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Abstract  

γ-L-glutamyl-L-cysteinylglycine known as glutathione is tripeptide synthesised in the 

cytoplasm. Glutathione plays important role in several cellular processes and has 

many functions, for example detoxification of xenobiotics, oxidative protein folding, 

protection against reactive oxygen species, modulation of cell proliferation and 

apoptosis. Glutathione is present in almost all organelles within the cell, however, it 

is still not known how glutathione is transported from the cytoplasm to other cellular 

compartments. Here we investigated the transport of glutathione into the ER where 

glutathione plays an important role in oxidative protein folding. Two assays to 

monitor glutathione transport across the ER membrane were developer and an 

attempt to identify the putative glutathione transporter was made. Both assays rely 

on selective permeability of biological membranes and use microsomes to mimic 

the ER environment. Microsomes were prepared from HT1080 cells expressing 

either redox sensitive green fluorescent protein (roGFP-iE) or glutathione S-

transferase P1 (GSTP1-1A) inside the ER. By measuring the change in 

fluorescence of roGFP-iE it was possible to measure the rate at which glutathione 

is transported inside microsomes. GSTP1-1A is able to conjugate glutathione to 

various substrates and form a stable product, by measuring the increase in 

glutathione conjugates it was possible to estimate the transport of glutathione inside 

microsomes. Using both roGFP-iE and GSTP1-1A based assays we were able to 

measure glutathione transport into microsomes, both assays provide slightly 

different information about glutathione transport and both have different limitations. 

In order to identify the glutathione transporter, we used GSH as an affinity ligand 

and isolated all ER membrane proteins interacting with glutathione. The first 

approach using glutathione Sepharose beads allowed to isolate several proteins, 

however, all of them belonged to GST family. A second approach relied on isolating 

the transporter using glutathione attached to Mts-Aft-Biotin a photo activated 

crosslinker. Mts-Aft-Biotin approach did not result in isolation of any proteins binding 

specifically to GSH, this approach requires more work and needs to be improved. 

We showed that it is possible to isolate GSH binding proteins using GSH as affinity 

ligand, using this strategy it might be possible to isolate GSH transporter in the 

future. Both assays presented in this work are the first assays specific for the 

transport of glutathione across the ER membrane. In the future these assays can 

be used to investigate the transport of glutathione even further and contribute to the 

understanding of redox homeostasis in the ER. 
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1.1 Introduction to glutathione 

 

1.1.1 History of glutathione 

 

It has been over 125 years since the tripeptide (γ-L-glutamyl-L-cysteinylglycine) 

glutathione (GSH)  (Figure 1.1), the most abundant non-protein thiol compound, was 

discovered (Lillig and Berndt, 2013). Joseph de Rey-Pailhade was the man who 

isolated GSH from various sources in 1888 and described it as sulfur-loving 

compound named “philothion” (Lillig and Berndt, 2013). The name glutathione was 

coined by Frederick Gowland Hopkins who “re-discovered” the compound in 1921 

describing it as a dipeptide, and noticing its oxidation – reduction properties (Lillig 

and Berndt, 2013, Hopkins, 1929). Six years later in 1927 George Hunter and Blythe 

Alfred Eagles presented a vast array of evidence suggesting the presence of an 

additional amino acid in GSH, thereby questioning the dipeptide nature of GSH 

described by Hopkins (Lillig and Berndt, 2013). After 2 years of intensive research, 

Hopkins confirmed the tripeptide nature of GSH and admitted his previous work on 

GSH was erroneous (Hopkins, 1929). Years later in 1950/51 Robert B. Johnston 

and Konrad Bloch described the synthesis of GSH (Johnston and Bloch, 1951). Two 

years later Bloch was able to characterise γ-glutamyl-cysteine synthetase and 

glutathione synthetase (Snoke and Bloch, 1952, Snoke et al., 1953). In 1980’s and 

1990’s Alton Meister conducted several pioneering experiments leading to 

discovering of biochemistry of GSH metabolism (Lillig and Berndt, 2013). Meister’s 

research greatly contributed to our understanding of GSH and opened ways for new 

scientists to study it even more (Lillig and Berndt, 2013). 

