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Abstract

This thesis presents measurements of polarisation observables in neutral pion photo-

production conducted at the Mainzer Microtron (MAMI) in Mainz using the Crystal

Ball detector. The double polarisation observable G and the polarisation observable

Σ have been measured on a frozen spin butanol target in the γp → pπ0 reaction

between the ∆(1232) and second resonance regions. The measurements have been

made using a linearly polarised photon beam in the energy range 370 < Eγ < 770

MeV.

This work is part of a world wide program aimed at obtaining information on the

nucleon excitation spectrum to better understand the internal dynamics and struc-

ture by measuring polarisation observables. Measurement of the G observable in

the energy region of this work will help determine the M1− partial wave. The M1−

partial wave is highly sensitive to the N(1440)1
2

+
Roper resonance which is the first

radial excitation of the proton. The properties of the Roper resonance are poorly

understood and the mass, which is predicted to be higher than the negative par-

ity resonance N(1535)1
2

−
, cannot currently be reconciled by quark models based on

SU(6) symmetry.

The sP lot technique was used to extract the polarisation observables in this work.

The results are compared with the MAID, SAID and Bonn-Gatchina partial wave

analysis curves.



iii

These measurements will contribute to the world dataset of polarisation observ-

ables and provide information on the excitation spectrum of the nucleon towards an

unambiguous, model independent, solution to partial wave analyses.
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Chapter 1

Introduction

Measurements of the photon beam asymmetry Σ and beam-target polarisation ob-

servable G have been made with a polarised butanol target for the reaction channel

γp → π0p and the Crystal Ball calorimeter at the Mainzer Microtron (MAMI) in

Mainz. Precise measurement of the G observable will provide information on the

M1− partial wave and contribute to the effort towards an unambiguous, model inde-

pendent solution to transversity amplitudes in pion photoproduction. It will aid in

measuring the poorly understood properties of the Roper resonance which has par-

ticular sensitivity to the M1− partial wave. This work is part of a world wide effort

to better understand the nature of the nucleon by analysing data on its excitation

spectrum.

1.1 Motivation

The properties of the atom can be described by the electromagnetic and strong

forces. Quantum Electrodynamics provides an accurate quantitative picture of elec-

tromagnetism that has been validated by many experiments. However the situation

with the strong force, which is responsible for binding the atomic nuclei as well as

the protons and neutrons contained therein, is more complicated. New experimen-

tal data is required to aid the understanding of the strong force by constraining the

1
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relevant degrees of freedom responsible for phenomena at nucleon mass scales.

Rutherford performed scattering experiments using alpha particles off a gold foil,

which led him to postulate the existence of the atomic nucleus [1]. The neutron

was discovered later by Chadwick in 1932 [2]. Protons and neutrons were originally

treated as two states of the same particle by Heisenberg, with a small difference

in their respective masses. He introduced the quantum number isospin (I) in order

to distinguish the two particles in the quantum mechanical framework. The third

component of the isospin vector (I3) distinguished the proton (I3 = 1
2
) and neutron

(I3 = -1
2
) [3].

Isospin is one of several quantum numbers used to help distinguish characteristics

describing hadrons. As scattering experiments improved, many more particles were

discovered over the next few decades. The number of quantum numbers used to de-

scribe their properties grew, and a classification system was developed. Strangeness

(S) is the quantum number prescribed for particles with strangely long lifetimes [4,

5], baryon number (B) separates baryons (B=1) and mesons (B=0). Hypercharge

(Y) was introduced in order to relate the electric charge (Q) with isospin, baryon

number and strangeness where Y = B + S.

Q = I3 +
1

2
(Y) (1.1)

With the additional degree of freedom allowed by the strangeness (S) quantum

number Gell-Mann and Ne’eman independently developed the classification system

now known as the Eight-fold way [6, 7] illustrated in Figures 1.1 and 1.2. The

baryons are arranged into a spin-1
2

and spin-3
2

octet and decuplet, while the mesons

are arrange into a pseudoscalar (JP = 0−) and vector meson (JP = 1−) nonet.
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Figure 1.1: Left: Baryon octet. Right: Baryon decuplet.

Figure 1.2: Left: pseudoscalar meson nonet. Right: vector meson nonet

The Eight-fold way description is based on the SU(3) flavour group implying that

the baryons and mesons identified as part of it are not fundamental themselves [8].

Gell-Mann and Zweig postulated the existence of quarks from this interpretation

independently of each other [6, 9]. Baryons are described as 3-quark bound states

while mesons are 2-quark bound states (one quark and one anti-quark, or qq̄). The

quarks were initially believed to come in three flavours now known as up (u), down

(d) and strange (s) quarks (Table 1.1). The proton is a uud bound system while the

neutron is a ddu system. The composition of quarks required to produce certain

baryons at the time, such as the ∆++, violated the Fermi exclusion principle which

states fermions, such as quarks, with identical quantum numbers could not occupy

the same state. Greenberg proposed a solution to this problem by introducing a

new quantum number now referred to as colour [10]. Colour charge comes in three

states, red, green and blue. All hadrons are colour neutral, meaning there are anti-
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colour and colour combinations in each hadron which result in a net zero colour

charge.

Flavour Q I I3 B S

u +2
3

1
2

+1
2

1
3

0

d -1
3

1
2

-1
2

1
3

0

s -1
3

0 0 1
3

-1

Table 1.1: Table outlining the properties of quarks including charge, baryon number,
isospin, isospin projection and strangeness quantum numbers.

Hadrons may be excited into higher energy states. Several models attempted to

describe the excited behaviour of nucleons and predicted properties of these resonant

states. The symmetric quark model gives equal degrees of freedom to all three

valence quarks [11, 12]. The di-quark model is similar but models two quarks bound

tightly together leaving the third free to oscillate. The bound quarks in this model

reduces the total number of degrees of freedom allowed in the system [13, 14].

These models are in good agreement with experimental measurements at low in-

variant mass values. Both types of model describe many of the resonances but

neither predict the full spectrum of masses and widths of excited states accurately

[15, 16]. Many predicted resonances are not seen experimentally and are known as

the “missing resonances” [17] (Figure 1.4).

Initial studies of excited states used pion beams in order to excite protons and

study the properties of their resonant states. Pion beams may couple weakly to

certain resonances leaving some states undiscovered. Photon beam experiments

were proposed to overcome this as the couplings can be different. Development

of continuous-wave electron beams allows the production of high intensity, high

energy photon beams. These produce high statistics data sets to search for missing

resonances and accurately determine the properties of known states.
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Figure 1.3: N* and ∆ resonance ratings and predicted values from various partial wave
models. Taken from [17]. Resonances that are certain are given a 4 star rating.
3 stars denotes resonances with some less well defined properties but which
are almost certain. 2 stars show a resonance with fair probability of existence
and 1 star is a resonance with poor experimental evidence for existence.
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Figure 1.4: The mass position of resonance states as predicted by quark model are com-
pared with experimental measurements, taken from [18]. Left shows the I =
1
2N* states, right shows the I = 3

2∆ states. Experimental data (under ’exp’ col-
umn) shows three and four star states as solid lines, two star states as dashed
lines and one star states as dotted lines. The QM column shows predicted
states which have been observed in experiment, dashed lines are predicted
states with no experimental observation.



Chapter 2

Background

2.1 Meson photoproduction

Modern meson photoproduction experiments are primarily performed using high

energy real photon beams. Real photons offer a way to study the electric and mag-

netic couplings of resonant states. Previous work used pion scattering experiments to

probe the resonant states of the nucleon [19, 20, 21, 22], primarily forming the states

in the Particle Data Group review [17]. Experiments using real photons provide data

which can offer insight into the resonant states of nucleons which may otherwise be

inaccessible or weakly coupled to previous pion scattering measurements.

This chapter explores the properties of scattering experiments off the nucleon using

real photons. The focus is on the polarisation observables that are accessible using

a polarised photon beam and proton target.

2.1.1 Particle Scattering Reactions

The scattering process in meson photoproduction experiments can be viewed in

terms of scattering waves [23, 24]. The photon beam in this case is treated as a

plane wave which scatters off target. The information of the scattered wave, target

and initial plane wave can shed light on the intermediate state of the target.

7
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Figure 2.1: Wave representation of a photoproduction experiment. A plane wave scatters
off of a target and produces a scattered wave. These scattered waves propagate
from the target and are incident on a detector surrounding the target, offering
kinematic information on the reaction products.

The reaction on the target is not a simple one and the scattered wave is influenced

by many contributing reaction processes. There is a requirement to decompose these

scattered waves further into their separate components in order to disentangle the

contributions of different reaction mechanisms to the overall waves. This is done

through partial wave analysis techniques.

2.1.2 Reaction channels

There are many different reaction channels contributing to photoproduction off the

nucleon. The probability of a given final state occurring is characterised by the

cross section σ of that final state which contributes to the overall cross section σtotal.

Figure 2.2 shows the total cross section for photoproduction off the proton which has

been extensively studied [25, 26, 27]. There is a significant amount of information

contained already within the total cross section of a nucleon. Resonances often

represent themselves as peaks in the cross section distribution, however many states

are broad and overlap, making definitive statements about the presence of particular
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states unreliable.

Figure 2.2: Cross section of photoproduction off of the proton. a) pseudoscalar final states
[28, 29], b) cross section from strange final states [30, 31, 32], c) multiple meson
final states [33, 34, 35, 36, 37], d) vector meson [38, 39, 40]. Distributions show
broad overlapping contributions from many different final states resulting in a
complicated interpretation.

It is apparent that the cross section alone is insufficient at locating and investigating

resonances and their properties. At increasing energies more final state channels

pass their threshold production energy and contribute to the overall cross section.

Investigation of resonances can be achieved by studying different final states, which

couple strongly to that particular resonance, separately.
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2.1.3 Reaction kinematics

The kinematics of a photon-nucleon interaction are defined for the initial and final

states of the reaction particles. Figure 2.3 shows a general interaction of a two body

reaction between a photon and a nucleon.

Figure 2.3: A general overview of a two body reaction. Two initial particles, k and pi,
interact (red circle) in some manner and produce the final state particles q
and pf . Taken from [41].

The four momenta of the incident photon, initial nucleon, recoiling meson and re-

coiling nucleon are k, pi, q, pf , with energies Ek, Ei, Eq, Ef respectively. Through

the conservation of momentum it is clear that

k + pi = q + pf (2.1)

where the 4-vectors k, q and P = 1
2
(pi + pf ) are independent.

Different reaction mechanisms can be represented as three basic Feynman diagrams.

These representations are known as s-channel, t-channel and u-channel and represent

interactions between the initial state particles where an intermediate particle is

exchanged.
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k

s-channel

q

pi pf

k

t-channel

q

pfpi

k

u-channel

q

pfpi

Figure 2.4: The different interactions between two initial state particles k and pi where
an intermediate particle is exchanged, resulting in the two final state particles
q and pf . The u-channel is the same as the t-channel with the roles of q and
pf interchanged.

We can write the kinematic relationships between the particles and channels as

s = (k + pi)
2

t = (pi − pf )
2

u = (pi − q)2

(2.2)

where s is the centre of mass energy (W2) and t is the momentum transfer of the

reaction. The set of Lorentz vectors s, t and u relate to the sum of the masses of all
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the reaction particles

s + t + u =
4∑
i=1

m2
i (2.3)

2.1.4 Decay terms

The final states of photoproduction reactions can be produced by many distinct

mechanisms deriving from the three diagrams in Figure 2.4. In order to study the

resonance associated with an intermediate state the reaction must be separated

into background and resonance terms. In the case of meson photoproduction it

is s-channel resonance production which is regarded as the signal, with the other

diagrams constituting “background” [42, 43].

Figure 2.5 shows the Feynman diagrams contributing to single meson final states off

a free nucleon. The Born terms constitute diagrams where only the photon, pion

and nucleon are involved. In the case of π0 meson photoproduction the bottom left

term of Figure 2.5 does not contribute as the photon does not couple directly to the

neutral pion.

Observable quantities in π0 photoproduction are related to the superposition of

the different Born and resonance terms. The background Born terms have energy

dependencies which are smooth and predictable [44]. Additional structure seen in

observables can be characterised by resonance contributions.

The resonance contribution needs to be characterised in a meaningful way in order to

better understand and relate observable quantities to it. The next section discusses

how this is achieved.
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γ π0

N N∗,∆ N

γ π0

N N∗,∆ N

γ π0

N

ρ/ω

γ π0

N

γ π0

N

γ π0

N

Figure 2.5: The Feynman diagrams of first order Born terms in single meson photopro-
duction off a free nucleon. Top left: U channel resonance, Top right: S channel
resonance, Middle left: Born T vector exchange channel, Middle right: Born
U channel, Bottom left: Born contact term, Bottom right: Born S channel.

2.1.5 Photoproduction Amplitudes

The electric and magnetic components of the photon couple to the nucleon which

can have parallel or anti-parallel spin alignment. The couplings can be described as

multipoles in relation to s-channel helicity spin transitions in a reaction, shown in

Figure 2.6.

Figure 2.6: Four different helicity spin flip interactions in π0 photoproduction. From left
to right the states are: Far left: N = no spin flip. Centre left: SA = anti-
parallel spin flip. Centre right: SP = parallel spin flip. Far right: D = double
spin flip.

In π0 photoproduction off the proton there are four helicity amplitudes which can
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be expanded as linear combinations of photoproduction multipoles [45, 46] as

N =
1√
2
cos

(
θ

2

) ∞∑
`=0

[(`+ 2)E`+ + `M`+ + E(`+1)− − (`+ 2)M(`+1)−](P′` − P′`+1)

SA =
1√
2
sin

(
θ

2

) ∞∑
`=0

[(`+ 2)E`+ + `M`+ − E(`+1)− + (`+ 2)M(`+1)−](P′` + P′`+1)

SP =
1√
2
cos

(
θ

2

)
sinθ

∞∑
`=1

[E`+ −M`+ − E(`+1)− −M(`+1)−](P′′` − P′′`+1)

D =
1√
2
sin

(
θ

2

)
sinθ

∞∑
`=1

[E`+ −M`+ + E(`+1)− + M(`+1)−](P′′` + P′′`+1)

(2.4)

Where E`± and M`± are the electric and magnetic multipole amplitudes, with the

+/- subscripts denoting the nucleon spin alignment as parallel/anti-parallel to the

decay angular momentum respectively. P′ and P′′ are the first and second order

derivatives of the Legendre polynomials. The total cross section can be expressed

as the sum of the of the squared helicity flip amplitudes, written as

σ = N2 + S2
A + S2

P + D2 (2.5)

The helicity amplitudes can be combined to make four transversity amplitudes [47].

These are expressed as

b1 =
1

2
[(SP + SA) + i(N−D)]

b2 =
1

2
[(SP + SA)− i(N−D)]

b3 =
1

2
[(SP − SA)− i(N + D)]

b4 =
1

2
[(SP − SA) + i(N + D)]

(2.6)

The transversity amplitudes are often used instead of the helicity amplitudes due to

their connection to the spin observables accessible in experiments.

Bilinear combinations of the transversity amplitudes result in a total of 16 polarisa-

tion observables for pion photoproduction which are capable of being measured ex-
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perimentally through different combinations of beam, target and recoil nucleon spin

polarisation. The different observables are arranged into four groups of four, which

outlines the different polarisation states required to access their measurement. The

single type polarisation observables can be accessed by using no polarised states in

the reaction or requiring just one of the three possible polarised states. The double

type polarisation observables are accessed using combinations of two polarisation

states. The double observables come in three sub-groups; the beam-target types

require a polarised photon beam and a polarised nucleon target; the beam-recoil

observables are accessed using a polarised photon beam in conjunction with mea-

suring the degree of polarisation of the recoiling nucleon in the reaction; finally the

target-recoil observables use a polarised target while measuring the polarisation of

the recoiling nucleon. Table 2.1 outlines the 16 polarisation observables, their rep-

resentation in the transversity amplitude notation, the combination of polarisations

required to access them and which subgroup they fall into.
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Observable Transversity Experiment Type

representation (B/T/R)

σ0 |b1|2 + |b2|2 + |b3|2 + |b4|2 -/-/- Single

Σ |b1|2 + |b2|2 - |b3|2 - |b4|2 PL/-/-

T |b1|2 - |b2|2 - |b3|2 + |b4|2 -/Py/-

P |b1|2 - |b2|2 + |b3|2 - |b4|2 -/-/y

G 2Im(b1b∗3 + b2b∗4) PL/Pz/- Beam-Target

H -2Re(b1b∗3 - b2b∗4) PL/Px/-

E -2Re(b1b∗3 + b2b∗4) Pcirc/Pz/-

F 2Im(b1b∗3 - b2b∗4) Pcirc/Px/-

Ox -2Re(b1b∗4 - b2b∗3) PL/-/x′ Beam-Recoil

Oz -2Im(b1b∗4 + b2b∗3) PL/-/z′
Cx 2Im(b1b∗4 - b2b∗3) Pcirc/-/x′
Cz -2Re(b1b∗4 + b2b∗3) Pcirc/-/z′

Tx 2Re(b1b∗2 - b3b∗4) -/x/x′ Target-Recoil

Tz 2Im(b1b∗2 - b3b∗4) -/x/z′
Lx 2Im(b1b∗2 + b3b∗4) -/z/x′
Lz 2Re(b1b∗2 + b3b∗4) -/z/z′

Table 2.1: Single and double polarisation observables associated with pion photoproduc-
tion. The transversity amplitudes relating to each polarisation observable are
shown. The polarisation states of the experiment required to access each ob-
servable are also shown in the format (Beam, Target, Recoil).

