2 markers of GABAergic populations) with 

GAD 67 was investigated in cell bodies in laminae II and III. Although 83% of PV-



immunoreactive cell bodies were immunostained with the GAD67 antibody, none of the NOS- 

positive cells were G AD 67-immunoreacti ve.

GABAergic axo-axonic synapses are the anatomical substrate of presynaptic inhibition of 

primary afferents and primary afferent depolarisation, and P boutons are responsible for this 

inhibition in gioup la primary muscle spindle afferents. A ‘GAD65 intense’ population in the 

ventral horn may be the P boutons as these form discrete clusters in lamina IX. This study 

examined their association with primary afferent terminals. This was done with 

immunocytochemistry, confocal microscopy and electron microscopy. Primary afferent teiminals 

were identified by retrograde labelling with cholera toxin type b (CTb) and vesicular glutamate 

transporter type I (VGLUTl)-immunoreactivity. The main finding of this part of the study was 

that 88-89% of the ‘GAD65 intense’ boutons in lamina IX were in close contact with primary 

afferent terminals, and frequently formed clusters around them. Since these boutons lack GLYT2- 

immunoreactivity they are presumably not glycinergic. This is consistent with evidence that P 

boutons are not glycinergic. In conclusion, the ‘GAD65 intense’ boutons in lamina IX are the P 

boutons.

GABA, and glycine, may play very specific roles in the modulation of pain information in 

the spinal dorsal horn, as intrathecal administration of GABAa and glycine receptor antagonists 

results in a dose-dependent exaggerated response to light tactile stimulation (a symptom of 

neuropathic pain). In this study, investigations were carried out to establish whether there were 

any ehanges in GAD65- or GAD67-immunoreactivity in laminae I, II or III after peripheral nerve 

injury (with the chronic constriction injury (CCI) model) or complete nerve transection (with the 

sciatie neiwe transection (SNT) model). Immunocytochemistry, confocal microscopy and image 

analysis were used to investigate these changes. This part of the study found that there was a 

significant reduction in GAD65- and GAD 67-immunoreacti vity in lamina II of SNT animals. A 

significant decrease in GAD67-immunoreactivity was also detected in lamina III of CCI animals



and laminae I and III of SNT animals. When these results are viewed in conjunction with the 

results of a study by Moore et al. (2002), it appears that this decrease in GAD65 and GAD67 in 

the spinal dorsal horn after nerve injury does not directly result in a reduction in GABA-mediated 

inliibitory transmission in neuropathic animals.
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Chapter 1: Introduction
1.1 GABA in the Central Nervous System.

y-aminobutyric acid (GABA), and glycine, are the main inhibitory neurotransmitters in the 

mammalian central nervous system (CNS). GABA’s role as a neurotransmitter was first 

established in the 1960s in the neuromuseular junction of the lobster. Investigation of this 

junction has allowed experimenters to demonstrate, using neurochemistry and electrophysiology, 

that GABA was released from inhibitory nerves in this species (Otsuka et al., 1966). It has since 

been shown that GABA has an important role as an inhibitory neurotransmitter in the mammalian 

CNS, where it regulates a number of functions including locomotion, learning, reproduction, 

development, pain and circadian rhythms. Areas such as the substantia nigra, globus pallidus and 

cerebellar cortex (all cell types except granular cells) have a strong GABAergic input (Storm- 

Mathisen et al., 1983). GABA is also transiently expressed in non-GABAergic neurons of the 

embryonic and adult CNS, suggesting that it has a role in the development and plasticity of the 

nervous system (Sloviter et ah, 1996). In the spinal cord, GABA is responsible for producing both 

presynaptic inhibition of primary afferents (Eccles et ah, 1963) and postsynaptic inhibition of 

spinal neurons (Curtis et al., 1968).

Outside the CNS, GABA, and its synthetic enzyme, glutamate decarboxylase (GAD), are 

found in peripheral tissues, including the testi (Persson, 1990), oviduct and ovary (Apud, 1984). 

GABA and GAD are also found in the islets of Langerhans of the pancreas, where insulin is 

produced and GAD65 (one of two isofoims of GAD) has been identified as an autoantigen in 

insulin dependent diabetes mellitus. This is an autoimmune condition where there is T-cell 

mediated destruction of pancreatic insulin-secreting p cells (Solimena, 1991). In the pancreas, 

GABA may act as an autocrine inliibitor of insulin release, as well as a paracrine inhibitor of 

glucagon and somatostatin release (Franklin and Wollheim, 2005).
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In addition, GABA also functions as an intermediate in energy metabolism in GABAergic 

neurons. The synthesis and degradation of GABA (known as the GABA shunt) accounts for a 

small fraction of the tricarboxylic acid cycle in the brain. GAD, GAB A-a-oxoglutarate 

transaminase and succinic semialdehyde dehydrogenase are the three main enzymes of this 

GABA pathway that provides a by-pass to avoid two steps of the tricarboxylic acid cycle (Martin 

and Rimvall, 1993).

1.2 GABA receptors and transporters

To date, three GABA receptor subtypes have been identified; GABA type A  (G A B A a), 

GABA type B (G A B A b) and GABA type C (GAB Ac). The G A B A a receptor is a heteromeric 

ligand gated chloride channel that is based on a family of at least 15 subunits (e.g., a l, a2, a3, 

a5, p2,3, and y2; Bohlhalter et al., 1996). GABA, acting on G A B A a receptors, can depolarise 

primary afferent fibres that innervate muscle and skin via axo-axonic synapses in the dorsal horn, 

ventral horn, intenuediate nucleus and Clarke’s column. This results in inhibition of glutamate 

release from primary afferent terminals (Curtis et al., 1986), and is known as presynaptic 

inhibition. The actions of GABA at this receptor can be modulated by benzodiazepines, 

barbiturates, and neurosteroids (Malcangio and Bowery, 1996), and blocked by the receptor 

antagonists, bicuculline (Curtis et al., 1971b) and picrotoxin (Curtis et al., 1969).

The G A B A b receptor is a GTP-binding protein coupled receptor that consists of two 

identified subunits, G A B A bi and GABAB2. G A B A b is linked to membrane calcium and potassium 

channels (Bowery et al., 1993). GABA, acting on the GABAb receptor, can also reduce 

neurotransmitter release from primary afferent terminals, but with no associated depolarisation of 

the postsynaptic membrane (Curtis et al., 1981). The inliibitory effects of GABA mediated via 

this receptor can be selectively mimicked by P-chlorophenyl-GABA (baclofen; Bowery et al., 

1993) and bloeked by the antagonist CGP35348.
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Both G A B A a and G A B A b receptor agonists selectively depress excitatory postsynaptic 

potentials (EPSPs) in motoneurons, and therefore have a role in spinal reflex activity (Malcangio 

and Bowery, 1996). Although G A B A a, and GAB Ab reeeptors are located at synapses, they are 

also found outside conventional synapses (Nusser et a l, 1995), and this in conjunction with the 

high concentration of GABA found in synaptic clefts, indicates that GABA may also take part in 

non-synaptic signalling (volume transmission) at a distance away from the site of its release.

Much less is known about the GAB Ac receptor, which was phannacologically identified 

based on its insensitivity to bicuculline (GABAa receptor antagonist) and baclofen (G A B A b 

receptor agonist) (Drew et al, 1984). The GAB Ac receptor resembles the GAB Aa receptor, in 

that both are associated with fast chloride conductance (Johnston, 1994). GAB A c receptors 

consist of a combination of three receptor subunits, named pi, p2 and p3 (Ogurusu et a l, 1995; 

Ogurusu et a l, 1997; Zhang et a l, 1995). The p2 subunit is the most widely distributed of the 

subunits in the rat brain and retina, pi has a restiicted expression and p3 is expressed strongly in 

the embryonic brain, but has decreased expression towards adulthood (Ogurusu et al, 1997; 

Boue-Grabot et a l, 1998).

At present, four plasma membrane GABA transporters have been identified and cloned: 

GATl, GAT2, GAT3 and GAT4. These are Na^ dependent carrier-mediated transport systems 

and are presumed to take part in the inactivation and recycling of GABA found in the 

extracellular space (Kleinbergerdoron et al, 1994). In situ hybridisation histochemistry (Durkin et 

a l, 1995; Jursky and Nelson, 1996; Yasumi et al, 1997) and immunocytochemistry (Ikegaki et 

a l, 1994; Radian et al, 1990) have been used to investigate the distribution of the GABA 

transporters in the CNS. According to these studies, GATl is expressed tliroughout the CNS 

(Durkin et a l, 1995) by neurons and glia (Jursky and Nelson, 1996) and is co-localised with 

GAD67 (one of two GAD isofbrms) in most nuclei of the brain (Yasumi et a l, 1997). GAT4 

(which also transports beta alanine) is found at high concentrations in brain and is localised in
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neurons (Jursky and Nelson, 1996). GAT3 is expressed in restricted regions of the brain (retina, 

olfactory bulb, subfornical organ, hypothalamus, midline thalamus and brainstem) and GAT2 is 

rarely found in the CNS (only over the pia and arachnoid meninges). The differential distribution 

of these four GABA transporters suggests that although each contributes to the uptake of GABA, 

they do so in distinct populations of neurons in the CNS.

1.3 Synthesis of GABA

In the adult brain, only neurons synthesise GABA. GABA is produced by decarboxylation 

of L-glutamate by GAD (Wingo and Awapara, 1950; Roberts and Frankel, 1951). GABA 

synthesis is complex, and different stages take place in separate subcellular compartments of the 

neuron. Firstly, the precursor of glutamate, glutamine, is synthesised in astrocytes, and then 

transported to neurons (Battaglioli et al., 1990). Glutamine then enters the mitochondria where it 

is hydrolysed to glutamate by phosphate-activated glutaminase (Kvamme et al., 1991). GAD is 

found in the cytosol (Fonnum, 1968), and as GABA synthesis is dependent on GAD, glutamate 

must move from the mitochondria to the cytosol for decarboxylation to occur.

Although GAD-independent synthesis of GABA does occur, this does not appear to 

contribute significantly to total brain GABA levels, at least during development, as the brains of 

GAD knockout mice (that lack GAD completely) contain only 0.02% of the GABA found in 

wild-type brains (Ji et al., 1999). GAD can exist as an active holoenzyme, holoGAD, and an 

inaetive apoenzyme, apoGAD. All active GAD requires to be bound to the co-factor pyiidoxal 5’- 

phosphate (PLP) (Roberts and Frankel, 1950) and short-term regulation of GABA synthesis is 

controlled by the interactions between GAD and PLP (Miller et al., 1977). This in turn maybe 

regulated by substances, such as inorganic phosphate or adenosine triphosphate, which influence 

the conversion of apoGAD to holoGAD (Meeley and Martin, 1983).
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After synaptic release, excess extracellular GABA is taken up and inactivated by neuronal 

and non-neuronal GABA transporters. Degradation of GABA occurs in the mitochondria, 

(Salganicoff et al., 1965) and depends upon GABA-transaminase, which converts GABA to 

succinic semialdehyde (Roberts and Bregoff, 1953).

1.4 GAD isoforms

GAD was initially extensively purified by Roberts and colleagues in mouse brain (Wu et 

al., 1979). In the CNS, two GAD isofbrms have been identified, GAD65 and GAD67, which are 

named after their approximate molecular weights (65kDa and 67kDa). These isofbrms are 

encoded by different genes (Bu et al., 1992). In humans, the gene for GAD67 is found on 

chromosome 2 at position 2q31, whilst the gene encoding GAD65 is found on chromosome 10 at 

position lOpl 1.23 (Bu et al., 1992; Edelhoff et al., 1993). In rats, each isoform has two distinct 

segments. These are residues 1-96 in GAD65 and 1-102 in GAD67; encoded by exons 1-3 and 

residues 97-585 in GAD65, and exons 4-16 and residues 103-594 in GAD67 (Erlander et al., 

1991). This situation differs from that of other known neurotransmitters such as the 

catecholamines, acetylcholine and serotonin (5HT), as each of their synthetic enzymes are the 

product of a single gene (Soghomanian and Martin, 1998).

In addition, the two isofbrms differ in their amino acid sequences, anatomical distribution, 

and regulatory control and in their responses to pathological conditions. GAD65 and GAD67 are 

highly conserved amongst vertebrates, with 95% amino acid sequence identity between the rat, 

cat, mouse and human foims of each protein (Erlander et al., 1991). Sequence analysis of the two 

GADs have shown that each is composed of two domains; a highly divergent N-terminal domain, 

which shows 23% identity between human GAD65 and GAD67, and a much larger C-terminal 

domain, whieh contains the eatalytic centre and has 73% identity between isoforms in humans 

(Bu and Tobin, 1994).
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Most, if not ail, GABAergic neurons in the brain probably synthesise both GAD isoforms, 

most neurons preferentially express one or other of the isofonns (Soghomanian and Martin,

1998). It is not known whether this is also the case in the spinal cord. Esclapez et al. (1994) used 

immunohi stochemistry and non-radioactive in situ hybridisation to examine the distribution of 

GAD65 and GAD67proteins and mRNAs within several subclasses of GABAergic neurons in the 

forebrain, midbrain, olfactory bulb, and cerebellum. They found that in most brain regions, both 

GADs were present in cell bodies and nerve terminals, although in some populations of neurons 

GAD67 immunoreactive cell bodies outnumbered those that were GAD65 immunoreactive (e.g., 

cerebellar Purkinje cells, non- pyramidal cells of the cerebral cortex and granule cells of the 

olfactory bulb). This was not always the case, as GAD65 immunoreactive cell bodies were 

present in high numbers in the reticular nucleus of thalamus and the olfactory bulb 

(periglomerular cells). In addition, the density of GAD65 immunoreactive axon terminals was 

higher than that of GAD67 immunoreactive terminals in most brain regions. A strong parallel was 

found between the patterns of cell body labelling found with immunohistochemistry and mRNA 

labelling detected using in situ hybridisation for each GAD. This supported the 

immunohistochemical findings that most brain regions contained fewer cell bodies that were 

predominantly GAD65 immunoreactive. The authors suggested that these differences in 

distribution within neurons might occur because GAD65 is transported to the axon terminal more 

readily than GAD67 from the neuronal cell body, or because GAD67 is degraded more rapidly at 

the terminal (Esclapez et al. 1994). Alternatively, it has been suggested that the two GAD 

isofonns may synthesise two separate pools of GABA in the brain that work by different 

mechanisms (Soghomanian and Martin, 1998). The high levels of both GAD67 protein and 

mRNA in cell bodies is consistent with a high rate of synthesis of GAD67, and therefore GAD67 

may be more abundant in tonically firing cells that require a larger supply of GABA. This might 

provide a metaboHe pool of GABA. In addition, some of the GABA produced by GAD67 may be
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released through a non-vesicular mechanism, via the reversal of one of the plasma membrane 

bound GABA transporters, possibly GAT-1, whose distribution almost mirrors that of GAD67 in 

the brain (Yasumi et al., 1997). This GABA may take on the role of a paracrine signal (Gaspary et 

al., 1998), believed to be important in the inhibition of excessive neuronal firing in neurological 

disorders such as epilepsy. It has also been proposed that GAD65 may be more abundant in cells 

with phasic activity, where the supply of GAD within nerve teiminals may be sufficient to meet 

the local needs for synaptically released GABA used in classieal inhibitory transmission. 

(Feldblum et al., 1993; Esclapez et al, 1993; Esclapez et al, 1994; Hendrickson et a l, 1994). It is 

not yet known whether there is a difference in the cellular and terminal concentrations of each 

isoform in the spinal cord.

The two GAD isofbrms may also differ in their response to CNS injury. Alterations in 

GAD67 levels are detected more fi’equently than changes in GAD65 levels after certain types of 

injury to the nervous system (Soghomanian and Chesselet, 1992; Dumoulin et a l, 1996; Feldblum 

et al, 1998; Tillakaratne et a l, 2000) and it has been suggested that GAD67 may therefore have a 

protective role in neuronal plasticity of the CNS after injury. Studies by Soghomanian and 

Chesselet (1992), using in situ hybridisation histochemistry and immunohistochemistry have 

detected changes in GAD67 levels in sub-populations of basal ganglia neurons (in the globus 

pallidus) after unilateral injection of the neurotoxin, 6-hydroxydopamine into the substantia nigra 

of the rat. They found that in the ipsilateral globus pallidus, the number of cells labelled, and the 

intensity of individually labelled cells was increased after neurotoxin-induced lesions, whilst no 

change was detected on the contralateral side. No change in GAD65 levels were detected on 

either side. Studies by Dumoulin et al. (1996) and Feldblum et al. (1998) have investigated 

changes in GAD67 after partial deafferentation as a result of unilateral dorsal rhizotomy or 

neonatal capsaicin treatment respectively (Dumoulin et al, 1996; Feldblum et a l, 1998). 

Dumoulin and colleagues found that three days after rhizotomy, there was a decrease in the

22



number of GAD67 mRNA expressing neurons In the superficial dorsal horn, with increased 

G ABA immunostaining of axonal fibres in the same region. In conti'ast, seven days after lesion, 

there was an increase in GAD67 mRNA-expressing neurons in the deep dorsal and ventral horns 

in conjunction with a reduction of GABA-immunostained axons (Dumoulin et al., 1996). 

Feldblum and colleagues also found a transient increase in GAD67 mRNA levels following 

neonatal capsaicin treatment, whilst GAD65 mRNA levels remained low (Feldblum et ah, 1998). 

In addition, in 2000, Tillakaratne and co-workers looked at changes in GAB A, GAD65 and 

GAD67 levels after complete transection of the cat spinal cord between thoracic segments 12 and 

13, Using in situ hybridisation, immunohistochemistiy and Western blot analysis, they found an 

increase in GAD67 protein and mRNA, but not GAD65, in the dorsal horn of the lumbar spinal 

cord. It has been suggested that an increase in GAD67 after injury may lead to an increase in 

GAB A production in the region of the injury, which would inhibit excessive neuronal firing 

during repair, and provide trophic support to the injured neurons (Soghomanian and Chesselet, 

1992; Dumoulin et al., 1996; Feldblum et ah, 1998; Tillakaratne et al., 2000).

The two GAD isofonns also differ in how they interact with their cofactor, PLP (Rimvall 

and Martin, 1992; Rimvall et ah, 1993; Rimvall and Martin, 1994). Although both GADs require 

PLP as a cofactor, they differ in the rate at which holoGAD loses PLP to become apoGAD. In the 

brain, 80% of the apoGAD reservoir is GAD65, whilst it has been shown that GAD67 is saturated 

with PLP (Kaufinan et ah, 1991). In a study by Erlander et ah (1991) it was shown that GAD65 is 

more sensitive to the presence of PLP than is GAD67. Both GAD cDNAs were subcloned into 

vectors that allowed their expression in bacteria, and each bacterially expressed GAD was 

stimulated by exogenous PLP. Under these conditions, PLP stimulated the enzymic activity of 

GAD65 more than that of GAD67. The level of enzymatic activity achieved by stimulation of 

bacterially expressed GAD65 was similar to previous reports of stimulation of synaptosomal
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preparations of rat substantia nigra with PLP, providing further evidence that PLP stimulated the 

enzymic activity of GAD65 more than that of GAD67 (Miller and Walters, 1979).

Knockout mice have been developed to assist in understanding the roles of the two 

isoforms (Asada et ah, 1996; Kash et ah, 1997; Asada et ah, 1997; Condie et ah, 1997; Ji et ah, 

1999; Choi et ah, 2002). Mice lacking the GAD67 isoform died at birth from respiratory failure, 

although there were no detectable morphological brain abnormalities. The GAD and G ABA 

content of the cerebral cortex of these mice were 20% and 7% respectively, of that found in wild- 

type mice (Asada et ah, 1997). In mice lacking the GAD65 isofonn, the knoek out animals 

appeared to behave normally and no change in brain GAB A content was detected. These mice 

had slightly enhanced susceptibility to seizures when compared to wild-type animals (Asada et 

ah, 1996; Kash et ah, 1997). Evidence from these studies suggests that GAD67 substantially 

controls the synthesis of GAB A in the brain, more so than GAD65.

1.5 Spinal cord anatomy and physiology

The spinal cord, a cylindrical-shaped continuation of the medulla oblongata (the inferior 

part of the brainstem) extends down the vertebral canal to the second lumbar vertebra in adult 

humans. In transverse section, the cord is visualised as a column of grey matter, and is composed 

of neuronal cell bodies, dendrites, bundles of myelinated and umnyelinated axons, axon terminals 

and neuroglia. This is surrounded by a sheath of white matter (myelinated axons, supported by 

oligodendrocytes and astrocytes).

The grey matter of the spinal cord divides the white matter into distinct anatomical regions 

know as the anterior, dorsal and lateral white columns, which are made up of fibre tracts that 

travel between the brain and the spinal cord, conveying sensory and motor information, in 

ascending and descending tracts respectively. The grey matter is subdivided into distinct areas 

called horns. The dorsal horn (the major receiving zone for sensory information) is in the area
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closest to the posterior of the spinal cord, whilst the ventral horn (that is primarily responsible for 

motor control and locomotion) is closer to the anterior of the spinal cord.

The grey matter of the spinal cord is further subdivided into ten regions called laminae, as 

described by Rexed in 1952 and 1954 in the cat, based on differences in the size and packing 

density of neurons (cytoarchitectonies). This form of classification has since been extended to the 

rat spinal cord (Molander et al., 1984). Lamina I, known as the marginal layer, has neurons that 

vary extensively in size and shape. Lamina II corresponds to the substantia gelatinosa, and has a 

translucent appearance because of its lack of myelin. This lamina is further divided into lamina II 

inner (lamina Hi) and lamina II outer (lamina IIo), of which lamina Ho has a higher neuronal 

packing density. Laminae I and II are collectively known as the superficial dorsal horn. Laminae 

HI-VI are also part of the dorsal horn, but whilst lamina HI has a high density of small neurons, 

laminae IV to VI, and VIII have a more heterogeneous population, as neurons here vary in size, 

and the packing density is less that that of laminae I- III. Lamina VII is named the inteimediate 

zone, and contains groups of nuclei, including those of Clarke’s column and the intennedio- 

lateral nucleus (in the appropriate spinal segments). Cells in this lamina are generally triangular or 

star-shaped. Lamina IX consists of groups of motor nuclei and smaller short-axoned inhibitory 

intemeurons, Renshaw cells (Matsushita, 1969). The somata of motor neurons are amongst the 

largest in the CNS, and these neurons have extensive dendritic trees. Lamina X is the grey matter 

surrounding the central canal (Rexed, 1952; 1954).

The anatomical substrate for communication between the spinal cord and the periphery is 

the spinal neiwes. Each spinal nerve is connected to the cord by two spinal roots, the dorsal 

(sensory) root, and the ventral (motor) root. The dorsal root contains sensory neiwe fibres only, 

and conducts nerve impulses fiom the periphery to the dorsal horn of the spinal cord. In contrast, 

the ventral root contains nerve fibres that caiTy commands regarding motor control, and conducts 

impulses fi*om the ventral horn to the periphery. Each dorsal root has a swelling that contains the
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cell bodies of primary afferent fibres that convey sensory information fi om the periphery. This 

swelling is known as the dorsal root ganglion.

Primary afferent fibres that pass sensory information from the periphery to the spinal cord 

enter through the dorsal roots and terminate in specific laminae according to their axonal diameter 

and receptive field modality (Todd and Koerber, 2005). All primary afferents are thought to use 

glutamate as their main transmitter (Broman et ah, 1993), and these form excitatory synapses on 

neurons when entering the spinal cord. Primary afferents can be classified according to their 

conduction velocity and whether or not they are myelinated. Sensory afferents are named Aa-, 

Ap", AÔ- and C-fibres. Although each group has a wide range of functional types (e.g., a 

combination of fibres that carry noxious and innocuous stimuli), the majority of axons within 

each group share a similar sensory modality. Aa- and Ap-fibres have the fastest conduction 

velocities and mainly respond to innocuous mechanical stimuli (Todd and Koerber, 2005). The 

majority of these afferents are low-threshold mechanoreceptors. After entering the spinal cord, 

afferents from the skin (cutaneous) bifurcate into ascending and descending branches that run in 

the dorsal columns. Collaterals arise from these and turn ventrally to teiminate in laminae Ili-V, 

depending on their sensory modality. Those innervating hair follicle afferents terminate more 

superficially than those that innervate slowly adapting receptors (Liglit and Perl, 1979; Brown, 

1981). Examples of low-thieshold mechanoreceptive afferents include those that imiervate 

Meisner’s corpuscles (rapidly adapting, sensitive to skin defoimation), those that innervate 

Merkel cells (slowly adapting type I afferents, sensitive to prolonged tactile stimuli) and Ruffini 

corpuscles (slowly adapting type II afferents, responsive to stretching of the skin). In addition, 

myelinated afferents innervating specific receptors of muscle (e.g., muscle spindle afferents,

Golgi tendon organs) project further ventrally to laminae IV-VII and the ventral horn.

AÔ fibres, first described by Burgess and Perl in 1967 have an inteimediate conduction 

velocity (when compared to A- and C-fibres) and are thinly myelinated. Aô- fibres may contain a
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number of neuropeptides as well as glutamate, including substance P (SP) and calcitonin gene 

related peptide (Lawson et al., 1997). Light and Perl (1979) showed that in the cat, the main 

branches of Aô-nociceptor afferents travelled in the lateral dorsal column and in Lissauer’s tract. 

After entering the spinal cord, these sent collaterals that teiminated mainly in laminae I and IIo, 

with some terminal arbors in lamina V. Although the majority of thinly myelinated primary 

afferents respond to noxious stimulation and changes in temperature, and are Aô-ftbres, some 

respond to innocuous stimulation (Burgess and Perl, 1967).