 

Figure 1.1 Structure of glutathione. Adapted from (Valsta et al., 1988) 
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1.2 Synthesis and functions of glutathione 

 

1.2.1 Synthesis of glutathione 

 

GSH synthesis takes place in the cytoplasm which has the biggest reservoir of GSH 

within the cell, accounting for 80-85% of total GSH with the concentration of GSH 

ranging from 1 mM to 10 mM (Lu, 2013). The amount of oxidised glutathione 

(GSSG) in the cytosol is very low and the GSH:GSSG is estimated to be even as 

high as 3000:1 (Ostergaard et al., 2004). GSH is synthesised from its precursor 

amino acids, glutamate, cysteine and glycine in a two step reaction catalysed by 

glutamate cysteine ligase (GCL, E.C. 6.3.2.2) and glutathione synthase (GS, E.C. 

6.3.2.3), both reactions are ATP-dependent (Figure 1.2) (Lu, 2013).  

 

 

 

 

 

 

 

Figure 1.2 Synthesis of glutathione. GSH is synthesised in two ATP dependent 

steps. First step, conjugation of cysteine to glutamate, results in formation of γ-

glutamylcysteine. This conjugation is catalysed by glutamate cysteine ligase (GCL), 

an enzyme composed of 2 subunits, catalytic subunit (GCLC) and modifier subunit 

(GCLM). Second step, the addition of glycine is catalysed by glutathione synthase 

(GS) and results in the formation of γ-glutamylcysteinylglycine known as glutathione. 

Adapted from Lu, 2013 
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GCL is composed of 2 subunits, the heavier catalytic subunit (GCLC, Mr 73 kDa) 

and lighter modifier subunit (GCLM, Mr 31 kDa) (Lu, 2013). GCLC displays all the 

catalytic properties of the enzyme while GCLM does not have any enzymatic 

properties but is important in regulation of the GCLC subunit (Seelig et al., 1984). 

GCL catalyses the first step in GSH synthesis and the reaction results in the 

formation of γ-glutamylcysteine from glutamate and cysteine; this is also the rate 

limiting step (Lu, 2013). Glutathione synthase (GS) is a homodimer (Mr 118 kDa) 

that catalysis the second step of GSH synthesis (Oppenheimer et al., 1979). The 

reaction catalysed by GS results in formation of GSH from γ-glutamylcysteine and 

glycine (Lu, 2013). Dysregulation of GSH synthesis can occur at many stages and 

is associated with many human diseases, including haemolytic anemia, 

aminoaciduria, spinocerebellar degeneration, schizophrenia, cardiovascular 

diseases, stroke, asthma, diabetes mellitus, cystic fibrosis and pulmonary fibrosis 

(Ballatori et al., 2009). 

 

1.2.2 Overview of glutathione functions 

 

Glutathione protects against oxidative stress by scavenging reactive oxygen 

species (ROS) and free radicals (Wu et al., 2004). GSH is capable of scavenging 

lipid peroxyl radical, H2O2, hydroxyl radical, and peroxynitrite directly, and indirectly 

through enzymatic reactions (Fang et al., 2002). GSH is important in detoxification 

of xenobiotics, it can react with acetaminophen and bromobenzene to form 

mercapturates (Fang et al., 2002, Wu et al., 2004). Glutathione plays an important 

role in disulfide bond formation, immune function, apoptosis, modulates cell 

proliferation, and is also a key determinant of redox signalling (Wu et al., 2004, 

Chakravarthi et al., 2006).  

GSH is often described as a cellular thiol “redox buffer” as it is used to maintain a 

required level of thiol/disulfide redox potential (Sies, 1999). The presence of peptidic 

γ-linkage, that protects GSH from degradation by aminopeptidases, and the lack of 

the toxicity associated with cysteine make GSH suitable to perform its role as redox 

buffer (Sies, 1999). In cells glutathione is present in two forms, reduced glutathione 

(GSH) and oxidized glutathione (GSSG), also known as glutathione disulfide (Figure 

1.3). However >98% of total glutathione  exists as GSH (Lu, 2013). 
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Figure 1.3 Structure of oxidised glutathione  

 

 

1.2.3 Cellular functions of glutathione 

 

After successful synthesis GSH can be used for various purposes (Figure 1.4). GSH 

can function as an antioxidant; this function is largely accomplished by reactions 

catalysed by GSH peroxidase (GPx) (Lu, 2013). As a substrate for GPx, GSH helps 

reduce H2O2 to water and lipid hydroperoxides to the corresponding alcohols, this 

reaction also results in the oxidation of GSH and the formation of GSSG (Dickinson 

and Forman, 2002). At the expense of NADPH newly formed GSSG can be reduced 

to GSH by glutathione reductase (GR), alternatively GSH/protein mix disulfides 

(GSX) transport protein can export GSSG outside the cell (Lu, 2009). These 

properties makes GSH particularly important in defending against both 

physiologically and pathologically generated oxidative stress (Garcia-Ruiz and 

Fernandez-Checa, 2006).  