Relationships can be formed between the different polarisation observables which

suggest an unambiguous solution to the transversity amplitudes can be formed with-

out the need to measure all polarisation observables [48, 49]. A measurement of the

four single polarisation observables σ0, Σ, T and P, as well as four appropriately

chosen double polarisation observables can offer an unambiguous solution to the

transversity amplitudes. There are several combinations of different polarisation ob-

servables offering unambiguous solutions to the four transversity amplitudes [50, 47,

51]. Despite the different possibilities for an unambiguous solution the uncertainties

associated with the current data provide insufficient constraints to the observables

and measurements of more than eight observables will be required [52].
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2.2 Theory

The differential cross section gives a measure of the probability of observing the

reaction’s decay products in a particular kinematic region. This cross section can

be sensitive to certain conditions of the experiment. In the case of this experiment

the cross section is effected by the polarisation of the incident photon beam and the

target. Using a polarised beam and target the differential cross section, expressed

in terms of polarisation observables, can be written as

dσ

dΩ
(θ, φ) =

dσ0

dΩ
{1− PLΣ cos(2φ)

+px(−PLH sin(2φ)− P�F)

−py(−T + PLP cos(2φ))

−pz(−PLG sin(2φ) + P�E)}

(2.7)

where
dσ

dΩ
(θ,φ) is the differential cross section,

dσ0

dΩ
is the unpolarised cross section,

PL and P� are the degree of linear and circular polarisation of the photons respec-

tively. The degrees of polarisation of the target are px, py, pz, where z represents

the direction along the beamline, x is the direction along the reaction plane and y is

orthogonal to the reaction plane. The azimuthal angle of the π0 with respect to the

photon linear polarisation plane is denoted φ. Σ, H, F, T, P, G and E are the po-

larisation observables accessible with different combinations of polarised beam and

target.

Accessing the double polarisation observable G is achieved by using a linearly po-

larised photon beam and a longitudinally polarised target. A longitudinally po-

larised target has px = py = 0 and P� = 0 for this experiment, which reduces the

cross-section expression to

dσ

dΩ
(θ, φ) =

dσ0

dΩ
1 + PLΣ cos(2φ) + PLPzG sin(2φ)) (2.8)

Only the Σ and G polarisation observables are accessible in this case, with the other
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terms disappearing from the expression.

The center of mass frame in which the observables are extracted from the single π0

final state is given in Figure 2.7.

Figure 2.7: Reaction frame of the single π0 photoproduction experiment where γ is the
incident photon, pt is the target proton, pr and π0 are the proton and photo-
produced meson in the reaction respectively. Left: The reaction kinematics in
the center of mass. Right: The reaction kinematics projected along the beam
axis. The angle φ is the azimuthal angle with respect to the reaction plane
used in calculating the polarisation observables, and θ is the polar angle with
respect to the beam axis. Taken from [53]

The following chapter outlines previous work done at various facilities in order to

measure the Σ and G polarisation observables. The experimental set-ups of each

facility, the kinematics and the significance of their results are also discussed. Par-

tial wave models are introduced and other recent measurements of observables are

noted.



Chapter 3

Previous Work

This chapter presents previous measurements of the polarisation observables Σ and

G which are the subject of this work, outlining the different facilities and conditions

they were performed under (Section 3.1). The various theoretical models used to

predict values of the polarisation observables are also discussed (Section 3.2). In

addition, other recently measured polarisation observables are presented as they are

required to achieve a model independent solution for the partial wave amplitudes

(Section 3.3).

3.1 Previous measurements

Previous experimental work investigating π0 photoproduction began as far back as

1952 [54], with photon asymmetry (Σ) measurements in 1964 [55]. The first beam-

target polarisation observable (G) measurements were made in 1979 [56].

3.1.1 Σ measurements

LEGS

The Laser Electron Gamma Source (LEGS) facility at Brookhaven National Lab-

oratory extracted the beam asymmetry Σ and cross-section measurements for the

19



3.1. Previous measurements 20

p(−→γ , π0), p(−→γ , π+) and p(−→γ , γ) in a single experiment [57].

Figure 3.1: Schematic of the LEGS detector. Taken from [58].

The facility used laser backscattering to produce highly polarised photons from 2.6

GeV electrons at the National Synchrotron Light Source. The γ-ray beam produced

photons with an energy range of Eγ = 200 - 300 MeV, and with a degree of linear

polarisation greater than 80% (known to ±1%). The orientations of the photons

were flipped between parallel and perpendicular to the scattering plane at random

intervals between 150 and 450 seconds. The decay photons from the π0 were detected

in the NaI(TI) detector. The recoil protons were tracked through wire chambers and

plastic scintillators were used to measure their energies (time of flight measurements

were also used).

The results from this measurement are shown with the MAMI results in Figure 3.9

as blue crosses in the first three panels at 280, 200 and 320 MeV.
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Yerevan

The Yerevan facility, shown in Figure 3.2, used an electron beam of 3 - 3.5 GeV to

produce linearly polarised photons. The photon energy range covered in this work

was Eγ = 0.5 - 1.1 GeV with the angular coverage of θπ0 = 85o−125o. The kinematic

binning was energy steps of 25 MeV and angular steps of 5o. The angular range in

the Yereven facility is limited due to the two arm set up shown in Figure 3.2.

Figure 3.2: Schematic of the Yerevan set-up. The linearly polarised photons are produced
at D (the diamond radiator), the recoil protons are detected in the MS arm
of the set up and the π0 decay photons are detected in the Čerenkov detector
(ČS). Taken from [59].

The Σ results from the γp → π0p reaction at Yerevan significantly increased the

statistics on the measurement in the second and third resonance regions. The results

agreed with existing experimental data, shown in Figure 3.3.
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Figure 3.3: Σ results from the γp → π0p reaction. Top: angular dependence of Σ at in-
cident photon energy Eγ = 700 MeV. Bottom: angular dependence of Σ at
incident photon energy Eγ = 950 MeV. Results are plotted against the the-
oretical curves from WI00 (solid line), FA00 (dashed-dotted line) and MAID
2000 (dashed line). Taken from [59].
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GRAAL

The GRAAL (GRenoble Anneau Accélérateur Laser) facility, shown in Figure 3.4,

used Compton back scattering of laser photons off electrons stored in the European

Synchrotron Radiation Facility (ESRF), to produce highly linearly polarised pho-

tons. The photons were produced using a laser with two wavelengths, 351nm UV

laser photons and 514nm visible line laser photons. The electrons used in the back

scattering had an energy of 6.03 GeV. The degree of linear polarisation peaked at

98%.

The energy range covered by GRAAL was Eγ = 550 - 1500 MeV, with a 2π azimuthal

angular coverage and a center of mass polar angle coverage of θCM = 40o − 170o.

The 1100-1500 MeV range for Σ was covered for the first time with this work. The

results are shown in Figure 3.5.
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Figure 3.4: Schematic of the GRAAL set-up. Taken from [60].
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Figure 3.5: GRAAL angular results of beam asymmetry Σ from the reaction γp → π0p
compared to theory predictions, SAID-FA04 (dashed line), MAID2005 (dotted
line) and Bonn2005 (solid line). Taken from [60]
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CBELSA

The Crystal Barrel set up at ELSA in Bonn is shown in Figure 3.6. CBELSA is a

coherent bremsstrahlung facility similar to A2-MAMI (Section 4.1). ELSA is the

continuous wave electron accelerator which provided a 3.175 GeV beam. The crystal

barrel consisted of 1290 CsI(TI) crystals and the TAPS detector, covering the for-

ward polar angles (5o to 30o), itself consisting of 528 hexagonal BaF2 crystals.

Figure 3.6: Schematic of the CBELSA detector. Taken from [33].

The results from the CBELSA measurements [61, 62] cover an energy range of 767

< Eγ <1680 MeV, with an angular range of 6o < θ <168o. The acceptance of the

detector set up is 99% of 4π sr. The degree of linear polarisation achieved was up to

49%. The majority of the results from these measurements cover an energy range

higher than in this work.

Mainz A2 Hall

The A2 hall at MAMI uses coherent bremsstrahlung to produce a linearly polarised

photon beam off a diamond radiator using an electron beam. The current set up

is described in detail in chapter 4. Several measurements of Σ in the γp → π0p

reaction have been made previously at the A2 hall in Mainz. These measurements

have used a different detector set up to the one used for the measurement presented

in this thesis.
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The previous work by Beck et al. [63] was performed before the MAMI upgrade

(MAMI C) with the central detector DAPHNE (Detecteur à grande Acceptance pour

la PHsyique photoNucleaire Experimentale)[64, 65]. MAMI provided an electron

beam up to 855MeV with the Glasgow tagger able to tag a photon beam up to

800MeV.

Figure 3.7: The central DAPHNE detector. Taken from [64].

The DAPHNE detector was a multi-layered, segmented central detector which pro-

vided a full 2π azimuthal coverage and lab polar angles of 21o < θlab < 159o. The

angular coverage was 94% of 4π sr total angular acceptance. This work covered

measurements of Σ between energies of 270 < Eγ < 420 MeV where sufficient po-

larisation was obtained through the coherent bremsstrahlung method.
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Figure 3.8: Previous configuration where the TAPS configuration differs from current set
up, surrounding the target and acting as the main detector. Full 2π azimuthal
coverage is sacrificed in this set up to increase previous polar angle coverage.
Taken from [66].

Further work by Beck et al. [67] was performed using the TAPS detector arranged

as shown in Figure 3.8. This configuration allowed the polar angular acceptance to

increase to 12o < θCM < 170o, however the full 2π azimuthal acceptance was lost.

The results covered an energy range of 240 < Eγ < 440 MeV.

The results from these two A2 measurements as well as LEGS are presented in

Figure 3.9, where good agreement can be seen between the results.
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Figure 3.9: Σ results from the γp → π0p reaction at the TAPS/DAPHNE experiments
performed at the A2 hall in Mainz. Red circles from the TAPS set up, green
diamonds from the DAPHNE set up [63], blue cross from LEGS [57]. Data is
plotted against theoretical analysis by Hanstein [68]. Taken from [67].

Separate measurements by Hornidge et al. [69] and Gardner et al. [70] were per-

formed after the MAMI upgrade, increasing the available incident electron beam
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energy, using the same detector configuration as this measurement (see Chapter 4).

The measurement by Hornidge et al. focused on the energy range close to the π0

threshold, using a MAMI B electron beam energy of 855 MeV to achieve this. The

results from this measurement covered an incident photon energy range between 145

< Eγ < 180 MeV and -1 < cosθ < 1. In the region measured, the degree of linear

polarisation of the bremsstrahlung photons was 50% - 70%.

The most recently published results by Gardner et al. closed a gap in the global

data set for measurements of Σ. The incident electron beam had an energy of 1508

MeV coming from MAMI C with measurements made for incident photon energies

between 320 < Eγ < 650 MeV. A 97% 4π sr acceptance was achieved using the

current detector set up, with the TAPS detector configured as in Section 4.7.3. The

degree of polarisation in this measurement ranged from 4% at Eγ = 320 MeV, up

to a maximum of 53% at Eγ = 632 MeV.

The work greatly increased the kinematic range and precision of the beam asym-

metry previously measured. A momentum analysis was able to be performed due

to the high statistics in combination with previous measurements of cross-sections.

Comparison with the Bonn-Gatchina model calculations suggested a small interfer-

ence between F-waves and the N(1440)1
2

+
, N(1535)1

2

−
and N(1520)3

2

−
resonances,

and constrained higher partial waves further.
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Figure 3.10: Beam asymmetry Σ dependence on cosθCM from the reaction γp → π0p.
Data from Gardner et al. [70] (Blue open circles). The PWA predictions
are shown as coloured lines: MAID [71] (red), SAID [72] (green) and Bonn-
Gatchina [73] (blue).
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3.1.2 G measurements

There are significantly fewer previous measurements of the beam-target polarisation

observable G in the γp→ π0p reaction channel, with only 3 datasets currently being

included in the world data set used with the PWA solutions. The measurements

include work by Ahrens et al. [74] and Bussey et al. [56]. The most recent work on

G was published in January 2017 by Thiel et al. [75]. This work greatly increases

the kinematic region not previously measured.

Daresbury Laboratory

The first measurement of the beam-target polarisation observable G was done by

Bussey et al. at Daresbury Laboratory in the UK in 1979 [56]. The measurements

were done for an incident photon energy 1300 < Eγ < 2300 MeV and a π0 center of

mass polar angles 50o < θ <80o. Although the angular regions covered were small,

it offered the first measurements of the G observable to constrain theoretical models

and is included in the current world dataset.

Figure 3.11: First results of the beam-target polarisation observable G from the reaction
γp → π0p. Taken from [56]
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MAMI

The previous measurement of G at MAMI in Mainz was performed using the DAPHNE

set up described in Subsection 3.1.1[74]. Data was taken using an linearly polarised

photon beam with incident energy Eγ = 340 MeV for θlab = 70o, 90o and 110o. Only

three data points were extracted for G in the π0 final state and six for the π+ final

state (Figure 3.12). The data taken provided constraints for partial wave solutions

in the ∆ resonance region.

There is a necessity for further measurements due to the coarse, imprecise data

on the double polarisation observable G in the γp → π0p reaction. Further, more

precise measurements such as those presented in this thesis allow a larger kinematic

region to be covered which aids the partial wave analysis predictions of different

models towards a model independent solution.

Figure 3.12: Beam-target polarisation observable G measured for the π0 (left) and π+

(right) final states. The measurements are plotted alongside the solid (dashed) lines
representing the MAID2003 (SAID- FA04K) multipole analyses solutions. Taken
from [74].

CBELSA

The G results from CBELSA in Bonn [75], shown in Figure 3.13, were obtained using

an incident electron beam of Eγ = 3.2 GeV to produce linearly polarised photons
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through coherent bremsstrahlung, with a maximum degree of polarisation of 65% at

950 MeV. The polarised photons were incident on a longitudinally polarised frozen

spin Butanol target with a typical polarisation degree of 80%. The energy range

measured was 617 < Eγ < 1325 MeV with the detector set up covering the full

azimuthal range and polar angular range of 1o < θlab <156o. The data taken covers

a significant kinematic region not previously measured (318 new data points), and

offers constraints on the multipole solutions from different analyses, with an overlap

with data measured in this analysis.

Figure 3.13: Double polarisation observable G in π0 photoproduction off the proton using
the CBELSA/TAPS experiment at ELSA accelerator in Bonn. The MAID
2007, SAID CB12, Jülich-Bonn 2013-01 and Bonn-Gatchina 2011-02 partial
wave curves are compared against the data, shown by the green (dotted), red
(dashed-dotted), blue (dashed) and black (solid) lines respectively.
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3.2 Partial Wave Analysis

Information regarding multipole decomposition of reaction amplitudes on the excita-

tion spectrum of the nucleon is inferred using partial wave analyses. Various models

perform fits to world data sets of cross-section, photo- and electro-production data,

with the purpose of determining properties of baryon resonances. The main models

used are described briefly in this section.

3.2.1 MAID

MAID is a unitary isobar model [76, 77] which approximates the resonant spectrum

of the nucleon. MAID selects the four star N*/∆ resonances from the PDG database

[17] below 2 GeV and fits Breit-Wigner dependent partial waves to these data. As

such it does not identify new resonances but extracts the properties of those already

known.

The model predicts values for both polarisation observables and differential cross-

sections in π0 photoproduction experiments. The different resonance contributions

can be selected to present unique solutions to the different polarisation observables,

showing relative sensitivity to different resonances. The latest update of the MAID

model was done in 2007 and values of observable approximations can be accessed

online.

3.2.2 SAID

The SAID model [78, 79] is a model independent partial wave analysis. It uses the

world dataset of πN scattering to constrain fit parameters. It is similar to the MAID

model but makes no assumptions of the resonances included in the fit. The various

resonances present themselves as peaks in the partial wave distributions.

The SAID model (SAID PR15 [80]) is more recently updated than the MAID model

with measurements from older πN scattering, and newer pion photoproduction mea-



3.3. Other observables 36

surements, included in the latest fit.

3.2.3 Bonn-Gatchina

The Bonn-Gatchina (BnGa) is a multi-channel partial wave model similar to the

SAID model, making no assumptions of the resonances included in the fit solutions.

The BnGa model also uses the world dataset of πN scattering but includes additional

information from meson photoproduction and other reaction processes [81, 73]. The

model provides predictions for π0 photo-production experiments, with the latest fits

presented in reference [33].