The slowest conducting group of sensory afferents are the C-ftbres, and these have been 

studied in detail by Sugiura and colleagues (1986) in the guinea pig. Cutaneous C-fibres enter the 

spinal cord and run rostrally and/or caudally in the region of the tract of Lissauer. Several 

collaterals branch ventrally into laminae I and II. Fibres innervating muscle project to parts of the 

deep dorsal horn (Ling et al., 2003). The majority of C-fibres respond to noxious stimuli and 

temperature, and the smallest of C-fibres are responsive to histamine and cause the perception of 

itch (Bessou et al., 1969). C-fibre afferents can be divided into two groups based on their 

neurochemical phenotype. C-fibres of the first group are sensitive to the neurotrophin, nerve 

growth factor and may contain a combination of neuropeptides, calcitonin gene related peptide, 

SP and galanin (Averill et ah, 1995). These are known as peptidergic C-fibres. C-fibres of the 

second group are responsive to the neurotrophin, glial cell line-derived neiwe growth factor and 

bind the lectin Bandeiraea simplicifolia isolectin, IB4 (Bennett et al., 1998). Most of these do not 

contain neuropeptides (Averill et al., 1995) and are therefore generally known as non-peptidergic 

C-fibres. It is still not clear whether these two groups correspond to two functional types, 

although a segregation of their central projections has been noted, with non-peptidergic fibres 

projecting mainly to lamina Hi, whilst peptidergic fibres teiminate in laminae I and IIo with 

scattered projections in laminae II-V (Averill et al., 1995).
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Motor output is continuously modified by input from muscle spindle afferents and other 

sensory neurons. Spindles in cat hind limb contain two types of sensory endings: primary 

(imiervated by low-threshold group I diameter axons, named la afferents) and secondary 

(innervated by group II afferents), as classified by Lloyd in 1943. Another population of Group I 

axons, known as lb afferents, innervate Golgi tendon organs (Hunt and Kuffler, 1951). These are 

slowly adapting mechanoreceptors that respond to muscle tension. These are excited by muscle 

contraction. On entering the spinal cord, these arborize widely into laminae V-VIII. Group la and 

group II afferents differ in their conduction velocity: over 80m s for group la fibres, in cats 

(Fyffe, 1979), and under 80m s for gi'oup II in the same species (Matthews, 1963). These also 

have different properties, including the location of their axonal arborizations. On entering the 

dorsal horn, through its dorsal or medial border, la collaterals descend through laminae I-V. Intra- 

axonal injection with horseradish peroxidase (HRP) has shown that la fibres send collaterals to 

intemeurons in lamina VI, lamina VII, where the la inhibitory intemeurons originate (Jankowska 

and Lindstrom, 1972), and lamina IX. Group II afferents descend to lamina IV before they branch 

and project to the dorsal hom, intermediate zone and ventral hom (Fu and Schomburg, 1974).
î".

They also have terminations on neurons of Clarke’s column and the spinocerebellar tracts. Both 

groups of fibres make monosynaptic excitatory connections with a-motoneurons, and have 

important roles in the monosynaptic reflex, studied by Renshaw (1940) and Eccles et al. (1962). 

Mendell and Henneman (1971) provided evidence that a single la fibre innervating the medial 

gastrocnemius muscle was capable of exciting approximately 300 motoneurons that inneiwated 

the same muscle. Although the main mode of action of group II afferents is to excite flexor 

muscles and inhibit extensors concurrently (Lloyd, 1946), the opposite is also tme (Eccles and 

Lundberg, 1959).

Within the spinal dorsal hom some types of primary afferent are under intense presynaptic 

control from surrounding axons and vesicle-containing dendrites (at axo-axonic and dendro-
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axonic synapses) in what are known as synaptic glomeruli. A glomerulus is described as a 

complex synaptic stmcture with several peripheral profiles contacting a central axon. Ralston 

(1965) first described these in the cat. Ribeiro-da-Silva and Coimbra (1982) have shown that the 

central axon in each synaptic glomerulus is of primary afferent origin, and that two types of 

glomeruli can be identified (type I and type II). These two types have different localisations and 

ultrastmctural features. Type I glomemli are found in the middle and ventral parts of lamina II 

whilst type II glomemli are found in the ventral part of lamina II and the dorsal part of lamina III. 

The central axon of type I glomemli contains densely packed synaptic vesicles that vary in 

diameter. In contrast, central axons of type II glomemli have an electron-lucent cytoplasm, and 

vesicles are of a more uniform size. Also, many peripheral axons in type II glomemli form axo

dendritic synapses in synaptic triads (Todd, 1996), where the presynaptic axon terminal, and the 

central primary afferent terminal both synapse on the same postsynaptic dendrite (Barber et al., 

1978). In a study by Ribeiro-da-Silva et al. (1986), fluoride-resistant acid phosphatase (a marker 

for non-peptidergic primary afferents) was found in 80% of the central axons of type I glomemli, 

but was not found in those of type II glomemli, providing evidence that the primary afferents in

type I glomemli are non-peptidergic. Ribeiro-da-Silva et al. (1986) subsequently showed that
?

neuropeptide containing primary afferents receive few axo-axonic/dendro-axonic synapses and

seldom form glomemli. It is also possible that at least some of the central axons in type I 

glomemli are nociceptive afferents (Todd, 1996) as the majority of small neurons in the 

saphenous nerve are fluoride-resistant acid phosphatase positive (O’Brien et al., 1989), and at 

least 70% of the fibres in this nerve are nociceptors (Lynn and Carpenter, 1982). Type II central 

axons originate from AÔ down-hair afferents, which have the same laminar distribution and 

ultrastmctural appearance in the monkey (Réthelyi et al., 1982).

The two main types of neurons in the spinal cord are projection neurons and intemeurons. 

The highest number of projection neurons is found in lamina I in the spinal grey matter, although
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they are also scattered throughout laminae III-VI and the ventral hom. Some projection neurons 

have axons that cross the midline and extend upwards to various supraspinal areas including the 

thalamus, the periaqueductal grey matter of the midbrain, the lateral parabrachial area of the pons, 

and the reticular formation of the medulla (Craig, 1995). Approximately 80% of lamina I 

projection neurons express the NK-1 receptor (Todd et ah, 2000), although large NK-1 expressing 

projection neurons are also present in laminae III and IV. The latter group also send dorsal 

dendrites to lamina I. Both groups of projection neurons are heavily innervated by substance P- 

containing primary afferents and therefore may assist in the transmission of nociceptive 

information from the spinal cord to the brain. Less is known about lamina I projection neurons 

that do not express the NK-1 receptor, although some may also be activated by noxious input 

(Naim et al., 1997; Todd et al., 2002), Interestingly, some lamina I projection neurons are also 

involved in local spinal cord circuitry, and have axon collaterals in the vicinity of their cell bodies 

(Hylden et al., 1986).

The majority of neurons in the spinal dorsal horn are intemeurons, and the packing density 

of these is highest in laminae I-III. Studies involving the Golgi method (where neurons are 

visualised by impregnating them with heavy metal salts, generally silver or gold) or intracellular 

injection methods (where cells are injected with tracer substances such as HRP) have shown that 

the majority of axons derived from intemeurons in these laminae are short and arborize close to 

their cell body (Beal and Cooper, 1978; Gobel, 1978; Light et ah, 1979). In addition, a few send 

their axons one or two segments rostrally or caudally through the dorsolateral fasiculus (Cervero 

and Iggo, 1980). It is also quite common for intemeurons to give rise to axons that enter different 

laminae within the same segment. Some lamina II intemeurons send axons to lamina I or laminae

III-V (Gobel, 1978; Gmdt and Perl, 2002), whilst other intemeurons in laminae III-V have axons 

that arborize ventral to their cell body (Schneider, 1992).
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Dorsal hom intemeurons can be divided into two categories based on their function: 

inhibitory neurons that use GAB A and/or glycine as their main neurotransmitters, and excitatory 

neurons, which are glutamatergic (Todd and Spike, 1993). It is highly probable that spinal 

projection neui'ons use glutamate as their main transmitter, and therefore it is presumed that all 

GABAergic and glycine enriched neurons in the dorsal horn are intemeurons (Todd and Koerber, 

2005).

1.6 Distribution of G ABA and GAD in the spinal cord.

In early immunohistochemical studies, the distribution of GABA-containing synaptic 

terminals and cell bodies in the rat spinal cord was examined using antibodies against GAD 

(McLaughlin et al., 1975; Barber et al., 1978; Hunt et al., 1981). These early antibodies did not 

distinguish between the two GAD isoforms, and were generally prepared from mouse brain 

synaptosomal fraction. Light microscopy showed that GAD was present in axon terminals in all 

laminae of the rat spinal cord, although the highest concentration of GAD-immunoreactive 

terminals were found in laminae I-III, with moderate GAD-immunoreactivity in laminae IV-VI, 

lamina VII and lamina X. GAD staining in laminae VIII and IX was less dense. In general, a 

much higher concentration of GAD-immunoreactive terminals was found in the dorsal hom, 

when compared to that found in the ventral hom.

Further studies involving electron microscopy confirmed these findings and showed that 

higher numbers of GAD-labelled terminals were present in the superficial dorsal hom than in 

laminae IV-VI and more ventral laminae. It was established that GAD was localised in synaptic 

tenninals, and that the majority of GAD-positive terminals contained pleomorphic (flattened) 

vesicles, and made symmetrical synaptic contacts. In the dorsal hom, GAD-containing terminals 

were found presynaptic to dendrites (termed axo-dendritic synapses), cell bodies (axo-somatic 

synapses), and other axons (axo-axonic synapses). Axo-axonic synapses were more numerous in
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laminae II and III than in other laminae. In the ventral hom, the same synaptic arrangements were 

evident. Some GAD positive terminals occuning presynaptic to dendrites and other axons, were 

in tum presynaptic to motoneuron cell bodies (McLaughlin et al., 1975).

Many studies of G ABA distribution in the spinal cord now use antibodies raised against 

each of the GAD isoforms separately (e.g., Feldblum et ah, 1995; Tillakaratne et ah, 2000). These 

studies carried out in rat and cat respectively, found that both GAD65 and GAD67 were present 

throughout the spinal grey matter, with especially high levels of both isoforms in the superficial 

dorsal hom and in lamina X, whilst GAD67 was the predominant fonn found in the ventral hom 

(Feldblum et ah, 1995; Tillakaratne et ah, 2000). In the study by Feldblum et ah (1995), GAD 

immunostaining in the rat spinal cord was mainly found in axon temiinals, although a few 

immunoreactive cell bodies were detected with each GAD antibody in the superficial dorsal hom 

without the use of colchicine (Feldblum et ah, 1995). This differed significantly from the situation 

in the brain, where many GAD-immunoreactivity cell bodies can be found, particularly with the 

GAD67 antibody (Esclapez et ah, 1994).

Although many GABAergic axons in the dorsal hom of the spinal cord are thought to 

originate from local GABAergic intemeurons (Hunt et ah, 1981), there are also GABAergic 

projections from the brain that terminate in the spinal dorsal hom (Holstege, 1991 ; Antal et ah, 

1996; Maxwell et ah, 1996). Many of these descending GABAergic fibres contain 5HT, and 

originate from the raphe nuclei and the nucleus paragigantocellularis in the brainstem (Bowker et 

ah, 1982; Antal et ah, 1996). Other descending GABAergic fibres lack 5HT and also project from 

the rostral ventromedial medulla. Those projections where GAB A and 5HT co-localised were 

found to terminate selectively in lamina I and II of the dorsal hom (Maxwell et ah, 1996), whilst 

the non-serotonergic GABAergic fibres terminated in laminae I/IIo and IV-V (Antal et ah, 1996). 

Some of the descending GABAergic fibres (with or without 5HT) that terminated in the dorsal 

hom may be involved in nociception (Antal et ah, 1996; Maxwell et ah, 1996). Furthemiore, a
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study by Holstege (1991) showed that GABAergic projections from the ventromedial reticular 

formation of the lower brainstem terminate on motoneuronal cell groups in the lumbar spinal 

cord, where they are responsible for general inhibition of these spinal motoneurons.

In the study by Barber and colleagues (1978), unilateral dorsal rhizotomies were used in 

the lumbar spinal cord of adult rats to study degenerating primary afferent terminals in the dorsal 

hom ipsilateral to the injury. Electron microscopy studies of these degenerating afferents showed 

that they were commonly found at the centre of rosette-like stmctures, and formed synaptic 

contacts with axon terminals and the surrounding dendrites. GAD-immunoreactive terminals were 

often found presynaptic to these degenerating primary afferent terminals, and sometimes a triadic 

arrangement was noted, in which the presynaptic GAD positive terminal and the primary afferent 

contacted by that GAD positive terminal both synapsed on the same dendrite. The authors 

concluded that this was direct evidence that GABAergic axon terminals are involved in 

presynaptic inhibition.

Levels of GAD in neuronal cell bodies are very low in the spinal cord, so in some early 

studies colchicine was administered to block the axoplasmic flow of GAD so that GAD- 

immunoreactivity could be visualised in cell bodies. The reliability of results obtained when using 

colchicine has been disputed, as the use of this substance may cause abnormal synthesis of certain 

peptides in some areas of the brain (Kiyama and Emson, 1991; Cortes et al., 1990), and therefore 

may also alter the synthesis of other substances, including G ABA. Following colchicine 

treatment, GAD-immunoreactive cell bodies have been observed in laminae I-III (Hunt et ah,

1981 ; Barber et ah, 1982) and in all other laminae of the spinal grey matter (except lamina IX), 

the ependymal layer and the dorsolateral funiculus. Small GAD-positive cell bodies were found in 

laminae I-III, although the size of immunoreactive somata increased for cells located in more 

ventral laminae, with the largest cell bodies detected in lamina VII (Barber et ah, 1982).
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It is now possible to detect GABAergic cell bodies directly using antibodies against 

glutaraldehyde conjugates of G ABA (Stonn-Mathisen et al., 1983). Before these antibodies were 

produced, direct visualisation of amino acid neurotransmitters with immunocytochemistry was 

not possible. Initially, the specificity of these antibodies was tested in the hippocampus, as this 

region of the brain is believed to have a well defined network of excitatory and inhibitory neurons 

that use glutamate and G ABA, respectively, as transmitters. Storm-Mathisen et al. (1983) showed 

that the tissue localisation of GAB A-like immunoreactivity matched previously defined uptake 

sites for GAB A (substantia nigra, globus pallidus and some cerebellar nuclei). The staining also 

matched that found using antibodies against GAD in previous studies (McLaughlin et ah, 1975; 

Barber et al., 1978). Also, they found no immunoreactivity for G ABA in structures previously 

identified as glutamatergic (Stoim-Mathisen et ah, 1983). This type of GAB A antibody was tested 

further by Hodgson et ah (1985) using the unlabelled antibody enzyme method on tissue sections. 

Hodgson et ah (1985) found that the anti-GABA sera were highly specific and did not cross-react 

with several of other amino acids (including glutamate and glycine). The GAB A immunostaining 

achieved was completely abolished by absorption of the antibody with G ABA conjugated to 

polyacrylamide beads by glutaraldehyde. Somogyi et ah (1985) compared the immunostaining 

obtained with antibodies against GAD and glutaraldehyde conjugates of G ABA in the 

cerebellum, and found comparable staining with both antibodies, in that the types, distribution 

and proportion of neurons and axon terminals stained with each antibody was the same. The 

conclusion reached by both studies was that the G ABA antisera are a reliable marker for 

GABAergic neurons within the CNS (Hodgson et ah, 1985; Somogyi et ah, 1985).

Information gathered using these types of antibodies and non-stereological counts of 

GABAergic cell bodies were carried out by Magoul et ah (1987) and Todd and McKenzie (1989) 

in the rat. Both studies showed that GABAergic cell bodies are predominantly found in laminae 

I-III of the spinal dorsal hom. Furthennore, G ABA immunoreactivity has a similar distribution in
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the cervical, thoracic, lumbar and sacral segments of the spinal cord (Magoul et ah, 1987). In 

addition, it was shown that approximately 24% of neurons in lamina I, 29% of those in lamina II, 

and 33% of neurons in lamina III are GABA-immunoreactive (Todd and McKenzie, 1989), and 

that the majority of these had cell bodies that were round or fusiform in shape (Magoul et ah, 

1987). GABA-immunoreactive cell bodies were found in smaller numbers throughout the rest of 

the dorsal hom and ventral hom. In lamina IX, the occasional GABA-immunoreactive cell body 

was detected, but motoneurons were never GABA-immunoreactive. The distribution of GABA- 

immunoreactive cell bodies was similar to that of GABA-immunoreactive axon terminals in the 

superficial dorsal hom, suggesting that both belong to local intemeurons, and a local decrease in 

G ABA has been shown after ischaemic destmction of intemeurons in the dorsal hom, supporting 

this concept. Both sets of results (Magoul et ah, 1987; Todd and McKenzie, 1989) confirm data 

obtained from earlier immunocytochemical studies with antibodies against GAD (McLaughlin et 

ah, 1975; Barber et ah, 1978). Recently Polgai* et ah (2003) have used a stereological method to 

investigate the proportion of GABA-immunoreactive cell bodies in laminae I-III of the rat spinal 

cord. The results of this quantitative analysis were similar to those of Todd and McKenzie (1989), 

as 25% of cells in lamina I, 31% of those in lamina II and 40% of cells in lamina III were found 

to be GABA-immunoreactive.

1.7 GAB A receptors in the spinal cord

GAB Aa and GAB Ab receptors are both found in the rat spinal cord, GAB Aa receptors are 

evenly distributed tliroughout the spinal grey matter, including on dorsal hom intemeurons and 

ventral hom motoneurons (Price et ah, 1984). Bohlhalter et ah (1996) analysed the expression of 

many of the GAB Aa receptor subunits in the spinal cord and found widespread expression of the 

subunits a3, P2,3 and y2. In contrast, the a l and a5 subunits are mostly found in the intermediate 

zone, whilst the a2 subunit predominates in the superficial dorsal hom. GABAa receptors are also

35



found in the dorsal columns of the white matter (where GAB A acts to assist in the modulation of 

axonal conduction in the tracts of myelinated fibres; Sakatini et ah, 1991). By acting on GABAa 

receptors, G ABA can depolarise afferent fibre terminals at axo-axonic synapses in the dorsal and 

ventral hom of the spinal cord (Curtis et ah, 1986), resulting in presynaptic inhibition of primary 

afferents.

In contrast, GABAb receptors are concentrated in laminae I-III of the dorsal hom (Price et 

ah, 1984). GABAb receptor subunits GABAbi and GABAb2 are found in the spinal cord and 

dorsal root ganglion (Towers et ah, 2000). GAB A can also reduce neurotransmitter release from 

primary afferent terminals through GABAb activation, although this action is not associated with 

any depolarisation (Curtis et ah, 1981). Instead, activation of this receptor probably reduces Ca^  ̂

influx into the terminals, and subsequently reduces the release of excitatory neurotransmitters 

(Dolphin et ah, 1990). Both receptor types can be presynaptic to primary afferent terminals, 

whilst GABAb receptors are also found presynaptic to GABAergic intemeurons that in tum 

synapse on primary afferent fibres (Malcangio and Bowery, 1996). Activation of GABAa or 

GABAb receptors can result in muscle relaxation. Although baclofen, a GABAb receptor agonist, 

is used therapeutically, agonists of GABAa are not used clinically as the resultant increase in 

chloride conductance has a significant effect on the excitability of motoneurons in the ventral 

horn. Instead, modulators of the receptor’s allosteric site (e.g., benzodiazepines, such as 

diazepam) aie used, which increases GABAa receptor-mediated presynaptic inhibition (Pole et 

ah, 1974).

Electrophysiological studies in adult (Johnston, 1996) and neonatal (Rozzo et ah, 2002) 

rats; in conjunction with the identification of the pi and p2 subunits transcripts of the GAB Ac 

receptor in the adult spinal cord (Enz et ah, 1995) have provided evidence that this receptor is 

present in the spinal cord. Rozzo et ah (2002) have investigated the distribution of pi and p2 in 

the neonatal (postnatal days 1 and 7) and adult lumbar spinal cord of rats, using a combination of
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immunocytochemistry and in situ hybridisation. At postnatal day 1, mainly lamina IX cells 

(presumably motoneurons) were stained with the GAB Ac receptor antibody (although in situ 

hybridisation identified a few positive cells scattered throughout the rest of the grey matter). At 

postnatal day 7, motoneurons and dorsal hom intemeurons appeared to be stained using 

immunocytochemistry, although the staining intensity in lamina IX neurons had decreased. The 

number of dorsal hom cells stained for the pi and p2 mRNAs had increased. In the adult spinal 

cord, labelled neurons were found in all laminae, although the staining pattem had changed, and 

intensely immunoreactive boutons predominated over weakly stained cell bodies. In addition, 

electrophysiological experiments were canied out which showed that the GAB Ac receptors 

expressed on motoneurons at postnatal day 1 were functional.

1.8 Functions of GAB A in the spinal cord

The CNS is constantly exposed to a barrage of incoming information fi*om the periphery. 

The amount of infoimation received probably exceeds its processing abilities and therefore 

‘surplus’ irrelevant input has to be abolished. The most direct way in which sensory afferent input 

is modulated in the spinal cord is through presynaptic control of transmitter release from the 

central terminals of primary afferent neurons, as is thought to occur in GABA-mediated 

presynaptic inhibition. In presynaptic inhibition, primary afferent depolarisation (PAD) is induced 

by a GABA-mediated increase in chloride conductance at the central terminal of the afferent 

axon. This results in the initiation of an intense inhibitory process and an increase in afferent 

excitability. The voltage-dependent currents of the invading action potential are shunted, which 

subsequently decreases excitatory transmitter release jfrom the central terminal.

The concept of what is now known as presynaptic inliibition emerged when Frank and 

Fuortes (1957) described a depression of mono-synaptic EPSPs occurring without any change in 

postsynaptic potential or in motoneuronal excitability, and named this “remote inhibition”.
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Research into this phenomenon was extended by Eccles and his colleagues (1961), who showed 

that during “remote inhibition”, no change in the time course of the depressed primary afferent- 

induced EPSP was detected. In 1962, a study by Gray found axo-axonic contacts between axonal 

profiles and profiles of primary afferent origin in the cat spinal cord and concluded that the 

anatomical substrate of presynaptic inhibition is the axo-axonic synapse (Gray, 1962). 

Subsequently, Conradi showed in the ventral hom that primary afferent terminals were 

synaptically linked to motoneuron membranes, and that these were themselves postsynaptic to 

other terminals (Conradi, 1969a). Eccles et al. (1963) originally hypothesised that GABA-induced 

presynaptic depolarisation was responsible for EPSP depression. Evidence of this was provided 

by Barber and colleagues in an electron microscopy study in the rat spinal dorsal hom that 

showed GAD positive presynaptic terminals in contact with primary afferent terminals. The 

authors concluded that presynaptic inhibition is mediated by axo-axonic synapses formed 

between GABAergic neurons and primary sensory neurons (Barber et al., 1978). Pharmacological 

evidence supported this finding, as PAD can be mimicked by topical application of G ABA to the 

spinal cord, and antagonists of GABAa receptors, bicuculline and picrotoxin, reduce PAD (Eccles 

et al., 1963; Curtis et al., 1971b) suggesting that presynaptic inhibition is mediated through the 

GABAa receptor. In addition, diazepam, a GABAa agonist increases presynaptic inhibition (Pole 

et al., 1974). The GABAb receptor seems to have a minor role or no role in presynaptic inhibition 

(Stuart and Redman, 1992). More recently, GAB A or GAD-immunoreactivity boutons have been 

found that are presynaptic to the central terminals of a number of sensory afferent neurons 

including A(3 hair follicle afferents (Maxwell and Noble, 1987; Sutherland et al., 2002), high 

threshold AÔ mechanoreceptors (Alvarez et al., 1992), group I and group II muscle afferents 

(Maxwell et al, 1990), group la muscle afferents (Pierce and Mendell, 1993; Destombes, 1996; 

Watson and Bazzaz, 2001) and type I and type II glomemli (Ribeiro-da-Silva and Coimbra, 1982; 

Todd, 1996). Sutherland et al. (2002) characterised the transmitter content of presynaptic
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structures apposed to cutaneous afferent tenninals in the spinal dorsal hom and found that 

approximately 80-100% of boutons presynaptic to these primary afferents were immunoreactive 

for G ABA. This provided evidence that G ABA is probably responsible for presynaptic inhibition 

of large cutaneous afferents.

Pierce and Mendell (1993) and Watson and Bazzaz (2001) have investigated axo-axonic 

contacts on la primary afferents, and found that the majority of these received at least one axo

axonic contact. These contacts were from GABAergic P boutons (as described by Conradi, 

1969a). Pierce and Mendell (1993) also found that the number of presynaptic contacts on a 

primary afferent bouton was directly proportionate to its size, i.e. the larger boutons received 

more contacts (Pierce and Mendell, 1993). In addition, Watson and Bazzaz (2001) showed that in 

the ventral horn, 91% of P boutons were GABA-immunoreactive, whilst the remaining 9% of 

boutons were GAB A and glycine-immunoreactive. In the deep dorsal hom, 58% of boutons 

presynaptic to la tenninals were immunoreactive for GAB A only, 31 % were GAB A and glycine- 

immunoreactive, and 11 % were only immunoreactive for glycine. They concluded that different 

groups of la afferent boutons are modulated by neurochemically distinct populations of 

presynaptic neurons.

Demonstration that group lb fibres receive substantial numbers of contacts from 

inhibitory presynaptic boutons came from work by Lamotte d’ Incamps et al. (1998) on identified 

lb fibres in the anaesthetized cat. They found at least 69 contacts from GABAergic intemeurons 

on the two examined lb collaterals from a single fibre, and concluded that lb fibres are subject to 

GABA-mediated presynaptic inhibition. No electron microscopy was done in this study and 

therefore it is not known if these contacts were axo-axonic.

Maxwell and Riddell (1999) examined the terminations of group II afferents in laminae

IV-VII of the cat, and found that these were all postsynaptic to GABAergic axon terminals, and 

that frequently there was more than one presynaptic axon per group II terminal. Sometimes the
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presynaptic axon was also eniiched with glycine. Triadic arrangements were also obseiwed in 

25% of cases. The authors concluded that it was very possible that group II primary afferents are 

controlled by GABA-induced presynaptic inhibition.