 

By modifying the oxidation state of critical cysteine residues in proteins, GSH plays 

a major role in regulation of redox-dependent cell signalling (Dalle-Donne et al., 

2009, Forman et al., 2009). Proteins can be either activated or inactivated by adding 

GSH to the ‐SH of protein cysteine residues, a process called glutathionylation. 

(Dalle-Donne et al., 2009). This serves to prevent loss of GSH under oxidative 

conditions but more important it is a protective mechanism to prevent protein thiols 
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from irreversible oxidation (Lu, 2013). Glutaredoxins and sulfiredoxins can 

deglutathionylate proteins using GSH as a reductant (Liu and Pravia, 2010). Many 

critical cysteine residues present in transcription factors and signalling molecules 

can be oxidised and regulated thus way, therefore this mechanism allows reactive 

oxygen and nitrogen species (ROS and RNS) to regulate some protein function and 

cell signalling through glutathionylation (Liu and Pravia, 2010, Lu, 2009). 

 

The availability of free cysteine within the cell is low, moreover this amino acid is 

very unstable and easily auto-oxidized extracellularly. Glutathione plays an 

important role as a source of cysteine through a process called the γ-glutamyl cycle 

(Lu, 2013). The γ-glutamyl cycle begins when GSH is transported outside of the cell. 

γ-Glutamyl transpeptidase (GGT) can degrade GSH to form γ-glu-amino acid and 

cys-gly dipeptide (Lu, 2013). The γ-glu-amino acid can be taken up by the cell and 

broken down to the amino acid 5-oxoproline, which is later converted to glutamate, 

at the expense of ATP, and can be used for GSH synthesis (Lu, 2013). Extracellular 

dipeptidase brakes down cysteinylglycine to generate cysteine and glycine, which 

are transported back in to the cell. Once inside the cell cysteine is mostly 

incorporated into GSH, proteins and degraded into sulfate and taurine (Lu, 2009) 

 

GSH levels increase during cell cycle progression when the cell leaves G0 phase of 

the cell cycle and enters G1 phase. When this increase was blocked DNA synthesis 

during S phase was reduced by 33% (Lu and Ge, 1992, Huang et al., 2001). 

Therefore GSH is required for normal cell cycle progression (Lu, 2013). The main 

role of GSH in DNA synthesis is through the maintenance of glutaredoxin or 

thioredoxin (not directly) in reduced state, these two enzymes are needed for the 

activity of the rate-limiting enzyme in DNA synthesis - ribonucleotide reductase 

(Sengupta and Holmgren, 2014). Moreover, as mentioned before, GSH can affect 

the activity of transcription factors and signalling molecules, many of which are 

important for cell cycle progression and cell death  (Lemasters, 2005, Lu, 2013). 
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Figure 1.4 Cellular functions of glutathione. GSH is synthesised in two ATP 

dependant steps by glutamate cysteine ligase (GCL), which conjugate cys and glu, 

resulting in γ-glu-cys. Gly is added to γ-glu-cys by glutathione synthase (GS), 

resulting in the formation of GSH. GSH can form mix disulfides with proteins (GSX) 

in a reaction catalysed by glutathione S-transferase (GST). GSX can be exported 

outside cell by a GSX transporter. GSH can help remove ROS and become oxidised 

in this process, a reaction catalysed by glutathione peroxidase (GPx). GSSG can 

be reduced back to GSH by glutathione reductase (GG). Both GSSG and GSH can 

be transported outside the cell where they can be break down to their amino acids 

precursors and imported back to cell. Adapted from Dickson and Forman, 2002 
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1.3 Glutathione and the redox status of cytosol 

 

Among many of GSH’s functions there is one often described as the main function 

of GSH, to maintain a given thiol/disulfide redox potential as cellular thiol “redox 

buffer” (Sies, 1999). The integrity of cellular components and the maintenance of 

the metabolic competence of the cell are dependent on maintaining a proper redox  

balance in the cytosol (Lopez-Mirabal and Winther, 2008).  