3.3 Other observables

In order to obtain model independent solutions in extracting partial wave ampli-

tudes a comprehensive study on several polarisation observables needs to be done to

sufficiently large kinematic ranges. With enough polarisation observables measured

to constrain different models the solutions should converge on a single model inde-

pendent solution. A few notable recent studies on polarisation observables are men-

tioned in this section to outline other work aimed at achieving this end goal.

3.3.1 T and F beam-target observables

Previous work by Annand et al. [82] measured the target asymmetry and beam

helicity asymmetries T and F. The detector configuration used the current A2 set

up at MAMI (see Chapter 4). With an incident electron energy of 1557 MeV the

measurements were made for a photon energy range 425 < Eγ < 1450 MeV. Circu-

larly polarised photons were incident on a frozen spin transversely polarised butanol

target. The degree of circular polarisation ranged from 35% at 425 MeV to 78%

at 1450 MeV and the average target polarisation was 70%. The results from this

measurement supported observations that the partial wave solutions of extracted
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resonance amplitudes from different models begin to converge on model indepen-

dent values.

Figure 3.14: T and F observables in the γp → π0p reaction as a function of center-of-
momentum energy W for a range of polar angular bins (Shown above plots).
Data (black circles) compared to the different theoretical models MAID 2007
(red), SAID PR15 (blue) and Bonn-Gatchina (solid black). Taken from [82].

3.3.2 Cx beam-recoil observable

As well as single and beam-target polarisation observables there are beam-recoil

polarisation observables. Previous work by Sikora et al. [83] measured the beam-

recoil polarisation observable Cx. The measurement was done at the A2 hall at

MAMI using a slightly different set up to the current detector set up.
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Figure 3.15: The purple volumes show the additional graphite polarimeter material added
to the standard CB setup. Taken from [83].

There was the addition of a graphite polarimeter within the CB detector which gave

access to spin transfer observables, Figure 3.15. It presented a new technique to

measure the spin of the recoiling nucleon in nuclear and hadronic reactions.

The measurement used a circularly polarised photon beam with an energy range of

Eγ = 400 - 1400 MeV, and a liquid hydrogen target. The degree of circular polar-

isation ranged from 30% - 80% over the incident photon energy range. The results

showed better agreement with the latest (at the time) SAID Chew-Mandelstam

parameterisation giving the best χ2/N value of 1.7. It was concluded the results

presented strong evidence for using the Chew-Mandelstam formalism in reliable ex-

traction of information on the nucleon excitation spectrum.
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Figure 3.16: The beam-recoil polarisation observable Cx in the reaction γp → π0p off a
liquid hydrogen target for fixed pion θCM angles. The results (black points)
are presented alongside theoretical models MAID 07 (violet dashed-dotted
line), SAID CM12 (cyan dashed line), SAID SN11 (green dashed line) and
BnGa2011-2 (red line). Taken from [83].

Many polarisation observables have become accessible in recent years thanks to the

advances made in polarised beams and targets at facilities such as MAMI, Jefferson

Lab and CBELSA. The developments at these facilities have increased the kinematic

range measured for several observables and offered access to beam-target polarisation

observables like G, H, E and F. Further developments in recoil polarisation have also

allowed access to beam-recoil and target-recoil polarisation observables. Ongoing

efforts will provide further measurements which will act as constraints to partial

wave analyses over a sufficiently large kinematic range and converge towards a model

independent solution in extraction of excited nucleon resonance amplitudes.



Chapter 4

Experiment

The data-taking for this experiment took place from November 2013 to September

2015. As described in the previous chapter the aim was to measure the beam-target

polarisation observable G as well as the beam asymmetry Σ. It used a high duty

factor electron beam at 1557 MeV incident energy. A diamond radiator was used to

produce a highly linearly polarised photon beam through coherent bremsstrahlung.

Two orthogonal settings of the polarisation plane were used (±45o relative to the de-

tector’s equatorial plane) and the observables were extracted by making asymmetries

of the two datasets, minimising systematic errors related to detector acceptance. A

longitudinally polarised frozen-spin butanol target was used as a proton target. In

addition data were taken with a carbon target and used to account for the back-

ground from the oxygen and carbon in the butanol target.

40
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4.1 MAMI

Figure 4.1: Overview of the entire MAMI facility. Three racetrack microtrons and a Har-
monic Double-Sided Microtron provide an electron beam of up to 1.6 GeV. The
electron beam can be fed into four experimental halls which are also shown
(A1, A2, A4 and X1).

The MAinzer MIcrotron (MAMI), located at Institut für Kernphisik at Johannes

Gutenberg University Mainz, provides a continuous-wave electron beam to three sep-

arate experimental halls, X1, A1 and A2 (Figure 4.1). The electrons are accelerated

through a linear accelerator (LINAC) injector magnet, a series of three race-track

microtrons (RTMs) and finally a harmonic double-sided microtron (HDSM). The

linear accelerator injects the electrons with an energy of 4.1 MeV into the RTMs.
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Figure 4.2: Schematic of a race-track microtron.

Each RTM consists of a LINAC and two dipole magnets, as illustrated in Figure

4.2. The LINAC accelerates the electrons along the initial stage of a series of recir-

culation tracks. The dipole magnet bends the electron round 180o where it is passed

through a focusing device. A second dipole magnet bends the electron back through

180o into the LINAC once again. Each subsequent pass of the LINAC accelerates

the electrons further and increases the momentum which results in a larger radius of

curvature in the bending magnets. The electrons are ejected from each RTM with

endpoint energies of 15.3 MeV, 185.9 MeV, and 883.1 MeV respectively.
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Figure 4.3: Schematic of a harmonic double-sided microtron.

The final ejection from the RTMs is passed onto the harmonic double-sided mi-

crotron. The HDSM consists of two LINACS and four dipole bending magnets,

shown in Figure 4.3. This design is due to the fact that in order to accelerate the

electrons beyond 883 MeV (up to 1.6 GeV) an RTM design is not practical within

the space available at MAMI and would require bending magnets weighing over

2000 tonnes each. The bending magnets of the HDSM are only required to bend

the electrons by 90o and as such the respective size of each magnet is reduced. The

ejection energy of the HDSM can be provided up to almost 1.6 GeV and is detailed

in Table 4.1.

Stage
Input Energy

(MeV)
Output Energy

(MeV)
Number of turns

Injector 4.1

RTM1 4.1 15.3 18

RTM2 15.3 185.9 51

RTM3 185.9 883.1 90

HDSM 883.1 1557 43

Table 4.1: Table listing energies of electrons at each stage of the MAMI accelerator.
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4.2 Bremsstrahlung

The A2 hall uses the bremsstrahlung process to produce high energy real photons.

Bremsstrahlung occurs when an incoming high energy electron is decelerated in the

electromagnetic field of an atomic nucleus. The electrons are incident on a radiator

held in the goniometer (see Section 4.4). The lost energy, in a single interaction,

due to the acceleration is emitted as a photon with energy equal to the difference

in incoming and outgoing electron (Equation 4.1).

Eγ = E0 − EF (4.1)

The characteristic shape of a bremsstrahlung spectrum binned in photon energy

is proportional to 1/Eγ relationship, due to the interaction strength between the

electron and nuclei being inversely proportional with the distance between them.

This can be seen in Figure 4.4. The higher tagger channels correspond to a lower

bremsstrahlung photon energy. The efficiency of the different tagger channels is not

100%, which can be seen as fluctuations in the distribution. See Section 4.6 for

details of the bremsstrahlung photon energy measurement.
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Figure 4.4: The top plot shows the measured energy distribution of the tagged photons
using an amorphous radiator. The middle plot shows the same with an aligned
diamond radiator. The bottom plot shows the ratio of these, ”enhancing” the
coherent structures resulting from the diamond lattice vectors.
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4.3 Coherent Bremsstrahlung

An important feature of the MAMI facility is the ability to produce linearly polarised

photons through coherent bremsstrahlung. Using a diamond radiator gives rise to

preferential planes of momentum transfer. This gives the electrons a higher prob-

ability of interacting with the regular lattice planes of the diamond [84, 85] which

shows as an enhancement in the cross section of the amorphous spectrum, an exam-

ple is shown in Figure 4.4 (middle). The cross section of a coherent bremsstrahlung

spectrum can be expressed as

σdiamond = σin + σco (4.2)

where σin and σco are the incoherent (unpolarised) and coherent (polarised) con-

tributions respectively. An enhancement in the cross section from the coherent

bremsstrahlung can be defined as

Enh =
σdiamond
σin

(4.3)

The coherent bremsstrahlung spectrum from the diamond radiator is divided by the

incoherent spectrum to subtract unpolarised contributions. The resulting plot is

termed an enhancement plot. A plot such as this is fit in order to extract the degree

of linear polarisation, further discussion on this can be found in Section 5.3.

The photons in the coherent part of the bremsstrahlung spectrum have a high degree

of linear polarisation. The high degree of polarisation is due to the momentum trans-

fer with the directional field of the lattice planes. The electric vectors of the nuclei

in the diamond radiator sum to a direction perpendicular to the lattice planes.

Diamond is used as the radiator to produce coherent bremsstrahlung due to its rigid

lattice structure. Compared to other potential materials, it has a high Debye-Waller

factor. Consequently, there is little influence of thermal fluctuations on the produced

coherent bremsstrahlung photons [86].
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The diamond orientation can be fine tuned using the goniometer in order to change

the energy at which the main coherent peak presents itself. The azimuthal orienta-

tion of the diamond sets the angle of the polarisation plane and the angle between

the diamond and beam (1 - 5 mrad) sets the position of the coherent peak in the

photon energy. A precision goniometer is essential to achieve the level of tolerance

required.

4.4 Goniometer

The goniometer (Figure 4.5) houses the radiator wheel in an evacuated chamber.

The goniometer is situated at the start of the beam line in the A2 hall and in-

cludes the diamond radiator and copper radiator which produce a linearly polarised

amorphous photon beam respectively.

Figure 4.5: View of the Goniometer through the camera mounted inside it. The centre
slot is the diamond radiator.

The goniometer has five axes which can move in order to change the radiator in the

beam line. The precise angle of the radiator with respect to the beam line can also

be remotely altered in order to change the alignment of the diamond.

4.4.1 Stonehenge Technique

To accurately adjust the linear polarisation orientation the goniometer must be

calibrated to determine the relationship between the crystal lattice, the lab frame
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and the relative frame of the goniometer wheel. The Stonehenge technique [87]

was developed in order to accurately determine these relationships and has been

successfully used in several facilities including MAMI in Mainz, CLAS at Jefferson

Laboratory, MAXLab in Lund and CB-ELSA in Bonn.

The Stonehenge technique is used to align a diamond radiator with respect to an

incident electron beam, in order to produce the linearly polarised photon beam

through coherent bremsstrahlung. It builds upon the work of Lohman [84]. The

technique, outlined by Lohman et al., requires an initial alignment of the crystal

lattice to the electron beam and the crystal to the lab frame to less than 1o for

energies up to 1557 MeV. It requires many iterative scans before a suitable level of

accuracy is achieved.

The Stonehenge technique only requires the tagged photon spectrometer (Section

4.6) when performing a scan and is significantly faster than the method used by

Lohman et al. The scan is done by adjusting the goniometer about a cone. The

plot obtained from this scan is a radial distribution of the coherent enhancement

spectrum. The center of the cone is adjusted with each iteration until the Stonehenge

distribution obtained is symmetrical as shown in Figure 4.6 (Right).

Figure 4.6: Radial distributions of goniometer scans. Left: Stonehenge distribution prior
to alignment adjustments. Right: Stonehenge distribution after alignment.
Polarisation planes at ±45o. Taken from reference [87]

The energy of the linearly polarised photons can be controlled with orientation of
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the crystal lattice with respect to the incident electron beam. The coherent peak is

the main peak observed in the coherent bremsstrahlung enhancement spectrum and

contains photons with the highest degree of polarisation. It is produced by scatter-

ing electrons from [0,2,2] and [0,2,2̄] planes of the crystal which can be separated

from contributions from higher order lattice planes. Bremsstrahlung produced from

interaction with these reciprocal lattice planes produces linearly polarised photons,

with linear polarisation orientated perpendicular to the lattice plane. The orien-

tation of the linear polarisation of the photons can be controlled accurately with

azimuthal rotation about the centre of the cone once calibrated.

4.5 Collimator

Collimation of the photons (Section 4.5) is used to increase the coherent contribu-

tion relative to incoherent measured in the bremsstrahlung spectrum. The increase

occurs due to the difference in the angular distributions of incoherent and coherent

bremsstrahlung. Coherent bremsstrahlung produces photons with a higher degree of

polarisation at forward angles, where incoherent bremsstrahlung has a wider angular

distribution. Reducing the collimation diameter increases the ratio of coherent to

incoherent photons but at the cost of the flux incident on the target. A compromise

is therefore required in order to reach an optimum balance between coherent con-

tributions and flux on the target. A 2 mm diameter collimator was used during the

experiment positioned 2.5 m downstream of the radiator.

4.6 Glasgow Tagged Photon Spectrometer

The Glasgow tagged-photon spectrometer (Figure 4.7) was used to measure the

energy of photons by detecting electrons, that have undergone bremsstrahlung, in

coincidence with a signal in the Crystal Ball detector systems.
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The Glasgow tagged-photon spectrometer consists of a focal plane detector (FPD),

and a large dipole magnet. The FPD covers a range of 5 - 95% of the initial electron

beam energy provided by MAMI with the resolution of the focal plane varying

between 2 - 3 MeV [88]. The FPD itself consists of 353 EJ-204 plastic scintillators,

overlapping by half their length, allowing an event to be defined as a coincident hit

between two adjacent scintillators. The overlapping scintillators give 352 separate

coincidence tagger channels.

Figure 4.7: Schematic of the Photon Tagger. Taken from [89].

The bremsstrahlung photons have energy equal to the difference in energy between

the incoming (E0) and outgoing (EF ) electrons, given by Equation 4.1.

The electrons, having passed through the radiator, are bent away from the initial

beam trajectory by a large dipole magnet. Electrons with the maximum beam

energy (E0) will be deposited in the beam dump having been bent by the dipole

magnet. Electrons that undergo bremsstrahlung in the radiator will be bent further,

on to the focal plane, due to their lower momentum. The position of the incident
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electron along the focal plane gives a measure of the energy of the bremsstrahlung

photons through Equation 4.1. The position of the focal plane scintillator defines

the energy assigned to the electron for the event. This was determined through

calculations based on the field map and dedicated calibration beamtimes (Section

subsec:photontaggercalib).

4.7 Detector Setup

The detector set up, shown in Figure 4.8, consists of the Crystal Ball (CB) detector

(Section 4.7.1), the Particle Identification Detector (PID) (Section 4.7.2), the Frozen

Spin Target (Section 4.7.4) and the TAPS detector (Section 4.7.3).

Figure 4.8: Overview of the TAPS-CB set up [90]. The Frozen Spin Target is surrounded
by the PID which sits centrally in the Crystal Ball detector. The TAPS
detector covers the forward angles and increases the angular coverage from
around 93% to 97%.
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4.7.1 Crystal Ball

The Crystal Ball was built at Stanford Linear ACcelerator (SLAC) and used in

J/Ψ measurements before moving to DESY where it was used in b-quark physics.

The CB [91, 92, 90, 93] (Figure 4.9) is currently the central detector of A2 and

surrounds the target, particle identification detector (PID) [92] and wire chambers

[90]. The CB is a spherical shell of 672 thallium doped sodium iodide (NaI(TI))

crystals configured in an icosahedral shape, shown in Figure 4.10. Each of these

faces is divided into four minor triangles consisting of nine NaI(TI) crystals (Figure

4.10).

The detector has an opening at either end, to allow the photon beam to enter

and leave. Forward angles are covered by the TAPS forward wall, Figure 4.8 (see

Section 4.7.3 for TAPS). The CB has a large angular acceptance of around 93% of

4π, covering the full 2π azimuthal range and polar angles 20o < θ < 160o. The

acceptance increases to 97% when including the TAPS forward wall. The CB is

used to reconstruct the kinematics of the reaction products using the NaI(TI) hit

(cluster) information in coincidence with the Tagger and other detectors.
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Figure 4.9: Schematic of the Crystal Ball showing target position in the center and the
surrounding NaI(TI) and photomultiplier tube (PMT) pairs. The Veto Barrel
was originally in the SLAC experiment but is no longer a part of the set up.
[90].

The NaI(TI) are coupled with PMTs and separated by an air gap and glass sheet

totalling 5 mm. The PMTs detect photons from the scintillation processes which

occur in the NaI(TI) elements. When a charged particle interacts with a NaI crystal

it causes valence electrons to become excited. These excited electrons decay to

their ground state, releasing a low energy photon, which may be detected in the

PMT.
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Figure 4.10: Schematic of one of the 672 NaI crystals which form the crystal ball [90].

The scintillation process happens via charged particles in both cases. In the case of

the photon it first converts into an e+e− pair (i.e. charged particles) when a photon is

incident on the NaI(TI), the density of the crystal causes the photon to convert into

an electron-positron pair. This pair can undergo bremsstrahlung, emitting further

photons, causing an electromagnetic shower. In general the shower can spread to

many crystals causing a cluster of hits. The energy distribution in the cluster allows

determination of the initial photon kinematics.