In 1996, Todd examined the complex interconnections between primary afferent fibres 

and dorsal hom intemeurons using a quantitative post-embedding immunogold technique. This 

method has many advantages when used for certain types of quantitative EM studies, when 

compared to pre-embedding immunocytochemical techniques. For example, the ultrastmcture of 

labelled tenninals is often concealed by the reaction product in pre-embedding techniques, and 

this problem is not common when using the post-embedding immunogold method. Todd 

examined the co-localisation of G ABA and glycine in presynaptic axons and vesicle containing 

dendrites in type I and type II glomemli, to determine if there are selective coimections between 

different inhibitory intemeurons with the two types of glomemli. He showed that, in type I 

glomemli, the majority of peripheral axons and vesicle-containing dendrites were 

inmmunoreactive for GAB A, whilst in type II glomemli, these stmctures were generally both 

GAB A- and glycine-immunoreactive. Central axons of both types of glomemli were presumably 

under GABA-mediated presynaptic control. Although glycine was found in the peripheral 

axons/dendrites of type II glomemli, it is not thought that it has a role in presynaptic inhibition, as 

strychnine has no effect on this (Levy 1977).

GABA-induced increases in chloride penneability in the spinal cord may result in 

membrane depolarisation, as occurs in presynaptic inhibition of myelinated and unmyelinated 

primary afferents in the dorsal hom via axo-axonic synapses, as discussed previously. Changes in 

chloride permeability may also result in membrane hyperpolarisation (generating an inhibitory 

postsynaptic potential, IPSP), as occurs in postsynaptic inhibition of spinal motoneurons and 

intemeurons via axo-dendritic and axo-somatic synapses. Which type of membrane potential 

change occurs depends on the intracellular chloride conductance. It has been shown that IPSPs
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can be reversed by injecting chloride ions intracellularly (Curtis et al., 1968a). Postsynaptic 

inhibition is described as a temporary decrease in the excitability of spinal neurons. There are 

various known postsynaptic inhibitory pathways, including those that contribute to the inhibition 

of spinal motoneurons and intemeurons, including Renshaw cells (by excitatory afferents of 

muscle and cutaneous origin). Also, recurrent inhibition, after excitation of Renshaw cells, and 

descending inhibition, ft'om supraspinal areas directed at motoneurons and intemeurons (Curtis,

1969) are examples of these pathways.

Initially, glycine was considered to be solely responsible for postsynaptic inhibition 

(Eccles et al., 1963). Evidence for the role of G ABA in this process was first provided by 

Kellerth and Szumski (1966), who used intracellular recordings in cat popliteal, common perineal 

and hamstring motoneurons. They investigated the hyperpolarisation of the postsynaptic 

membrane and changes in the size of monosynaptic EPSPs and the firing rate of neurons after 

stretching of the triceps surae, tibalis anterior or semitendinosus muscles. They described a type 

of stretch-activated postsynaptic inhibition in motoneurons that was resistant to stiychnine but 

sensitive to picrotoxin. Previous to this study, strychnine-resistant postsynaptic inhibition had 

been described in many supraspinal areas, including the hippocampus (Andersen et al., 1963), and 

cerebellar Purkinje cells (Crawford et al., 1963). Subsequently, Curtis and colleagues (1968b) 

showed that GAB A inhibited motoneurons just as effectively as glycine, and was also as effective 

in producing the depression of Renshaw cell firing in the anaesthetised cat (Curtis et al., 1968b). 

Although glycine has been shown to be more effective in producing the hyperpolarisation of 

dorsal hom neurons than GAB A (Curtis et al., 1968b), bicuculline- and picrotoxin- sensitive 

IPSPs have also been recorded from these neurons (Curtis et al., 1969). Further analysis of the 

postsynaptic actions of G ABA and glycine suggested that both amino acids produced the same 

alteration in membrane permeability of spinal motoneurons, as they both produced an increase in 

the permeability of the neuronal membrane towards potassium and chloride ions (Curtis et al..
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1968b). In addition, in motoneurons, some of the postsynaptic inhibition recorded by Curtis et al. 

(1971b) was also sensitive to bicuculline. This provides evidence that GAB A acts as an inhibitory 

postsynaptic transmitter in the dorsal hom and in the ventral hom.

Cullheim and Kellerth (1981) have also studied the effects of strychnine and bicuculline/ 

picrotoxin on the recurrent inhibition of a-motoneurons in the cat lumbosacral spinal cord. They 

described a type of postsynaptic inhibition that had strychnine-sensitive and bicuculline-/ 

picrotoxin-sensitive components, suggesting that both glycine and GABA are used as 

neurotransmitters by Renshaw cells. More recently, Yoshimura and Nishi (1995) have examined 

the inhibitory role of GABA and glycine in the spinal dorsal horn using intracellular recordings 

from substantia gelatinosa neurons in the adult rat spinal cord. They found that after stimulation 

of A6 fibres and an initial EPSP, there was a short and/or long IPSP. Further investigation showed 

that the short IPSP was reversibly blocked by strychnine (and resulted from activation of the 

glycine receptor) whilst the long IPSP was reversibly blocked by bicuculline (and resulted from 

activation of the GABAa receptor). In conclusion, the authors showed that both glycine and 

GABA are responsible for postsynaptic inhibition of dorsal hom neurons. There is therefore, 

substantial evidence that glycine and GABA both contribute to postsynaptic inhibition of spinal 

motoneurons and dorsal horn intemeurons.

1.9 GABA and glycine in the spinal cord

Glycine is a major neurotransmitter in the spinal cord. It is commonly believed that all cells 

contain glycine, which is involved in protein synthesis and some metabolic reactions (Shank,

1970). Immunocytochemistry has shown that many cell bodies and axons in the spinal cord (in 

both the grey and white matter), brainstem, cerebellum (granule and molecular layers), 

hypothalamus and retina are enriched with glycine (Ottersen and Storm-Mathisen, 1987; van den 

Pol and Gores, 1988) and use it as a neurotransmitter. Glycine is released by neurons (Mulder,
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1974) and is removed from the extracellular space by active uptake mechanisms (Neal and 

Pickles, 1969), two of the major criteria that show it is a neurotransmitter. Electrophysiological 

investigations have also shown inhibitory responses to glycine that can be blocked by the 

application of strychnine (Curtis et al., 1968a), a glycine receptor antagonist (Curtis et al., 1971a).

Three glycine transporters have been identified to date, glycine transporter type la, glycine 

transporter type lb (both derived from the same gene) and glycine transporter type 2 (GLYT2; 

encoded by a separate gene). GLYT2 is of particular interest as it is found at high concentrations 

in the spinal cord and brainstem. This transporter has an extended N-tenninus with multiple 

phosphorylation sites, and has a predominantly neuronal distribution (Jursky et al., 1994).

The glycine receptor is a ligand-gated chloride channel, and consists of a and |3 subunits 

and gephyrin, a membrane-associated protein that anchors glycine receptor at synapses. The main 

form of the a-subunit is a l , and this is restricted to glycinergic synapses, whilst the p-subunit is 

found in many regions where glycinergic transmission is not thou^it to occur. In some parts of 

the CNS, gephyrin is found without the a l subunit (Kirsch and Betz, 1993). However, in the 

spinal dorsal hom, gephyrin is co-localised with this subunit (Alvarez et al., 1997), making it a 

reliable marker for glycine receptors here. Since antibodies directed against the glycine receptor 

a l  subunit give sub-optimal staining when used on fixed tissue, antibodies against gephyiin are 

often used instead in immunocytochemistry of spinal cord tissue.

Antibodies against glycine conjugated to protein carriers have been developed using the 

same technique as that of Storm-Mathisen and colleagues (Ottersen et al., 1987; van den Pol and 

Gores, 1988). These antibodies proved to be highly specific for glycine, and the antibody raised 

by Ottersen et al. showed no detectable cross-reactivity with other amino acids including GABA 

(Ottersen et al., 1987), the antibody described by van den Pol and Gores showed only 1% cross

reactivity with GABA. Although glycine is part of a number of proteins, these antibodies did not 

recognise glycine when it was incorporated into peptides in ELISA assays (van den Pol and
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Gores, 1988), and it is therefore thought to be unlikely that non-specific staining would occur 

with these antibodies. Van den Pol and Gores (1988) showed a wide distribution of glycine- 

immunoreactivity thi oughout all laminae of the spinal cord in the cervical, thoracic, lumbar and 

sacral segments. Profiles that were immunoreactive for glycine in the spinal cord showed a much 

higher intensity of staining than those that were immunoreactive in the brain. Glycine- 

immunoreactive boutons and cell bodies were obseiwed in both the dorsal and ventral grey matter 

of the rat and primate spinal cord. In the dorsal hom, immunoreactive cell bodies and axons were 

predominantly found in the deeper laminae, although immunoreactivity was still apparent in 

laminae I and II. In the ventral hom, intensely immunoreactive terminals were observed in close 

contact with large motoneuron cell bodies and dendrites. In addition, glycine-immunoreactivity 

was also detected in axons in the white matter of the spinal cord, with the highest number of 

immunoreactive axons found adjacent to the gi'ey matter in the lateral and ventral white matter. 

Further immunocytochemistry using an antibody raised against the glycine receptor, showed that 

staining achieved with this was similar to the staining found using the glycine antibody. This 

provided evidence that the immunoreactive axons and cell bodies detected with the antibodies 

raised against glutaraldehyde conjugates of glycine were using glycine as a neurotransmitter, 

rather than for general metabolic puiposes. The widespread distribution of both glycine- and 

glycine receptor-immunoreactivity in the dorsal and ventral homs has led to the assumption that 

glycine has an important role in both sensory and motor circuits in the spinal cord. Interestingly 

glycine is emiched in approximately 30% of GABAergic neurons in lamina I, 45% of those in 

lamina II, and 65% of those in lamina III. Furthermore, all glycine-immunoreactive cell bodies 

within laminae I-III of the spinal dorsal hom are also immunoreactive for GABA, whilst cells in 

deeper laminae are often glycine-immunoreactive, but do not use GABA as a transmitter (Todd 

and Sullivan, 1990).
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Evidence exists that GABA and glycine may act as co-transmitters at some inhibitory 

synapses in the spinal cord (Taal and Holstege, 1994; Ornung et ah, 1996; Todd et ah, 1996; 

Jonas et ah, 1998). GABA and glycine are enriched in some axons that are presynaptic to the 

central terminals of type la muscle afferents (Watson and Bazzaz, 2001), group II muscle 

afferents (Maxwell and Riddell, 1999) and the peripheral axons and vesicle-containing dendrites 

of type II glomeruli (Todd, 1996). In addition, Renshaw cells, have immunoreactivity for GABA 

and glycine, and exert an intense inhibitory effect on motoneurons (Cullheim and Kellerth, 1981; 

Schneider and Fyffe, 1992; Omung et ah, 1996). Some types of postsynaptic inhibition are 

blocked by both strychnine and bicuculline (Game and Lodge, 1975; Yoshimura and Nishi, 

1995), which would suggest that the inhibition is mediated via GABAa and glycine receptors. 

Todd et ah (1996) were the first to show that, at some synapses in the spinal cord, co-localisation 

of GABA and glycine receptors occurred. By comparing the distribution of the GABAaPs 

receptors and gephyrin, combined with post-embedding detection of GABA and glycine, the 

authors illustrated that many synapses in the dorsal and ventral horn showed both GABAaPs and 

gephyrin immunoreactivity, and that GABA and glycine were enriched in the same presynaptic 

terminal at these synapses. This was not always the case, as frequently synapses were observed 

that had only GABAaPs or gephyrin immunoreactivity, indicating that GABA and glycine may 

act separately or together at synapses in the spinal cord.

Co-localisation of GABA and glycine has been quantitatively assessed in axon terminals 

of lamina IX of the cat. In a study by Taal and Holstege (1994), it was concluded that within this 

area of the ventral hom, approximately one third of the terminals were immunoreactive for 

GABA and glycine, one third were immunoreactive for GABA only, and one third were only 

immunoreactive for glycine. Whilst Omung et ah (1996) also showed co-localisation of GABA 

and glycine in approximately one third of the terminals, they noted that slightly less than two 

thirds of terminals were immunoreactive for glycine only (a higher proportion than that stated by
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Taal and Holstege, 1994) and that very few (only 2%) were immunoreactive for GABA alone. 

Many of the terminals examined in these studies are likely to be involved in postsynaptic 

inhibition of motoneurons, although some may represent P boutons. Althougli the results of these 

studies differ, both support the concept that GABA and glycine may act as co- transmitters at 

some synapses on motoneurons.

More recently, the co-transmission theoiy was examined in rat spinal cord slices using 

dual whole-cell patch-clamp recordings from synaptically coupled pairs of intemeurons and large 

cells in lamina IX, that were presumed motoneurons (Jonas et al., 1998). Strychnine, bicuculline 

and baclofen were used to examine any actions on the glycine receptors and GABAa receptors, 

and the contribution that these made to unitary IPSCs and spontaneous miniature IPSCs detected 

in the pairs of intemeurons. Results from this study showed, that at some synapses in the spinal 

cord, unitary IPSCs and some miniature IPSCs have glycine receptor- and GABAa receptor- 

mediated components, supporting the hypothesis that co-transmission of glycine and GABA 

occurs at some synapses, and that they may be released from the same vesicles. This 

cotransmission may be important in motor control, where regulation of presynaptic GABA and 

glycine release may influence the timecourse of postsynaptic conductance (Jonas et al., 1998) and 

minimise the risk of irrelevant activity in motoneurons. Fluctuations in the inhibitory control of 

motoneurons (caused by alterations in GABA and glycine levels) may be important in 

maintaining the tonic versus phasic properties of these cells (Omung et al., 1996). Co

transmission may also allow feedback control of transmitter release by GABAb receptors, 

probably not possible at purely glycinergic synapse. It may also compensate in genetic glycine 

receptor subunit defects (Bmne et al., 1996).
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1.10 Sub-populations of GABAergic neurons

Because of its complexity, relatively little is known about spinal dorsal hom circuitry, e.g. 

the connections between dorsal horn neurons with each other, and with neurons in other laminae. 

It is therefore helpful to categorise these cells into groups that share common features, and 

examine their anatomical and physiological properties further. Cells can be categorised by 

morphology, physiological response to stimuli, and their neurochemistry.

Studies in the superficial dorsal horn that have addressed the morphological characteristics 

of neurons have used Golgi staining or intracellular labelling in conjunction with 

electrophysiological recordings from cells. These studies have led to the categorisation of lamina 

I neurons as fusiform, pyramidal, flattened and multipolar, based on the shape of their somata and 

the origin of its dendrites (Gobel, 1978; Beal et al., 1989, Lima et al., 1986). There is 

disagreement between studies on the number of types of neurons in lamina II. In 1978, Gobel 

described four main categories in lamina II of the trigeminal nucleus caudalis of the cat. These 

were ‘islet’ cells (with abundant sagitally orientated dendrites), ‘stalked cells’ (with ventrally and 

sagitally orientated dendrites), ‘arboreal’ (stellate-like) and ‘border cells’. In contrast, a study by 

Price et al. (1979) found only islet and stalked cells in lamina II of the monkey spinal cord. 

Analysis of the substantia gelatinosa in the primate by Beal and Cooper (1978) concluded that 

classification of the cells in this lamina was not possible as they were so heterogeneous, and that 

instead a gradient of cell types existed, based on cell morphology and the orientation of the 

primary dendrites. In the rat, a study by Todd and Lewis (1986) concluded that lamina II neurons 

consisted of two main groups, that resembled Gob el’s stalked and islet cells, whilst the remainder 

had some characteristics of Gobel’s minority groups. They also stated that a number of neurons 

possessed characteristics of more than one group.

In 2002, a study by Gmdt and Perl, used electrophysiology to categorise neurons in the 

superficial dorsal hom. Using tight-seal, whole-cell recordings in hamsters, they measured the
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spontaneous synaptic potentials, evoked postsynaptic currents, and the pattern of discharge 

resulting from depolarising pulses. They also examined the current-voltage relationships of cells 

whilst noting the morphological characteristics of each cell (its location and the size of its somata, 

and the pattern of arborisation of its dendrites and axons). They found that there was a correlation 

between the neuronal morphology of cells and their electrophysiological features. Using the 

described criteria, lamina II neurons were categorised into one of five categories (islet, central, 

medial-lateral, radial or vertical).

Neuronal populations can also be categorised on a neurochemical basis, and 

studies have shown that the majority of large islet cells are GABAergic (Todd and McKenzie, 

1989; Todd and Spike, 1993) and that some also use glycine as their co-transmitter (Spike and 

Todd, 1992). Smaller islet cells (that correspond to the central cells described by Grudt and Perl, 

2002) have been observed that are not immunoreactive for either inhibitory neurotransmitter. 

Studies of stalked cells have shown that they contain neither G ABA nor glycine, and it has been 

suggested that these are excitatory intemeurons (Todd and Spike, 1993).

Many immunocytochemical studies have identified neurochemically different populations 

of GABAergic neurons in the dorsal horn that have a specific laminar distribution. This suggests 

that these populations are also functionally different. GABAergic cells have been classified 

according to their emichment with other substances, including glycine, acetylcholine, nitric oxide 

synthase (NOS), parvalbumin (PV; a calcium binding protein), galanin, thyi'otrophin releasing 

hormone and neuropeptide Y. Co-localisation with glycine is particularly important in the 

classification of GABAergic neurons as this neurotransmitter is found in specific populations of 

GABAergic neurons, and may be used as a cotransmitter in these.

Two distinct populations of GABAergic neurons that are emiched with glycine and are 

found in the superficial dorsal horn are those that display immunoreactivity for NOS and those 

that are immunoreactive for PV (Laing et al., 1994). PV is found at high concentrations in
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laminae I-III of the spinal dorsal horn. Antal et al. (1991) investigated the distribution of PV and 

calbindin (another calcium binding protein) in the spinal cord and found that although 70% of 

PV-containing neurons in the superficial dorsal horn were GABAergic, calbindin was largely 

restricted to non-GABAergic neurons. There are several forms of NOS that synthesise the cell 

messenger, nitric oxide. These include calcium-dependent nNOS and endothelial NOS, and the 

calcium independent isofoim (Diaz-Ruiz et al, 2005). Neuronal NOS, is used in some 

neurochemical studies as a convenient marker for one of the two identified populations of 

GABAergic neurons in the superficial dorsal horn that uses glycine as a cotransmitter. NOS- 

immunoreactive cell bodies are numerous in laminae II and III, and in lamina II all NOS 

immunoreactive boutons are immunoreactive for GABA (Valtschanoff et al, 1992). Some NOS 

immunoreactive cell bodies in deeper laminae (including lamina III) are GABA-immunoreactive 

but are not enriched with glycine (Todd, 1991). Although both of these GABAergic populations 

have a similar anatomical distribution within the spinal dorsal horn, with cell bodies 

predominantly found in laminae II and III, PV and NOS are not co-localised in this region of the 

spinal cord, and make up two distinct non-overlapping GABAergic populations (Laing et al, 

1994).

The neurotransmitter, acetylcholine is synthesised by choline acetyl transferase. 

Cholinergic neurons are found in the deep dorsal horn (laminae III-VI), and are detected using 

antibodies directed against choline acetyl transferase. Evidence that GABA and acetylcholine 

may act as co-transmitters was produced by examining the sparse collection of cholinergic cell 

bodies in lamina III of the rat spinal cord. It became apparent that these cholinergic cell bodies 

were GABA-immunoreactive, but were never glycine-immunoreactive (Todd 1991), and so they 

represent a population of GABAergic neurons that do not use glycine as a transmitter. In addition, 

it has been shown that all cholinergic cells in lamina III contain NOS (Spike et al, 1993).
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Many neuropeptides are present within GABAergic axons and cell bodies in the spinal 

cord, particularly in laminae I-II, where peptide-containing neurons give rise to plexuses of axons 

(Hunt et al., 1981; Harkness and Brownfield, 1986; Rowan et al, 1993; Tuscherer and Seybold, 

1989). Axons containing substance P, somatostatin or galanin may also be of primary afferent 

origin (Barber et al., 1979; Averill et al., 1995).

Cell bodies and axons belonging to NPY, galanin- and enkephalin-containing neurons are 

found predominantly in laminae I and II, with some cell bodies in lamina III. Wlien 

glutaraldehyde is included in the primary fixative, a dense plexus of TRH-containing axons are 

observed in laminae II and III. The cell bodies of origin of TRH are found in laminae II-IV 

(Fleming and Todd, 1994). Immunocytochemical studies that have examined peptidergic cell 

bodies in laminae I and II, have shown, that all of the cells that were immunoreactive for NPY or 

galanin, 87% of those that contained TRH and 69% of the enkephalin-immunoreactive cells were 

also GABA-immunoreactive (Todd et al., 1992; Rowan et al., 1993; Fleming and Todd, 1994; 

Simmons et al., 1995). In addition none of these GABAergic populations appear to use glycine as 

a cotransmitter (Laing et al., 1994).

In contrast, two other neuropeptides, somatostatin (found in laminae I and II) and 

neurotensin (laminae I-III), are not found in neurons that are GABA-immunoreactive or glycine- 

immunoreactive, and neurons that contain these are thought to be excitatory and use glutamate as 

their main transmitter (Proudlock et al., 1993; Todd et al., 2003).

Interestingly, there is evidence that some populations of GABAergic neurons have 

specific postsynaptic targets. A study by Polgar et al. (1999) showed that GABAergic axons that 

contain NPY selectively target projection neurons in laminae III and IV that express the 

neurokinin-1 (NK-1) receptor. The relationship between NPY and NK-1 expressing neurons was 

shown to be specific as postsynaptic dorsal column neurons (which are located in the same 

laminae as these NK-I expressing neurons, but do not possess the NK-1 receptor) received very

50



few contacts from NPY-containing axons. Laminae III and IV NK-1-expressing neurons received 

few contacts from NOS immunoreactive axons (which belong to another population of 

GABAergic neurons in the dorsal horn). This provided further evidence that the contacts made 

between the NPY-immunoreactive axons and the NK-1 expressing neurons were highly specific.

Another example of the association between individual GABAergic populations and 

specific postsynaptic targets is illustrated in a study by Puskar et al. (2001), which identified a 

population of very large lamina I projection neurons that had high numbers of gephyrin puncta 

associated with them, and lacked NK-1 receptors. These were found to be selectively innervated 

by NOS-containing axons.

1.11 Neuropathic pain and GABA

Pain is noimally elicited in response to noxious or damaging stimulation, and has a 

protective role, as it warns of potential or actual tissue damage and results in the initiation of 

withdrawal responses to avoid or minimise damage. In contrast, neuropathic pain is a pathological 

pain state that may occur spontaneously, and is the result of previous damage to the peripheral or 

central nervous systems. Central neuropathic pain can occur after injury to the brainstem, 

thalamus, or cerebral cortex. This type of neuropathic pain is less common than peripheral 

neuropathic pain (that results from damage to a peripheral neiwe, dorsal root, or the dorsal root 

ganglion) and may have different underlying mechanisms (Woolf and Mannion, 1999).

This group of pain states (peripheral neuropathic pain) affects approximately 1% of the 

United Kingdom population, approximately 500,000 people (Karlsten and Gordh, 1997). This 

may occur in conjunction with diabetic neuropathy, postheipatic neuralgia, cancer, spinal cord 

injury, multiple sclerosis or human immunodeficiency virus. In addition, lower back pain and 

phantom pain may have elements of neuropathic pain associated with them (Bennett, 1997). It can 

be difficult to predict which individuals will be affected by neuropathic pain, as it is not linked to
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any specific type of nerve injury, and symptoms and underlying mechanisms often differ between 

individuals (Woolf and Mannion, 1999). It has been proposed that a genetic component may 

determine who is predisposed to neuropathic pain. In experiments by Devor and Raber (1990), 

male and female rats underwent ligation of the sciatic and saphenous nerves. Many of the animals 

developed autotomy, where self-mutilation of the denervated area occurred. This is presumed to 

represent an index of pain or dysesthesia. Animals with low levels of autotomy were interbred, as 

were those with high levels. After six generations of breeding, animals had either consistently 

higli levels or consistently low levels of autotomy, and the ratios obtained of each type suggested 

that autotomy is inherited as a single-gene autosomal recessive trait.

Symptoms of neuropathic pain are classed as negative symptoms (sensory deficits) and 

positive symptoms. The latter include spontaneous pain (where there is no apparent noxious 

stimulus), allodynia (where a normally imiocuous stimulus is perceived as painful) and 

hyperalgesia (where there is an exaggerated response to a painful sensation). Neuropathic pain is 

difficult to treat using mainstream analgesia as non-steroidal anti-inflammatory dmgs and opiates 

are relatively ineffective in easing the pain experienced (Woolf and Mamiion, 1999).

There are many theories surrounding the mechanisms of peripheral neuropathic pain. It 

has been suggested that it is the result of spontaneous activity in C-fibre nociceptors and large 

myelinated A-fibres (Ochoa et al., 1982), that it occurs after central sensitisation of dorsal horn 

neurons (Woolf, 1983), or that there is abnormal sprouting of A-fibres into lamina II (Woolf et 

al., 1992). There may also be reduced inhibitory control of dorsal horn neurons (disinhibition) 

(Woolf and Mannion, 1999) after nerve injury. Profound changes in sensory ftinction will occur 

after traumatic injury to a nerve and may result in alterations in sensitivity, excitability and 

transmission in the injured axons. It is difficult to investigate which types of afferent are 

preferentially affected after partial nerve injury, as after axotomy afferent fibres are disconnected 

fr om their sensory receptor endings. Tal et al. (1999) compared the prevalence of spontaneous
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and ectopic firing in nerve-end neuromas originating from nerves serving muscle (medial 

gastrocnemius nerve) and skin (saphenous and sural nerves) in the rat. They found that although 

spontaneous firing in the medial gastrocnemius had a higher incidence, ectopic 

mechanosensitivity was found more often in neuromas of cutaneous nerves. The authors 

concluded that the development of spontaneous or ectopic firing after nerve injury depended on 

the type of myelinated afferent fibres involved.