 

1.3.1 GSH / GSSG balance in the cytosol 

 

To keep reactive oxygen species (ROS) and glutathionylated proteins at very low 

levels the cytosol redox status is highly reduced by maintaining a high GSH to GSSG 

ratio (even as high as 3000:1) (Ostergaard et al., 2004). There are several enzymes 

in the cytosol that specialise in reactions involving GSH and GSSG, making sure 

the right balance between GSH and GSSG is maintained (Lopez-Mirabal and 

Winther, 2008). GSSG can be generated during the reduction of H2O2 a reaction 

catalysed by GPx (Figure 1.5) (Dickinson and Forman, 2002). Glutathione reductase 

(GR) is a FAD-bound homodimer responsible for reduction of GSSG to GSH in a 

NADPH-dependent manner, thus keeping GSSG at very low concentration (Figure 

1.5) (Massey and Williams, 1965). In in vitro experiments the 

thioredoxin/thioredoxin-reductase systems from some organisms, including 

humans, can also reduce GSSG (Kanzok et al., 2000). In some organisms like 

Schizosaccharomyces pombe deficiency in GR is lethal, while in humans it is a 

cause of congenital diseases (Roos et al., 1979). These finding highlight the 

importance of GR to maintain low level of GSSG (Lopez-Mirabal and Winther, 2008).  

 

A study by Morgan et al. (2013) showed that in S. cerevisiae the cytosolic 

GSH/GSSG homeostasis is independent on subcellular GSSG, levels and that 

GSSG which is not immediately reduced in the cytosol, is transported to vacuoles 

by ABC transporter Ycf1 (Morgan et al., 2013). The concentration of GSSG present 

in the cytosol is tightly regulated by Ycf1 even during severe oxidative stress 

(Morgan et al., 2013). Upon deletion of Ycf1, the cytosolic glutathione pool is 

resistant to chemical and genetic oxidative stress–induced perturbation (Morgan et 

al., 2013). 
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Figure 1.5 Reactions leading to oxidation and reduction of glutathione. By 

reduction of H2O2 glutathione peroxidase (GPx) can generate oxidised glutathione 

(GSSG). Glutathione reductase (GR) is responsible for reduction of GSSG to GSH 

in a NADPH-dependent manner. 
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1.3.2 Glutathione as an indicator of the cytosolic redox environment 

 

GSH is the main indicator of the cytosolic redox environment, mostly because of its 

abundance and the amount of enzymes catalysing redox reactions between 

glutathione and protein (Schafer and Buettner, 2001). The accurate measurement 

of the GSH redox potential, depending on GSH concentration and the ratio between 

GSH and GSSG, is often difficult, especially in different cellular compartments  

(Schafer and Buettner, 2001, Lopez-Mirabal and Winther, 2008). For many years 

the overall cytosolic GSH/GSSG ratio was seen as the overall cellular GSH/GSSG 

ratio measured after cell disruption.  The invention of redox sensitive Green 

Fluorescent Protein (roGFP) contributed significantly to the redox biology field as a 

whole, but also improved our understanding of cytosolic GSH redox potential 

(Dooley et al., 2004). The fluorescence properties of roGFP depend on the formation 

of disulfide bond between two genetically engineered cysteines, present on the 

surface of roGFP (Meyer and Dick, 2010b). roGFP equilibrates with the redox 

potential of the intracellular GSH/GSSG when is targeted to different cellular 

compartments, (Ostergaard et al., 2004, Van Lith et al., 2011, Hanson et al., 2004). 

The estimation of GSH redox potential using roGFP has been very efficient in many 

cell types and proved that cytosolic GSH redox potential is much lower than previous 

research suggested (Lopez-Mirabal and Winther, 2008). Because GSH can regulate 

cell growth and death, the GSH redox potential changes during these events 

(Lopez-Mirabal and Winther, 2008) 
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1.4 New role for GSH in the cytosol 

 

1.4.1 GSH in iron metabolism 

 

A genome-wide study of GSH presence at toxic levels as well as GSH depletion 

studies have been questioned the role of GSH as the major cytosolic buffer and 

pointed a new role for GSH related to iron metabolism (Kumar et al., 2011). By using 

yeast strain overexpressing HGT1, a high affinity GSH transporter present in yeast 

needed for GSH uptake from the extracellular medium, or a strain lacking γ-glutamyl 

cysteine synthetase (GSH1), a rate limiting enzyme needed for GSH synthesis, 

Kumar et al. (2011) showed that both, GSH depletion and toxic levels of GSH, 

resulted in extra-mitochondrial Fe-S enzyme inactivation and an intense iron 

starvation-like response without affecting thiol-redox metabolism (except high level 

of GSH that caused UPR in the ER) (Bourbouloux et al., 2000, Kumar et al., 2011).  