4.7.2 PID

The Particle Identification Detector (PID) consists of 24 thin plastic scintillator

strips in a cylindrical configuration and surrounds the target within the CB. The

signals in the PID are read out via PMTs attached to the downstream end of the

scintillator. When a charged particle passes through one of these strips it deposits

a small amount of energy (∆E), before depositing the rest (E) in the CB or TAPS



4.7. Detector Setup 55

detectors.

Figure 4.11: PID detector with 24 plastic scintillators in a cylindrical configuration. The
PID sits in the centre of the CB detector and surrounds the target, providing
energy and angular information on charged particles.

The amount of energy deposited is related to the mass of the particle. The PID, along

with the CB and TAPS, can be used to better identify and differentiate particles

through E∆E plots. In this analysis it was decided to omit the PID information as

sufficient reaction identification was provided through kinematic constraints, while

the PID operation was erratic during the beamtime.
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4.7.3 TAPS

The CB has no acceptance at forward angles for θ <20, however this was recovered

by use of the Two Arm Photon Spectrometer (TAPS). TAPS was positioned 1.75 m

down the beamline from the target center. It consists of 384 individual hexagonal

BaF2 crystals which are 22.5 cm in length and 5.9 cm in diameter. The TAPS

detector has an angular resolution of around 0.7o and a timing resolution of 0.5

ns.

72 smaller lead tungstate (PbWO4) crystals, 20 cm in length, were installed in the

inner rings of the TAPS detector to withstand the higher rates from the photon

beam at small forward angles. The configuration of the PbWO4 crystals is such

that the combination of four gives the same geometry of a single BaF2 crystal.

Figure 4.12: TAPS schematic as seen from the target.

With the addition of the veto elements, a 5mm thick plastic scintillator wall at the

front of each individual detector, it is possible to identify particles similarly to the

PID. If the particle is charged then it will deposit a small amount of energy in the

veto element with the rest of the energy deposited in the corresponding BaF2 crystal.
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The hits can be directly correlated due to the coupling of a PMT to the individual

BaF2 crystals.

4.7.4 Frozen Spin Target

The frozen spin target [91, 94] was designed to retain the high angular acceptance

of the detector systems. The main restriction in designing the structure to hold

and cool the target was the inner diameter of the PID detector which measured 104

mm. The refrigeration system (Figure 4.15) was specially designed for this purpose

and built in cooperation with the Joint Institute for Nuclear Research (JINR) in

Dubna, Russia. The target material was butanol (C4H9OH) which was doped with

paramagnetic radicals, which allowed for polarisation transfer to the free protons of

the butanol. The frozen spin target is achieved using Dynamic Nuclear Polarisation

(DNP), which consists of polarising a target at a cold temperature using microwave

radiation. After, the polarisation is maintained using a holding magnetic field.

Figure 4.13: Solenoid coil used for longitudinal polarisation of the butanol target.

The DNP process is done in two steps. The initial process uses the 3He/4He dilution

refrigerator (Figure 4.15) to cool the target material to 25 mK in a highly uniform

magnetic field of 2.5 T using a solenoidal coil surrounding the target (Figure 4.13).

Once cooled, the material was irradiated with 70 GHz microwaves, close to the
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electron spin frequency, which resulted in polarisations of the protons parallel to the

magnetic field. Using the solenoidal coil produces a longitudinal polarisation of the

target (either ±z along the photon beam direction). This provided a longitudinal

polarisation degree of up to 85%, but also increased the target temperature from 25

mK to 0.2 K.

Figure 4.14: Typical target temperature stability over a single day. Stability of the target
temperature is shown to be ±0.2 mK.

Once the target was polarised the microwaves were switched off and the temperature

decreased to the original 25 mK. The decrease in temperature increases the relax-

ation time of the polarisation. The stability of the temperature during operation

is important to manage the degree of polarisation and systematics. The stability

of the temperature was measured and shown to be very stable over a single day

with a fluctuation of ±0.2 mK as shown in Figure 4.14. The butanol target had a

relaxation time of around 1500 hours. The polarisation of the target is maintained

by a holding field coil which provides a magnetic field of 0.45 T during operation.

A Nucleon Magnetic Resonance (NMR) system was used to measure the degree of

polarisation during operation which consists of a serial resonance circuit with a coil

surrounding, or inside, the target. A change in the polarisation of the target induces

a measurable change in voltage across the circuit.

A disadvantage of the system used is the necessity to move the detectors and the

target structure in order to re-polarise the target material. This may create sys-

tematic effects between different run periods such as changes to the electromagnetic

noise environment. Systematic effects are investigated in Section 8.5.

The target was positioned 8.25 m after collimation, sitting centrally within the CB
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detector. The target cell was 2 cm in radius and 2 cm in length. The number of

protons in butanol, for the target cell dimensions, is 9.181 x 1022 cm−2 at a temper-

ature of 25 mK and at a pressure of 1080 mbar [95]. Butanol contains both carbon

and oxygen which contributes to background events due to quasi-free interactions

with bound protons. The butanol target contains 3.672 x 1022 cm−2 and 9.181 x

1021 cm−2 for carbon and oxygen respectively. The number of free protons in the

butanol target is 8.62 x 1022 cm−2 [90]. Data was taken using a carbon target in

order to account for these background contributions.
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Figure 4.15: Top: Photo of the 3He/4He dilution refrigerator for cooling and maintaining
the polarisation of the butanol target. The solenoid coil can be seen at the
end of the refrigerator arm on the left. Bottom: Schematic of the 3He/4He
dilution refrigerator 3D cross section [94].
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4.8 Trigger

The trigger is a combination of two conditions which both need to be met simulta-

neously in order for an event to be accepted or rejected. The first condition takes

the list of hits, with a threshold energy deposit over 2 MeV, and sorts them accord-

ing to energy. The list is the used to search for clusters, marking the hit with the

maximum energy as the logical center for the cluster, providing the time for that

cluster. The neighbouring 16 hits are checked and are added to the cluster, and

removed from the list of hits, if their energy meets the threshold condition. Only

the neighbouring 16 elements are checked because almost all of the deposited energy

of a photon is contained within these elements. Once all the neighbours have been

checked, the cluster energy is calculated by taking the sum of all the individual hit

energies that constitute that cluster.

The second condition is the sum of the energy detected from all cluster hits in the CB

(and TAPS), known as the CB energy sum (Esum). The kinetic energy threshold was

set to 80 MeV per cluster, meaning events where the Esum was lower than this were

rejected, reducing the background noise that would be included at lower thresholds.

Setting these two trigger conditions is a compromise between the downtime in the

data acquisition system (where the previous event is being processed) and high event

rates.

A multiplicity trigger is also set which has the purpose of approximating the number

of detected particles. This was set to M3- which means events with three or fewer

hits were accepted, whereas events with hits greater than three did not meet the

conditions of the trigger and were rejected. This condition was set to better select

events from the π0 → γγ decay.
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4.9 Simulation

A Monte Carlo simulation of the A2 detector set up was used in this work [96]. It

was modelled using Geant4 libraries [97, 98]. The simulation aims to model the

set-up precisely and uses physics libraries to model the scintillation processes in the

detectors.

The main components modelled in the simulation were the CB and TAPS detectors,

shown in Figure 4.8. The target and PID were also included as part of the simulation.

The model allows other detectors to be added to the simulation.

The simulation was given events from particular reaction channels using an external

event generator AcquMC [99]. The events were recorded in the same way as real

data. The γp → pπ0 reaction channel was simulated in this work. This reaction

channel was used to model the desired signal events included in the sP lot method

(Section 6.4). The shapes of the missing mass, coplanarity and opening angle of

detector and reconstructed proton were used as a Probability Density Function

(PDF) to fit experimental data.



Chapter 5

Calibration

In order to extract meaningful physics information from the data, the detectors were

calibrated prior to using the data. The detectors provide position, timing and energy

information through knowledge of the position of detector elements, and the TDC

and ADC readouts (time- and analogue-to-digital converters). Once calibrated,

the information from the various detector systems can be used to identify specific

reaction channels and exclude background. The detectors discussed in this chapter,

are the Photon Tagger, CB, PID, TAPS and TAPS Vetos.

5.1 Energy calibration

Energy calibrations were performed to correctly measure the energy deposits in

the different detector elements. The energy was measured using analogue-to-digital

converters, otherwise known as charge-to-digital converters (QDCs), which integrate

the electrical signals. This section discusses the various methods used to perform

energy calibrations on each of the detectors.

63
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5.1.1 Photon Tagger

The tagger was used to measure the energy of bremsstrahlung photons that passed

collimation as well as correlate hits with the other detectors. It inferred the energy

of the electrons through the position of a hit along the focal plane detector, defined

as a coincidence of two adjacent detector elements. The energy of the photons was

then calculated using the difference in energy between the initial electron and the

electron incident on the focal plane. The tagger dipole magnet was set up to direct

the electrons with the full MAMI beam energy into a beam dump past the focal

plane of the Tagger [100].

The position-to-energy calibration along the focal plane was performed in a dedi-

cated beamtime by bending electrons of a known energy directly onto the tagger

elements, using a low intensity electron beam. No radiator was in place so that the

electrons incident on the focal plane had the initial measured energy provided by

MAMI. Varying the magnetic field strength provides several measurements of hits

along the focal plane for a particular MAMI beam energy. This calibration process

allowed a relationship between the tagger channel and electron energies to be calcu-

lated and extrapolated along the entire range of the focal plane, assuming a uniform

magnetic field.

5.1.2 Crystal Ball

The crystal ball required two forms of calibration, low and high energy calibrations.

The low energy calibration was made to set the HV values prior to data taking. The

high energy calibration aligned the calibration parameters of the individual crystals

to improve the overall energy resolution.

Low energy calibration

An 241Am9Be source was used to calibrate the individual detector elements, produc-

ing a monochromatic decay photon at 4.438 MeV. The gains of the photomultiplier
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tubes (PMTs) were adjusted by altering the high voltage across the PMT until the

signal peak from the 241Am9Be source was positioned at the same ADC channel for

all elements, as seen in Figure 5.1. The relationship between the ADC gains and

the deposited energy can be expressed as

Edep = gain · (ch - ped) (5.1)

where ch is the measured ADC digital channel and ped is the pedestal channel of

the ADC which represents the base signal (channel of zero energy) from which the

energy is integrated.

Figure 5.1: Energy spectrum from one NaI(TI) crystal using an 241Am9Be source. Purple
line: total fit to the data. Dashed red line: polynomial to fit the background
of the data. Dashed blue line: Gaussian curve used to fit the signal peak.
Green line: mean position of the Gaussian fit. Taken from [101].

High energy calibration

As the experiment ran with energies of up to two orders of magnitude higher than

that seen in the low energy calibration, it was not sensible to extrapolate the low
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energy results up to high energies. A high energy calibration was performed instead

by adjusting the ADC gains while looking at the peak of the π0 in the invariant

mass spectrum of two photons. The invariant mass of two photons is given by

mγγ =
√

(Eγ1 + Eγ2)2 − (−→p γ1 +−→p γ2)2 (5.2)

This can be expressed in terms of cluster elements to express the mean position of

the π0 peak in the spectrum, expressed as

〈
mπ0,i

〉
=
√

2
〈
Eπ0,i

〉〈
Eπ0,o

〉
(1− cos

〈
ψπ0,io

〉
) (5.3)

where
〈
mπ0,i

〉
is the mean position of the π0 peak with central element i,

〈
Eπ0,i

〉
and〈

Eπ0,o

〉
are the mean photon energies of element i and the other cluster respectively

and
〈
ψπ0,io

〉
is the mean opening angle between the photon detected in element i

and the photons detected in the other cluster.

The aim is to adjust the conversion gains of the ADCs such that the mean invariant

mass equals that of the π0 meson

〈
mπ0,i

〉
=
√

2
〈
Eπ0,i

〉〈
Eπ0,o

〉
(1− cos

〈
ψπ0,io

〉
) ≡ mπ0 (5.4)

An expression for the new gain was expressed in terms of the old gain, given as

gainnew = gainold ·
m2
π0

〈m2
π0,i〉

(5.5)

The gains were adjusted iteratively due to
〈
Eπ0,i

〉
containing contributions from

surrounding elements, and due to the change of gain in one element effecting the cal-

ibration of another through
〈
Eπ0,o

〉
and

〈
ψπ0,io

〉
. A typical spectrum of all summed

elements after a high energy calibration is performed is shown in Figure 5.2.
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Figure 5.2: Two photon invariant mass for the CB showing the peak of the π0. Black
square: data from the sum of all CB elements. Green line: total fit to data.
Blue line: Gaussian curve used for signal. Red line: background polynomial.
Taken from [102].

5.1.3 PID

The PID elements are not particularly thick, which results in only a small amount

of energy deposited from charged particles. Distributions of energy deposited in the

PID against the energy deposited in the CB were made for data and simulation.

Projecting these plots allowed the proton peak to be fitted using a Gaussian and

the values obtained for simulation were plotted against the values obtained for data.

The comparison of the Gaussian fit values was fitted with a linear function, from

which the pedestal value and gain value could be calculated for each PID element

(Figure 5.3).
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Figure 5.3: PID energy calibration. Top and bottom right: energy depositions in the PID
for simulation and data respectively. The peak due to energy deposition from
the proton was identified by a Gaussian function. Bottom left: mean value of
simulated and data gaussian fits plotted against each other. A linear fit was
used to calibrate the gains and pedestal value of the PID. Taken from [103].

5.1.4 TAPS

As for the CB two calibrations are applied to the TAPS detector, a low and a high

energy calibration. The low energy calibration differs from the CB calibration and

uses cosmic radiation instead of a source.

Low Energy Calibration

A low energy calibration was performed to normalise the individual elements to one

another before running an experiment and to obtain a first rough calibration. The

TAPS elements are positioned horizontally, unlike the CB, which has the benefit of

being able to use cosmic radiation. The cosmic radiation used for this calibration

was muon radiation with the same average path length for all TAPS elements. The
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mean deposited energy was found to be around 38MeV [[102]].

Figure 5.4: Typical ADC spectrum from cosmic radiation in single BaF2 crystal. Taken
from [102].

The gains can be calculated from knowledge of the pedestal position and the ADC

channel corresponding to the mean deposited energy as described in Equation 5.1

(Figure 5.4).

High Energy Calibration

The high energy calibration is similar to that of the CB in that the invariant mass

of two photon pairs is measured and the gains are iteratively altered until the peak

matches that of the accepted π0 mass (Figure 5.5). Either both photons are located

in TAPS or at least one can be located in TAPS and the other in the CB.
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Figure 5.5: Two photon invariant mass of summed TAPS elements showing peak at the
π0 meson mass. Taken from [104]

5.2 Time calibration

A precise timing calibration is needed to accurately measure coincident hits between

detectors and to subtract background. Each detector element has an individual time

recorded using their corresponding TDCs. The time calibration is performed to de-

termine and align the coincidence peaks for each detector element. The relationship

between the time, gain and TDC channels can be expressed as:

time = gain · (ch− offset) (5.6)

In the following section the PID azimuthal calibration and timing calibrations of

the tagger, CB, PID, TAPS are discussed.
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5.2.1 Tagger

To correlate hits from the tagger to events in the other detectors a coincidence time

is required. The alignment of the timing coincidence between all tagger elements is

essential. The data taken for the alignment of the tagger time was at a significantly

lower rate than the experimental runs (around 10 kHz compared to GHz rates). A

Pb glass scintillator, positioned at the end of the beamline past the TAPS detector,

was used to make coincidence time peak clearer in these measurements.

The tagger time is measured using TDCs with an individual fixed gain of 0.117

ns/channel with no need for a gain calibration, only the timing offsets require cal-

culation.

The offset is determined by plotting the TDC spectrum for each tagger channel and

fitting a Gaussian to the peak to determine the mean TDC channel. A new offset

is determined to align the relative timing of all the TDCs to an arbitrary position,

usually zero, using Equation 5.6. Figure 5.6 shows the resulting coincidence time

with the Pb glass detector versus focal plane element after the calibration.
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Figure 5.6: Top: Calibrated coincidence time plotted for all tagger channels. Bottom:
Tagger coincidence time with Pb glass.

5.2.2 CB

The CB TDCs operate with a fixed gain of 0.117 ns/channel meaning only the timing

offsets required calibration. The new offsets were determined by fitting Gaussians

to the peak in the TDC time distribution for each element to get a mean value of

the current position and by using

Offsetnew = Offsetold ·
MeanGuas
gain

(5.7)
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The new offset was applied to each detector element which aligned their relative

times to an arbitrary value, usually zero.

Figure 5.7: Top: Uncalibrated time offsets plotted for all CB elements. Bottom: Cali-
brated time offsets plotted for all CB elements. Provided by collaborators at
Bonn, taken from [105]

5.2.3 CB Time Walk

The CB suffers from a slow rise time, resulting in an energy dependence on the

time which needs to be accounted for using a time walk correction. The time walk

correction was performed through a fit to the distribution of the time against energy

for each detector element (Figure 5.8). The events from π0 photoproduction were

used to suppress background contributions. These were selected using cuts on the

two photon invariant mass and the π0 missing mass. The relative time between the
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CB and the tagger was used to calculate the time for each detector element of the

two photon clusters. The equation used to fit this distribution is given as

t(E) = a+
b

(E + c)d
(5.8)

Figure 5.8: Fit to time walk of CB using Equation 5.8 to apply a correction to the original
calibrated time values.Taken from [105].