After peripheral nerve injury, ongoing ectopic firing from sensory fibres in the injured 

nerve may increase the synaptic efficacy of somatosensory neurons in the spinal dorsal horn. This 

is known as central sensitisation (Ji et al., 2003). This commences immediately after intense 

peripheral noxious stimuli or nerve injury, and is not restricted to the area of the injury (Woolf,

1983). It may result in a decreased pain tlireshold, amplification of future pain responses, and the 

spread of pain sensitivity to neighbouring non-injured axons (Gracely, 1992). Central 

sensitisation may be both triggered and maintained by ectopic discharges from axotomised A- 

fibres (Liu et al., 2000). After its onset, low threshold sensory fibres, which are normally 

activated by light touch, appear to innervate hi^-threshold nociceptive neurons due to the 

increased excitability of CNS neurons. This results in decreased pain threshold and the onset of 

allodynia.

Woolf et al. (1992) hypothesised that there is A-fibre sprouting into lamina IIo after I
I

peripheral nerve injury. After injection into the sciatic nerve, cholera toxin subunit b (CTb) binds 

to the GMl ganglioside, which is selectively found on the surface of intact myelinated somatic 

primary afferents (Robertson and Grant, 1989) and transported to their cell bodies and central 

terminals. Under normal circumstances, these terminals are present in all laminae of the spinal 

dorsal horn, except lamina IIo that receives input from nociceptive C-fibres. After peripheral 

nerve injury, Woolf and his colleagues found that the CTb labelling expanded into lamina IIo, and 

interpreted this as sprouting of A-fibres into this lamina. The authors concluded that if lamina IIo,
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which normally receives nociceptive information, began to receive non-noxious information, this 

might be misinterpreted as noxious input, and result in the onset of allodynia (Woolf et ah, 1992; 

Woolf et ah, 1995). Since this study, many studies have shown that A-fibres do not sprout into 

lamina IIo after peripheral nerve injury, but instead, there is a phenotypic switch and CTb is taken 

up and transported by axotomised C-fibres that terminate in lamina IIo (Tong et ah, 1999; Bao et 

ah, 2002; Hughes et ah, 2003; Shehab et ah, 2004).

Dorsal horn neurons, which process and transfer noxious information, are subject to many 

excitatory and inhibitory inputs from local and supraspinal neurons. An increase in inhibitory 

input to these neurons is believed to decrease activity in the dorsal horn neurons that relay the 

noxious information and thus act as a spinal ‘gate’ that can reduce the firing of these neurons and 

therefore diminish the sensation of pain (Melzack and Wall, 1965). Synaptic connections are 

frequently made between GABAergic terminals and GABA-containing cell bodies, providing a 

feedback system, which may have a role in inhibition (Roberts et ah, 1978). Disinhibition occurs 

when the inhibitory control of dorsal horn neurons decreases. This could result from decreased 

levels of GABA (possibly from apoptosis of inhibitory intemeurons through excitotoxicity, due to 

increased levels of glutamate) (Sugimoto et ah, 1990) or down-regulation of GABA receptors.

Most people who have a partial peripheral nerve injury experience neuropathic pain 

(Decosterd and Woolf, 2000), and therefore a feature of animal models of neuropathic pain is 

partial denervation, where there is a mixture of intact and injured fibres (Bennett and Xie, 1988; 

Seltzer et ah, 1990; Kim and Chung, 1992; Decosterd and Woolf, 2000). These models are 

commonly used in studies into the underlying mechanisms of neuropathic pain, and are useful 

when comparing dorsal horn levels of GABA and GAD before and after peripheral nerve injury, 

to determine whether there are alterations in the levels of these substances that might result in 

disinhibition of dorsal horn neurons and the onset of neuropathic pain.
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In the chronic constriction injury (CCI) model (Bennett and Xie, 1988), four ligatures are 

tied loosely around the whole sciatic nerve, spaced approximately 1mm apart proximal to the 

trifurcation of the neiwe. This results in nerve constriction, swelling and partial strangulation of 

the nerve, and damage of only some of the sciatic axons. With this model, behavioural signs 

corresponding to hyperalgesia, allodynia and possibly spontaneous pain (which is more difficult 

to detect accurately in rats) continue for over two months. The process involved in CCI is similar 

to that of entrapment neuropathies (e.g., carpal tunnel syndrome) although the onset and 

progression of symptoms is much faster under experimental conditions. Another model is the 

partial sciatic nerve ligation model, which involves tight ligation of approximately half of the 

sciatic nerve. Symptoms of neuropathic pain (allodynia, mechanical hyperalgesia, and possibly 

spontaneous pain) develop within a few hours of the procedure and continue for several months 

afterwards (Seltzer et al., 1990). Both models allow investigators to analyse any changes is 

theimal and mechanical sensitivity after nerve injury, but can be difficult to reproduce. The spinal 

nerve ligation model involves tight ligation of the entire fifth, and sometimes sixth, lumbar spinal 

neiwes close to the dorsal root ganglion, leaving the fourth lumbar (L4) nerve and third lumbar 

(L3) root intact. After this procedure, long-lasting thermal hyperalgesia (for at least 5 weeks), 

mechanical allodynia (lasting approximately 10 weeks), and signs of spontaneous pain are 

apparent (Kim and Chung, 1992). More recently, Decosterd and Woolf (2000) have developed the 

spared nerve injury (SNI) model, in which two of the terminal branches of the sciatic nerve are 

tiglitly ligated and sectioned distal to the ligation (tibial and common peroneal), sparing the sural 

nerve. This model allows behavioural testing of the neighbouring neiwe territories suiTounding the 

denervated area. The onset of symptoms (increased mechanical and thermal responses in the 

ipsilateral sural and, to some extent, saphenous territories) occurs within 24 hours and lasts for 

over six months.
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Studies have also investigated changes in animals with complete sciatic nerve transection 

(SNT) although controversy surrounds whether this is a model of neuropathic pain or not. For 

SNT, the sciatic neiwe is ligated (usually at the mid-thigh level) and completely transected by 

removing a few millimetres of the nerve. This generally results in autotomy.

GABA, and glycine, may play very specific roles in the modulation of pain information in 

the spinal dorsal horn. Yaksh (1989) showed that intrathecal administration of GABAa and 

glycine receptor antagonists resulted in a dose-dependent exaggerated response to light tactile 

stimulation. Subsequently, Hwang and Yaksh (1997) demonstrated that intrathecal administration 

of GABAa and GABAg receptor agonists (muscimol and baclofen respectively) resulted in a 

dose-dependent antagonism of the allodynia experienced by Chung model rats. Furthermore, 

injection of the GABAa antagonist, bicuculline, or the GABAg antagonist, CGP 35348, prior to 

the respective receptor agonist had little effect on normal pain tliresholds, but effectively reversed 

the anti-allodynic state that had been produced by injection of muscimol or baclofen respectively. 

Wilson and Yaksh (1978) showed that baclofen had a dose-dependent anti-nociceptive effect on 

unoperated rats when administered into the lumbar spinal subarachnoid space via an intrathecal 

catheter. It is therefore believed that spinal GABAa and GABAg receptors may be responsible for 

the modulation of spinal systems that mediate the allodynia resulting from peripheral neiwe 

injuries.

Further studies examining the role of GABA in neuropathic pain, investigated whether 

there was any change in GABA or GAD levels in the spinal dorsal horn after peripheral nerve 

injury, and whether any loss of GABA-immunoreactivity was detected in conjunction with 

behavioural signs of the condition (Kontinen et al., 2001; Castro-Lopes et al., 1993; Satoh and 

Omote, 1996; Ibuki et a l, 1997; Eaton et a l, 1998; Moore et a l, 2002; Somers and Clemente, 

2002; Polgar et al, 2003). The results of these studies were conflicting, as some showed a 

decrease in GABA or GAD levels in the dorsal horn (Castro-Lopes et a l, 1993; Ibuki et a l, 1997;
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Eaton et al., 1998; Moore et al., 2002) whilst some studies showed an increase in GABA or GAD 

after peripheral nerve injury (Kontinen et al., 1992; Satoh and Omote, 1996). Furtheimore, other 

studies showed that there was no change in GABA or GAD levels after nerve injury (Somers and 

Clemente, 2002; Polgar et al., 2003). Both Ibuki et al. (1997) and Eaton et al. (1998) found a 

dramatic bilateral decrease in GABAergic cell numbers after CCI, whilst Castro-Lopez et al. 

(1993) found a modest unilateral decrease after SNT. Although the reduction in immunoreactivity 

found in the studies by Ibuki and Eaton and their colleagues paralleled heightened sensitivity to 

innocuous stimuli, behavioural responses were restricted to the ipsilateral side of the nerve injury. 

More recently, a study by Moore et al. (2002) used the CCI, SNI and SNT models to investigate 

changes in GABAergic inhibition in the superficial dorsal horn after nerve injury. They found a 

decrease in dorsal horn levels of GAD65 ipsilateral to both partial nerve injuries, but only a slight 

reduction in GAD67 levels in the CCI model.

Although, the majority of studies suggest that GABA and GAD levels decrease after neiwe 

injury, other studies contradict this. In 2001, Kontinen and colleagues detected an increase in 

endogenous GABAergic inhibitory tone in rats after spinal nerve ligation. Also, an ipsilateral 

increase in the concentration of GABA in rat dorsal horn homogenates has been described after 

CCI by Satoh and Omote (1996). Interestingly, in another study using the same experimental 

methods as Satoh and Omote (1996) it was reported that GABA levels were unaltered (Somers 

and Clemente, 2002). In addition, no significant difference in the packing density of GABAergic 

cell bodies was found after CCI, when compared to that calculated pre-injury using the optical 

dissector method (Polgar et al., 2003). It is therefore important that further studies are conducted 

to clarify the role of GABA in neuropathic pain,

A novel explanation for the underlying mechanisms of disinhibition, involves the 

possibility that there are alterations in anion homeostasis after neiwe injury that leads to the onset 

of the symptoms of neuropathic pain. In the nervous system, intracellular cation-chloride
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cotransporters set the reverse potential for GABAa- and glycine- receptors. In neurons, this 

controls intracellular Cl" anion gradients. Two examples of such transporters are the potassium
%

chloride transporters (KCCs) and the sodium potassium chloride transporters (NKCCs). Under 

normal circumstances, KCCs decrease intracellular levels of K  ̂and Cl" ions, whilst NKCCs
■■3

increase intracellular levels o fN a \ K^ and Cl" ions, hi the brain in early development, GABA 

acts mainly as an excitatory neurotransmitter. This is thought to occur due to high NKCCl 

expression and low KCC2 expression during development. This results in high intracellular Cl" 

levels that cause membrane depolarisation after activation of the GAB Aa receptor, and a resultant 

net outward flow of anions (Price et al., 2005). Coull et al (2003) hypothesised that down- 

regulation of the KCC2 transporter may occur after peripheral nerve injury, resulting in disruption 

of anion homeostasis in lamina I nociceptive neurons. The resultant shift in transmembrane anion 

gradient could cause normally hyperpolarising synaptic currents to become depolarising, causing 

disinhibition of dorsal horn projection neurons. The authors used immunoblotting to compare 

KCC2 protein levels before and after nerve injury. Peripheral neuropathy was used in this study, 

and involved surgically implanting a polyethylene cuff around the sciatic nerve. This resulted in 

nerve constriction, similar to that produced in the CCI model. After injury, KCC2 levels in the 

lumbar spinal dorsal horn were reduced on the ipsilateral side to approximately half of that found 

on the contralateral side. Electrophysiological patch-clamp recordings were used to examine the 

excitability of dorsal horn neurons after blockade or knockdown of the KCC2 transporter in intact 

rats. Evidence from behavioural studies suggested that the nociceptive threshold was decreased in 

animals following reduced efficacy of this transporter in intact rats (Coull et al., 2003).
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1.12 Aims and Objectives

Investigation 1 :

Studies in the brain have shown that although most, if not all GABAergic neurons, probably 

synthesise both GAD isofomis, most preferentially express one or other of these. It is not known 

if this is the case in the spinal cord. It would be of interest to examine if there is co-localisation of 

the two isoforms in individual axons in each lamina of the spinal cord. GAD-immunoreactive cell 

bodies are found in lower numbers in the spinal cord than in the brain. This study sought to 

investigate these issues further with immunocytochemistry and confocal microscopy.

Investigation 2:

GABA and glycine are likely to be co-transmitters. In addition, GABA co-exists with 

many other neurotransmitters and neuropeptides in sub-populations of GABAergic neurons. It 

would be interesting to examine whether either GAD isofonn predominates in different 

populations of GABAergic neurons. The co-localisation of each of the GAD isoforms with 

GLYT2 (a marker for glycinergic axons), NOS and PV was examined. This was done using 

immunocytochemistry, and confocal microscopy.

Investigation 3 :

GABA has an important role in the presynaptic inhibition of primary afferent terminals. 

This occurs at axo-axonic synapses made by GABAergic P boutons on la afferent terminals. This 

part of the study sought to confirm that a GAD65-intense population in lamina IX (identified in 

investigation 1) are the P boutons. This was done by examining their association with primaiy 

afferent terminals using immunocytochemistry, confocal microscopy and electron microscopy. 

Primary afferent tenninals were identified by retrograde labelling with CTb and vesicular 

glutamate transporter type I (VGLUT 1 )-immunoreactivity.
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Investigation 4:

GABA modulates incoming sensory infonnation in the spinal cord, and changes in GABAergic 

transmission may contribute to neuropathic pain. We therefore examined any laminar changes in 

either GAD isoform in the spinal dorsal horn after nerve injury. Immunocytochemistiy, confocal 

microscopy and image analysis were used to investigate these changes.
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Chapter 2: General Materials and Methods

The following protocols were used in all of the experiments described in the following 

chapters, unless stated otherwise.

2.1 Animals

For all immunocytochemical studies, adult male Wistar or Sprague Dawley rats (Harlan 

UK Ltd, Bicester, UK) were deeply anaesthetised with pentobarbitone (60mg/kg intraperitoneal). 

After pre-rinsing with mammalian Ringer solution for 5 seconds, animals were perfused through 

the left cardiac ventricle with a fixative containing 4% freshly depolymerised formaldehyde (in 

O.IM PB). Experiments were approved by the Ethical Review Process Applications Panel of the 

University of Glasgow and performed in accordance with the UK Animals (Scientific Procedures) 

Act 1986. All efforts were made to minimise the number of animals used and their suffering.

2.2 Immunocytochemistry

Mid-lumbar spinal cord segments (L3-L5) were removed and post-fixed overnight in a 

fixative containing 4% formaldehyde (as before). Transverse sections (60- 70 pm thick) were cut 

with a Vibratome and immersed in 50% ethanol for 30 minutes to enhance antibody penetration. 

This technique was first used by Llewellyn-Smith and Minson (1992) on sections obtained from 

various regions of the CNS, including the spinal cord. They found that the use of ethanol in this 

way enhanced the penetration of immunoreagents through tissue sections, without any significant 

adverse effects on tissue ultrastructure. For immunoperoxidase staining, free-floating sections 

were incubated for 48-72 hours at 4°C in primary antibodies. The sections were then rinsed and 

incubated for 24 hours in species-specific biotinylated secondary antibodies (Jackson 

Immunoresearch, West Grove, PA, USA; diluted 1:500). After rinsing, the sections were agitated 

in avidin-peroxidase conjugate (Sigma, Poole, Dorset, U.K., diluted 1:1000) for 24 hours, before
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further rinsing. All antibody solutions and avidin peroxidase were made up in phosphate buffer 

with 0.3 M Saline (PBS) containing 0.3M NaCl and 0.3% Triton-XlOO. Also PBS containing 

0.3M NaCl was used for all rinsing. This solution was used, as high salt concentrations decrease 

the amount of non-specific staining experienced in immunocytochemistry due to the high ionic 

strength. Peroxidase activity was revealed with 0.125% of 3,3'-diaminobenzidine (DAB) in the 

presence of 0.01% hydrogen peroxide for 5-10 minutes. Sections were then rinsed with PB, 

dehydrated in graded concentrations of ethanol (5 minutes in each of the following: distilled 

water, 70% ethanol, 90% ethanol, then 100% ethanol (3 times)), cleared in Histoclear (2 times) 

(National Diagnostics, Raymond Lamb, London) and mounted on gel coated slides using 

Histomount (Agar Scientific, Stansted, UK). In some cases the DAB reaction product was 

intensified by including 3.5% nickel chloride in the DAB incubation (4-5 minutes).

For immunofluorescence staining, free-floating sections were incubated for 48-72 hours at 

4°C in a cocktail of primary antibodies. The sections were then rinsed and incubated overnight in 

species specific anti-IgG secondary antibodies (Jackson immunoresearch; all raised in donkey; 

diluted 1:100), conjugated to Rhodamine Red-X, fluorescein isothiocyanate (FITC) and if a third 

primary antibody was used, cyanine 5.18 (Cy5). In some cases secondary antibodies conjugated 

to Alexa Fluor 488 (Molecular Probes, Eugene, OR, USA) was used instead of those conjugated 

to FITC. The sections were then mounted in anti-fade medium (Vectashield, Vector Laboratories, 

Peterborough, U.K.) and stored at -20^C. All antibodies were made up in PBS containing 0.3M 

NaCl and 0.3% Triton-XlOO, and all rinsing was done in PBS containing 0.3M NaCl.

2.3 Antibodies

The GAD6 monoclonal antibody is highly selective for GAD65 and does not appear to 

cross-react with GAD67 (Chang and Gottlieb, 1988). This antibody was produced after the 

immunization of mice with the 59kDa GAD protein taken from rat brains. The specificity of the
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GAD6 antibody has been shown by reacting spinal cord sections from GAD65 knock-out mice 

(Kash et al., 1997) with GAD6, with no resultant staining (Hughes et al., 2005). Mouse and rat 

GAD65 are highly homologous, and the GAD6 antibody can be used to recognise GAD65 

specifically, in both mouse and rat tissue (manufacturer’s specifications). The polyclonal GAD65 

antibody Sigma (G4913) was developed in rabbit against a synthetic peptide corresponding to the 

C-terminal region of human GAD65, using a sequence not found in GAD67. Use of this antibody 

in immunocytochemistry with spinal cord sections, showed a similar staining pattern as when the 

GAD6 monoclonal antibody was used and the same stmctures were stained with both antibodies 

(unpublished observation). No staining was detected on tissue from GAD65 knock-out mice when 

incubated with this antibody (Hughes et al., 2005).

The GAD67 polyclonal antibody, K2 (produced by Dr Allan Tobin, UCLA) was 

generated in rabbits against the N-terminal portion of GAD67, a sequence not shared by GAD65. 

K2 therefore recognizes GAD67 specifically (Kaufinan et al., 1991). The antigen was produced 

by transfecting bacteria with nucleotides 122-2265 of GAD67 cDNA. Slight cross-reactivity with 

GAD65 has been noted (Esclapez et al.; 1994) (see chapter 4). The GAD67 monoclonal antibody, 

Chemicon, shows no detectable cross-reactivity with GAD65 when used in western blotting of rat 

brain lysates (manufacturer’s specification). When used in immunocytochemistry on rat spinal 

cord sections, this antibody gives the same general pattern of staining as the GAD67 rabbit 

antibody (K2) although these antibodies do not always label the same structures. For further 

discussion of this, see chapter 4.

The guinea pig GLYT2 antibody, Chemicon, was raised against a peptide corresponding 

to amino acids 780-799 of rat GLYT2, Pre-absoiption with this peptide completely abolishes 

GLYT2-immunostaining (manufacturer's specification). Double immunofluorescence staining 

using this antibody and a well-characterised rabbit anti-GLYT2 antibody (Zafra et al., 1995) 

resulted in staining of identical structures by both antibodies (unpublished observations).
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Immunocytochemistry using the guinea-pig anti-VGLUTl antibody gives a staining 

pattern that matches that described using other characterised VGLUTl antibodies (Tong et ah, 

1999; Varoqui et ah, 2002; Todd et ah, 2003). The staining pattern obtained using the guinea-pig 

anti-vesicular glutamate transporter type 2 (VGLUT2) similarly matched that described using 

other characterised VGLUT2 antibodies (Tong et ah, 2001; Varoqui et ah, 2002; Todd et ah, 

2003). Preabsorption of either antibody with its immunogen peptide abolishes all staining 

(manufacturer’s specifications).

The polyclonal NOS antibody (sheep; Herbison et ah, 1996) was raised by immunising 

sheep with the complete rat neuronal NOS (nNOS) protein, which was cloned in an insect 

expression system. This antibody is highly specific for rat nNOS.

The monoclonal PV antibody (mouse IgGl isotype) was produced by the fusion of mouse 

myeloma cells and splenocytes from mice immunised with purified frog muscle PV. According to 

the manufacturer, this antibody does not recognise other similar substances, such as calmodulin or 

intestinal calcium binding proteins.

The goat anti-choleragenoid antibody (List Biological Laboratories) recognises CTb with 

the same specificity as other anti-choleragenoid antibodies (manufacturer’s specification).

2.4 Confocal microscopy and analysis

Sections reacted for immunofluorescence were examined with a Bio-Rad MRC 1024 confocal 

microscope equipped with a Krypton-Ai’gon laser (Bio-Rad, Hemel Hempstead, U.K.). In most 

instances, sections were initially scanned with dry lenses (4x, lOx, and 2Qx) using a transmitted 

light detector and a dark field condenser. These scans were used in the identification of laminar 

boundaries (Todd et ah, 1998). Since lamina II lacks myelin, this appears as a darker region of the 

dorsal horn, and its dorsal and ventral borders can be identified because of this. Other laminar 

boundaries were adapted from an atlas of the rat CNS (Paxlnos and Watson, 1986). Sections were
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also scanned sequentially with the 488 568 and 647 nm lines of the laser (to reveal rhodamine, 

fluorescein and Cy5, respectively) through a 60x oil-immersion lens.

Fig. 2.1 Primary antibodies used in immunocytochemistry.

Antibody Species
Dilution

(peroxidase)

Dilution

(fluorescence)
Source

GAD65 (GAD6) mouse 1/500- 1/1000 1/100- 1/200
Developmental Studies Hybridoma 

Bank, University of Iowa

GAD65 (G4913) rabbit N/A 1/5000 Sigma, Poole, Dorset, UK

GAD67 (K2) rabbit 1/40,000 1/5000
Chemicon International, 

Harrow, UK

GAD67 mouse N/A 1/10,000 Chemicon

GLYT2 guinea pig N/A 1/10,000 Chemicon

VGLUTl guinea pig N/A 1/20,000 Chemicon

VGLUT2 guinea pig N/A 1/5000 Chemicon

NOS sheep N/A 1/1000 Dr P. Emson

PV mouse N/A 1/1000 Sigma

CTb goat N/A 1/5000
List Biological Laboratories, 

Campbell, CA

Subsequent analysis was performed using Neurolucida for Confocal (Microbrightfield, 

Colchester, VT, USA) software and Metamoi-ph (Molecular Devices Corporation, Downington, 

PA, USA). Initially, drawings of the gi*ey matter outline were constmcted using Neurolucida. The 

low magnification images were used to identify the boundaries of laminae I and II.
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Chapter 3: Distribution and co-localisation of glutamate decarboxylase isoforms in 

the rat spinal cord.

3.1 Background

Some boutons in the spinal dorsal horn probably have significantly higher levels of 

GAD65 than GAD67, and GABA production may be particularly reduced in these axons after 

partial nerve injury. It is therefore important to determine the distribution of the two GAD 

isoforms and the extent to which they are co-localised within individual axon terminals in each 

lamina of the spinal cord grey matter. This information would assist in assessing whether either 

GAD would be able to compensate in GABA production if there were a reduction in the other 

GAD isofonn after nerve injury.

Until recently, studies that have looked at the distribution of GAD have used antibodies 

that have not differentiated between the two isofonns. The recent availability of antibodies that 

are directed against each isofonn separately (e.g., rabbit anti-GAD67 polyclonal ‘K2’ and anti- 

GAD65 monoclonal ‘GAD6’) now enables detailed studies to be performed that compare the 

distribution and co-localisation of the two isofonns. To date, such studies in the spinal cord have 

been qualitative (Feldblum et al., 1995) and no attempt has been made to quantify GAD levels in 

individual laminae, hi this part of the study, immunocytochemistry and confocal microscopy were 

used to examine the distribution and co-localisation of GAD65 and GAD67 in individual axonal 

boutons in each lamina of the rat spinal grey matter in an attempt to understand more about the 

GABAergic system in the spinal cord.

The inhibitory neurotransmitter, glycine is co-localised with GABA in many axon 

terminals and cell bodies in the spinal cord, and it has been shown that GABA and glycine may 

act as co-transmitters in some neurons (Taal and Holstege, 1994; Omung et al., 1996; Todd et al., 

1996; Jonas et al., 1998). GABA is also thought to co-exist with other substances in the spinal 

dorsal horn. These include NOS, acetylcholine, PV, galanin, enkephalin and thyrotrophin
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releasing hormone. Different sub-populations of GABAergic neurons can be classified on a 

neurochemical basis (see chapter 1 for more detail) depending on which substances they co

express. These populations are predominantly non-overlapping although all cholinergic neurons 

in lamina III (which are GABAergie) are thought to contain NOS (Spike et al., 1993). 

Investigations into the co-localisation of each GAD isoform with glycine, NOS and PV formed 

another part of this study. Analysis was carried out to detemiine whether either GAD is 

preferentially expressed within the cell bodies of NOS and PV neurons or axonal boutons of 

glycinergic neurons.

The principal excitatory neurotransmitter in the CNS is glutamate and this is believed to 

be the main neurotransmitter used by primary afferents (Broman et al., 1993), exeitatory 

intemeurons and possibly all projection neurons in the spinal cord (Broman and Adahl, 1994). 