The importance of GSH in iron metabolism has been hinted at several times in the 

past (Kispal et al., 1997, Auchere et al., 2008, Sipos et al., 2002). Yeast response 

to GSH depletion had a genome-wide consequence and resulted not only in a major 

iron starvation-like response but also remodelled of most of the mitochondrial iron-

dependent pathways (Kumar et al., 2011). The effect of GSH depletion on iron–

sulfur cluster (ICS) was not improved by the addition of DTT, however, the addition 

of iron was able to partially correct the ISC defect (Sipos et al., 2002, Kumar et al., 

2011). This suggested that the conventional thiol-disulfide reductase activity of GSH 

may not be playing a role in iron metabolism (Kumar et al., 2011). The fact that the 

addition of iron improved the ISC defect, caused by GSH depletion, may imply that 

GSH plays a role in cytosolic iron delivery (Kumar et al., 2011). However, the iron 

phenotype of GSH depletion was recapitulated by toxic levels of GSH (Kumar et al., 

2011).  

 

1.4.2 GSH as an ancillary system for the thioredoxin pathway 

 

These results also questioned the role of GSH as the major cytosolic buffer and 

even suggested that GSH may not be needed for cytosolic thiol-redox maintenance 

(Kumar et al., 2011). GSH depletion does not cause proteome-wide thiol oxidation, 

furthermore, the genome-wide study of mRNA profiles revealed that GSH depletion 

does not cause redox imbalance (Kumar et al., 2011, Le Moan et al., 2006). These 

two results indicate that the cell is able to maintain thiol-redox balance regardless 
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of GSH levels (Kumar et al., 2011). This theory was further confirmed by the data 

showing that high levels of GSH only have an effect on the ER, causing reduction 

of protein disulfide isomerase (PDI) and Ero1 and leading to the UPR, but had no 

effect of redox status of the cytosol (Kumar et al., 2011). Addition of GSH did not 

help maintain a proper redox balance in cells with an inactivate thioredoxin pathway 

(Kumar et al., 2011). Even when GSH levels were increased 3-fold, it was not able 

to sustain a proper redox balance in cells lacking thioredoxin reductase and cell 

growth was still limited. These results were thought to be associated with aerobic 

metabolism, however, it was observed under both anaerobic and aerobic growth 

conditions (Kumar et al., 2011). When cells with an active thioredoxin pathway were 

depleted of GSH they were able to maintain redox balance without any protein 

compensatory increase. This means that GSH is not needed to maintain a proper 

redox balance and the thioredoxin pathway can maintain the redox balance of the 

cytosol on its own (Kumar et al., 2011). These results suggest that GSH may only 

be an ancillary system for the thioredoxin pathway (Kumar et al., 2011). 

 

1.4.3 Split role between iron metabolism and thiol-redox maintenance 

 

Both iron-metabolism and maintenance of thiol-redox balance are essential for the 

cell, therefore the fact that GSH is required for cell viability, could be connected to 

these functions (Kumar et al., 2011). However, proving that GSH does not play a 

major role in thiol-redox maintenance and serves only as backup of thioredoxin 

excludes this function of GSH as essential requirement for cell viability (Kumar et 

al., 2011). The results support the fact that the essential function of GSH may be 

related to iron-metabolism, as shown that GSH depletion causes intense iron 

starvation-like response leading to cell death (Kumar et al., 2011). Therefore, a new 

model of GSH role within the cell has emerged. GSH function is split between thiol-

redox control and iron metabolism, however only small amounts of GSH are 

required for proper function of iron metabolism while large amounts of GSH are 

needed as a backup for the role in thiol-redox maintenance (Figure 1.6). 
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Figure 1.6 GSH split role between iron metabolism and thiol-redox 

maintenance. Diagrammatic representation of GSH split role between iron 

metabolism (red) and thiol-redox maintenance (blue). Only small amount of GSH is 

needed for its function in iron metabolism, however this function is vital. GSH 

function as a backup for thioredoxin in thiol-redox control and much higher amounts 

of GSH are needed to fulfil this function. Adapted from Kumar et al., 2011. 
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1.4 The ER and the redox status of the ER  

 

Besides being present in the cytosol GSH is also present in all organelles with GSH 

predominantly existing in its reduced form (Forman et al., 2009). However, in the 

endoplasmic reticulum (ER) the redox environment is more oxidising as the 

GSH/GSSG ratio is considered to be lower, around 3:1 (Hwang et al., 1992).  