The term used to fit this distribution was subtracted from the original energy de-

pendent times to determine new (energy independent) times for each element.

tcorrected = toriginal −
(
a+

b

(E + c)d

)
(5.9)

5.2.4 PID

The PID elements were time calibrated using Equation 5.7 to find the correct offsets

to align the relative time of each element. This is shown before and after in Figure

5.11.
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Figure 5.9: PID time calibration. Top: unaligned time offsets for each PID element.
Bottom: Calibrated time offsets for each PID elements. Taken from [105]

PID azimuthal alignment

The azimuthal alignment of the PID elements needed to be known for identification

of charged particles where the φ difference with the CB is used. Each time the target

is re-polarised the alignment needed to be recalibrated due to moving the PID to

remove the target from the central detector system. The calibration of the PID

alignment was done by plotting the azimuthal angle of each element and fitting the

signal peak with a Gaussian to determine the φ angle of that element. Restricting

the selection of events to one cluster in the CB and one hit in the PID provides a large

signal to background ratio allowing for a cleaner fit. Plotting the azimuthal angle,

determined from the Gaussian fit, against element number, the relative φ angles of

each PID element can be determined. Fitting a linear function to this allows the
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relative φ angles of the PID elements to be calibrated (Figure 5.10).

Figure 5.10: PID angle calibration. Top: uncalibrated φ angles of each PID element.
Bottom: calibrated φ angle of each PID element. Taken from [105]

5.2.5 TAPS

TAPS uses Constant Fraction Discriminators (CFDs) to avoid the walk correction.

The gain of each TDC was calibrated by adding delay cables in series, each with

a 10ns delay time, increasing the common stop time. The change in position of

the pulser signal time (from the original position) was plotted against the differ-

ence in the delay of the signal. Fitting this allowed a measure of the gain to be

calculated.

Offline analysis was used to calibrate the TDC offset times after the experiment.

Using Equation 5.7 new offset positions were calculated to align the relative time of

the TAPS elements.
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Figure 5.11: TAPS time calibration. Top: uncalibrated timing alignment of TAPS ele-
ments. Bottom: Time offset calibrated TAPS elements. Taken from [106]

5.3 Linear Polarisation of the Photon Beam

The degree of linear polarisation effects the values of the polarisation observables

measured as part of this work. It is therefore important to measure this accurately

for the entire photon energy range.

The degree of linear polarisation was extracted by fitting an enhancement (Section

4.3) with a phenomenological function. Including all possible lattice plane contri-

butions in a phenomenological fit to an enhancement plot would be prohibitively

difficult. Instead, only the strongest contributions to the enhancement, the 022, 044

and 066 lattice vectors were considered, shown in Figure 5.12. Contributions from
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other lattice vectors were negligible in this region.

Figure 5.12: Enhancement plot with phenomenological fit (red) applied to enhancement
data (black) to extract degree of linear polarisation.

The phenomenological fit [107] used had five free parameters per lattice vector. The

free parameters, shown in blue in Figure 5.13, are: I, the peak amplitude of the

enhancement; θ, the half point along the drop of the 022 edge (associated with the

relative angle of the beam and lattice); φ, the width in the peak around θ; θr and

φr are the opening angle of the collimator and the variation in this opening angle

respectively. Each of the three peaks has their own set of free parameters associated

with it.
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Figure 5.13: Enhancement plot with phenomenological fit (red)[107] applied to enhance-
ment data (black) to extract degree of linear polarisation. Free parameters
of the fit are shown in blue.

When fitting to the enhancements the distributions needed to be normalised. A

mean of five bins in series was calculated across the entire range of the enhancement,

and where this mean had its lowest value the distribution was renormalised to 1. An

example fit is shown in Figure 5.12 for a main coherent peak around 450 MeV.

The resulting enhancement distribution was used to calculate the degree of linear

polarisation as a function of energy for the photon beam, shown in Figure 5.14,

using Equation 5.10 derived in [108].

P s
tot(x,G, θ, σ) =

−
∫ θ+3σ

θ−3σ

{
e

(θ′−θ)2

2σ2 × φtot(x,G, θ′)× Icoh(x,G, θ′)
}
dθ′

∫ θ+3σ

θ−3σ

{
Itotal(x,G, θ′)× e

(θ′−θ)2
2σ2

}
dθ′

(5.10)

where x is the photon energy, σ is the Gaussian smearing of θ accounting for beam

divergence and multiple scattering effects and G represents the lattice vector in

question. The intensities of the coherent contribution and total distribution are rep-

resented by Icoh and Itotal respectively. The parameters from the fit to the enhance-

ment were then fed into the event stream once the photon energy was determined
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for the event, assigning a degree of linear polarisation to that event.

Figure 5.14: The degree of linear polarisation calculated from the phenomenological fit to
the enhancements seen in Figure 5.12.



Chapter 6

Signal Selection

This section covers several aspects of the data analysis including the software (Sec-

tion 6.1), the event selection process (Section 6.2) and background subtraction meth-

ods (Section 6.3).

6.1 Software

The software used to perform data analysis comprises of in-house packages AcquRoot

and GoAT, built on the CERN ROOT data analysis framework. AcquRoot [99],

written in C++ and based on the CERN ROOT libraries, focuses primarily on initial

offline analysis including calibration (see Chapter 5) and particle reconstruction.

AcquRoot reads the detector QDCs and ADCs and applies calibration parameters

outlined in Chapter 5 to calculate energies and times. These variables are passed to

higher level classes which reconstruct particle 4-vectors for further analysis. These

4-vectors along with beam and target polarisations, and coincidence time were then

written out to ROOT tree data stores.

GoAT (Generation of Analysis Trees) was designed to provide a fast, tree-based

analysis framework. It produced generic analysis trees from AcquRoot which were

processed to sort data, reconstruct particle information and check data. A lot of

the difficulties of working with trees from AcquRoot were side-stepped with the

81
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GoAT software using a single configuration file to specify the sorting choices and

reconstruction options for the user.

ROOT [109] is an analysing framework developed at CERN and used to handle the

large amounts of data that comes from particle and nuclear experiments. ROOT has

a large range of functionality allowing the user to create their own physics classes

for event selection and analysis. The event selection process performed as part of

this analysis is described below.

6.2 Event Selection

Event selection covered the correct selection of the reaction channel γp→ π0p. This

reaction channel has a three body final state as the π0 decays into two photons.

Due to the final state, a restriction on the number of cluster hits was used to identify

the final state, π0p → γγp, and as such was set to three. Each cluster was initially

assumed to be a photon. This was assumed because of a lack of charge information,

as the PID was not used in the data analysis due to difficulties experienced in

calibration.

After the restriction on the number of clusters, the two photon combinations with

invariant mass (IM) that best matched the π0 PDG invariant mass were selected

as the π0 decay photons. The initial particles were reconstructed by summing the

4-vectors of their decay products, given by

PInitial =
n∑
i=1

pi (6.1)

where PInitial is the 4-momentum of the mother particle and pi is the 4-momentum

of each daughter particle. The invariant mass of a mother particle with only two

daughter particles is given by

MInv =
√

(p1p1p1 + p2p2p2)2 =
√

m2
1 + m2

2 + 2(E1E2 −−→p 1 · −→p 2) (6.2)
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where MInv is the invariant mass of the mother particle and m1,2, E1,2 and −→p 1,2

are the mass, energies and 3-momenta of the daughter particles respectively. In the

case of π0 decay the daughter particles are two photons with mγ = 0, simplifying

Equation 6.2 to

Mγγ =
√

2(Eγ1Eγ2 −−→p γ1 · −→p γ2) (6.3)

Identifying which pairs of 4-vectors originated from the mother particle was im-

portant for extracting polarisation observables. Where there are three detected

particles, there are three combinations of photon pairings.

The best pairing for each event was determined as a minimum given by Equation

6.4

pπ0 =

∣∣∣∣Mγγ

Mπ0

− 1

∣∣∣∣2 (6.4)

where Mπ0 is the PDG mass of the π0. The smallest value of pπ0 provided the best

π0 candidate pairing. The π0 candidates were given the PDG invariant mass of the

π0 while retaining their 3-vectors.

Proton Reconstruction

Additional kinematic constraints were available due to the detection of the proton

in the CB. This allowed a comparison between the proton reconstructed from the

beam, target and π0 4-vectors, given by Equation 6.5, and the measured third cluster

in the CB (Section 6.4.5).

PMissing = γtagged + pTarget − pπ0 (6.5)

Table 6.1 outlines the 4-vectors used to calculate the missing particle 4-vectors

(PMissing). The distribution of missing mass is shown in Figure 6.1. A peak can be

seen at the expected PDG mass of the proton, sitting on top of a large background.
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The background largely contains tagged bremsstrahlung photons that are in random

coincidence with the reaction event.

4-vector px py pz E
component

Target 0 0 0 Mproton

Beam 0 0 EBeam EBeam

Decay γ1 Px(γ1) Py(γ1) Pz(γ1) Eγ1

Decay γ2 Px(γ2) Py(γ2) Pz(γ2) Eγ2

Table 6.1: Table outlining the 4-vector components of each particle used in reconstructing
the missing proton 4-vector.

As the reaction target was a proton the energy component of the target 4-vector was

given the proton mass and was at rest in the lab frame. The photon beam moved

along the z direction in the lab frame which resulted in the z-component having the

same value as the energy component. Decay γ1,2 are the decay photons of the best

π0 candidates (Equation 6.4).

Figure 6.1: Missing mass distribution after π0 candidate selection. Proton peak can be
seen at 940 MeV on top of a large background.

With the reaction particles identified the background events had to be accounted for

so the events of interest could be separated. The sP lot technique (Section 6.4) was

used to separate signal from background events. The background due to random
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coincidences with tagged bremsstrahlung photons, which cannot be uniquely singled

out, was also accounted for using the sP lot technique (Section 6.4.2). The missing

mass, third cluster hit, not identified as one of the π0 decay photons, and coplanarity

were used to separate signal from nuclear background events in Sections 6.4.4, 6.4.5

and 6.4.6 respectively.

6.3 Background subtraction

A background subtraction was performed to identify the photon which triggered the

event and to remove the events which originated from Carbon and Oxygen nuclei

inside the butanol target (referred to from here-on as nuclear background) from those

that originated from the polarised protons. Section 6.4 discusses the formalism and

details of the sP lot weighting method which was used in this analysis. The sP lot

method was used to remove photon candidates created from random tagger hits, as

well as separate the signal events from nuclear background events.

The following table summarises the general cuts applied to the data throughout the

analysis. The cuts were made in order to better select events originating from the

γp → π0p reaction given the expected values of the final state.

Variable Cut Range Units

Tagged Time -20 < TTagged < 20 ns

Missing Mass 880 < MMiss < 1000 MeV

Coplanarity 90 < φ < 270 o (degrees)

Proton Opening Angle 0 < θopen < 25 o (degrees)

2 photons 120 < MInv < 150 MeV

Table 6.2: Cuts applied based on expected reaction kinematics to aid event selection.
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6.4 sPlot method

The sP lot technique provides event-by-event weights known as sWeights which can

be used to disentangle different event species such as actual and random tagged

photons. For this analysis sequential fits were performed to separate tagger random

events from prompt signal events before being used again to separate nuclear back-

ground events. The initial separation was done using the sWeights obtained from a

fit to the Tagger-CB coincidence time spectra. The second was done separately for

fits to the missing mass, the coplanarity (angle between the π0 and proton), and the

opening angle between the detected and reconstructed proton spectra. Using differ-

ent variables to discriminate the nuclear background provided a useful comparison

for assessing the effectiveness and consistency of the technique.

6.4.1 sPlot formalism

Events in a data set usually originate from more than one source. The aim of sP lots

[110] is to separate these sources. The events are therefore categorised into two

different variable types: discriminating variables, and control variables. Discrimi-

nating variables are variables for which a distribution is known for all sources and

control variables are ones for which some sources are unknown. Using the sP lots

technique it is possible to recreate the distributions of the control variables with-

out any prior knowledge of their distributions. It is important to note that the

control and discriminatory variables should be uncorrelated when performing the

extended maximum likelihood fit. The formalism of sWeights starts with defining

the log-Likelihood to describe an extended maximum likelihood fit to data

L =
N∑
e=1

ln

{ Ns∑
i=1

Nifi(ye)

}
−

Ns∑
i=1

Ni (6.6)

where N is the total number of events, Ns is the number of different types of events

in the data (species), Ni is the number of events in the ith species, y is the set of

discriminating variables, and fi(ye) is the PDF value of the ith species for variable
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y and event e. By maximizing Equation 6.6 it is possible to determine the value

of the yields of the different species of events in the data while using a full list

of discriminating PDFs. The only free parameters in the fit are the species yields

Ni.

The covariance matrix from the maximum likelihood fit is given in Equation 6.7 and

is central to the calculation of the weights used to reproduce the true distribution

of a control variable. It is defined as

V−1
nj =

∂2(−L)

∂Nn∂Nj

=
N∑
e=1

fn(ye)fj(ye)

(
∑Ns

k=1 Nkfk(ye))
2

(6.7)

Using the covariance matrix it is possible to obtain an expression for the weights

(Equation 6.8) when the control and discriminatory variables are uncorrelated. The

proof of this is given in [110].

sPn(ye) =

∑Ns
j=1 Vnjfj(ye)∑Ns
k=1 Nkfk(ye)

(6.8)

With the above expression for the sWeights it is possible to accurately disentangle

a dataset into the various components contributing to it and reproduce the true

distributions of other variables for each component, provided those distributions are

not correlated to the variable that was used in the fit.

sP lots has useful properties which are worth noting here.

N∑
e=1 s

Pn(ye) = Nn (6.9)

The yield of the species is equal to the sum of the weighted events of that species

N∑
e=1 s

Pl(ye) = 1 (6.10)

The sum of the weights from each species for a particular event, in each bin, is

equal to one. These properties provide constraints in ensuring sP lots are used

accurately.
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6.4.2 Time separation

The tagger-CB coincidence time spectrum has a sharp peak on top of a flat back-

ground. The sharp peak is where the events of interest lie and there is a coincidence

between the CB and Tagger. The flat background represents random coincidence

photons. The fit to the timing spectrum was performed using two probability den-

sity functions (PDFs). A Gaussian was used to fit the sharp peak and a first order

polynomial was used to fit the flat background.

Figure 6.2: Maximum likelihood fit to tagged timing spectrum using a Gaussian and a
first order polynomial to fit the peak and flat background respectively.

Figure 6.2 shows a maximum likelihood fit using the sum of the Gaussian and poly-

nomial PDFs. After the fit a weight was calculated for each event using Equation

6.8. The signal weights were applied to the data to separate out the signal distribu-

tion for other variables. These weights therefore select out events with the correct

photon in coincidence with the reaction products in the CB. Additional background
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from sources such as the nuclei in the butanol or multi-pion production need to be

disentangled with an additional sP lot fit.

6.4.3 Nuclear background separation

As all three particles are detected, there are multiple discriminatory variables avail-

able for separating the γp → π0p signal from other reaction mechanisms.

Fits to the missing mass, coplanarity and opening angle of detected and recon-

structed protons were performed individually to separate the nuclear background

from signal events. The different variables each have distinct shapes, however they

should result in similar event yields for signal and background events.

The main source of background was from the bound protons in the Carbon and

Oxygen of the Butanol target. Data was taken using a carbon target to model this

source of background. For each discriminatory variable the spectra was produced

using the carbon data, itself used as a PDF for fitting the data distribution. Monte

Carlo was used to generate the signal PDF. The Monte Carlo generated event tracks

which came directly from the proton and simulated them in the A2 detector set up

using Geant4 (Section 4.9). The weights of the tagged timing spectra were applied

to the data and PDFs before performing the secondary fits. The Monte Carlo of the

signal events required no timing background subtraction as it simulated the exact

reaction of interest.

The events-based PDFs that are used had additional parameters associated with

them when fitting the data distributions. These parameters accounted for discrep-

ancies between simulation and data. The flexible parameters are

• Gaussian smearing

• PDF offset

• PDF scaling

where the scaling is the stretching of the PDF in the variable axis, offset is the

overall position along the variable axis and the Gaussian smearing accounts for an
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additional convoluted resolution. The carbon data did not have any flexibility in the

offset or scaling as this was real data and was performed under the same conditions

as the butanol data.

6.4.4 Missing Mass fit

Figure 6.3 shows an example fit to the missing mass spectrum, as given by Equation

6.5, using the signal and nuclear background PDFs. The missing mass spectrum for

both signal events and carbon background events have distinct shapes which makes

the missing mass a good discriminator between the two species of events.