Until recently suitable markers for glutamatergic neurons were not available. The production of 

antibodies against VGLUTl and VGLUT2 now allows further investigations into the excitatory 

circuitry of the CNS, as these selectively label largely non-overlapping populations of 

glutamatergie axons. Another aim of this part of the study was to examine whether VGLUTl or 

VGLUT2 immunoreactivity was ever found in GAD-immunoreactive axon terminals, or whether 

these markers for excitatory (VGLUTl and VGLUT2) and inhibitoiy (GAD65 and GAD67) 

neurons label strictly separate populations of axons.

3.2 Materials and Methods

The protocol described in chapter 2 for the preparation of spinal cord sections for 

immunoperoxidase and immunofluorescence staining was used for all experiments.

For the investigations into the distribution and co-localisation of the GAD isoforms and 

experiments that examined the co-localisation of GAD and GLYT2, six adult male Wistar rats 

(230-300g) were perfused with fixative. For immunoperoxidase and immunofluorescence
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reactions, spinal cord sections and sections from the neocortex were incubated with antibodies 

against GAD65 (GAD6, mouse) and/or GAD67 (K2, rabbit). In some cases of 

immunofluorescence with the spinal eord sections, guinea pig anti-GLYT2 was included in the 

cocktail of primary antibodies as a marker for glycinergic axons (Spike et ah, 1997). The 

secondary antibodies used in all of these reactions were anti-mouse and anti-rabbit IgGs, and for 

immunofluorescenee, these were conjugated to Rhodamine Red-X and FITC respectively. When 

anti-GLYT2 was included in the primary incubation, anti-guinea pig IgG conjugated to Cy5 was 

added to the secondary antibodies (see chapter 2 for antibody infoimation and experimental 

protocols). NB. Some of the neocortex sections were not exposed to Triton-XlOO, as primary and 

secondary antibodies were diluted with PBS without Triton-XlOO, and all rinsing was also done 

in this solution.

For investigations into the GAD content of different neurochemical populations of 

GABAergic neurons, three adult male Wistar rats (260g) were perfused and sections of spinal 

cord were incubated in a cocktail of either a) rabbit anti-GAD65, sheep anti-NOS and mouse anti- 

PV antibodies or b) rabbit anti-GAD67, sheep anti-NOS and mouse anti-PV antibodies.

Secondary antibodies used in these experiments were anti-rabbit, anti-mouse and anti-goat/sheep 

IgGs conjugated to Rhodamine Red-X, FITC and Cy5 respectively.

In experiments that examined VGLUTl- and VGLUT2-immunoreactivity in GAD- 

positive tenninals, tliree adult male Wistar rats (190g) were perfused and spinal cord sections 

were reacted with a guinea-pig antibody raised against VGLUTl or VGLUT2, with mouse anti- 

GAD65 and rabbit anti-GAD67. The secondary antibodies used were anti-guinea-pig, anti-mouse 

and anti-rabbit IgGs conjugated to Rhodamine Red-X, Cy5 and FITC respectively.
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3.3 Confocal microscopy and analysis

For quantitative analysis of the co-existence of GAD65 and GAD67 in axon terminals of 

the spinal cord, sections were examined using the Bio-Rad MRC 1024 confocal laser scanning 

microscope. One section was chosen from each rat and the grey matter of one side was scanned 

with the 488 and 568 nm lines of the laser (to reveal rhodamine and fluorescein, respectively) 

through a 60x oil-immersion lens. Each Z-series consisted of 11 optical sections and covered a 

field of 103 X 103 pm. These were averaged over 4 scans and Z-steps were separated by 0.5 pm. 

By scanning approximately 20 overlapping fields, a vertical strip encompassing lamina I to 

lamina VIII was obtained. Individual areas from laminae IX and X were also scamied as 

described above. It was important not to saturate the signal for either of the two GAD antibodies, 

and so the gain of each of the photomultipliers was carefully set to ensure that the maximum pixel 

luminance value found anywhere in each section was less than the maximum possible value of 

255. Eaeh seetion was also scanned with dry lenses (4 x, 10 x and 20 x). Neurolucida for 

confocal software was used in subsequent analysis.

Initially, laminar boundaries were identified, as described in chapter 2, and plotted onto an 

outline of the relevant spinal cord section. Each pair of confocal z- series captured with the 60 x 

lens for GAD65 and GAD67 was initially merged to give a greyscale image so that GAD- 

containing boutons could be identified, but it was impossible to distinguish between the staining 

for either GAD. This avoided a bias toward sampling boutons with a particular pattern of GAD 

staining. One hundred GAD-immunoreactive boutons from each lamina in each animal were then 

chosen randomly from these files and their locations were drawn onto the outline of that section. 

The initial confocal images were then overlaid on the drawing of the same section. The luminance 

value of the brightest pixel in each chamiel was recorded for each of the 1000 selected boutons 

per animal (100 each from laminae 1-X) and expressed as a percentage of the value of the 

brightest pixel found in any of these boutons in that section, for the relevant chamiel. These
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calculated values for GAD65 and GAD67 were added for each of the sampled boutons, and the 

percentage of this end value corresponding to GAD65 -immunostaining was determined. Boutons 

were termed predominantly GAD65-immunoreactive if the GAD65 component represented 50% 

of the calculated end value, and the remainder were described as predominantly GAD67 

immunoreactive. One way ANOVA was used to establish whether the proportion of boutons that 

were classified as predominantly GAD65-immunoreactive in each lamina differed significantly 

from that found in other laminae (p<0.05). Tukey's pairwise test was then used post hoc to 

determine whether these differences were significant (p<0.05). The mean of these end values 

corresponding to predominantly GAD65-immunoreactive and predominantly GAD67- 

immunoreactive was calculated for the 100 selected boutons in each lamina from each animal.

For investigations into the co-localisation of GAD with GLYT2, PV or NOS, two sections 

were scamied fi‘om each of the three rats. Each z-series consisted of 11 sections and had 0.5pm 

z-spacing. These were obtained by scanning sequentially with the 488-, 568- and 647 nm lines of 

the Bio-Rad MRC 1024 confocal microscope (as before) through a 60x oil- immersion lens. For 

sections that had been reacted with the GLYT2, GAD65 and GAD67 antibodies, one z-series was 

scanned from each lamina, and these were examined to deteimine whether boutons that were 

labelled with both GAD and GLYT2 antibodies were mainly GAD65- or GAD67- positive. For 

sections that were reacted with the PV, NOS and GAD65 or GAD67 antibodies, an area covering 

lamina Hi and dorsal lamina III was scanned from the selected sections. From the sections that 

had the GAD67 antibody in the primary incubation, a total of 97 PV-immunoreactive cells and 89 

NOS -immunoreactive cells were examined for GAD-immunoreactivity. For PV, 38 were 

analysed fr om animal 1, 29 from animal 2 and 30 fr om animal 3. For NOS, 34 were analysed 

from animal 1, 20 from animal 2 and 35 from animal 3, From sections that were reacted against 

GAD65, PV and NOS, quantitative analysis was not carried out as careful inspection showed that 

in all sections PV- and NOS-immunoreactive cells were never GAD65-positive. Quantitative
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analysis of boutons that were immunmoreactive for PV and GAD65/GAD67 was carried out to 

establish if these boutons showed a specific pattern of GAD-immunoreactivity.

For the part of the study that examined the expression of VGLUTl and VGLUT2 in 

GAD-immunoreactive teiminals, one section from each rat was scamied with the 60 x oil- 

immersion lens. The pairs of confocal images for GAD65 and GAD67 were initially merged to 

give a greyscale image thus avoiding bias toward sampling boutons that had a particular pattern 

of GAD-immunoreactivity. One hundred GAD-immunoreactive boutons from each of seven 

regions from each rat were then selected. These regions were laminae I/II, III/IV, V/Vl, VII, VIII, 

IX and X. Initially confocal images were studied to detennine whether any GAD-immunoreactive 

boutons were labelled with either of the VGLUT antibodies. Careful inspection did not reveal any 

G AD/VGLUTl double-labelled boutons and so subsequent analysis was only carried out on 

sections incubated with the anti-VGLUT2 antibody to determine the proportion of GAD- 

immunoreactive boutons that were VGLUT2 positive.

3.4 Results

3.4.1 Immunoperoxidase staining for GADs

Staining with both GAD antibodies was observed throughout laminae I-X of the L4 and L5 

segments of the rat spinal cord, although the distribution of GAD65- and GAD67- 

immunoreactivity differed between laminae (fig. 3.1, fig. 3.2). At high magnification (60x), 

punctate immunostaining was observed with both antibodies and this presumably conesponded to 

axonal boutons.
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Fig. 3.1 Immunoperoxidase staining of GAD67 in a section taken from the mid-lumbar region of 

the rat spinal cord, (a) Immunostaining is found throughout the grey matter, although it is 

particularly dense in the superficial part of the dorsal horn. Moderate levels of immunoreactivity 

are detected in the deep dorsal horn and lamina X, while immunostaining is less dense in lamina 

VIII. (b-d) Higher-magnification images of the superfieial dorsal horn, the medial aspect of the 

deep dorsal horn, and the ventral horn (lamina IX) respectively. In each lamina, the staining 

detected is punctate, and few immunolabelled cell bodies are found, (b) in the superficial dorsal 

horn, a dense band of immunostaining is visible. This corresponds to in inner part of lamina II 

(lamina Hi), (c) Punctate staining in the deep dorsal horn is shown, (d) Numerous immunostained 

puncta are visible in lamina IX, and some of these surround large unlabelled cell bodies. These 

presumably belong to motoneurons, and one is marked with an arrow. Scale bars (a) = 200pm, (b- 

d) = 50pm.
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Fig. 3.2 Immunoperoxidase staining for GAD65 in the mid-lumbar region of the rat spinal cord, 

(a) Generally, the staining is similar to that detected for GAD67. However, much lower levels of 

GAD 65 -immunoreactivity are detected in laminae VII-DC (the intermediate area and the ventral 

horn). Clusters of immunostained puncta are visible in the area corresponding to the motor 

nucleus in lamina IX. As was the case with the GAD67-antibody, the staining detected was 

punctate, but in this case no immunoreactive cell bodies were detected, (b) In the superficial 

dorsal horn, a high density of immunolabelled puncta were detected in laminae I and Hi, with 

fewer found in the outer part of lamina II (lamina Ho), (c) immunostained puncta in the medial 

aspect of the deep dorsal horn, (d) small clusters of immunoreactive puncta are found in the motor 

nucleus. Unlike the pattern seen with the GAD67 antibody, unlabelled cell bodies are not outlined 

by these puncta.

Scale bars (a) = 200pm (b-d) = 50pm.
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In contrast, only GAD67-immunoreactive somata were found in laminae I and II, and these were 

only detected occasionally. Although GAD67-immunoreactive puncta were found in all laminae 

of the spinal gi'ey matter, strong GAD67-immunoreactivity was concentrated in laminae I-IIL In 

lamina II, immunostaining was stronger in the inner (ventral) part (lamina Hi), when compared to 

the outer (dorsal) part (lamina Ho). Moderate numbers of strongly immunoreactive GAD67 

puncta were also found in the deep dorsal horn and to a lesser extent, around the central canal. In 

the ventral horn, GAD67-immunoreactive puncta often surrounded large unstained cell bodies in 

lamina IX (probably belonging to motoneurons).

The distribution of GAD65-immunoreactive puncta differed between laminae (fig. 3.2). 

The highest concentration of strongly immunoreactive puncta was found in laminae I-HI where 

two distinct bands of intense G AD 65 -immunoreactivity were detected: one in lamina I and 

another in lamina Hi. Moderate numbers of immunoreactive puncta were observed in laminae IV- 

VI (this was particularly strong in the medial part) and lamina X. Although puncta with strong 

GAD65-immunoreactivity were less fi equent in laminae VII or IX, discrete clusters of profiles 

with strong GAD65-immunoreactivity were found in lamina VII and IX. These puncta were often 

found close to large unstained cell bodies, presumably motoneurons. Many boutons that were 

weakly immunoreactive for GAD65 were also observed throughout the grey matter, and these 

were predominantly found in the more ventral laminae.

3.4.2 Immunofluorescence staining for GADs

The pattern of GAD67- and GAD65-immunoreactivity observed with 

immunofluorescence was equivalent to that found with immunoperoxidase staining (fig. 3.3). 

Although most immunoreactive profiles were stained for both GAD isoforms, some boutons 

showed similar levels of immunofluorescence for both, whilst others had a much higher level of 

immunostaining for either GAD65 or GAD67. Measuring pixel luminance values showed that
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Fig. 3.3 Immunofluorescence staining for GAD65 and GAD67

Confocal microscopy images show the co-localisation of GAD65-immunoreactivity and GAD67- 

immunoreactivity in individual boutons in different laminae of the rat spinal cord. These illustrate 

the relative intensity of immunolabelling with each GAD antibody in several parts of the grey 

matter, (a-c: lamina I; d-f: lamina III; g-i: lamina V; j-1: lamina X; m-o: lamina IX). All images 

are constructed from the projections of 3 optical sections, at z-spacing of o.5pm. Note the high 

density of labelled puncta in lamina I-III, and also the wide range of intensities displayed by each 

GAD isoform in each lamina. Scale bar = 5 pm
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although some boutons appeared to be unstained with one of the antibodies, even these had a low 

level of immunoreactivity that was so weak that it was difficult to see on the confocal images.

The highest concentration of puncta that showed strong G AD6 5-immunoreactivity were found in 

laminae I and II and these became progiessively less common in laminae III-VIII and X. In 

contrast, a large proportion of profiles in all laminae contained relatively high levels of GAD67- 

immunoreactivity. Although it appeared that there was a difference in G AD 67-immunoreactivity 

between laminae Hi and Ho, closer examination of confocal images demonstrated that the relative 

staining intensity for the two GADs did not differ between these two areas, and that the difference 

in appearance was observed because GAD-immunoreactive profiles were less densely packed in 

lamina Ho than in lamina Hi. Interestingly, in lamina IX, the majority of GAD-immunoreactive 

profiles had relatively high levels of GAD67-immunoreactivity, but clusters of puncta with strong 

GAD65 immunostaining were also observed, and these had relatively low levels of GAD67- 

immunostaining.

Statistical analysis with one-way ANOVA showed that there was a highly significant 

difference (p<0,001) in the proportions of boutons that were defined as predominantly GAD65- or 

G AD 67 -immunoreactive between different laminae. Tukey's post-hoc pairwise test gave further 

information on the differences between some of the individual laminae (p<0.05). Lamina I 

contained more profiles that were predominantly GAD65-immunoreactive than did laminae V,

VI, VII, VIII and X whilst lamina II had significantly more of these profiles than laminae VII,

VIII and X. In addition, lamina IX contained considerably more profiles that were predominantly 

GAD65-immunoreactive than did laminae VIII and X. Finally, lamina VIII contained the lowest 

proportion of these profiles, and analysis showed that this was significantly different from 

laminae I, II, HI and IX (fig. 3.4).
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Fig. 3.4 Histogram of the proportion of boutons in each lamina that were defined as 

predominantly GAD65-immunoreactive (see materials and methods). The mean (and 

S.E.M.) percentages are shown for each lamina. Significant differences (P<0.05) are 

indicated by symbols. *= different from lamina I, **= different from lamina II, ***= 

different from lamina III, **** = different from lamina IX (n=4).
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3.4.3 Co-localisation of GAD with GLYT2

The pattern of immunostaining obtained with the GLYT2 antiserum was similar to that 

found previously (Zafra et ah, 1995, Spike et ah, 1997). Relatively low levels of 

immunofluorescence were observed in laminae I and II compared to the staining found in all the 

other spinal laminae. At high magnification, GLYT2-immunoreactivity encircled many profiles 

that resembled axonal boutons. Although many of these boutons were GAD-immunoreactive, 

many were not. Also there did not appear to be any relationship between GLYT2- 

immunoreactivity and the pattern of GAD expression in individual boutons in the dorsal horn, 

intermediate area and lamina X, as examples of profiles that were immunoreactive for GLYT2 

and GAD included some that were predominantly immunoreactive for GAD65 and others that 

were predominantly immunoreactive for GAD67 (fig. 3.5).

Although fewer boutons in the ventral horn were double labelled with GAD and GLYT2 

antibodies, those that were, were more likely to express predominantly GAD67 with relatively 

low levels of GAD65. Many of these boutons surrounded presumed motoneuron cell bodies. The 

clusters of boutons with intense GAD65-immunoreactivity in lamina IX were never GLYT2- 

immunoreactive (fig. 3.6).

3.4.4 Co-localisation of GAD with PV and NOS

The immunostaining observed using the PV and NOS antibodies was similar to that found 

in previous studies with these antibodies (Antal et al., 1990; Antal et al., 1991; Dun et al., 1993; 

Spike et al., 1993). With both antibodies, immunoreactive cell bodies were mainly found in 

laminae II and III. Occasionally cell bodies in lamina I were PV-immunoreactive, while many in 

deeper laminae were NOS immunoreactive. In addition, a dense band of punctate staining was 

observed in lamina Hi with both antibodies. Cell bodies that were NOS- immunoreactive 

exhibited cytoplasmic staining but had an unstained nucleus, as described in previous studies
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(Spike et al., 1993) whilst those that were PV-immunoreactive had both cytoplasmic and nuclear 

staining.

In this study, no examples of GAD65/ PV- or GAD65/NOS- double-labelled somata were 

found. This was expected as GAD65-immunoreactive cell bodies were rarely seen in the spinal 

cord. Quantitative analysis of these populations of cells (NOS or PV) showed that none of the 

NOS- immunoreactive cells (34 cells from animal 1, 20 from animal 2 and 35 from animal 3) 

were GAD67-positive whilst 81% of PV-immunoreactive cells were GAD67-positive (fig. 3.7) 

(28 of 34 from animal 1, 23 of 29 from animal 2 and 25 of 30 from animal 3). Also, it appeared 

that all of the GAD67-immunoreactive cells in laminae II and III were P V-immunoreactive. 

Interestingly, P V-immunoreactive cells that were GAD6 7-immunonegative were more likely to 

be found in lamina III than in lamina II. In addition, qualitative analysis of the PV/GAD double

labelled axonal boutons showed relatively higher levels of GAD65-immunoreactivity when 

compared to the GAD67-immunoreactivity detected in these boutons. NOS-/GAD-double- 

labelled boutons were difficult to identify as the NOS antibody used gave extensive dendritic 

labelling.

3.4.5 Co-localisation of GAD with VGLUTl and VGLUT2

Immunostaining obtained using the VGLUT antibodies was similar to that described in a 

previous study by Varoqui et al. in 2002. Both VGLUTl and VGLUT2 immunostaining was 

detected on spinal cord sections but the laminar distribution of the staining differed for each 

transporter. Whilst VGLUT2 was detected throughout the grey matter, VGLUTl labelling was 

sparse in laminae I and II, and more dense in laminae III-IV, the intermediate grey matter and the 

ventral horn (especially the medial aspect). After careful inspection of all regions of the grey 

matter in the sections reacted with the VGLUTl antibody, it was concluded that there were no 

axonal boutons that were immunoreactive for both GAD and VGLUTl. Quantitative analysis of
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Fig. 3.5 GLYT2 and GAD immunostaining in laminae III, V and X 

Confocal images show that there did not appear to be any relationship between GLYT2- 

immunoreactivity (green) and the pattern of GAD expression in individual boutons in lamina III 

(a-c), V (d-f) and X (g-i), as examples of profiles that were immunoreactive for GLYT2 and GAD 

included some that were predominantly immunoreactive for GAD65 (red) and others that were 

predominantly immunoreactive for GAD67 (blue). Images in a-c are constructed from 2 optical 

sections (0.5 pm z-steps), while all other images are the product of a single optical section. Scale 

bar “  5 pm.
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Fig. 3.6 GLYT2 and GAD immunostaining in lamina IX

(a) numerous GLYT2-immunoreactive boutons are visible, many of which surround a large 

unstained cell body (presumably a motoneuron), (b) GAD65- (red) and GAD67- (blue) 

immunoreactive puncta. The majority of GAD-immunostained terminals in this region have 

relatively higher levels of GAD67- than of GAD65-immunoreactivity, although two discrete 

clusters of GAD65-intense boutons are shown (large arrows), (c) This merged image of GLYT2- 

and GAD65/67-immunoreactivity shows that many of the profiles that are predominantly labelled 

with the GAD67 antibody are also GLYT2- positive (small arrows). In contrast, the discrete 

clusters of boutons with relatively high levels of GAD65-immunoreactivity are never GLYT2 

positive. Scale bar =10 pm
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Fig. 3.7 GAD and PV immunostaining in laminae II/III

Confocal images showing GAD67 (green) and parvalbumin, PV (red). The use of the 

GAD67 antibody resulted in cytoplasmic staining whilst the PV antibody gave 

nuclear and cytoplasmic staining. Although the majority of PV-immunoreactive cells 

were GAD67-immunoreactive (two of these are shown), some were GAD67-negative 

(one example is shown). All images are constructed from a single optical section. 

Scale bar =10 pm
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Fig. 3.8 NOS and GAD immunostaining in laminae II/III

Confocal images showing GAD67 (green) and NOS (blue). The use of the GAD67 

and NOS antibodies resulted in cytoplasmic staining. No GAD67-/NOS-double- 

labelled cell bodies were detected in this study. All images are constructed from a 

single optical section. Scale bar = 10 pm
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sections reacted with GAD65, GAD67 and VGLUT2 showed that although the vast majority of 

GAD-immunoreactive boutons were VGLUT2-negative, one GAD/VGLUT2 double-labelled 

bouton was found. This VGLUT2/GAD double-labelled bouton was detected in lamina IX and 

was the only one found in the 2100 GAD immunoreactive-profiles examined from the 3 animals 

in this part of the study.

3.5 Discussion

The distribution of GAD65- and GAD67-immunoreactivity that was observed here was 

similar to that reported by Feldblum et al. (1995), who also used the GAD6 and K2 antibodies. 

The combined distribution of both GADs also resembled that found previously using antibodies 

that recognised both isofonns (McLaughlin et ah, 1975; Barber et al., 1978). The main finding of 

this part of the study was that although most GAD-immunoreactive boutons were labelled with 

both GAD65 and GAD67 antibodies, some showed similar intensities of both types of 

immunoreactivity whilst others appeared to have higher levels for one or other of the GAD 

isoforms. This differed between laminae of the spinal cord. For example, in the superficial dorsal 

horn, boutons that had relatively higher levels of either GAD65 or GAD67 were frequently found. 

In contrast, most boutons in the ventral horn displayed relatively higher levels of GAD67, 

although discrete clusters of boutons that had high levels of GAD65 immunoreactivity were 

detected in lamina IX. It was subsequently found that these are the P boutons (see chapter 4 and 

Hughes et al. 2005). With regards to the investigation into whether GLYT2-immunoreactive 

puncta display a particular pattern of GAD expression, no relationship was detected in the dorsal 

horn, as some GLYT2-immunostained profiles showed strong GAD65-immunoreactivity whilst 

others displayed relatively higher immunoreactivity for GAD67. In contrast, in the ventral horn 

there was a relationship between GLYT2-immunoreactive boutons and the pattern of GAD- 

immunoreactivity found, as whilst the GAD65-intense boutons in the ventral horn were never
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GLYT2 positive, boutons with relatively high levels of GAD67-immunoreactivity were often 

GLYT2-immunoreactive.

It was not possible to examine the relationship between GAD65 and NOS or PV in cell 

bodies since GAD65-immunoreactivity was rarely detected in somata. In contrast, in laminae 

II/III, all NOS-immunoreactive-cell bodies were GAD67-negative whilst 83% of PV- 

immunoreactive- cell bodies were immunostained with the GAD67 antibody. In contrast, profiles 

that resembled axonal boutons that were PV-immunoreactive, had relatively high levels of 

GAD65. This difference in distribution of the two GADs within the cell bodies and axon 

terminals of PV-containing-neurons is similar to the pattern of GAD staining found in some 

populations of GABAergic neurons in the brain (Esclapez et al., 1994). Although it is not known 

why this pattern of GAD-immunoreactivity occurs in this population of PV-immunoreactive 

neurons, it may be because GAD65 is transported to the axon terminal more readily than GAD67 

from the neuronal cell body, or because GAD67 is degraded more rapidly at the tenninal within 

this sub-type of GABAergic neui'on. Alternatively, GAD65 and GAD67 may synthesise two 

separate pools of GABA in these neurons, similar to the arrangement that is thought to occur in 

the brain (Esclapez et al., 1994).

Although qualitative analysis of confocal images from tissue stained with VGLUTl, 

GAD65 and GAD67 showed that there were no structures double-labelled for VGLUTl and 

GAD, and that the majority of GAD-immunoreactive profiles were also VGLUT2 negative, one 

example of a GAD/VGLUT2 double-labelled bouton was found in lamina IX. This finding 

suggests that although GABA and glutamate are normally found in different populations of axon 

terminals, very occasionally these substances may be co-expressed in the same neuron.
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3.5.1 Technical considerations

The antibody used in this study to detect GAD67-immunoreactivity (K2) shows very weak 

cross-reactivity with GAD65 (Esclapez et ah, 1994), and it is therefore possible that boutons with 

strong GAD65- and very weak GAD67-immunoreactivity may have contained only GAD65. This 

possibility was explored further. In the four sections used to examine the distribution of the two 

GAD isofonns, the number of boutons in which the GAD67-immunoreactivity was less than 10% 

of the total GAD-immunostaining in that bouton was never more than 1 % of the total boutons 

sampled in each section. It is therefore probable that only a few boutons, if any, contained only 

GAD67. After this study was completed, a monoclonal GAD67 antibody became available 

coimnercially, which has been reported to show no cross-reactivity with GAD65.