 

The ER is a membrane enclosed organelle specialised in folding of the proteins 

destined for the secretory pathway (Braakman and Bulleid, 2011). The ER 

membrane is an impermeable barrier for most proteins and ions, with the exception 

of small molecules that can diffuse across the lipid bilayer (Le Gall et al., 2004). The 

ER contains set of unique proteins specialised in disulfide exchange reactions 

(Bulleid and Ellgaard, 2011).  

 

1.4.1 Overview of redox reactions in the ER 

 

Redox reactions are important for maintaining the oxidising environment of the ER. 

In the ER, the formation of new disulfide bonds in nascent polypeptide is catalysed 

by members of protein disulfide isomerase (PDI), the same proteins are involved in 

isomerisation of non-native disulfides formed during protein folding (Bulleid and 

Ellgaard, 2011). ER oxidoreductin (Ero1) directly oxidises PDIs after they become 

reduced in the process of introducing disulfides to newly formed proteins (Sevier 

and Kaiser, 2006). Oxygen is the final electron acceptor in these electron transfer 

reactions (Tu and Weissman, 2002). GSH makes sure that members of PDI family 

are maintained in their reduced states, ready for another cycle of disulfide exchange, 

and becomes oxidised in the process (Figure 1.7) (Chakravarthi et al., 2006). 

Because the ER lacks the enzymes specialising in reduction of GSSG (namely the 

glutathione reductase system), it is unclear how GSSG is recycled back to GSH 

(Appenzeller-Herzog, 2011). GSSG could be secreted from the ER through the 

secretory pathway, transported to cytosol where it can be reduced by GR or simply 

reduced within the ER (Appenzeller-Herzog, 2011). The inability to reduce GSSG to 

GSH could explain the high concentration of GSSG in the ER. However, it is still 

unknown if this is the only mechanism maintaining the oxidising environment of the 

ER. 
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The low GSH/GSSG ratio in the ER may function to facilitate disulfide bond 

formation in newly synthesised proteins thus playing an important role in protein 

folding. However, before discussing oxidative protein folding and the disulfide 

exchange reactions taking place in the ER in detail, it is important to introduce the 

general principles governing protein folding.  

 

 

 

 

 

 

 

Figure 1.7 Overview of redox reactions in the ER. Nascent polypeptide chain 

enters the ER through Sec61. Protein disulfide isomerase (PDI) can introduce 

disulfide bonds into nascent polypeptide chains and becomes reduced in the 

process. PDI can be oxidised by Ero1 or possibly directly by GSSG. Reduced PDI 

can help isomerase non-native disulfide bonds. GSH keeps PDI reduced, becoming 

oxidised in the process. Adapted from Chakravarthi et al., 2006 
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1.6 Protein folding and the disulfide exchange reactions in the ER 

 

1.7.1 Principles of protein folding 

 

“The folding of proteins into their native three-dimensional structures is the most 

fundamental and universal example of biological self-assembly” (Dobson, 2003). 

Only the correctly folded proteins are able to fulfil their biological functions, are able 

to interact selectively with their natural partners and have long-term stability in 

crowded biological environments (Dobson, 2003). Achieving native structure allows 

proteins to enter the most energy favourable state, under these conditions proteins 

are thermodynamically stable under physiological conditions (Dobson, 2003). To 

fold correctly the polypeptide chain tries to find native interactions between amino 

acids residues by a process of trial and error, native interactions are more persistent 

and stable than non-native interactions, this allows the polypeptide chain to enter its 

lowest-energy state step by step (Dobson, 2003). In vivo experiments and computer 

simulations revealed that this process is very fast and some of proteins structures 

can be folded very rapidly, 1 ms for individual β-turns and less than 100 ns in the 

case of α-helices (Eaton et al., 1998). In vitro folding of simple small helical proteins 

is achieved in less than 50 ms (Mayor et al., 2003). However, there are some 

examples of proteins whose most stable conformation is different from the native 

fold, for instance prions (Si, 2015). Folding of proteins in cells differs greatly from 

protein folding in vitro. Experiments on in vitro protein folding take places in highly 