Figure 6.3: Fit to the missing mass spectrum showing a peak around the proton mass.
The dashed blue line is the carbon background, dashed green line is signal
PDF from Monte Carlo and the solid red line is the total PDF fit to the data
points. Fit shown for kinematics -0.2 < cos(θ) < 0, 403 < Eγ < 436 MeV.
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6.4.5 Proton opening angle fit

The opening angle between the reconstructed and detected proton is a good dis-

criminator again due to the distinct shapes of the two PDFs used in the fit. The

opening angle was defined as the angular difference in the reconstructed missing

particle 4-vector and the detected third cluster hit.

∆θopen = −→p recon −−→p detected (6.11)

A large peak was seen at low opening angles where the 4-vectors coincide when the

correct π0 candidates were selected. The peak at low angles sat on top of a nuclear

background which was accounted for by using a PDF from carbon data.

Figure 6.4: Fit to opening angle between detected and reconstructed proton. The dashed
blue line is the carbon background, dashed green line is signal PDF from Monte
Carlo and the solid red line is the total PDF fit to the data points. Fit shown
for kinematics -0.2 < cos(θ) < 0, 403 < Eγ < 436 MeV.

6.4.6 Coplanarity fit

Due to momentum conservation the proton has to lie on the reaction plane created

by the incident tagged photon and the π0 meson provided they both originated from
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the γp→ π0p reaction. The condition can be checked by looking at the difference in

azimuthal angle between the proton and π0 meson:

∆φ =

φπ
0 − φp, if ∆φ ≥ 0

2π − |φπ0 − φp|, if ∆φ ≤ 0

(6.12)

This condition is independent of the z-direction, and so is unaffected by the Lorentz-

boost into the center-of-mass frame.

Figure 6.5: Fit to coplanarity between π0 and detected proton. The dashed blue line is
the carbon background, dashed green line is signal PDF from Monte Carlo
and the solid red line is the total PDF fit to the data points. Fit shown for
kinematics -0.2 < cos(θ) < 0, 403 < Eγ <436 MeV.

A consistency check of the weights from fits to the different variables is to plot other

distributions with the signal PDF weights applied and compare the distributions,

shown in Figure 6.6.
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Figure 6.6: Distributions of missing mass (Top), coplanarity (Middle) and proton opening
angle (Bottom) having been nuclear background subtracted to leave behind
the desired signal events.

Having identified the events of interest, using the sP lot technique, the polarisa-

tion observables were extracted using fits to azimuthal asymmetry distributions for

different target polarisation states. This is discussed further in Chapter 7.



Chapter 7

Observable Extraction

This chapter illustrates how the experimental data was analysed to extract the

polarisation observables. Further analysis of these observables by Partial Wave Am-

plitude groups in the future will provide quantitative information on the underlying

photoproduction amplitudes and contributing resonant states. The introduction of

asymmetries is given in subsection 7.1.1, the development of the function to fit the

asymmetries is given in subsection 7.1.2 and an example of the fit to data is given

in subsection 7.1.5. Investigations of the reliability of the fit function are detailed

in Section 7.1.3. The outline of determining the φ0 offset of the asymmetries seen

in the data is given in subsection 7.1.4.

7.1 Asymmetries

The final part of the data analysis is the extraction of the polarisation observables.

This section describes the process by which the observables are extracted having ap-

plied the sWeights obtained in the previous chapters to subtract the tagged photon,

and nuclear backgrounds from the data.
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7.1.1 Cross section

From Section 2.2 the azimuthal distribution of π0 produced with a linear polarised

photon beam on a longitudinally polarised target is given by:

dσ

dΩ
(θ, φ) =

dσ0

dΩ
(1 + PLΣ cos(2φ) + PLPTG sin(2φ)) (7.1)

where PL is the degree of linear polarisation of the photons, PT is the degree of

longitudinal polarisation of the target and Σ and G are the polarisation observables

we wish to extract.

The probability of a particle being detected may vary as a function of φ, this is

known as the detector acceptance and generally this must be accounted for when

extracting parameters from angular distributions. However it is possible to eliminate

the need for precise acceptance corrections by forming asymmetries in polarisation

states of the beam or target.

7.1.2 Fit function

As a starting point for creating a function to fit the azimuthal asymmetries, Equation

7.1 coupled with the detector acceptance A(φ) is used to write the number of pions

detected at φ as

N(φ) = A(φ)N(1 + PLΣ cos(2φ+ φ0) + PLP
TG sin(2φ+ φ0)) (7.2)

where N is the unpolarised flux, PL is the photon beam polarisation and PT is the

target polarisation. The offset angle, φ, is aligned with the photon beam electric

field vector. There are four distinguishable data sets when photon beam and target

are polarised linearly and longitudinally respectively, outline in Table 7.1.
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45o -45o

Positive N45o
+ N−45o

+

Negative N45o
− N−45o

−

Table 7.1: Table outlining the different combinations of incident photon beam and target
polarisation settings. Positive and negative refer to the target polarisation
direction with respect to the beam momentum, while ±45 is the orientation of
the beam linear polarisation plane.

Each set may have a different mean values of N, PL and PT . Considering the pos-

itive target polarisation setting for the moment and considering the different beam

polarisation states we can write Equation 7.2 for each beam polarisation setting

as

N45(φ) = A(φ)N45(1 + P45(Σ cos(2φ+ φ0) + P+G sin(2φ+ φ0))) (7.3)

N−45(φ) = A(φ)N45NR(1− P45PR(Σ cos(2φ+ φ0) + P+G sin(2φ+ φ0))) (7.4)

where NR = N−45

N45
and PR = P−45

P45
.

The asymmetry between these data sets is defined as

Asym(φ) =
N45(φ)−N−45(φ)

N45(φ) +N−45(φ)
(7.5)

which clearly cancels the acceptance A(φ) and can be written in full and rearranged

as

Asym(φ) =
(1−NR) + (1 + PRNR)(P45Σ cos(2φ+ φ0) + P45P

+G sin(2φ+ φ0)))

(1 +NR) + (1− PRNR)(P45Σ cos(2φ+ φ0) + P45P+G sin(2φ+ φ0)))
(7.6)

Note that in the limit NR and PR = 1, and P45 = P−45 = PL, this simplifies to

Asym(φ) = PLΣ cos(2φ+ φ0) + PLP
+G sin(2φ+ φ0) (7.7)

which is approximately the case with the current data. Equation 7.6 is expressed in
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terms of fit parameters as

Asym(φ) =
(1− C3) + (1 + C2C3)(C1 cos(2φ+ φ0) + C0 sin(2φ+ φ0))

(1 + C3) + (1− C2C3)(C1 cos(2φ+ φ0) + C0 sin(2φ+ φ0))
(7.8)

where C0 = P45P+G, C1 = P45Σ, C2 = PR, C3 = NR.

By fitting Equation 7.8 the observables Σ and G were extracted from the measured

azimuthal asymmetries for individual target polarisation settings.

7.1.3 Fit Function Investigation

Tests using generated data were performed in order to investigate how the different

parameters of Equation 7.8 behaved under different conditions and whether this

function was suitable to fit the asymmetries.

Integral   52.75

 (deg)φ
0 50 100 150 200 250 300 350

0.5

0.6

0.7

0.8

0.9

1
Integral   52.75

 Acceptanceφ

Figure 7.1: Toy detector acceptance applied to generated φ distributions. A value of 1 on
the scale equates to a detector acceptance of 100%.

φ distributions were generated using known values for the photon flux, degree of

linear and target polarisations, and values for the polarisation observables Σ and

G. This generated a perfect φ distribution without any detector acceptance effects.

In order to make the test more rigorous, artificial detector acceptance effects were

added to the perfect φ distributions before performing the fit (Figure 7.1).
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Figure 7.2: Generated φ distributions with detector acceptances applied. Counts are
shown on the y-axis with angle along the x-axis.

Once acceptance effects were added to the φ distributions, asymmetries were created

for each target setting as defined in Equation 7.5. The fit was applied and the

parameters extracted were compared to the known input values used to generate

the test distributions.
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Figure 7.3: Fits to asymmetries using Equation 7.6 for positive and negative target polar-
isation settings separately. Top: Asymmetry of parallel and perpendicular φ
distributions with a positive target polarisation. Bottom: Asymmetry of par-
allel and perpendicular phi distributions with a negative target polarisation.
The y-axis shows the magnitude of the asymmetries.

The parameters of the function can be left free or fixed to a particular value when

the function is fit to the data. For this test the parameters relating to the polarisa-

tion observables are left free as these are the unknown parameters to be measured.

Parameters C2 and C3 can be fixed as these are derived from measured values of

photon flux and linear polarisation.

The reliability of the extracted parameters was investigated by comparing the values

of the extracted polarisation observables to the values used in generating the initial φ

distributions. Plots of observable magnitude against parameter C2 (C3) were made

where parameter C3 (C2) was fixed to its true value as well as for where it was left

free. Parameter C2 (C3) was fixed to a range of values between 0 and 1 (including

its input value) to investigate the effect on the extracted observable value (Figures

7.4 and 7.5).
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Figure 7.4: Changes of extracted polarisation observable magnitudes by varying parameter
C2. Blue points are where parameter C3 is fixed and red points are where
parameter C3 is left free. Observable magnitudes closely match the input
values used in generating the toy data when both C2 and C3 are fixed to their
respective input values (black points).
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Figure 7.5: Changes of extracted polarisation observable magnitudes by varying parameter
C3. Blue points are where parameter C2 is fixed and red points are where
parameter C2 is left free. Observable magnitudes closely match the input
values used in generating the toy data when both C2 and C3 are fixed to their
respective input values (black points).

The fit values of Σ and G converge on their respective input values as parameters

C2 and C3 approach their respective input values, as in Figures 7.4 and 7.5. When
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the polarisation and flux ratios are fixed to their known values, which are measured

independently in data taking, the extracted observable values are closest to their

input values. This demonstrates the fit works best when the ratio parameters are

fixed. The plots show that the function has greater sensitivity to the linear polari-

sation ratio (C3) than the ratio of fluxes (C2), as shown by the larger variation of

extracted observable values in Figure 7.5. To demonstrate the accuracy of the fit,

pull distributions were used to compare output and input values of the polarisation

observables.

Pull distributions

A test of the reliability and measure of the systematics relating to a measurement

can be done using a pull distribution [111]. In general a pull distribution can be

written as

Pull =
x− µ
σ

(7.9)

where x is the measured variable, µ is the mean of the distribution and σ is the width.

This will be a Gaussian distribution with a mean of zero and width of one if there are

no systematic effects present. Producing a pull distribution of a measured variable

indicates any systematic effects in that measurement, through deviations from the

normal pull distribution values. Where the width is less than one the errors on that

measurement are overestimated, if greater than one then they are underestimated.

A deviation in the mean position from zero indicates the systematic error on the

measurement. Extending the above general case to the extraction of polarisation

observables using the function in Equation 7.8 a pull distribution equation can be

written for the two observables extracted as

Σdiff =
ΣFit − ΣInput

ΣFitError

(7.10)

Gdiff =
GFit −GInput

GFitError

(7.11)
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where ΣInput and GInput are the input values used in generating the initial φ distri-

butions. The distributions of these measurements are shown for both positive and

negative target polarisation settings, in Figure 7.6.
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Figure 7.6: Difference between extracted observables and input values used to generate
toy azimuthal distributions. Expect mean values of around 0 with values of σ
around 1 to show that function works well. Mean values consistently close to
0 with the σ values around 0.9, showing the function consistently extracts the
observables accurately but perhaps slightly overestimates the errors.

It can be seen that in the extraction of both Σ and G there are no major systematic

effects from the function itself. The σ values of each distribution indicate that the

errors in these measurements are being slightly overestimated, as their values are

consistently around 0.9.

7.1.4 φ0 determination

A phase offset, φ0, in the asymmetries is present due to the diamond orientation

having a small angular offset. The small offset results in the nominal photon polar-

isation planes of ±45 not aligning exactly with their stated orientations.

The measurement of the offset is made over all kinematic bins as the orientation is

fixed for all energies and polar angles (θ) throughout the experiment. The measure-

ment was made using data from a carbon target which reduces any systematic effects

using the polarised Butanol which would require scaling and summing over target
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polarisation states. The summing over target states would cancel the effects of the

G observable on the asymmetries as it manifests itself as an additional phase shift in

the parallel and perpendicular φ distributions. Using an unpolarised carbon target

requires only a single additional term added to the cos(2φ) fit to the asymmetry as

it has no added phase shifts from the G observable.

Using the carbon target and fitting over all kinematic bins the φ0 offset angle was

determined to be 44.3o. With the offset determined it was included in the fit function

as a fixed parameter to fit the binned asymmetries and extract the polarisation

observables.

7.1.5 Data Asymmetries

The Σ and G observables vary as a function of incident photon energy, π0 centre

of mass angle and θCM . Asymmetries were created for kinematic bins and defined

by their ranges in these variables. They were then fit to extract a value for Σ and

G in each bin. Figure 7.7 shows examples of asymmetry fits over the cosθ range,

for photon energy 403 < Eγ < 436 MeV, from which both Σ and G were extracted.

Note that at the forward angles (cosθ > 0.3) the acceptance decreases due to the

proton having insufficient energy to escape the target and be detected in the CB.

This results in fewer statistics and poorer asymmetries. The free parameters in the

fit, shown in the statistics box, were PLΣ and PLPTG.
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Figure 7.7: Example fits to data asymmetries to extract Σ and G for positive target po-
larisation, -0.4 > cosθ > -0.2 and 436 < Eγ < 469 MeV.



Chapter 8

Results

In this chapter the results for the polarisation observables Σ and G in the reaction

γp→pπ0 are presented. Predictions from partial wave analysis models, MAID [76],

SAID [79] and Bonn-Gatchina [81], are shown alongside the results where deviations

from the prediction indicate areas where models may be improved by the new data.

The results are presented having used the sP lots fitting technique to extract the

signal using three separate discriminating variables (Section 6.4). The results from

these different fits are compared and give an indication of the systematic uncertainty

in the background subtraction procedure.

Section 8.1 presents the Σ observable measurements while the double polarisation

observable G is given in Section 8.3. Discussion of the measurements is giving in

Section 8.2 for Σ and Section 8.6 for G, with the systematic uncertainties on these

measurements discussed in Section 8.5.

8.1 Σ Results

The polarisation observable Σ has been measured as a function of photon energy and

cosθCM . The results are binned in 33 MeV photon energy bins and 10 equally spaced

cosθ bins between -1 < cosθ < 1. The results have been produced for both target

polarisation directions. The Σ measurements with the different sP lot methods using

106
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proton opening angle difference, missing mass and coplanarity of the π0 and proton

have been plotted together in Figures 8.1 and 8.2 for positive and negative target

states respectively. Figure 8.3 shows the positive and negative target polarisation

values for Σ. The average of the target polarisations for Σ is shown in Figure

8.4.

Figure 8.1: Photon asymmetry Σ as a function of cosθ. The results are presented for data
using a positive target polarisation. The results from each sPlot method are
shown with proton opening angle results (red), coplanarity (green) and missing
mass (blue). The photon energy range of each plot is shown in the center at
the bottom. The PWA predictions are shown as coloured lines: MAID [71]
(red), SAID [72] (green) and Bonn-Gatchina [73] (blue).
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Figure 8.2: Photon asymmetry Σ as a function of cosθ. The results are presented for data
using a negative target polarisation. The results from each sPlot method are
shown with proton opening angle results (red), coplanarity (green) and missing
mass (blue). The photon energy range of each plot is shown in the center at
the bottom. The PWA predictions are shown as coloured lines: MAID [71]
(red), SAID [72] (green) and Bonn-Gatchina [73] (blue).
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Figure 8.3: Polarisation observable Σ as a function of cosθ. The results are presented for
the coplanarity sPlot subtraction method, with positive (Open circles) and
negative (Crosses) target polarisation states. The photon energy range of each
plot is shown in the center at the bottom. The PWA predictions are shown
as coloured lines: MAID [71] (red), SAID [72] (green) and Bonn-Gatchina [73]
(blue).
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Figure 8.4: Photon asymmetry Σ as a function of cosθ. The results averaged over the
target polarisations, having used the coplanarity sPlot subtraction method,
are shown and compared to the latest published Σ measurements by Gardner
et al. [70]. The photon energy range of each plot is shown in the center at the
bottom. The PWA predictions are shown as coloured lines: MAID [71] (red),
SAID [72] (green) and Bonn-Gatchina [73] (blue).

8.2 Σ Results Discussion

The Σ results are in general agreement with previous measurements at lower energy

bins and follow the trend of the PWA predictions, appearing to favour the MAID

PWA generally. The results from different sP lot fits are consistent with one another,

demonstrating the consistency of the technique in extraction of the signal. There

is a systematic positive shift in the results which appears to increase as the energy
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increases. As the Σ observable is a secondary observable measurement, and as it

has been measured precisely in the energy region of this work, it can be used as a

polarimeter to correct the measurements for this systematic shift.

Further analysis and systematic study (Section 8.5) will consolidate the measure-

ments of the Σ polarisation observable and determine any discrepancies between the

different extracted results and previous measurements.