As the relationship between antigen concentration and the strength of immunostaining is 

not known in immunocytochemical studies, it was not possible to estimate the absolute 

concentration of either GAD. Instead, the ratio between pixel luminance values obtained for 

GAD65- and GAD67- immunoreactivity in individual boutons was used to determine if they were 

predominantly GAD65- or GAD67-immunoreactive. We can therefore only assume that boutons 

with a higher level of immunoreactivity for one of the GADs, predominantly expresses that 

isofoiin. Also, as the intensity of immunofluorescence can vary between sections, depending on 

the exact experimental conditions used, comparisons were not made between sections, and semi- 

quantitative analysis only allowed comparisons to be made between boutons in different laminae. 

Finally, since it was difficult to resolve the outline of each immunoreactive bouton, the luminance 

value of the brightest pixel in each bouton was noted as a measure of immunoreactivity instead of 

the mean pixel luminance value for each bouton.

In the spinal cord, GLYT2-immunoreactive boutons are glycine-enriched (Spike et al., 

1997) and therefore presumably use glycine as their neurotransmitter. GLYT2 antibodies are 

therefore considered to be a reliable marker for glycinergic axons in this area of the CNS (Puskar
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et al., 2001; Geiman et al., 2002). In the sections used for confocal microscopy, GLYT2 was 

present in the plasma membrane, and snnonnded the GAD labelling in individual boutons, as 

expected (Fig. 3.6).

With regard to the PV/NOS study, it is important to note that although GAD65- 

immunoreactivity was not detected in either population of cell bodies, GAD65 may be rapidly 

transported to the axon terminals after synthesis in these neurons. Antibodies against GAD65 may 

therefore not be sensitive enough to detected the remaining GAD65 in these populations of cells.

In a previous study in the brain, Esclapez et al. (1994) showed that higher numbers of 

GAD labelled cell bodies were detected when detergent was not added to the solution of 

antibodies. Although Triton-XlOO was used in this study to enhance the penetration of the 

antibodies, immunostaining of spinal cord sections without Triton-XlOO was also perfoimed, and 

even then few cell bodies were labelled with either GAD antibody. As sections of neocortex were 

also immunostained with these antibodies (with and without Triton-XlOO) and numerous 

immunoreactive cell bodies were detected with both GAD antibodies (Mackie and Todd, 

unpublished obseiwations), it is not likely that the low number of GAD-immunoreactive cell 

bodies detected in the spinal cord is attributable to the use of detergent. Tillakaratne et al. (2000) 

reported that significant numbers of neuronal cell bodies in the cat spinal cord were stained with 

the GAD67 antibody that was used in this study, and so there may be a species difference 

regarding the levels of GAD67 in cell bodies within the spinal cord.

3.5.2 Comparisons between the present study and previous studies

3.5.2.1 GAD65 and GAD67

In 1994, Esclapez et al. examined the distribution of GAD65 and GAD67 within several 

subclasses of GABAergic neurons in the forebrain, midbrain, olfactory bulb, and cerebellum. 

They found that although both GADs were present in cell bodies and nerve terminals in most

95



brain regions, in some populations of neurons GAD67 immunoreactive cell bodies outnumbered 

those that were GAD65 immunoreactive. In addition, the density of GAD65 immunoreactive 

axon terminals was higher than the GAD67 immunoreactive terminals in most of the brain 

regions examined. The authors therefore concluded that the difference in distribution of the two 

isoforms within many neurons suggested that the two GAD isoforms may synthesise two separate 

pools of GABA in the brain, (Soghomanian and Martin, 1998). Until now, it was not known 

whether this was also the case in the spinal cord. In this part of the study, both GADs were 

detected mainly in axonal boutons. In addition, in the ventral horn, GAD67 seemed to be the 

predominant form found in GABAergic boutons. These results are in agreement with a study 

conducted by Feldblum et al. (1995), which also only detected few GAD-immunoreactive cell 

bodies. Both sets of results suggest that a different arrangement is present in the rat spinal cord, 

from that described in the brain by Esclapez et ah, 1994, with significant numbers of GAD67- 

immunoreactive boutons and undetectable levels of each GAD in most GABAergic cell bodies.

The results of this study indicate that GABAergic axons are particularly concentrated in 

laminae I-III of the rat spinal cord. Moderate numbers are also found in the medial part of laminae 

IV-VI, in lamina X and in the motor nuclei. Relatively fewer GABAergic axons are found in 

other regions such as laminae VII and VIII. This distribution of GABAergic axonal boutons is 

similar to that of GABA-immunoreactive cell bodies (Todd and McKenzie, 1989; Todd and 

Sullivan, 1990). It is therefore likely that many GABAergic axons are derived from local 

intemeurons. Intracellular and whole-cell studies have looked at intemeurons in laminae I-II and 

showed that these have local axons (e.g., Light et al., 1979; Schneider, 1992) Some of the GAD- 

immunoreactive terminals in this study probably originate from the descending GABAergic input 

from the medulla to both the ventral and dorsal horns of the spinal cord (Holstege, 1991 ; Antal et 

al., 1996; Maxwell et al., 1996).
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Moore et al. (2002) have reported that there was a significant depletion of GAD65, but not 

GAD67, in the ipsilateral dorsal horns of rats after CCI and SNI. The results of this investigation 

into the distribution and co-localisation of the two GAD isoforms in each lamina of the rat spinal 

cord showed that some GABAergic boutons in the superficial dorsal horn appear to have 

relatively high levels of GAD65 and low levels of GAD67. These boutons may therefore be 

principally affected after nerve injury, as the low level of GAD67 found in them is unlikely to 

compensate for GAD65 depletion. This may therefore lead to a reduced GABA synthesis in these 

boutons, and this could result in a reduction in GABAergic inhibition of lamina II neurons after 

nerve injury.

3.S.2.2 Glycine

In the ventral horn, GAD67 was the predominant isoform found in most 

GAD-immunoreactive boutons, and many of these were also immunoreactive for GLYT2. This 

suggests that these boutons originate fi-om neurons that contain both GABA and glycine, such as 

Renshaw cells, that were found to have immunoreactivity for GABA and glycine (Cullheim and 

Kellerth, 1981 ; Schneider and Fyffe, 1992; Ornung et al., 1996). Some of these boutons were in 

close contact with large unstained cell bodies that were presumably motoneurons, although many 

of these boutons that contacted motoneurons were GLYT2- but not GAD-immunoreactive. This 

agrees with the results of an electron microscopy immunocytochemical study in the cat spinal 

cord by Omung et al. (1996), who stated that 43% of the boutons in contact with motoneuron 

somata were only immunoreactive for glycine, while 25% were both GABA- and glycine- 

immunoreactive, and 2% were only GABA-immunoreactive.

The boutons that showed strong immunoreactivity for GAD65, and frequently occurred in 

clusters in lamina IX, have not been described in previous studies. As these lacked GLYT2, this
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suggests that they belong to neurons that are GABAergic, but not glycinergic. This is explored 

further in chapter 4.

3.5.2.3 NOS/PV

The main finding of this part of the study was that 83% of the PV labelled cell bodies 

were immunoreactive for GAD67, whilst none of the NOS-immunoreactive cell bodies were 

stained with the GAD67 antibody. In addition, all GAD67-immunoreactive cells in laminae II and 

III that were examined in this study were P V-immunoreactive. Although there is no published 

data on the expression of each GAD isoform in NOS- or PV-immunoreactive neurons, results 

from previous studies on the GABAergic content of PV-immunoreactive cells are in general 

agreement with the results in this study. Antal et al. (1991) showed that approximately 75% of 

PV-immunoreactive cells in laminae II and III were GABAergic. In contrast, Laing et al. (1994) 

stated that in lamina II, most cells that were positive for reduced nicotinemide adenine 

dinucleotide phosphate (NADPH) diaphorase, that is thought to be a reliable mai'ker for NOS 

(Spike et al., 1993), were also GABA-immunoreactive. The data from this study suggests that 

GAD67 is not expressed in NOS- immunoreactive cell bodies in this area of the dorsal horn. As 

most NO S -immunoreactive cells in this area of the spinal cord are GABAergic, these cells must 

express one or both of the GAD isoforms. It is obvious that the level of GAD present in these 

cells is below the threshold level at which they are recognised by the currently available GAD 

antibodies.

3.5.2.4 VGLÜT1/ VGLUT2

VGLUTl and VGLUT2 are found in axons belonging to largely non-overlapping populations of 

glutamatergic neurons. It is thought that these neurons are always excitatory, and it is not 

expected that axons of this origin would contain the inhibitory neurotransmitter, G ABA or its
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synthesising enzyme, GAD. Interestingly, in this study 1 bouton of the 2100 analysed was 

immunostained with the VGLUT2 antiserum and both GAD antibodies, and this was in lamina 

IX. It is therefore possible that occasionally excitatoiy and inhibitory substances may be co

localised within the same neuron. This is in good agreement with a previous study that found co

expression of VGLUTl and VGLUT2 genes with genes for GAD in neurons in the rat brain 

(Danik et al., 2005). In addition, Somogyi (2006) found co-localisation of G ABA and glutamate 

in mossy fibre terminals, and some nerve terminals of the retina, brainstem and spinal cord. It is 

not yet clear if these are released from the same tenninals or packaged in the same vesicles.
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Chapter 4; G ABA and the P boutons

4.1 Background

Studies by Feldblum et al. (1995) and Mackie et al. (2003) have shown that although both 

GAD isoforms are present in the ventral horn of the rat, GAD67 is the predominant form in this 

region and the majority of GABAergic boutons show moderate-strong GAD67 immunoreactivity, 

but only weak immunoreactivity for GAD65. However, some boutons in lamina VII and IX show 

very high levels of GAD65, and many of these form clusters. These boutons will be referred to as 

‘GAD65 intense’.

In 1969, an ultrastmctural study in the lumbosacral spinal cord of the cat classified 

boutons that were in contact with motoneurons into six groups. This was done on the basis of 

bouton size, vesicular shape, synaptic cleft width, the type of postsynaptic thickening and any 

association with specialized postsynaptic stmctures (table 4.1; Conradi, 1969a). Boutons with 

spherical synaptic vesicles were named S type, M type, T type or C type depending on these 

criteria. S type boutons noiinally had some contrast-rich material attached to the presynaptic 

membrane and the size of their synaptic clefts varied significantly. Studies into the distribution of 

S type boutons on motoneurons have provided conflicting evidence, as Comadi (1969a) and 

Kellerth et al. (1979) both reported that these were found predominantly on distal dendrites, 

whilst Conradi et al. (1983) and Fyffe and Light (1984) stated that they were located much closer 

to the cell body. Other studies have documented a much wider distribution of these boutons, with 

a small number in contact with the motoneuron cell body (Burke et ah, 1979; Pierce and Mendell, 

1993). Large boutons containing scattered spherical synaptic vesicles that had an extensive 

synaptic complex of an irregular shape were named M boutons. These had a thick postsynaptic 

membrane. Originally, it was believed that M boutons were la afferent terminals (Conradi, 

1969b). These are still believed to be of primary afferent origin, and maybe gi'oup II afférents.
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Later studies, in which intra-axonal HRP labelling was used, identified la afferent terminals as 

Conradi’s S type boutons

Table 4.1

Bouton type Bouton size Vesicle shape Synaptic cleft 

width

Associated

structures

S varies spherical varies contrast rich 

material on

presynaptic membrane

M large spherical varies thick postsynaptic 

membrane

T varies spherical large postsynaptic dense 

bodies

C large spherical very large and 

narrow

no postsynaptic 

density

F small flattened narrow thin layer of 

postsynaptic dense 

rich material

P small flattened narrow no pronounced synaptic 

specialization

Table 4.1 Lamina IX boutons

This table shows the main defining features of the six classes of boutons in lamina IX, as 

described by Conradi (1969a).
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(Conradi et al., 1983; Fyffe and Light, 1984). M boutons were almost always located on the 

proximal dendrites of motoneurons (Conradi et ah, 1969a). Fyffe and Light (1984) found that M 

boutons and large S boutons fonned only approximately 1% of the synaptic coverage of the 

motoneuron’s surface. In Conradi’s study, C type boutons were the largest bouton type described, 

and were frequently grouped together on the motoneuron surface. These were never observed 

adjacent to smaller neurons in the neuropil. In addition, they were associated with an extensive 

cistern underlying the postsynaptic membrane, and the synaptic cleft was very large and naiTow. 

The spherical vesicles in C type boutons were tightly packed and intermingled with some dense 

core vesicles. In addition, they lacked a postsynaptic density. Boutons classified as T type were 

similar to the S type boutons, although the synaptic cleft/complexes were larger. These boutons 

exhibited postsynaptic dense bodies situated below a thick layer of postsynaptic material. F type 

boutons contained flattened synaptic vesicles, and usually established several synaptic complexes. 

The synaptic cleft was much narrower than that of the S type boutons, and a thin layer of 

postsynaptic contrast-rich material was normally apparent. Interestingly, the distribution of each 

bouton type differed along the motoneuron surface, as T and F type boutons were located on all 

regions, whilst C type boutons were restricted to the cell body and its proximal dendrites.

In contrast, P boutons were small with flattened vesicles of an iiTegular shape and had a 

clear cytoplasm. S boutons are the major postsynaptic targets of P boutons (Comadi et ah, 1969b; 

Fyffe and Light, 1984), although P boutons also occasionally synapse on M boutons (Destombes 

et al., 1996). Also, the size of la afferents appears to determine the number of contacts received 

fr om P boutons. In 1983, Com*adi showed that la boutons that received no contacts fr'om P 

boutons were relatively small, whilst larger terminals received the greatest number of contacts 

(Conradi et al., 1983). In cases where a single la afferent received more than one contact from P 

boutons, these originated fr'om the same parent fibre (Conradi, 1969c).
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It is now assumed that boutons with flattened vesicles contain inhibitory substances 

(i.e., F boutons and P boutons) whilst those with spherical vesicles are excitatoiy (S, T, M and C 

type boutons) (Uchizono, 1965). In addition, in 1962, Gray showed that the thickness of pre- and 

postsynaptic densities related to the type of the event taking place at each synapse, i.e. if the 

synaptic density on the postsynaptic side of the synapse was thick with no synaptic density on the 

presynaptic side, this was an asymmetrical synapse (type I), and was typical of an excitatoiy 

synapse. If the synaptic densities were equally thick on both sides of the synapse, this was a 

symmetrical synapse (type II), and was a feature of inhibitory synapses. Although these concepts 

devised by Uchizono et al. and Gray are still used to determine whether synapses are excitatory or 

inhibitory, it must be noted that the type of fixative used and the length of the fixation procedure 

can alter the fine ultrastucture of synapses and their associated vesicles. Now, 

immunocytochemistry with specific markers for excitatoiy, e.g., VGLUTl and VGLUT2, and 

inhibitory, e.g., G ABA and GLYT2, substances is used to classify synapses. Many studies have 

shown that P boutons are GAB A- or GAD-immunoreactive (Destombes et al., 1996; Ômung et 

al., 1996; Watson and Bazzaz, 2001), but are not enriched with glycine (Watson and Bazzaz, 

2001). In contrast, F boutons can be immunoreactive for both GAB A and glycine, although these 

are predominantly glycinergic (Omung et al., 1996; Watson and Bazzaz, 2001). Omung et al.

(1996), used post-embedding immunogold histochemistry to examine the distribution of glycine- 

and GABA-like immunoreactivity in nerve teiminals on a- motoneurons in the lumbar spinal 

cord. They found that, of the 405 terminals examined, 69% were immunoreactive for G ABA or 

glycine, and that, 43% were immunoreactive for glycine only, 25% were immunoreactive for both 

GAB A and glycine, and 1% were immunoreactive for GAB A only. Terminals that were glycine- 

immunoreactive (with or without G ABA) contained flat or oval synaptic vesicles, and were 

therefore classified as F type. No examples of F boutons that were immunonegative for GAB A 

and glycine were detected in the study. Of the six synaptic boutons that were purely GAB A-
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immunoreactive, one was of the C type, while the remaining five were described as P boutons as 

they made synaptic contact with large S or M type boutons, but made no visible synapses with 

motoneurons. Destombes et al. (1996) found that on the membrane of a-motoneurons, 20% of F 

type boutons and all P boutons, but no M boutons contained GAB A. Also, the study by Watson 

and Bazzaz (2001) examined GAB A and glycine-immunoreactivity at axo-axonic synapses on la 

muscle afferent terminals. They found that in the ventral horn, 91% of these P boutons were 

immunoreactive to G ABA only, and only 9% were also enriched with glycine. This differed from 

results found in the deep dorsal horn, where 58% of boutons presynaptic to la muscle afferent 

terminals were immunoreactive for GAB A alone, 31% were GABA and glycine-immunoreactive 

and 11% showed only glycine-immunoreactivity. This suggests that la afferent boutons are 

modulated by different populations of presynaptic neurons, depending on where they are located 

within the spinal cord (Watson and Bazzaz, 2001) and that P boutons in the ventral horn are 

derived from cells that use GABA, but not glycine, as their neurotransmitter. With regard to the 

other types of boutons, that were classified by Com adi (1969), C boutons are primarily 

cholinergic (Lewis et al., 1970) whilst S type and M type boutons are glutamatergic (Fyffe and 

Light 1984).

Motor output is continuously modified by input from muscle spindle afferents and other 

sensory neurons, as well as from descending supraspinal pathways. Small, but appropriate 

alterations in motor output enable patterns of locomotion to be contextually appropriate. This is 

achieved in part via presynaptic control of la muscle spindle afferents. For example, PAD in these 

afferents may assist in damping motor responses to a low level of sensory stimulation, therefore 

reducing the risk of irrelevant motoneuron activity. There is evidence that individual axon 

branches of the same afferent may be under different levels of presynaptic control, as a study by 

Eguibar et al. (1994) showed that the size of effect achieved by inducing PAD via cortical 

stimulation, differed between collaterals of the same neuron. It is now generally accepted that
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GABAergic axo-axonic synapses are the anatomical substrate of presynaptic inhibition of primary 

afferents and PAD, (see chapter 1) and that P boutons are responsible for this inhibition in group 

la primary muscle spindle afferents in the motor nuclei (Rudomin and Sclimidt, 1999). To date, 

the cells that mediate presynaptic inhibition of these afferents, i.e., the cells of origin of P 

boutons, have not been identified, although stimulation of neurons in laminae V and VI leads to 

PAD in la afferent terminals (Jankowska et al., 1981), and this suggests that these cells maybe 

found in this region of the spinal cord.

Several studies have observed P boutons fonning part of a triadic arrangement, in which 

the P bouton is presynaptic to both the la bouton and the same dendrite that is postsynaptic to the 

primary afferent terminal (Fyffe and Light, 1984; Pierce and Mendell, 1993). The extent to which 

P boutons are thought to take part in triads differs between studies, with Pierce and Mendell 

stating that 66% of these formed a triadic aiTangement, whilst other studies have found many 

fewer examples of this (Fyffe and Light, 1984; Watson and Bazzaz, 2001). The involvement of P 

boutons in synaptic triads indicates that they are not solely involved in presynaptic inhibition 

(Pierce and Mendell, 1993) and that they may also be capable of producing postsynaptic 

inhibition of motoneurons. This inhibition is picrotoxin (but not strychnine) sensitive (Rudomin et 

al., 1990), consistent with findings that P boutons are not enriched with glycine (Watson and 

Bazzaz, 2001).

Group II afferents, from muscle spindle secondary endings, also terminate in the ventral 

horn (Fyffe, 1979) and synapse on a-motoneurons (Kirkwood and Sears, 1974), although 

intracellular studies have shown that projections to lamina IX are sparse, and that these afferents 

primarily project to lamina IV and the intermediate gi'ey matter. Occasionally, boutons that are 

presynaptic to group II afferent terminals are part of synaptic triads (Maxwell and Riddell, 1999). 

Immunocytochemistry has shown that all terminals presynaptic to gioup II afferents contain 

GABA, and that co-localisation with glycine occurs in the majority of these terminals (Maxwell
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and Riddell, 1999). Although GABA is also frequently co-localised with glycine in boutons that 

are presynaptic to la afferents in the deep dorsal horn, it has been shown that approximately 11% 

of these do not contain GABA. Furthermore in the ventral horn, all P boutons are GABAergic, 

and only 9% of these are enriched with glycine (Watson and Bazzaz, 2001). Group II afferents are 

also subject to PAD and presynaptic inhibition by GABAergic spinal intemeurons via axo-axonic 

synapses. In addition, they are also controlled by supraspinal monoaminergic neurons, that release 

5-HT, dopamine and norepinephiine (Jankowska and Riddell, 1995). Little is known about the 

stimuli that induce PAD in these muscle afferents, although it has been proposed that activity in 

group I and group II flexor afferents or cutaneous afferents may have a role (Harrison and 

Jankowska, 1989). The neurotransmitter content of boutons that are presynaptic to la and group II 

afferents in the deep dorsal horn, and P boutons in the ventral horn differ. This would suggest that 

different populations of presynaptic interneurons are involved in PAD in these afferents 

(Rudomin, 1990).

P boutons fbnn a different functional population from the majority of GABAergic boutons 

in the ventral horn, which form axo-somatic and axo-dendritic synapses, and include some of the 

F type boutons. Mackie et al. (2003) suggested that the ‘GAD65 intense’ population in the ventral 

horn might be the P boutons due to the extent that these form discrete clusters, and their distinct 

lack of glycine. In this part of the study, the GAD65-intense population in lamina IX have been 

investigated by using retrograde tracing, immunocytochemistry, confocal microscopy and 

electron microscopy, to confirm that these are the P boutons.

4.2 Materials and methods

4.2.1 Analysis of GAD65-intense boutons in lamina IX

Immunocytochemistiy was performed to examine the GAD65-intense boutons in lamina 

IX. Firstly, three adult male Sprague-Dawley rats (300-3 5Og) were anaesthetised with halothane
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(1-2%) and in each case, CTb was injected into the left sciatic nerve. This procedure was carried 

out by Professor D.J. Maxwell. CTb is commonly used to selectively label myelinated afferents in 

nonnal animals (for more details, see chapter 1). Using a sterile technique, the left sciatic nerve 

was uncovered by incising the skin of the lateral thigh and retracting the hamstring muscle. The 

nerve was then injected with 4pi of 1% CTb (Sigma, Poole, Dorset, UK) in distilled water, using 

a glass micropipette placed approximately 15-18mm distal to the piriformis tendon. The skin 

incision was sutured using 3/0 Mersilk Sutures (AW-online). Analgesia was then administered.

Three days later, the rats were deeply anaesthetised with pentobarbitone and perfused 

with a fixative containing 4% formaldehyde followed by post-fixation in the same fixative. The 

spinal cords were removed and transverse 60pm Vibratome sections were cut ftom the L3-L5 

segments and immunocytochemistry was performed to detect CTb, GAD65 (using GAD6) and 

VGLUTl (see Chapter 2 for antibody infoimation). VGLUTl antibodies are known to label the 

central terminals of myelinated proprioceptive primary afferents (Todd et al., 2003). However, 

not all VGLUTl immunoreactive terminals in lamina IX are fi'om primary afferents and some 

originate ftom axons belonging to the corticospinal tract (Hughes and Enriquez-Denton, 

unpublished observations). Therefore CTb labelling was used to identify primary afferents in 

some cases.

Selected areas from the lateral motoneuronal cell groups of the L4 segment were scamied 

for each rat (n=3) using the Bio-Rad MRC1024 confocal microscope thiough a 60x oil- 

immersion lens. Quantitative analysis was carried out using Neurolucida for Confocal software. 

The first part of this study involved determining the proportion of ‘GAD65 intense’ boutons that 

were in close contact with individual la afferent terminals in lamina IX. Primary afferent 

terminals were identified by the presence of both CTb and VGLUTl, and sixty of these were 

randomly selected ftom each animal, without viewing the GAD65- immunoreactivity for each 

section. The number of ‘GAD65 intense’ boutons in close contact with each primary afferent
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terminal was determined by examining every optical section that each afferent teiminal appeared 

in. Afferent terminals that appeared in the first and last optical sections of the z-series were not 

included in the sample, as it was not possible to determine how many contacts these received 

from ‘GAD65 intense’ boutons.

A separate analysis was performed to determine the proportion of ‘GAD65 intense’ 

boutons that were associated with primary afferent tenninals, and could therefore be P boutons. 

Sections from the animals in the first part of this study were used for this analysis. Boutons (in the 

lateral motoneuronal cell groups) that showed strong GAD65- immunoreactivity were selected 

(between 253 and 397 from each animal), and the proportion that was in contact with a VGLUTl- 

immunoreactive terminal was deteimined. It is possible that not all primary afferents were 

labelled with CTb, and therefore contacts with VGLUTl-immunoreactive axons were included in 

the analysis. To avoid a bias in sampling, e.g. a preference towards those GAD65-intense boutons 

that fonned clusters, Metamorph software was used to set an arbitrary thr eshold value for pixel 

luminance for GAD65-immunofluorescence in each confocal stack. All boutons with at least one 

pixel brighter than this value were included in the analysis.

4.2.2 GAD67 expression in P boutons

In order to determine whether the weak GAD67-immunoreactivity observed in GAD65- 

intense boutons by Mackie et ah, 2003 was genuine, a further two male Wistar rats (240-25Og) 

were fixed with a solution containing 4% formaldehyde followed by 4 hours of post fixation in 

the same fixative. Spinal cord sections were incubated in a cocktail of GAD67 antibodies (K2 

polyclonal rabbit and mouse monoclonal, see chapter 2) followed by rabbit rhodamine and mouse 

Alexa 488 secondary antibodies.

Sections were scanned with the Bio-Rad MRC1024 confocal microscope using the 488- 

and 568-mn lines of the laser (to reveal Alexa 488 and rhodamine respectively). For each animal.
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a single image was captured through a lOx lens to compare the staining pattern achieved with 

both antibodies, and two additional image stacks were scanned with the 60x oil-immersion lens 

for detailed examination. These image stacks each consisted of 11 z-steps with 0.5pm spacing.

All of these confocal images were carehilly examined to detennine whether both GAD67 

antibodies label the same stmctures in spinal cord sections. P boutons were identified as clusters 

of boutons with very weak GAD67-immunoreactivity when using the K2 antibody.