regulated, diluted, cold environments using small and simple proteins (Braakman 

and Bulleid, 2011). On the other hands proteins folded in cells are exposed to 

crowded and warm environment, these proteins are usually large and contain 

multiple domains (Braakman and Bulleid, 2011). In the test tube folding of proteins 

starts with the complete protein, while in cell proteins are synthesised on ribosomes 

and folding is often co-translational  (Braakman and Bulleid, 2011, Hardesty and 

Kramer, 2001). Nascent polypeptide chains are exposed to solvents and are prone 

to interactions with other molecules present inside the crowded environment of the 

cell (Ellis, 2001). Proteins within the cell often fold in different cellular compartments, 

for example the endoplasmic reticulum (ER) or mitochondria, depending on their 

role (Dobson, 2003).  
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1.7.1 Protein Disulfide Isomerase 

 
The ER is an organelle in which the folding of many secreted proteins takes place. 

The stability of proteins entering the secretory pathway often depends on the 

formation of disulfide bonds which affect protein folding and function (Tu and 

Weissman, 2004). Disulfide bonds stabilise protein structure by decreasing the 

conformational energy of the denatured state of nascent polypeptide chain (Collet 

and Bardwell, 2005). In his famous experiment on refolding of ribonuclease A, 

Anfinsen provided evidence that in favourable conditions disulfide bond formation is 

s spontaneous process (Anfinsen et al., 1961). However, this process required an 

electron acceptor and was very slow when compared to high rate of protein folding 

and secretion in vivo. These results suggested that the process of disulfide bond 

formation might be catalysed by a specialised set of proteins. A few years later this 

theory was confirmed by the discovery of PDI by Goldberger (Goldberger et al., 

1963).  

 

PDI family members are involved in both formation of new disulfide bonds as well 

as isomerisation of non-native disulfide bonds (Figure 1.8) (Hatahet and Ruddock, 

2009). Each member of PDI family contain at least one thioredoxin domain and a 

CXXC motif at the active sites that shuttles between the dithiol and disulfide states 

(Hatahet and Ruddock, 2009). 
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Figure 1.8 Schematic representation of disulfide formation and isomerisation 

by PDI. Oxidised PDI can transfer disulfides into nascent proteins, becoming 

reduced in the process. Reduced PDI is able to isomerase non-native disulfides 

present in misfolded proteins, thus helping proteins achieve their native 

conformation. Adapted from Perri et al., 2016 
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1.7.2 Ero1 Pathway 

 

Ero1 is key player in the ER involved in disulfide exchange reactions. Ero1 oxidises 

PDIs family members directly, rather than through small molecules such as GSH, 

making sure they are ready for another round of disulfide formation (Figure 1.9) 

(Sevier and Kaiser, 2006). As a consequences of oxidation of PDI by Ero1, H2O2 is 

created, which is later used in the peroxiredoxin-dependent pathway (Gross et al., 

2006). Ero1 is essential for disulfide bond formation in yeast but not in higher 

eukaryotes (Frand and Kaiser, 1998, Bulleid and Ellgaard, 2011). Mice and humans 

have two Ero1 paralogs, Ero1α and Ero1β (Pagani et al., 2000, Cabibbo et al., 

2000). Ero1β is expressed in insulin producing cells located in the pancreas, 

therefore it was not surprising that the knockout of Ero1β in mice resulted in a defect 

in the folding of proinsulin (Zito et al., 2010). However, the double knockout of both 

Ero1α and Ero1β did not result in a more severe phenotype (Zito et al., 2010). These 

results suggested that there must be an Ero1 independent pathway involved in 

disulfide bond formation in mammals (Bulleid and Ellgaard, 2011). To date four Ero1 

independent pathways have been identified, each is named after the key enzyme: 

peroxiredoxin 4 (PRX4), glutathione peroxidase (GPX7 and GPX8), quiescin 

sulfhydryl oxidase (QSOX) and vitamin K epoxide reductase (VKOR) (Bulleid and 

Ellgaard, 2011).  
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Figure 1.9 Oxidative folding in the ER. Oxidised PDI can transfer disulfides into 

substrate proteins, becoming reduced in the process. Ero1 can transfer disulfide 

into reduced PDI and become oxidised again generating ROS in the process. 