The final results for Σ shown in Figure 8.4 combine the data from both target states

from the coplanarity sP lot subtraction method. The results from this method were

chosen due to their better agreement with previous measurements compared to the

other subtraction methods. The different target settings are two different data sets,

so to combine them a weighted mean is calculated using Equation 8.1, with errors

calculated using Equation 8.2.

x̄ =

∑n
i=1(xiσ

−2
i )∑n

i=1 σ
−2
i

(8.1)

σx̄ =

√
1∑n

i=1 σ
−2
i

(8.2)

where x̄ is the weighted mean value of the different target states and σx̄ is the error

associated with this value. A systematic positive shift in results can be seen, partic-

ularly for higher energy bins. The comparison to the most recent, and most precise,

measurements of Σ by Gardner et al. [70] allows a correction factor to be calculated

in order to account for the systematic shift in Σ (Section 8.4). The systematic shift

suggests that the linear polarisation is being systematically underestimated, increas-

ing with energy. It also suggests that there may be effects of background reaction

channels present which are not currently accounted for. This is discussed further in

Section 8.5.

Compared to the previous measurements the current extraction of Σ includes a

greater background dilution due to the carbon/oxygen background from the po-

larised target, and so it is important to have a reliable subtraction method. As the
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systematics of the subtraction methods are the same for Σ as for G that implies the

subtraction is also working at a satisfactory level for the G observable. Due to the

same systematic effects on both polarisation observables a correction factor calcu-

lated from Σ measurements also applies to the G observable measurements.

8.3 G Results

The double polarisation observable G has been measured as a function of photon

energy and cosθCM . The results are binned in 33 MeV photon energy bins and 10

equally spaced cosθ bins: -1 < cosθ < 1. The results have been produced using

different target polarisation directions. Figures 8.5 and 8.6 show the G results for

positive and negative target states respectively. The results from fits to proton

opening angle difference, missing mass and coplanarity of the π0 and proton have

been overlaid showing general consistency between background subtraction methods.

Figure 8.7 shows the positive and negative target polarisation values for G. Figure 8.8

shows the average of the two target states for G over the full kinematic range.
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Figure 8.5: Polarisation observable G as a function of cosθ. The results are presented for
data using a positive target polarisation. The results from each sPlot method
are shown with proton opening angle results (red), coplanarity (green) and
missing mass (blue). The photon energy range of each plot is shown in the
center at the top. The PWA predictions are shown as coloured lines: MAID
[71] (red), SAID [72] (green) and Bonn-Gatchina [73] (blue).
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Figure 8.6: Polarisation observable G as a function of cosθ. The results are presented for
data using a negative target polarisation. The results from each sPlot method
are shown with proton opening angle results (red), coplanarity (green) and
missing mass (blue). The photon energy range of each plot is shown in the
center at the top. The PWA predictions are shown as coloured lines: MAID
[71] (red), SAID [72] (green) and Bonn-Gatchina [73] (blue).
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Figure 8.7: Polarisation observable G as a function of cosθ. The results are presented
for the coplanarity sPlot subtraction method, with positive (Open circles)
and negative (Crosses) target polarisation states. The photon energy range of
each plot is shown in the center at the top. The PWA predictions are shown
as coloured lines: MAID [71] (red), SAID [72] (green) and Bonn-Gatchina [73]
(blue).
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Figure 8.8: Polarisation observable G as a function of cosθ. The results are presented for
a data set which combines the data from positive and negative target polarisa-
tions. The sPlot method was used to fit the coplanarity distribution, apply the
relevant weights to the data, and extract the signal. The photon energy range
of each plot is shown in the center at the top. The PWA predictions are shown
as coloured lines: MAID [71] (red), SAID [72] (green) and Bonn-Gatchina [73]
(blue).
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8.4 Correction Factor

The systematic shift in the Σ measurements were corrected by using the most recent

measurements and the SAID partial wave curve as a polarimeter. A correction fac-

tor was calculated, shown in Figure 8.9, for each energy bin by taking the weighted

average of the ratios between the Σ results of this work and the previous measure-

ments shown in Figure 8.4. The ratios are weighted by the size of the error bars on

the measurement.

Figure 8.9: Correction factor as a function of energy. The correction factor was calculated
using the previous measurements by Gardner et al. [] and the SAID partial
wave curve as a polarimeter.

The correction factor normalises the Σ measurements to correct for the systematic

shift seen in Figure 8.4. These results now show excellent agreement with the pre-

vious measurements and the PWA curves, appearing to favour the SAID and Bonn-

Gatchina curves. The correction factor shows there is a systematic error associated

with the linear polarisation and with effects due to other reaction channels passing

threshold. At 550 MeV and 750 MeV the correction factors are larger because they

are calculated for energy bins across the coherent edge region. These coherent edges

also correspond to the energy regions around the η and double π thresholds and
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where their cross sections become significant (Figure 2.2). The coherent edge has

larger systematic uncertainties, which can be seen in Figure 8.4. The systematics of

the linear polarisation have been investigated and have been shown to be 8% (Sec-

tion 8.5). However, these systematic effects do not fully explain the source of the

systematic error. The experimental collaboration is continuing investigations into

understanding why the discrepancy between the results of this work and previous

measurements is so large.

The correction factor is also applied to the G results in Figure 8.8 as the systematics

are the same for both polarisation observables. The correction factor normalises the

G results for the systematic shift seen in the Σ results. The G results show good

agreement with the PWA curves throughout the kinematic range, particularly with

the MAID and SAID curves at lower energies and backward angles.

Figures 8.10 and 8.11 show the corrected Σ and G results respectively. The system-

atics on these results are discussed further in Section 8.5.
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Figure 8.10: Polarisation observable G as a function of cosθ. The results are presented for
a data set which combines the data from positive and negative target polari-
sations. The sPlots method was used to fit the opening angle of reconstructed
and detected proton, apply the relevant weights to the data, and extract the
signal. The photon energy range of each plot is shown in the center at the
bottom. The PWA predictions are shown as coloured lines: MAID [71] (red),
SAID [72] (green) and Bonn-Gatchina [73] (blue).
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Figure 8.11: Polarisation observable G as a function of cosθ. The results are presented for
a data set which combines the data from positive and negative target polari-
sations. The sPlots method was used to fit the opening angle of reconstructed
and detected proton, apply the relevant weights to the data, and extract the
signal. The photon energy range of each plot is shown in the center at the
bottom. The PWA predictions are shown as coloured lines: MAID [71] (red),
SAID [72] (green) and Bonn-Gatchina [73] (blue).
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8.5 Systematic Uncertainty

The total systematic uncertainty on the measurements presented in this thesis result

from three main sources. These are the degree of linear polarisation, the subtrac-

tion of the background from the polarised target, and background reaction channels.

The calculated degree of polarisation is dependent on the enhancement spectra pro-

duced by dividing a bremsstrahlung spectrum from a diamond radiator with one

from an amorphous radiator (Section 5.3). A baseline was chosen with which to

normalise the spectrum before fitting. The choice in baseline is sensitive to the

degree of linear polarisation extracted from the fit to the enhancement. In order to

investigate the systematic effect of where this baseline is set it was manually fixed at

±10% of the actual value and the degree of polarisation extracted for each baseline.

The resulting polarisations are shown in Figure 8.12.
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Figure 8.12: Top: The change in enhancement when altering the baseline by ±10% from
the original baseline. Bottom: The change in degree of polarisation when
manually altering the baseline by ±10% from the original baseline. The
enhancement and degree of polarisation used in this work is shown in green,
with the red curve showing an increase of 10% of the chosen baseline and the
blue curve showing an decrease of 10%. A change of ±3% in the degree of
polarisation can be seen at the main peak (450 MeV), giving a 4% systematic
uncertainty from the percentage difference.

At the peak position at 450 MeV the change in the degree of polarisation is ± 3%

with a ±10% change in baseline. The degree of uncertainty due to the choice in

baseline is derived from the percentage change in the degree of polarisation. When
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the coherent edge is at 450 MeV and the peak polarisation is 68% (Figure 8.12), the

change of ± 3% in the degree of polarisation results in a percentage change of 4%

at the peak.

As the fit to the enhancement calculates the relative degree of polarisation the

change in baseline has a more pronounced effect in the degree of linear polarisation

where the degree of polarisation is smaller. This can be seen in the secondary and

tertiary peaks of the degree of linear polarisation in Figure 8.12, as well as in Figure

8.13.



8.5. Systematic Uncertainty 124

Figure 8.13: Top: The change in enhancement when altering the baseline by ±10% from
the original baseline. Bottom: The change in degree of polarisation when
manually altering the baseline by ±10% from the original baseline. The
enhancement and degree of polarisation used in this work is shown in green,
with the red curve showing an increase of 10% of the chosen baseline and the
blue curve showing an decrease of 10%. A change of ±2% in the degree of
polarisation can be seen at the main peak (750 MeV), giving a 5% systematic
uncertainty from the percentage difference.

The degree of linear polarisation generally decreases as the edge position increases

in energy. This translates into a higher degree of systematic uncertainty in the

linear polarisation at higher photon energies due to the choice of baseline. This
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is clear from Figure 8.13 which shows a percentage change in the degree of linear

polarisation of 5%, despite the variation in the degree of polarisation of only 2%.

It is also clear from the results of this work to previous measurements and PWA

curves in Figure 8.4. Using the previous Σ measurements, and Bonn-Gatchina PWA

curve, as a polarimeter a correction factor has been calculated for each energy bin to

correct for the systematic uncertainty in the linear polarisation (Section 8.4).

The changes in baseline were chosen as a reasonable degree of error in baseline

choice, with a systematic error due to the choice of baseline in extracting the degree

of linear polarisation taken in quadrature as 6.5%.

Another source of uncertainty relating to the degree of linear polarisation is the

goodness of fit to the enhancement. An estimate of 3% is assigned to this based on

the fits to the enhancements. The majority of enhancements are fit exceedingly well,

with goodness of fit values generally less than 1.5, however there are a few where

the peak is overestimated while the tail from the peak is underestimated (Figure

8.14).



8.5. Systematic Uncertainty 126

Figure 8.14: Examples of phenomenological fits to enhancement data. A systematic error
associated with the goodness of fit is quoted at 3% based on the fits. The
fit to the 650 MeV (bottom) coherent edge exhibits an overestimation in the
degree of linear polarisation at the peak, and an underestimation half way
down the tail to the left of the peak. The 450 MeV (top) fits the data well
across the length of the main peak and tail.

Collaborators at the University of Bonn performed systematic checks of the lin-

ear polarisation [112] by varying the position of the measured coherent peak in

the enhancement fits by ±1 tagger channel, shown in Figure 8.15. This variation

corresponds to a shift in tagged energy of around 4 MeV. A shift of 2 MeV is ex-

pected during normal experimental operation. The collaborators quote a systematic

uncertainty of ∼5%.
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Figure 8.15: Systematic checks of linear polarisation degree performed by collaborators at
Bonn by varying the measured coherent edge of the enhancement ±4 MeV.
Top: typical variation of the coherent edge over a singular experimental run.
Bottom: Enhancements varying by -4 MeV (blue), +4 MeV (red) and original
(black).

The spread in the edge position shown in Figure 8.15 is due to successive fits to the

enhancement peak during the experiment. As the usual shift in the edge position is

around 2 MeV the systematic error associated with the spread of the edge position

is quoted as 2.5%.
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Combining the different sources of error in the degree of linear polarisation in quadra-

ture gives an estimated systematic uncertainty in the degree of linear polarisation

of 8%.

8.5.1 Pull distributions

Pull distributions give indications on the systematic uncertainties and the consis-

tency of a measurement. The formalism of pull distributions is covered in Sec-

tion 7.1.3. This analysis considers the following as sources of systematic uncer-

tainty:

1. Measurements of Σ and G between two different target polarisation states.

2. Measurements of Σ and G using different sP lot variables to weight the data.

The pull distributions are constructed by comparing results for these different data

sets over the full energy and cosθ range of measurements.

Figures 8.16 and 8.17 show the pull distributions for the different target polarisa-

tion settings for Σ and G respectively. The pull distributions for different target

polarisation states are calculated using values obtained for one target setting com-

pared to the average value between target polarisation states for each bin. Figures

8.18 - 8.20 show the pull distributions for the different sP lot variables used when

measuring Σ. Figures 8.21 - 8.23 show the pull distributions for the different sP lot

variables used when measuring G. In the case of the sP lot pull distributions, the

values obtained for Σ and G from each sP lot method are compared to the average

of the three individual measurements for each bin.

It is important to note that type 1, involves statistically independent datasets hence

if there are no systematic deviations between the different target polarisation set-

tings, the resulting pull distributions should be centred on zero with width one. On

the other hand type 2 involves extracting observables from the same data. If the

three subtraction methods were all perfect the pull distribution would be centred on

zero with width zero. Deviations from zero width illustrate the systematic uncer-
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tainty in the subtraction procedure. If the distribution is still centred on zero then

that demonstrates the systematic uncertainties are unbiased or random. If the width

is around one then that demonstrates the magnitude of the systematic uncertainty

is of the same order as the statistical uncertainty.

Figure 8.16: Σ pull distributions for two different target states. Positive and negative
target states pull distributions are shown on the top and bottom respectively.
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Figure 8.17: G pull distributions for two different target states. Positive and negative
target states pull distributions are shown on the top and bottom respectively.

The pull distributions between different target states suggest that there is a system-

atic effect to consider. The mean values of the Σ measurements for each target state

is ∼ ±0.23, and is ±0.275 for the target state measurements of G. These offsets in

the mean suggest there is a systematic shift of around a quarter of the statistical

uncertainty. The systematic uncertainty in the degree of polarisation in the target

is quoted at 1.5% [113].

These systematic effects may be due to changes in the set up occurring during target

polarisation changes. The target cell required complete removal from the CB and
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took several hours to polarise.

Figure 8.18: Pull distribution of results for Σ using the opening angle of detected and
reconstructed proton as an sPlot variable.

Figure 8.19: Pull distribution of results for Σ using the coplanarity as an sPlot variable.
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Figure 8.20: Pull distribution of results for Σ using the missing mass as an sPlot variable.

Figure 8.21: Pull distribution of results for G using the opening angle of detected and
reconstructed proton as an sPlot variable.
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Figure 8.22: Pull distribution of results for G using the coplanarity as an sPlot variable.

Figure 8.23: Pull distribution of results for G using the missing mass as an sPlot variable.

sP lot variable Mean Sigma

ThDiff 0.00 ±0.01 0.86 ±0.02

Coplanarity 0.00 ±0.01 0.69 ±0.02

Missing Mass 0.02 ±0.02 1.00 ±0.02

Table 8.1: Mean and sigma values of the sPlot pull distributions for Σ measurements.
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sP lot variable Mean Sigma

ThDiff 0.00 ±0.04 1.38 ±0.04

Coplanarity 0.00 ±0.03 1.21 ±0.03

Missing Mass 0.00 ±0.02 0.78 ±0.02

Table 8.2: Mean and sigma values of the sPlot pull distributions for G measurements.

The mean and sigma values of the pull distributions from different subtraction meth-

ods have been tabulated in Tables 8.1 and 8.2 for Σ and G respectively. There are

no significant systematic effects associated with the background subtraction method

choice as each method’s pull distribution has a mean of around zero.

The systematic effects evaluated are smaller than the statistical uncertainties ob-

served in the data. There are no significant systematic effects from the choice of

background subtraction and the uncertainty associated with target polarisation is

of the order of a quarter that of the statistical uncertainty. The degree of linear

polarisation presents the dominant systematic error of 8% due to a combination of

the choice in normalisation baseline, measured coherent edge fluctuations and the

goodness of fit to the enhancements.

The width of the G pulls suggest there is a significant uncertainty induced from

the subtraction procedure. This may indicate a significant contribution from the

statistical uncertainty in the yield fit which is not being propagated. There is no

systematic bias though as the means are very close to zero.

8.6 G Results Discussion

These results present the first measurement of G in the energy range 369 < Eγ <

603 MeV in the reaction γp→pπ0. Previous work by Thiel et al. [75] (Section

3.1.2) is in general agreement with the work of this thesis. The PWA predictions

are also in general agreement with the results presented here (Figure 8.8). At higher

energies the results appear to favour the MAID and Bonn-Gatchina partial waves,

with the exception of the highest energy bin measured at 736 < Eγ < 769 MeV
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where the SAID solution appears to be favoured. In general the new data seem to

prefer the SAID solution at backward angles (cosθ < 0) while being closer to MAID

and Bonn-Gatchina solutions at more forward angles.

The G observable has been measured using the sP lot method which, in this case,

used three separate variables to provide weights to extract the signal from the data.

The variables used were the missing mass, the coplanarity of π0 and proton, and

the opening angle of reconstructed and detected proton. As can be seen the results

extracted separately using the weights of the three variables are in good agreement

with each other (Figures 8.5 and 8.6) with a negligible systematic effect on the choice

of background subtraction. The small differences in G between different target states

suggests a small systematic error relating to the degree of target polarisation (covered

in Section 8.5.1).