4.2.3 Combined confocal-electron microscopy studies of GAD65-intense contacts in 

lamina IX

For combined confocal and electron microscopy (confocal EM; Todd, 1997), an additional 

six adult male Sprague Dawley rats (25Og) received CTb injections into the left sciatic nerve (as 

above) and after three days were anaesthetised with pentobarbitone and perfused. The first two 

rats were perfused with a solution containing 4% formaldehyde. At a later time, two rats were 

perfused with a solution containing 0.2% glutaraldehyde and 4% formaldehyde. Subsequently, 

another two animals were perfused with a solution containing 0.1% glutaraldehyde, 4% 

formaldehyde and 15% v/v of saturated picric acid. In all cases, lumbar cord segments were post- 

fixed for 4 hours in the same solution as the animals were perfused with followed by overnight 

immersion in 4% formaldehyde. Transverse Vibratome sections (70pm) were cut from the mid- 

lumbar spinal cord and immediately bathed in 50% ethanol for 30 minutes. After rinsing, these 

were treated with 1% sodium borohydride for 30 minutes (to reduce non-specific staining by 

blocking free aldehyde sites) before being thoroughly rinsed for 90 minutes. Sections were 

subsequently incubated in antibodies raised against GAD65 (rabbit), CTb (goat) and VGLUTl 

(guinea pig). After rinsing, sections were incubated in fluorescent secondary antibodies (LRSC- 

rabbit, FITC-goat and Cy5- guinea pig) and biotinylated rabbit IgG for 24 hours at 4°C (for 

antibody details, see Chapter 2). The sections were then rinsed and placed in avidin peroxidase
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conjugate for 24 hours at 4'̂ C. No Triton X-100 was included in any of the solutions used on 

sections being prepared for confocal EM.

Spinal cord sections from each of the rats were examined with a confocal microscope. 

Areas with strong CTb labelling in lamina IX were identified and scanned using the 60x lens and 

tenninals that were double-labelled for CTb and VGLUTl were identified in Photoshop. Sections 

were removed from the slides and reacted with a DAB solution, in the presence of hydrogen 

peroxide (15pl/50ml water) for 5-10 minutes and rinsed in PB. Afteiwards sections were post

fixed for EM in 1% osmium tetroxide in PB for 20 minutes, rinsed in water, and dehydrated using 

a gradient of concentrations of acetone (70% for 30 minutes, 90% for 10 minutes and 100% for 

3x10 minutes). Sections were block- stained with uranyl acetate, placed in a 1:1 mixture of 

acetone and Durcupan for one hour and then in pure Durcupan overnight, before being flat 

embedded and cured at 60°C for 48 hours. The areas of lamina IX that contained the GAD65- 

intense boutons identified earlier in confocal images were photogiaphed through a light 

microscope and drawings were made of one section from each animal, noting any landmark 

feature such as blood vessels and their location relative to previously identified clusters of 

‘GAD65 intense’ boutons, so that these could be easily identified on EM images. A series of 

ultrathin sections was cut from each block and these were stained with lead citrate to contrast the 

tissue. The selected boutons were followed tlirough serial ultrathin sections with a Philips CM 100 

electron microscope to examine whether they formed axo-axonic synapses with large unlabelled 

structures, that had been identified as primary afferents (because of their VGLUTl/CTb- 

immunoreactvity) on the confocal images.

4.3 Results

The pattern of GAD65 and GAD67 immunoreactivity detected on sections from CTb 

injected animals was the same as that which has been previously reported in the ventral horn of
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unoperated rats (Mackie et al., 2003). Examination of confocal images revealed that in most cases 

GAD-immunoreactive boutons showed relatively high level of immunostaining with the GAD67 

antibody, and relatively lower levels with the antibody against GAD65. Many boutons in lamina 

IX were also found that showed very strong GAD65 immunoreactivity. These are referred to as 

‘GAD65 intense’. These often formed clusters. These could easily be distinguished from the 

terminals that displayed high levels of GAD67, and only low levels of GAD65.

The VGLUTl-immunostaining obseiwed was also consistent with that found in previous 

studies (Varoqui et al., 2002; Todd et al., 2003). Immunoreactive terminals were sparse in 

laminae I and II, but more dense in laminae III-VI, particularly in the medial aspect. A moderate 

density of terminal staining was obseiwed in lamina X, lamina VII and lamina IX. Also, a few 

immunoreactive profiles were observed in the spinal white matter, although this was observed 

mainly in the deepest part of the dorsal columns.

The distribution of CTb labelling was similar to that found previously in nonnal rats after 

sciatic nerve injections (LaMotte et al., 1991 ; Woolf et al., 1995). In L5, labelling was seen in 

laminae I and Hi to V, with virtually no labelling in lamina IIo. Labelling was restricted to 

tenninals in the medial two-thirds to three-quarters of the dorsal horn, and labelled cell bodies of 

motoneuronal size were detected in lamina IX alongside large CTb-immunoreactive tenninals 

(presumed la afferents).

4.3.1 Analysis of GAD intense boutons in lamina IX

Further examination showed that many ‘GAD65 intense’ boutons clustered around 

individual VGLUTl immunoreactive axon terminals, many of which contained 

transganglionically transported CTb (Fig. 4.1). The majority of ‘GAD65 intense’ boutons that 

were not in clusters were also adjacent to VGLUTl/ CTb immunoreactive terminals. Quantitative 

analysis showed that VGLUTl/CTb double-labelled terminals in lamina IX received between 0

111



and 10 contacts from ‘GAD65 intense’ boutons, with the mean number per teiminal equalling 2.5 

(animal 1), 2.98 (animal 2) and 3.02 (animal 3), with an average of 2.83. Between 82-93% (mean 

88%) of VGLUT 1 /CTb double-labelled tenninals were in contact with at least one ‘GAD65 

intense’ bouton (49/60 for animal 1, 53/60 for animal 2 and 56/60 for animal 3).

In a separate analysis, it was found that on average 89% (mean of n=3) of ‘GAD65 

intense’ boutons contacted a VGLUTl immunoreactive terminal. That is 76/87 for animal 1,

81/92 for animal 2 and 112/121 for animal 3. Although the quantitative data was obtained from the 

lateral motoneuronal cell groups in L4, clusters of GAD65-intense boutons were observed in all 

motor nuclei in the L3-L5 segments.

4,3.2 GAD67 expression in P boutons

Spinal cord sections that were reacted with both GAD67 antibodies showed the same 

general pattern of staining for each antibody on low magnification images (xlO). Closer 

inspection using high magnification images (x60) showed that some boutons were not double

labelled (fig. 4.2) and that fewer profiles with GAD67-immunoreactivity were detected in laminae 

I and IIo when using the monoclonal antibody, as compared to that obtained when K2 was used.

A band of intense GAD67 staining in lamina Hi was detected with both antibodies. In lamina IX,

P boutons were identified as clusters of boutons that were slightly GAD67-immunoreactive with 

the K2 antibody. These were not immunostained with the monoclonal GAD67 antibody.
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Fig. 4.1 ‘GAD65 intense boutons’ cluster around VGLUTl-labelled terminals

This confocal image shows GAD65 (red) and VGLUTl (blue) in lamina IX of the rat spinal cord. 

This image is constructed from 11 optical z-sections that were merged. These had 0.5 pm spaces 

between them. Scale bar =10 pm
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Fig. 4.2 Confocal images of immunostaining resulting from the use of GAD67 (K2) and 

GAD67 monoclonal antibodies.

Confocal images show that although the K2 antibody (red) and the monoclonal antibody (green) 

give the same general pattern of staining (shown in yellow in the third image) when used in 

immunocytochemistry, some boutons are not double-labelled with both antibodies, hr lamina IX, 

boutons were identified that were GAD67 immunoreactive with the K2 antibody, that were not 

stained with the mouse antibody (red). Images were constructed from a single optical section. 

Scale bar =10 pm
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4,3.3 Combined confocal EM studies of GAD65-intense contacts in 

lamina IX

When spinal cord sections from animals perfused with a solution containing 4% 

formaldehyde were examine with the electron microscope, the ultrastructure of the tissue was 

poor. When spinal cord sections from animals perfused with a solution containing 0.2% 

glutaraldehyde and 4% formaldehyde were examine with the confocal microscope, the CTb- 

immunostaining was sub-optimal, since the glutaraldehyde in the fixative had affected this.

In the spinal cord sections fr'om animals perfused with a solution containing 0.1% 

glutaraldehyde, 4% formaldehyde and 15% v/v of saturated picric acid, the CTb-immunostaining 

was good. In addition, the ultrastructure of the tissue was satisfactory when examining this with 

the electron microscope, and DAB-labelling of the proposed P boutons was of good quality. It 

was possible to recognise individual ‘GAD65 intense' boutons that had been previously identified 

on confocal images (fig. 4.3, fig. 4.4), and 22 putative P boutons were identified. DAB-labelled 

‘GAD65 intense’ profiles were observed in close apposition to large unlabelled terminals that 

were the neighbouring VGLUTl/CTb immunoreactive terminals observed on the confocal 

images. On at least one occasion the synapse between the DAB-labelled ‘GAD65 intense’ profile 

and the presumed primary afferent was visible.
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Fig. 4,3 Confocal image of GAD intense’ boutons in close opposition to VGLUTl/CTb 

labelled terminals in material prepared for confocal-EM.

Immunostaining for CTb (green), VGLUTl (blue) and GAD65 (red) in lamina IX of the rat. CTb 

was injected into the ipsilateral sciatic nerve and has been retrogradely transported to several 

proprioceptive afferent terminals. VGLUTl also labels these terminals. ‘GAD65 intense’ boutons 

are shown surrounding a VGLUTl-/CTb-labelled terminal (presumed primary afferent). A, B and 

C indicate the terminals seen by electron microscopy in Fig 4.4. This image is taken from a single 

optical section. Scale bar= 10pm
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Fig. 4.4 Electron microscopic image of same VGLUTl-/CTb-labelled terminal 

as in fig. 4.3 and associated GAD65 terminals

This image shows DAB-labelling of GAD-immunostained axonal boutons in lamina IX. These 

surround a presumed primary afferent that was identified in confocal images of the same area of 

the same section. P boutons (GAD65 intense) from the confocal image (Fig. 4.3) are labelled with 

A, B and C. Scale bar = 10pm
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4.4 Discussion

The main finding of this part of the study was that the ‘GAD65 intense’ boutons in lamina 

IX are the P boutons, as 88-89% of them are in close contact with primary afferent terminals, and 

they fi-equently form clusters around them. Hughes et al. (2005) have subsequently shown that 

‘GAD65 intense’ boutons associated with la terminals, identified by VGLUTl-/CTb- 

immunoreactivity, make axo-axonic synapses on primary afferent terminals in lamina IX. As all P 

boutons are strongly GABAergic (Destombes et al., 1996; Ôrnung et al., 1996; Watson and 

Bazzaz, 2001), they must contain at least one GAD isofoiin, and although the majority of GAD- 

containing boutons in the ventral horn are predominantly GAD67 immunoreactive, these are 

seldom adjacent to VGLUTl-labelled terminals, which include all proprioceptive afferents (Todd 

et al., 2003). This study has shown that the great majority of ‘GAD65 intense’ boutons in lamina 

IX are in close contact with VGLUTl terminals. This supports the hypothesis of Mackie et al. 

(2003), who stated that the 'GAD65 intense’ population were likely to be the P boutons, since 

they frequently foimed discrete clusters and were unlikely to be glycinergic as they lacked 

GLYT2. The present study also demonstrated that the P boutons are easily distinguished from 

other GABAergic terminals in lamina IX by their high level of GAD65, and that this provides a 

way of identifying P boutons that can be used in subsequent studies. For example, it would be of 

interest to compare the number of P boutons on la terminals before and after nerve injury, to 

investigate whether P boutons reduce in number after nerve injury. If these were to reduce in 

number after neiwe injury, this would suggest that this contributes to the disinhibition that occurs 

in the spinal dorsal horn after nerve injury. Also, the easy identification of P boutons will allow 

studies to compare the number of P boutons on la afferents fiom different muscle groups. As 

‘GAD65 intense’ boutons also frequently cluster around la afferents in the mouse, and show 

relatively high levels of GAD65- immunoreactivity when compared to the other GAD-containing 

boutons in the ventral horn, P boutons can also be easily identified in this species (Hughes et ah,
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2005) which is of importance since GAD knock-out and other genetically modified animals are 

generally mice.

4.4.1 GAD67 in P boutons

In this part of the study, ‘GAD65 intense’ boutons displayed low levels of 

immunoreactivity for GAD67 when the K2 antibody was used. However, it is thought that this 

antibody cross-reacts weakly with GAD65 (Esclapez et ah, 1994). In spinal cord sections reacted 

with the monoclonal antibody against GAD67, the majority of ‘GAD65 intense’ boutons showed 

no detectable GAD67, whilst a few showed very weak labelling (Hughes et ah, 2005). Although 

failure to detect GAD67 with this antibody may be the result of a lack of sensitivity of the mouse 

antibody, it is more likely that the apparent GAD67-labelling detected in the ‘GAD65 intense’ 

boutons in the present study was due to cross-reactivity of the K2 antibody with GAD65, as this 

has previously been reported (Esclapez et al., 1994). In addition, the GAD67 monoclonal 

antibody shows no detectable cross-reactivity with GAD65 on western blots of rat brain lysate

(manufacturer’s specification). The GAD65 antibody used in this study (GAD6) has been tested
. ,7

for specificity (Hughes et ah, 2005) on tissue from GAD65 knock-out mice (Kash et al., 1997) 

and no staining was detected after incubation, which confirms that this antibody specifically 

detects GAD65, and does not cross-react with GAD67. These two lines of evidence, when 

combined, suggest that most P boutons in the rat do not contain detectable levels of GAD67. In 

contrast, it appears that P boutons in the mouse do contain GAD67, as these are GAD67- 

immunoreactive with the monoclonal GAD67 antibody (Hughes et al., 2005).

4.4.2 Other studies of P boutons

Many studies have examined the organization of synapses on la afferents in lamina IX of 

the cat (Fyffe and Light, 1984; Pierce and Mendell, 1993) and rat (Watson and Bazzaz, 2001;
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Hughes et ah, 2005) spinal cord after injection of HRP or Neurobiotin into identified la afferent 

fibres. In addition, the studies by Fyffe and Light (1984), and Watson and Bazzaz (2001) also 

examined synapses on la afferents in the deep dorsal horn. There are conflicting reports with 

regard to the number of P boutons that synapse on individual la afferents. Firstly, Fyffe and Light 

found that each la bouton in lamina IX was postsynaptic to at least one P bouton, whilst Pierce 

and Mendell and Hughes et al. stated that 86-87% received axo-axonic contacts from P boutons. 

In contrast, earlier studies by Ralston and Ralston (1979) and Conradi et al. (1983) stated that 

fewer than half of the la terminals in lamina IX had P boutons associated with them. In the 

present study, it was concluded that 88% of VGLUT 1 -/CTb-immunoreactive terminals (which 

include all proprioceptive afferents in this lamina) had ‘GAD65 intense’ boutons (putative P 

boutons) in close contact, and that the number of these varied from 1-10 per VGLUTl- 

immunoreactive terminal. This data is in good agreement with the results of Pierce and Mendell 

(1993). Also, proprioceptive afferents (that were immunoreactive for VGLUTl and CTb) were in 

contact with an average of 2.8 ‘GAD65 intense’ boutons. This is very close to the value of 2.6-2.7 

P boutons in synaptic contact with individual la afferent terminals that was previously found 

using quantitative EM in the cat (Pierce and Mendell, 1993) and rat (Watson and Bazzaz, 2001).

It is also similar to the results of Hughes et al. (2005) who found that terminals of identified la 

afferents in lamina IX were in contact with on average 3.6 ‘GAD65 intense’ boutons per afferent 

terminal. This study also detected ‘GAD65 intense’ boutons in close contact with VGLUTl/CTb 

double-labelled terminals in lamina VII, which suggests that P boutons are also found on la 

terminals in this lamina. Preliminary qualitative studies of GAD-immunoreactive boutons that 

contacted VGLUT 1 -labelled terminals in the dorsal horn showed that these had no particular 

pattern of GAD expression, as examples of boutons with relatively high levels of GAD65 were 

detected as well as boutons with relatively high levels of GAD67. In contrast, GAD- 

immunoreactive terminals that were in close contact with IB4-labelled terminals in the dorsal
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hom of the spinal cord, were more likely to have relatively high levels of GAD65 and lower 

levels of GAD67 (unpublished observation, Mackie 2005).

EM data from the present study showed that ‘GAD65 intense’ boutons were in close 

contact with large unlabelled terminals, that were VGLUTl/CTb immunoreactive, and identified 

as primary afferent teiminals on confocal images. It has previously been noted that synapses 

between P boutons and la afferent terminals do not have a pronounced synaptic specialization 

(McLaughlin, 1972) and therefore these synapses are generally identified by clustering of 

synaptic vesicles and a slight increase in the electron density at the limiting membrane (Conradi, 

1969c). It was therefore difficult to visualise the synapse between these terminals, as the DAB 

reaction product was in the presynaptic terminal. In addition, the quality of images obtained from 

electron microscopy was compromised after the confocal-EM process that has many experimental 

steps and may affect tissue ultrastructure. Finally, only a low concentration of glutaraldehyde is 

used in the fixation of tissue being prepared for confocal microscopy, and this may also have 

affected the quality of EM images obtained in this part of the study, as tissue prepared for EM 

generally requires a higher concentration of glutaraldehyde in the fixative.

Subsequently, Hughes et al. (2005) followed 38 ‘GAD65 intense’ boutons through serial 

ultrathin sections and showed that all of these clustered around, and made axo-axonic synapses 

with large non-immunoreactive terminals that resembled la afferents. These synapses showed 

features that were characteristic of the axo-axonic synapses formed by P boutons on la afferents, 

which lack a pronounced synaptic specialization (Hughes et ah, 2005).

P boutons are GABAergic, but ai*e not enriched with glycine (Destombes et ah, 1996; 

Ômung et ah, 1996; Watson and Bazzaz, 2001). Mackie et ah (2002) showed that ‘GAD65 

intense’ boutons were never GLYT2 immunoreactive, although most other GABAergic terminals 

in lamina IX were GLYT2 positive, and presumably glycinergic. This is fiirther evidence that the
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‘GAD65 intense’ population are the P boutons, and that these belong to a different population of 

cells than those that give rise to the other GABAergic tenniiials in lamina IX.

4.4.3 Cells of origin of the P boutons

The concentration of each GAD isoform differs between P boutons and other GABAergic 

terminals in lamina IX and it is therefore likely that ‘GAD65 intense’ axons belong to a discrete 

population of GABAergic neurons that have high levels of GAD65 and little or no GAD67 in 

their axons. It is probable that P boutons form a different functional population from the other 

GABAergic boutons in the ventral hom, which form axo-somatic and axo-dendritic synapses, and 

include some of the F boutons that are presynaptic to motoneurons (Destombes et al., 1996; 

Ômung et al., 1996).

In the developing spinal cord, different classes of ventral hom neurons are generated in 

distinct positions in the neural tube in response to extracellular signalling, such as the activity of 

Sonic Hedgehog (Shh). Shh is secreted by the notochord and floor plate, and controls the 

specification of cell types in the ventral hom (Marti et al., 1995). Four classes of ventral 

interneuron have been identified in the developing neural tube: Vo, Vi, V2 and V3 (Briscoe et al., 

2000). Various types of inhibitory intemeuron, including Renshaw cells (Sapir et al., 2004) and la 

inhibitory interneurons (Alvarez et al., 2005), appear to originate from V] neurons, and these are 

characterised by the transient expression of the Enl transcription factor during development. 

Studies of mice, where the synthesis of GFP is driven by Enl, have shown that although the 

majority of GABAergic axons in the ventral hom are GFP labelled, the P boutons are not (Hughes 

et al., 2005). This suggests that P boutons originate from a different population of neurons than 

those that give rise to many of the other GABAergic axons in this area.

Mice that express GFP under the control of the GAD65 promoter, GAD65-GFP mice (De 

Marchis et al., 2004), have been used to investigate the cells of origin of the P boutons after 

injection of rhodamine labelled biotinylated dextran amine (R-BDA) into lamina IX of an in vitro
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spinal cord preparation (Hughes et al., 2005). This study found that although there was extensive 

retrograde labelling with R-BDA, cells that were also labelled with GFP were present in much 

smaller numbers, and were only found in the medial aspect of laminae V and VI on the ipsilateral 

side to the injection. This was not as a result of limited transport of R-BDA as strong labelling of 

neurons was found up to 3mm rostral and caudal to the injection site. This is evidence that P 

boutons may be derived from neurons in these laminae on the ipsilateral side at the same 

rostrocaudal level as the la afferent terminals that they innervate (Hughes et al., 2005). In 

agreement, Jankowska et al. (1981) stated that electrophysiological stimulation of laminae V/VI 

resulted in PAD of la afferents. It is therefore possible that the cells of origin of P boutons are 

activated directly by group I proprioceptive afferents in a disynaptic circuit, as stimulation of la 

and lb fibres, that terminate in the medial part of laminae V and VI, where the cells of origin of P 

boutons are found (Hughes et ah, 2005), can evoke PAD in la afferents (Rudomin and Schmidt, 

1999).
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Chapter 5: Changes in GAD-immunoreactivity in the rat dorsal hom after nerve 

injury.

5.1 Background

Pharmacological studies have shown that G ABA (and glycine) have an important role in 

modulating incoming pain information in the spinal cord (Yaksh, 1989; Hwang and Yaksh, 1997) 

by suppressing the responses of some dorsal horn neurons to low threshold mechanical stimuli 

(Sivilotti and Woolf, 1994) therefore ensuring that non-noxious information is not misinterpreted 

as noxious input. Many studies have used animal models of neuropathic pain to investigate a 

possible link between partial peripheral nerve injury (a cause of neuropathic pain) and changes in 

G ABA and/or GAD levels in the spinal dorsal hom (Castro-Lopes et al., 1993; Satoh and Omote, 

1996; Ibuki et ah, 1997; Eaton et ah, 1998; Moore et ah, 2002; Somers and Clemente, 2002; 

Polgar et ah, 2003). Controversy surrounds these results, with some showing a decrease in 

GAB A/GAD after nerve injury (Castro-Lopes et ah, 1993; Ibuki et ah, 1997; Eaton et ah, 1998; 

Moore et ah, 2002), some finding an increase in either the transmitter itself, or an increase in 

GABAergic inhibitory tone (Satoh and Omote, 1996; Kontinen et ah, 1992) and others stating 

that there was no detectable change in G ABA/GAD after nerve injury (Somers and Clemente, 

2002; Polgar et ah, 2003) (see chapter 1 for more detail).

In this part of the study, immunocytochemistry, confocal microscopy and image analysis 

have been used to investigate any changes in the levels of either GAD isofonn in laminae I, II or 

III after CCI and SNT (see chapter 1 for details of animal models).
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5.2 Materials and Methods 

5.2.1 Animals

Eighteen adult male Sprague Dawley rats were used for this part of the study (275-315g). 

Seven had CCI of the sciatic nerve, seven had SNT, seven received a sham operation, and four 

were naïve controls. All procedures were carried out under anaesthesia (1-2% halothane). Initially 

the biceps femoris was dissected at mid thigh level, to expose the sciatic nerve. For the CCI 

model, approximately 7mm of the left sciatic nerve was fi'eed from the surrounding tissue and 

four 4-0 chromic gut sutures were tied loosely around the nerve. These were placed 

approximately 1mm apart, and were proximal to the trifurcation of the nerve (Bennett and Xie, 

1988). Sham operations involved exposure of the left sciatic nerve, without any manipulation. For 

SNT, the sciatic nerve was ligated at mid-thigh level and a 5mm piece was excised distal to the 

ligature to prevent regeneration. After CCI, SNT and sham operations, the muscle and skin were 

closed in two layers using 4.0 Mersilk, Analgesia was administered to animals that had undergone 

SNT. CCI and sham-operated rats were given no analgesia in case this had any effect on their 

performance in behavioural testing. All animals were allowed to recover for 24 hours before 

behavioural testing began.

5.2.2 Behavioural Testing

Behavioural testing to detect thermal hyperalgesia was carried out on all CCI and sham- 

operated animals on nine occasions: 6, 3, and 1 days before (baseline values) and 1, 4, 6, 8, 11 

and 14 days after the procedure. The behavioural testing of these animals was done by a colleague 

as part of another study (Polgar et ah, 2004). The animals were placed in a clear plastic cage with 

a glass floor and allowed to adapt to their suiToundings for 15 minutes before testing began. A 

Plantar Analgesia Instmment, (Ugo-Basile, Italy; Hargreaves et al., 1988) was used to test the 

responses of the animals to thennal stimuli. On each occasion, the time taken for withdrawal of
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the foot was measured in response to a radiant heat source that was aimed at the plantar surface of 

the hindpaw. Each testing session involved stimulating each hindpaw five times, with an interval 

of at least 10 minutes between consecutive stimulation of the same paw. Paws were tested in a 

random order so that the animals had no expectation of which paw would be tested next. The 

mean withdrawal latency for each foot was detennined. The responses between the ipsilateral and 

contralateral hindpaws in animals that had undergone CCI and sham surgery were tested for 

significance for each post-operative time-point with a one-tailed unpaired T-test. Behavioural 

testing was not performed on animals that had undergone SNT as it is thought that these animals 

show no signs of neuropathic pain.