As with the Σ results in Figure 8.4, the G results in Figure 8.8 are combined from

positive and negative target settings using Equations 8.1 and 8.2. The coplanarity

sP lot subtraction method has been used to calculate the final results in Figures

8.7 and 8.8. A correction factor calculated by using previous Σ measurements, and

Bonn-Gatchina PWA curve, as a polarimeter accounts for systematic effects due to

the linear polarisation seen in Figure 8.4. Section 8.4 discusses and shows the results

having applied the correction factor.

Further analysis on these measurements will allow the partial wave solutions to be

constrained, particularly in kinematic regions where there is large deviation in the

curves. Where the partial waves start to deviate overlaps with the energy range of

the Roper resonance [114]. Measurement of G in this region is of particular interest

as it will allow the M1− multipole to be determined (Section 2.1.5), which relates to

the Roper resonance.

8.7 Conclusions

This work presents the results of the photon beam asymmetry Σ and beam-target

G polarisation observables from pseudoscalar meson photoproduction off a frozen
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spin Butanol target. The reaction channel γp→ pπ0 was reconstructed and used to

extract the results. The measurements of the photon asymmetry Σ are in general

agreement with previous measurements at lower energies, however show a positive

systematic shift in magnitude which increases with energy. The comparison of the

results with previous measurements can be used as a check of reliability as the Σ

observable has been well measured in the energy ranges presented.

A correction factor, calculated from the comparison of the Σ measurements from this

work to previous data by Gardner et al. [70], corrects for the systematic shift seen

in Figure 8.4. The systematic shift is due to the linear polarisation and the effects

of other final states in the reaction, in particular the η and double π final states.

An investigation into the systematic shift is ongoing within the collaboration.

The results of the polarisation observable G show general agreement with the trends

of the PWA curves, appearing to favour the MAID and Bonn-Gatchina curves. The

G results are consistent through weighting from fits to different sP lot variables and

show discrepancies with PWA curves, particularly in the energy range Eγ = 603

- 769 MeV. The results appear to favour the MAID and Bonn-Gatchina curves at

higher energy bins, however the size of error bars at forward pion angles, associated

with acceptance, makes it difficult to determine in these kinematic regions. Further

work is necessary in order to investigate the discrepancies between the G results for

different target states, including the results for the combined datasets. The correc-

tion factor from Σ is also applied to the G results as the systematic uncertainties

are the same for both observables.

The sP lot technique has been implemented successfully in separating background

contributions from the Butanol target. This can be seen through the consistencies

between the results where different distributions were used to extract the signal,

in Figures 8.5 and 8.6. The systematic uncertainties associated with the choice

of background subtraction method are extremely small, around zero, shown in the

mean values of the pull distributions. The systematic uncertainty in the results due

to the target polarisation state is around a quarter of the statistical uncertainty

(Figures 8.17 and 8.16). The linear polarisation is the dominant systematic with a
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systematic uncertainty of 8%.

Inclusion of systematic effects and further analysis will allow accurate determination

and constraint of the M1− partial wave, which has a particular sensitivity to the

P11(1440) Roper-resonance. The Roper resonance is the first radial excitation of

the nucleon and is an N*(JP = 1
2

+
) state. Quark models based on SU(6) symmetry

expect the first excitation of the nucleon to be an N*(JP = 1
2

−
) state and for the 1

2

+

state to be the second. Measurement of the Roper resonance’s properties, which are

still poorly understood [16, 115, 116], may shed light on the reason why the Roper

resonance is the first N* state observed. To this end, an accurate measurement of the

G observable will allow the M1− partial wave to be determined, and in turn allow the

properties of the Roper resonance to be better understood and constrained.

Continued analysis of the systematics of the sP lot method and dominant systematic

uncertainty from the linear polarisation will improve the reliability and consistency

of the G measurements, with a view towards publishing results to be included in

the world dataset.



Appendix A

Tabulated Results

A.1 Σ Results

cos(θ) Energy (MeV) Σ σ

-1.0 - -0.8 386.67 0.45 0.03

-0.8 - -0.6 386.67 0.65 0.03

-0.6 - -0.4 386.67 0.66 0.01

-0.4 - -0.2 386.67 0.69 0.01

-0.2 - 0.0 386.67 0.63 0.01

0.0 - 0.2 386.67 0.70 0.03

0.2 - 0.4 386.67 0.55 0.23

0.4 - 0.6 386.67 0.29 0.19

0.6 - 0.8 386.67 0.40 0.18

0.8 - 1.0 386.67 0.16 0.11

-1.0 - -0.8 420.00 0.54 0.03

-0.8 - -0.6 420.00 0.72 0.02

-0.6 - -0.4 420.00 0.71 0.01

-0.4 - -0.2 420.00 0.68 0.01

-0.2 - 0.0 420.00 0.64 0.01

138
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0.0 - 0.2 420.00 0.61 0.01

0.2 - 0.4 420.00 0.61 0.09

0.4 - 0.6 420.00 0.40 0.18

0.6 - 0.8 420.00 0.25 0.16

0.8 - 1.0 420.00 -0.02 0.09

-1.0 - -0.8 453.33 0.68 0.04

-0.8 - -0.6 453.33 0.75 0.03

-0.6 - -0.4 453.33 0.72 0.02

-0.4 - -0.2 453.33 0.68 0.02

-0.2 - 0.0 453.33 0.68 0.02

0.0 - 0.2 453.33 0.59 0.02

0.2 - 0.4 453.33 0.51 0.04

0.4 - 0.6 453.33 0.63 0.25

0.6 - 0.8 453.33 0.16 0.18

0.8 - 1.0 453.33 0.07 0.15

-1.0 - -0.8 486.67 0.75 0.07

-0.8 - -0.6 486.67 0.67 0.07

-0.6 - -0.4 486.67 0.75 0.04

-0.4 - -0.2 486.67 0.73 0.03

-0.2 - 0.0 486.67 0.69 0.03

0.0 - 0.2 486.67 0.59 0.04

0.2 - 0.4 486.67 0.47 0.04

0.4 - 0.6 486.67

0.6 - 0.8 486.67

0.8 - 1.0 486.67 0.13 0.21

-1.0 - -0.8 520.00 0.82 0.09

-0.8 - -0.6 520.00 0.89 0.07

-0.6 - -0.4 520.00 0.78 0.04
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-0.4 - -0.2 520.00 0.71 0.04

-0.2 - 0.0 520.00 0.65 0.04

0.0 - 0.2 520.00 0.57 0.04

0.2 - 0.4 520.00 0.51 0.05

0.4 - 0.6 520.00 0.25 0.13

0.6 - 0.8 520.00 0.00 0.35

0.8 - 1.0 520.00

-1.0 - -0.8 553.33 0.71 0.14

-0.8 - -0.6 553.33 0.87 0.12

-0.6 - -0.4 553.33 0.74 0.07

-0.4 - -0.2 553.33 0.71 0.06

-0.2 - 0.0 553.33 0.61 0.06

0.0 - 0.2 553.33 0.66 0.11

0.2 - 0.4 553.33 0.61 0.08

0.4 - 0.6 553.33 0.33 0.19

0.6 - 0.8 553.33

0.8 - 1.0 553.33

-1.0 - -0.8 586.67 0.61 0.09

-0.8 - -0.6 586.67 0.79 0.07

-0.6 - -0.4 586.67 0.77 0.05

-0.4 - -0.2 586.67 0.72 0.04

-0.2 - 0.0 586.67 0.75 0.04

0.0 - 0.2 586.67 0.60 0.04

0.2 - 0.4 586.67 0.42 0.05

0.4 - 0.6 586.67 0.45 0.07

0.6 - 0.8 586.67 -0.12 0.29

0.8 - 1.0 586.67 -0.34 0.24

-1.0 - -0.8 620.00 0.49 0.08
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-0.8 - -0.6 620.00 0.82 0.06

-0.6 - -0.4 620.00 0.81 0.04

-0.4 - -0.2 620.00 0.77 0.04

-0.2 - 0.0 620.00 0.73 0.04

0.0 - 0.2 620.00 0.63 0.04

0.2 - 0.4 620.00 0.52 0.05

0.4 - 0.6 620.00 0.36 0.06

0.6 - 0.8 620.00 -0.28 0.31

0.8 - 1.0 620.00 -0.19 0.17

-1.0 - -0.8 653.33 0.37 0.08

-0.8 - -0.6 653.33 0.87 0.08

-0.6 - -0.4 653.33 0.92 0.05

-0.4 - -0.2 653.33 0.87 0.04

-0.2 - 0.0 653.33 0.80 0.05

0.0 - 0.2 653.33 0.75 0.05

0.2 - 0.4 653.33 0.68 0.06

0.4 - 0.6 653.33 0.48 0.07

0.6 - 0.8 653.33 0.73 0.46

0.8 - 1.0 653.33 -0.05 0.23

-1.0 - -0.8 686.67 0.38 0.12

-0.8 - -0.6 686.67 0.60 0.10

-0.6 - -0.4 686.67 0.87 0.06

-0.4 - -0.2 686.67 0.90 0.06

-0.2 - 0.0 686.67 0.87 0.05

0.0 - 0.2 686.67 0.81 0.06

0.2 - 0.4 686.67 0.71 0.06

0.4 - 0.6 686.67 0.67 0.08

0.6 - 0.8 686.67 -0.50 0.36
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0.8 - 1.0 686.67 -0.29 0.32

-1.0 - -0.8 720.00 0.29 0.09

-0.8 - -0.6 720.00 0.68 0.08

-0.6 - -0.4 720.00 0.76 0.05

-0.4 - -0.2 720.00 0.80 0.05

-0.2 - 0.0 720.00 0.76 0.06

0.0 - 0.2 720.00 0.88 0.07

0.2 - 0.4 720.00 0.85 0.06

0.4 - 0.6 720.00 0.78 0.05

0.6 - 0.8 720.00 0.64 0.12

0.8 - 1.0 720.00 0.15 0.30

-1.0 - -0.8 753.33 0.30 0.09

-0.8 - -0.6 753.33 0.46 0.09

-0.6 - -0.4 753.33 0.71 0.06

-0.4 - -0.2 753.33 0.74 0.05

-0.2 - 0.0 753.33 0.82 0.05

0.0 - 0.2 753.33 0.81 0.05

0.2 - 0.4 753.33 0.75 0.07

0.4 - 0.6 753.33 0.71 0.07

0.6 - 0.8 753.33 0.66 0.19

0.8 - 1.0 753.33 -0.13 0.40
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A.2 Tabulated G Results

cos(θ) Energy (MeV) G σ

-1.0 - -0.8 386.67 0.06 0.03

-0.8 - -0.6 386.67 0.05 0.04

-0.6 - -0.4 386.67 -0.00 0.02

-0.4 - -0.2 386.67 -0.04 0.02

-0.2 - 0.0 386.67 -0.10 0.02

0.0 - 0.2 386.67 -0.09 0.04

0.2 - 0.4 386.67 -0.13 0.24

0.4 - 0.6 386.67 -0.31 0.24

0.6 - 0.8 386.67 0.15 0.24

0.8 - 1.0 386.67 -0.06 0.13

-1.0 - -0.8 420.00 0.06 0.04

-0.8 - -0.6 420.00 -0.00 0.03

-0.6 - -0.4 420.00 -0.02 0.02

-0.4 - -0.2 420.00 -0.10 0.01

-0.2 - 0.0 420.00 -0.10 0.01

0.0 - 0.2 420.00 -0.18 0.02

0.2 - 0.4 420.00 0.05 0.09

0.4 - 0.6 420.00 0.42 0.28

0.6 - 0.8 420.00 -0.01 0.15

0.8 - 1.0 420.00 0.07 0.11

-1.0 - -0.8 453.33 0.05 0.05

-0.8 - -0.6 453.33 0.03 0.05

-0.6 - -0.4 453.33 0.02 0.03

-0.4 - -0.2 453.33 -0.13 0.02

-0.2 - 0.0 453.33 -0.15 0.02
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0.0 - 0.2 453.33 -0.16 0.02

0.2 - 0.4 453.33 -0.16 0.05

0.4 - 0.6 453.33 0.09 0.28

0.6 - 0.8 453.33 -0.09 0.22

0.8 - 1.0 453.33 -0.04 0.15

-1.0 - -0.8 486.67 0.06 0.10

-0.8 - -0.6 486.67 -0.10 0.11

-0.6 - -0.4 486.67 -0.10 0.06

-0.4 - -0.2 486.67 -0.33 0.05

-0.2 - 0.0 486.67 -0.26 0.04

0.0 - 0.2 486.67 -0.27 0.05

0.2 - 0.4 486.67 -0.31 0.06

0.4 - 0.6 486.67 -0.37 0.20

0.6 - 0.8 486.67

0.8 - 1.0 486.67

-1.0 - -0.8 520.00 0.03 0.13

-0.8 - -0.6 520.00 -0.02 0.12

-0.6 - -0.4 520.00 -0.10 0.07

-0.4 - -0.2 520.00 -0.25 0.06

-0.2 - 0.0 520.00 -0.29 0.05

0.0 - 0.2 520.00 -0.33 0.06

0.2 - 0.4 520.00 -0.30 0.06

0.4 - 0.6 520.00 -0.19 0.18

0.6 - 0.8 520.00 0.00 0.58

0.8 - 1.0 520.00

-1.0 - -0.8 553.33 0.02 0.20

-0.8 - -0.6 553.33 -0.23 0.18

-0.6 - -0.4 553.33 -0.27 0.11
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-0.4 - -0.2 553.33 -0.28 0.09

-0.2 - 0.0 553.33 -0.26 0.09

0.0 - 0.2 553.33 -0.14 0.30

0.2 - 0.4 553.33 -0.32 0.11

0.4 - 0.6 553.33 -0.24 0.20

0.6 - 0.8 553.33

0.8 - 1.0 553.33

-1.0 - -0.8 586.67 -0.26 0.12

-0.8 - -0.6 586.67 -0.29 0.10

-0.6 - -0.4 586.67 -0.31 0.07

-0.4 - -0.2 586.67 -0.30 0.05

-0.2 - 0.0 586.67 -0.29 0.06

0.0 - 0.2 586.67 -0.23 0.05

0.2 - 0.4 586.67 -0.34 0.06

0.4 - 0.6 586.67 -0.21 0.08

0.6 - 0.8 586.67 0.19 0.34

0.8 - 1.0 586.67 -0.08 0.26

-1.0 - -0.8 620.00 0.10 0.11

-0.8 - -0.6 620.00 -0.27 0.09

-0.6 - -0.4 620.00 -0.21 0.06

-0.4 - -0.2 620.00 -0.28 0.05

-0.2 - 0.0 620.00 -0.28 0.05

0.0 - 0.2 620.00 -0.27 0.05

0.2 - 0.4 620.00 -0.26 0.06

0.4 - 0.6 620.00 -0.06 0.08

0.6 - 0.8 620.00 0.27 0.43

0.8 - 1.0 620.00 -0.08 0.19

-1.0 - -0.8 653.33 -0.09 0.10
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-0.8 - -0.6 653.33 -0.27 0.10

-0.6 - -0.4 653.33 -0.24 0.07

-0.4 - -0.2 653.33 -0.25 0.06

-0.2 - 0.0 653.33 -0.27 0.06

0.0 - 0.2 653.33 -0.36 0.07

0.2 - 0.4 653.33 -0.16 0.08

0.4 - 0.6 653.33 -0.14 0.08

0.6 - 0.8 653.33 -0.10 0.46

0.8 - 1.0 653.33 0.23 0.27

-1.0 - -0.8 686.67 -0.21 0.15

-0.8 - -0.6 686.67 -0.39 0.16

-0.6 - -0.4 686.67 -0.36 0.09

-0.4 - -0.2 686.67 -0.31 0.08

-0.2 - 0.0 686.67 -0.34 0.07

0.0 - 0.2 686.67 -0.30 0.08

0.2 - 0.4 686.67 -0.30 0.08

0.4 - 0.6 686.67 -0.04 0.10

0.6 - 0.8 686.67 0.11 0.46

0.8 - 1.0 686.67 -0.08 0.39

-1.0 - -0.8 720.00 -0.23 0.11

-0.8 - -0.6 720.00 -0.34 0.11

-0.6 - -0.4 720.00 -0.30 0.08

-0.4 - -0.2 720.00 -0.38 0.07

-0.2 - 0.0 720.00 -0.43 0.07

0.0 - 0.2 720.00 -0.32 0.08

0.2 - 0.4 720.00 -0.12 0.08

0.4 - 0.6 720.00 -0.02 0.08

0.6 - 0.8 720.00 0.08 0.16
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0.8 - 1.0 720.00 0.63 0.37

-1.0 - -0.8 753.33 -0.31 0.12

-0.8 - -0.6 753.33 -0.34 0.14

-0.6 - -0.4 753.33 -0.39 0.08

-0.4 - -0.2 753.33 -0.33 0.07

-0.2 - 0.0 753.33 -0.35 0.06

0.0 - 0.2 753.33 -0.27 0.07

0.2 - 0.4 753.33 -0.17 0.08

0.4 - 0.6 753.33 -0.19 0.10

0.6 - 0.8 753.33 -0.09 0.29

0.8 - 1.0 753.33 -0.43 0.50
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