5.2.3 Tissue processing and Immunocytochemistry

On the 14̂  ̂post-operative day, all animals were anaesthetised and perfused with a fixative 

containing 4% formaldehyde. The fourth lumbar segments were removed and postfixed in the 

same solution. A notch was made in the ventral horn on the contralateral (right) side of each block 

to allow the two sides to be distinguished from each other. Vibratome sections (70jam) were cut 

and processed for immunocytochemical detection of GAD65 and GAD67 as described in chapter 

2. The GAD6 and K2 antibodies were used in this part of the study.

5.2.4 Confocal Microscopy and analysis

Four sections from the caudal part of the L4 segment of the spinal cord were used from 

each animal. The medial part of the dorsal horns fi'om both sides of each section were scanned 

with the Bio-Rad MRC 1024 confocal microscope (488- and 568-nm lines of the laser, to reveal 

fluorescein and rhodamine respectively). A single image was captured from both sides of each 

section through a 20x dry lens, and each optical section was averaged over four scans. Each 

image covered a field of 619 pm x 464 |um, which ensured that the area of the sciatic nerve in
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laminae I-III would be included. This is the area affected by the nerve injury models. To ensure 

that the two sides of each section were comparable, the laser intensity was always set on the 

contralateral side and the same laser settings were used when scamiing both sides of any given 

section. The gain of each of the photomultipliers was set so that only a few pixels in each image 

were equal to the maximum possible pixel luminance value achieved by the laser (a value of 255). 

This was done since the images corresponding to GAD65- and GAD67- immunoreactivity had a 

very broad range of pixel intensities, with a few pixels having a high value and the remainder of 

the pixels having a low value. In a preliminary study, the laser was set to avoid saturation of any 

of the pixels in the images, but images achieved in this way, were very difficult to analyse, as the 

pixel range was so small. Lower magnification images were scanned with 4x and lOx objective 

lenses using light transmitted through a dark field condenser. These images were used to identify 

laminar boundaries (described further in chapter 2).

To avoid bias, the person who carried out the analysis was blind to the group from which 

each section was taken (CGI, SNT, sham-operated or naïve) and which side of the section was 

ipsilateral or contralateral to the neiwe injury. The images scanned with the 4x and IQx lenses 

were used to draw outlines of the grey-matter for each section. This was done with Neurolucida 

for Confocal software, as described in chapter 2. The mediolateral width of each dorsal hom was 

measured and divided by a vertical line down the middle of the drawing to separate the medial 

and lateral halves. Only the medial pai*t of each dorsal horn was used for analysis, as this includes 

the sciatic territory. The distribution of myelin bundles, which showed no GAD-immunoreactivity 

may have differed between the two sides of any given section. The presence of myelin bundles 

would have affected any comparisons made between the two sides, and they were therefore 

excluded from the area of the picture that was used for analysis by drawing round them. The 

resultant drawings were exported from Neurolucida to Adobe Photoshop, where each was
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superimposed on the original 20 x fluorescent images of that section for GAD65 and GAD67 

separately.

Measurements of immunoreactivity (mean pixel luminance values) for GAD65 and 

GAD67 were made by using a Zeiss KS400 image analysis system (Kontron Elektronik, 

Geimany). This system calculated the mean pixel luminance values for the medial halves of 

laminae I, II and III for both sides of every section (excluding the regions occupied by myelin 

bundles). The values obtained from each lamina on the ipsilateral side were expressed as a 

percentage of those obtained from the con esponding lamina on the contralateral side. One-way 

ANOVA was used to determine whether there were any significant differences in these results 

between the CCI, SNT, sham-operated and naïve groups. Subsequently, Tukey's pairwise test was 

used post hoc to determine whether these differences were significant (p<0.05).

5.3 Results

5.3.1 Behavioural testing

All of the CCI animals displayed alterations in posture similar to those described in other 

studies that have used this model (Bennett and Xie, 1988; Antal et ah, 1990). These animals 

avoided weight bearing on the affected side whilst at rest and whilst mobile. The affected foot 

was frequently held in an averted position with the toes plantar-flexed. Sham-operated rats had 

normal posture and gait. No autotomy or loss of body weight was obseiwed in any of the animals 

used in this study. Results of the behavioural tests are shown in fig. 5.1.
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Fig. 5.1 Withdrawal latencies of CCI and sham-operated animals pre- and post-surgery.

The results of behavioural testing for thermal hyperalgesia on the sham-operated animals show 

that there was no significant change in the mean withdrawal latency of either paw after surgery, 

when compared to the values obtained before the procedure. In contrast, the mean withdrawal 

latency calculated for the ipsilateral paw of the CCI-operated rats was lower than that found 

before surgery, suggesting that the animals had developed signs of thermal hyperalgesia. 

Statistical analysis using one-tailed unpaired T-test showed that there was a significant difference 

(p<0.05) between the ipsilateral and contralateral sides in CCI animals at 1 day post-surgery. 

There was also a highly significant difference (p<0.001) between the sides in these animals on 

days 4, 6, 8, 11 and 14 after the procedure.
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5.3.2 Immunocytochemistry and image analysis

In sections from sham-operated and naïve animals, the pattern of GAD65 and GAD67 

immunoreaetivity closely resembled that which has been previously reported in the dorsal hom of 

normal rats (Feldblum et ah, 1995; Mackie et ah, 2003). In sections from animals with CCI 

(Fig. 5.2) and SNT (Fig. 5.3), immunostaining for GAD65 and GAD67 in the ipsilateral dorsal 

horn in lamina I-III appeared to be weaker than that found in these laminae on the contralateral 

side.

Quantitative investigations with image analysis showed that after CCI and SNT, the mean 

pixel luminance values corresponding to GAD65 calculated for laminae I, II and III on the 

ipsilateral side of the dorsal hom were slightly less than those calculated for the corresponding 

laminae of the same section on the contralateral side. This reduction varied from 10-16% (table 

5.1). In contrast, the values calculated from the naïve or sham animals were similar on both sides 

of any given section for each individual lamina. However it only reached significance in one case 

for lamina II in the SNT model.

Quantitative investigations with image analysis showed that after CCI and SNT, the mean 

pixel luminance values corresponding to GAD67 calculated for laminae I, II and III on the 

ipsilateral side of the dorsal horn were less than those calculated for the corresponding laminae of 

the same section on the contralateral side. This reduction varied from 12-19% for CCI and 35- 

40% for SNT (table 5.2). In contrast, the values calculated from the naïve or sham animals were 

similar on both sides of any given section for each individual lamina. However it only reached 

significance in for lamina III in the CCI model and lamina I-III for the SNT model.
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Fig. 5.2 Confocal images show GAD65 and GAD67 on the ipsi- and contra lateral sides of a 

section from an animal that had undergone CCI.

The images are all taken from the same Vibratome section, and have had the same adjustments 

of brightness and contrast made. The strength of immunoreactivity can therefore be compared on 

both sides of the section for each of the GAD isoforms. Note that there appears to be a slight 

reduction in GAD65- and a larger reduction of GAD67-immunoreactivity on the ipsilateral side 

of the section. Images were taken from a single optical section. Scale bar =100 pm
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Fig. 5.3 Confocal images show GAD65 and GAD67 on the ipsi- and contralateral sides of a 

section from an animal that had undergone SNT.

The images are all taken from the same Vibratome section, and have had the same adjustments 

of brightness and contrast made. The strength of immunoreactivity can therefore be compared on 

both sides of the section for each of the GAD isoforms. Note that there appears to be a slight 

reduction in GAD65- and a larger reduction of GAD67-immunoreactivity on the ipsilateral side 

of the section. Images were taken from a single optical section. Scale bar = 100pm
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Table 5.1 Ipsilateral mean pixel luminance values for each lamina expressed as a percentage

of the mean value found for the same lamina on the contralateral side (GAD65)

Procedure Lamina I 

(GAD65)

Lamina II 

(GAD65)

Lamina III 

(GAD65)

Naïve 99.54

(88.9- 105)

100.65 

(90.7- 112.0)

100.44

(90.3-111.7)

Sham 99.73

(81.6-115.3)

100.911

(91.9-112.0)

97.83

(87.5-115.6)

CCI 89.85

(81.1-96.1)

89.86

(80.8 -  96.0)

89.56

(81.0-100.0)

SNT 89.74

(78.8- 107.2)

83.78 *

(72.2 -  96.0)

85.72

(73.7-99.1)

• significant difference from values measured in sham-operated and naïve animals

The numbers in brackets represent the range of values ealculated in the four animals from each 

model. Significant differences regarding GAD65 were found between the values calculated for 

lamina II in SNT animals and the values calculated for naïve and sham-operated animals in the 

same lamina. In contrast, no significant differences were deteeted between the values calculated 

for sham-operated animals when compared with values calculated for naïve animals in laminae I- 

III.
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Table 5.2 Ipsilateral mean pixel luminance values for each lamina expressed as a percentage

of the mean value found for the same lamina on the contralateral side (GAD67).

Procedure Lamina I 

(GAD67)

Lamina II 

(GAD67)

Lamina III 

(GAD67)

Naïve 98.84

(86.1-112.6)

100.56

(90.4-110.8)

100.57

(93.2- 108.1)

Sham 100.85

(90.9-116.2)

98.08

(94.2-106.3)

97.14

(86.9- 107.9)

CCI 87.74

(75.8-95.6)

86.18

(73.8-98.1)

80.61 * 

(73.5-87.7)

SNT 64.67 * 

(39.4-75.4)

59.69 * 

(38.2-75.2)

58.45 * 

(37.5-75.3)

* significant difference from values measured in sham-operated and naïve animals

The numbers in brackets represent the range of values calculated in the four animals from each 

model. Significant differences were also found between the values ealculated for GAD67 in 

lamina III of the CCI animals and the same lamina of the naïve, sham-operated and SNT animals. 

Finally, regarding GAD67, significant differences were found between the values caleulated for 

laminae I, II and III of SNT animals when compared to those calculated in the con'esponding 

laminae in all of the other groups of animals. In contrast, no significant differences were detected 

between values calculated for sham-operated animals when compared with values calculated for 

naïve animals.
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5.4 Discussion

In this study, a reduction in immunoreactivity was detected for GAD 6 5 and GAD67 in 

laminae I, II and III of the ipsilateral dorsal hom of rats after partial and complete nerve injury.

No difference in staining was noted for GAD65 or GAD67 between the two sides of sections 

from sham-operated and naïve animals. This conclusion was made by comparing the mean pixel 

luminance value of the ipsilateral dorsal hom to that measured for the contralateral side of spinal 

cord sections from CCI and SNT animals. However, statistical analysis of the data calculated for 

GAD65 showed that this reduction only reached significance in one case for lamina II in the SNT 

model. Statistical analysis of the data calculated for GAD67 showed that this reduction only 

reached significance in for lamina III in the CCI model and lamina I-III for the SNT model. 

(Tables 5.1 and 5.2). The results from behavioural testing confirmed that the CCI animals 

exhibited signs of neuropathic pain. Sham-operated animals had similar withdrawal latencies 

before and after the procedure. This shows that the surgical manipulation of the skin and muscle 

that occurred when the animals underwent the procedure had no detectable effect on their 

behaviour post-surgery. In addition, immunocytochemistry showed that GAD levels on the 

ipsilateral sides of sections fi'om these animals was similar to those found on the contralateral side 

after surgical intervention, which suggests that there has been no loss of GAD65 or GAD67.

5.4.1 Technical Considerations

The K2 antibody used to detect GAD67 immunoreactivity shows very weak cross- 

reactivity with GAD65 (Esclapez et al., 1994, Hughes et al., 2005) and therefore it is theoretically 

possible that K2 deteeted a decrease in GAD65 immunoreactivity rather than a decrease in 

GAD67 in this part of the study. However, in a study by Mackie et al. (2003) in which the K2 

antibody was used to investigate GAD65 and GAD67 in axonal boutons, cross-reactivity of the 

K2 antibody with GAD65 was noted as minor (see chapter 3). Also, the reduction in GAD67 was
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substantially more than the reduction in GAD65 detected for the SNT gi'oup. It is therefore 

unlikely that cross-reactivity of the K2 antibody with GAD65 would account for the reduction in 

GAD67 that was detected.

In this study, the ratio of the mean pixel luminance values of the ipsilateral and 

contralateral sides of each section were calculated and these values were used to establish if there 

was a reduction in GAD levels in the ipsilateral side (when compared to the contralateral side) 

after nerve injury. To eliminate any coincidental differences between the two sides of any section, 

scans were obtained ft'om the same focal depth on either side of the section, and the same laser 

settings were used for both sides of each individual section. Also myelin bundles were excluded 

from the area which pixel luminance measurements were made from. This was done since the size 

and number of myelin bundles differed substantially between the two sides of any given section. 

Also, myelin bundles on the ipsilateral side of sections taken fr om animals with nerve injury, may 

have reduced in size as a result of the neiwe injury, since they consist of myelinated primary 

afferents that pass ventrally from the dorsal columns. Including these may therefore have 

introduced a bias to measurements that were made. This method of analysis assumes that there is 

no change in GAD levels on the contralateral side after nerve injury. It is possible that there was 

an increase in GAD levels on the contralateral side to the injuries, rather than a reduction on the 

ipsilateral side, but this is not consistent with the results of the majority of previous studies that 

have been carried out. Also, when the staining for GAD65 and GAD67 on contralateral sides of 

operated animals was compared with that from sections of spinal cord from control animals, the 

level of staining appeared to be similar for each of the isoforms. Also, in agreement with this, 

many studies that have investigated changes in G ABA or GAD levels after nerve injury have 

suggested that this is restricted to the ipsilateral side (Castro-Lopes et al., 1993; Satoh and Omote, 

1996; Moore et ah, 2002) or is more pronounced on this side (Ibuki et ah, 1997, Eaton et ah, 

1998).

143



It became apparent late in the study that although the black level offset on the Lasershaip 

2000 acquisition programme (Bio-Rad Cell Science Division, Hemel Hempstead, UK) used with 

the confocal microscope was set at zero, this was not reflected in the actual offset of the images 

provided. As a result, pixels with a low numerical value were assigned a value of zero. This 

occurred with all of the images captured using this confocal software, and so comparisons can 

still be made, although these comparisons are non-linear.

5.4.2 Studies of GABA and neuropathic pain

The present study describes a reduction in GAD levels in the spinal dorsal hom after 

partial peripheral nerve injuiy and complete nerve transection. Other studies have suggested that 

the density of GABAergic cells also decrease in this area after peripheral neiwe injury (Castro- 

Lopes et ah, 1993; Ibuki et al., 1997; Eaton et al., 1998). The majority of studies have examined 

changes in the dorsal horn after partial peripheral nerve injury, and two such studies by Ibuki et 

al., 1997 and Eaton et al., 1998 have described a dramatic bilateral decrease in GABAergic cell 

numbers after CCI, although this was more severe on the side ipsilateral to the nerve injury. 

Interestingly, the time course of this decline in numbers matched that of the behavioural signs 

detected, but the allodynia and hyperalgesia only affected the ipsilateral side (Ibuki et al., 1997; 

Eaton et al., 1998). The authors suggested that, although decreased GABA levels did contribute to 

the underlying mechanisms of neuropathic pain, there might have been other factors that also 

influenced the onset. As the loss of GAB A-immunoreactivity showed some signs of recovery 

after a prolonged survival time in the study by Ibuki et ah, it was suggested that at least some of 

the initial GABA loss after injury resulted ftom the down-regulation of GABA synthesis in the 

surviving neurons, and that normal synthesis was reinstated after a short period of time in these 

neurons (Ibuki et al., 1997). In contrast to these two reports, stereological studies by Polgar et al. 

in 2003 and 2004 suggested that there is no loss of GABAergic neurons after CCI in rats,
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although animals developed behavioural signs of thermal hyperalgesia. This study used 

stereological analysis of semi-thin sections that were reacted with GABA and glycine antibodies. 

They found that there was no reduction in the percentage of neurons in lamina I, II or III that were 

immunoreactive with either antibody after CCI (Polgar et al., 2003). Subsequently, the same 

authors earried out an analysis of the packing density of neurons in laminae I-III with an antibody 

against NeuN (a marker for neurons) and the optical dissector method, and showed that there was 

no apparent reduction in neurons in laminae I-III after CCI. These combined results suggest that 

there is no loss of GABAergie neurons after CCI in rats.

It is probable that the dramatic loss of GABA-immunoreactivity described in the studies 

by Ibuki et al. (1997) and Eaton et al. (1998) is attributable to poor retention of GABA after 

fixation. Rapid fixation with glutaraldehyde-containing fixatives is generally required for 

immunocytochemical detection of GABA, as the two aldehyde groups can bind free amino acids 

to nearby proteins in the tissue, and therefore prevent their loss through diffusion, which is 

otherwise very rapid. The study by Ibuki et al. (1997) used fonnaldehyde rather than 

glutaraldehyde, and therefore the retention of GABA would be expected to be poor. The GABA 

immunostaining presented in unoperated animals in the Eaton study is much weaker than 

previously reported by other studies in the rat and in other animals (Magoul et al., 1987; Todd and 

Sullivan, 1990; Carlton and Hayes, 1990; Maxwell et al., 1991). The immunostaining in the study 

by Ibuki et al. (1997) and that of Eaton et al. (1998) was uneven, and therefore difficult to 

interpret. Also, a modest loss of GABA from these neurons may have been suffieient to take them 

below the detection threshold. This is unlikely to be the case in the study by Polgar et al., where 

glutaraldehyde fixation of tissue was used in conjunction with the more sensitive post-embedding 

method (Polgar et ah, 2003; 2004). It is therefore likely that there is no significant loss of 

GABAergic neurons after peripheral nerve injury. In 2002, a study by Moore et al. stated that 

there was apoptosis of neurons after another type of nerve injury (SNI). Apoptosis was
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demonstrated in this study by combining the terminal deoxynucleotidyl transferase-mediated 

biotinylated UTP nick end labelling (TUNEL; a marker of apoptosis) with immunostaining for 

NeuN. However, a recent study by Polgar et al. (2005) disagreed. In contrast, the study by Polgar 

et al. (2005) stereologically analysed neurons in laminae I-III of the rat dorsal horn. The authors 

also used the TUNEL-staining method and immunocytochemical detection of cleaved (activated) 

caspase-3 in spinal cord sections obtained from SNI animals. Four weeks post-surgery, there was 

no reduction in the density of neurons on the ipsilateral side of operated animals, compared to that 

found on the contralateral side, or in sham-operated or naïve rats. In addition, 1 week after the 

procedure, apoptotic neurons were not detected in the spinal dorsal hom, as virtually all of the 

TUNEL- positive cells were labelled with the antibody against lba-1, a marker for microglia, 

while none were NeuN-positive. This suggested that the apoptosis involved microglia rather than 

neurons. As all SNI animals showed signs of tactile allodynia in the ipsilateral hind paw, the 

study concluded that neuronal apoptosis in the spinal dorsal horn is not essential for the 

development of neuropathic pain (Polgar et al., 2005).

In 1993, Castro-Lopes et al. described a decrease in GABA levels in the spinal dorsal horn 

after complete SNT. They found an ipsilateral decrease in GABAergic cell numbers and a 

reduction in the intensity of immunostaining in lamina II after SNT as early as two weeks post

injury, although this change was more pronounced after 3-4 weeks. GABA-immunoreactive eell 

numbers on the ipsilateral side were 93.7% of those found on the contralateral side 2 weeks after 

injury, 83.8% (at 3 weeks) and 72.5% (after 4 weeks) (Castro-Lopes et al., 1993). The authors 

believed that the reduction in GABA detected in their study was the result of diminished sensory 

input (after deafferentation). This reduction in GABA and inhibitoiy transmission detected after 

SNT also appears to be um*elated to cell loss, as a study by Coggeshall et al. (2001) and found 

that there was no reduction in cell numbers in laminae I-III after complete SNT used a 

stereologieal method for counting cells.
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5.4.3 GAD65 and GAD67 levels in the dorsal horn of neuropathic rats

Moore et al. (2002) have investigated changes in GABAergic inhibition in the superficial 

dorsal hom of rats after CCI, SNI and SNT. Part of the study examined GAD65- and GAD67- 

immunoreactivity and protein levels in CCI and SNT models by using immunohistochemistry 

with the GAD6 and K2 antibodies, and Western blotting, respectively. Western blotting showed 

that dorsal horn levels of GAD65 protein decreased by 20-40% in a time dependent manner in the 

ipsilateral dorsal hom of CCI and SNI animals, hnmunohistochemistiy revealed a generalised 

reduction in GAD65 immunoreactivity in the ipsilateral dorsal hom (laminae 1-IV) after CCI and 

SNI. The authors stated that GAD67 levels were generally unaffeeted by partial peripheral nerve 

injury, although some loss occurred after CCI. The present study used a quantitative approach 

with immunocytochemisti'y and image analysis to examine in detail any changes in GAD- 

immunoreactivity that occurred after partial peripheral nerve injury or complete SNT, in 

individual laminae of the rat spinal cord. In agreement with Moore et al. (2002), qualitative 

analysis showed a reduction in GAD65- and GAD67-immunoreactivity in all laminae of the 

ipsilateral dorsal horn in the CCI model when compared to that found on the contralateral side. 

Quantitative analysis however showed that there was a significant reduction in GAD65- and 

G AD 67-immunoreactivity in lamina II of SNT animals. A decrease in GAD67-immunoreactivity 

was also detected in lamina III of CCI animals and laminae I and III of SNT animals. It is 

possible that the remaining results in this study would have been significant if the sample size had 

been increased. Moore et al. found a 20-40% reduction in GAD65 protein in laminae I-IV, whilst 

the current study found that there was a 10-20% reduction in GAD65-immunofiuorescence in 

laminae I, II and III. The present study detected a change in GAD67-immunoreactivity relatively 

similar to the level of reduetion found in GAD65-immunoreactivity, unlike in the study by Moore 

et al. (2002). This current study found that there was also a reduction in immunoreactivity for 

both GAD isoforms after SNT, and that the reduction in GAD67-immunoreactivity was more
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pronounced than that calculated in sections from CCI animals (based on mean pixel luminance 

values). No data were presented from immunocytochemical or Western blot studies on GAD 

levels after SNT in the study by Moore et al. (2002).

Moore et al. (2002) also recorded evoked inhibitory and excitatory postsynaptic currents 

(IPSCs and EPSCs, respectively) in lamina II neurons as part of their study. They found that 

although fast excitatory transmission remained intact after all three nerve injuries, GAB Aa 

receptor-mediated IPSCs were substantially reduced after both partial nerve injuries when 

compared with measurements made in naïve rats and animals that had undergone SNT. In 

addition, although most IPSCs recorded in naïve animals had both GABAa and glycine-mediated 

eomponents, this was not the case after partial nerve injury. After CCI and SNI (but not SNT) the 

kinetics of the IPSCs shifted towards that which resembled purely glycinergic currents. Since, 

there was a reduction in GAB Aa receptor-mediated IPSCs in conjunction with reduced GAD65- 

immunoreactivity and protein levels in sections from CCI animals, the authors suggested that the 

reduction in GAD had resulted in reduced presynaptic G ABA levels, that had effeetively reduced 

inliibitory transmission. Our data however shows that there was also a reduction in GAD65- and 

GAD67- immunoreactivity on the ipsilateral sides of spinal cord sections from SNT animals, 

although Moore et al. did not frnd any reduction in GAB Aa receptor-mediated IPSCs in this 

model.

It is possible to conclude that a decrease in GAD65 and GAD67 in the spinal dorsal horn 

does not result in a reduction in GABA-mediated inhibitory transmission in neuropathic animals. 

Although behavioural signs of neuropathic pain occur in conjunction with decreased GAD65- and 

GAD67- immunoreactivity in the CCI model (this study) and a reduction in GAB Aa receptor- 

mediated IPSCs (Moore et al., 2002), decreased GAD65- and GAD67- immunoreaetivity also 

occurs in the SNT animals (tins study) without any reduction in GAB Aa receptor-mediated IPSCs 

(Moore et ah, 2002).
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General conclusions 

Investigation 1.

It appears that there is a different pattern of GAD-immunoreactivity in the spinal cord, than in the 

brain. In several brain regions, GAD65-immunoreactivity is predominantly found in cell bodies, 

and GAD67-immunoreactivity is mainly found in axon terminals. In contrast, this study found no 

GAD65-immunoreactive cell bodies, and few GAD67-immunoreactive cells, hmnunostaining for 

both GAD isofoims was found in axonal boutons in the dorsal and ventral horns of the rat spinal 

cord, and interestingly, a high proportion of boutons in the ventral horn had relatively higher 

levels of GAD67-immunoreactivity. Although all axonal boutons were immunoreacti ve for both 

GAD isoforms, the GAD67 antibody (K2) used in this part of the study (and in investigation 4) is 

reported to cross-react slightly with GAD65. After the completion of this part of the study, and 

investigation 4, another GAD67 antibody (monoclonal) became available commercially that 

shows no cross-reactivity with GAD65. This antibody was used for investigation 3. Part of this 

investigation compared the two GAD67 antibodies and showed that some of the boutons in tbe 

ventral bom that were GAD67-immunoreactive with the K2 antibody were not immunoreactive 

with the monoclonal antibody. This suggests that a small proportion of the GAD-immunoreactive 

terminals in the ventral horn do not express GAD67. These include the P boutons.

Investigation 3

The main finding of this part of the study was that the ‘GAD65 intense’ boutons described in 

investigation 1 are tbe P boutons. These boutons differ from the majority of GAD- 

immunoreactive boutons in the ventral horn as these have relatively high levels of GAD65 and 

relatively low levels of GAD67. The opposite is true of the majority of GAD-immunoreactive 

terminals in this region of the spinal cord (shown in investigation 1), and this suggests that these 

terminals belong to a different population of GABAergic neurons.
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Investigation 4

This part of the study found that, after SNT, there was a significant reduction in GAD65- 

iinmunoreactivity in lamina II. Also, a significant decrease in GAD67-immunoreactivity was 

detected in lamina III of CCI animals and laminae I, II and III of SNT animals. The combined 

results of this part of the present study, and that of a study by Moore et al. (2002) suggest that a 

decrease in GAD65 and GAD67 in the spinal dorsal horn after neiwe injury does not result in a 

reduction in GABA-mediated inhibitory transmission in neuropathic animals. There may 

therefore be a compensatory mechanism available that involves up-regulation of the unaffected 

GAD isoform. Perhaps this occurs in the axonal boutons in the dorsal horn that showed relatively 

equal levels of the two GAD isofonns (as described in investigation 1).
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