Adapted from Pandol et al., 2011 
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1.7.3 PRX4 pathway 

 

As a consequence of oxidising PDI by Ero1 H2O2 is created. The removal of this 

ROS by PRX4 resulted in the formation of disulfide bonds (Bulleid and Ellgaard, 

2011). PRX4 belongs to peroxiredoxin family, a group anti-oxidising enzymes 

metabolising H2O2. The role of PRX4 in disulfide bond formation was confirmed by 

in vivo and in vitro studies (Tavender et al., 2010, Zito et al., 2010b). PRX4 disulfide 

bond formation starts with the active-site cysteine, which becomes oxidised to 

sulfenic acid; after that the sulfenylated cysteine reacts with a second cysteine, 

present in an adjacent polypeptide, as a result an interchain disulfide bond is formed 

(Figure 1.10) (Bulleid and Ellgaard, 2011). Any protein with a thioredoxin-domain 

can now exchange a disulfide with PRX4. In the ER PRX4 exists as a decamer and 

is active in both disulfide bond formation and H2O2 removal (Tavender et al., 2010).  

 

 

 

 

Figure 1.10 PRX4 mechanism of action. Peroxidatic cysteine (per) which 

becomes oxidised to sulfenic acid, after that the sulfenylated cysteine (SOH) reacts 

with a resolving cysteine (res), present in an adjacent polypeptide, as a result an 

interchain disulfide bond is formed. PRX4 can then oxidise PDI. Adapted from 

Bulleid and Ellgaard, 2011. 
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1.7.4 VKOR pathway 

 

Vitamin K 2,3-epoxide reductase (VKOR) is a warfarin-sensitive transmembrane 

enzyme involved in the vitamin K cycle. VKOR contains a thioredoxin-like CXXC 

domain that can reduce vitamin K1 2,3-epoxide to generate vitamin K hydroquinone 

(Wajih et al., 2007). Once vitamin K1 2,3-epoxide is reduced, a disulfide bond is 

formed within the CXXC motif of VKOR (Wajih et al., 2007). Therefore, VKOR is 

another potential enzyme for Ero1-independent pathway involved in disulfide 

formation. The role of disulfide bonds formation by VKOR is still unclear, however, 

VKOR has been trapped in a mixed-disulfide complex with some PDI family 

members (Schulman et al., 2010). Moreover inhibition of VKOR activity in Ero1 and 

PRX4 double knockout hepatoma cells was lethal (Rutkevich and Williams, 2012). 

This result suggests that in hepatoma cells there is no other ER oxidative pathway 

sufficient to support essential cell functions (Rutkevich and Williams, 2012). The role 

of VKOR in disulfide bonds formation is shown in figure 1.11. 

 

 

 

 

 

 

Figure 1.11 Proposed VKOR role in disulfide bond formation. VKOR similar to 

Ero1 and PRX4 can oxidise PDI family members. The disulfide comes from the 

reduction of vitamin K. Adapted from Rutkevich and Williams 2012. 
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1.7.5 GPX7 and GPX8 pathway 

 

GPX7 and GPX8 are enzymes capable of reducing H2O2 in the ER. These 

homologous enzymes belong to the family of thioredoxin GPX like peroxidases 

(Toppo et al., 2008). GPX7 and GPX8 are PDI peroxidases, by reducing H2O2 they 

are able to oxidise some of PDI family members (Nguyen et al., 2011). Apparently 

GSH is rather a poor substrate for peroxide-mediated oxidation by GPX7 and GPX8, 

however, in the presence of GPXs some PDI family members are easily oxidised 

(Nguyen et al., 2011). The importance of GPX7 and GPX8 in redox reactions was 

confirmed by bimolecular fluorescence complementation, in which a physical 

association between Ero1α and both GPX7 and GPX8 was observed in cells 

(Nguyen et al., 2011). Other evidence for GPX7 and GPX8 involvement in disulfide 

formation comes from measuring the in vitro rate of oxygen consumption by Ero1α. 

After the addition of GPX7 the rate of oxygen consumption by Ero1α (as a measure 

of PDI oxidation) increased. This indicates that oxygen consumption by Ero1α is 

more efficient in the presence of GPX7 (Nguyen et al., 2011). 

 

1.7.6 QSOX pathway 

 

While searching for other alternative pathways that could compensate for the lack 

of Ero1 in yeast, Erv2p a sulfhydryl oxidase was discovered (Sevier et al., 2001). 

Erv2p is related to mammalian QSOX whose physiological role is still not clear, 

however, it is known that QSOX can transfer disulfides into proteins in vitro (Kodali 

and Thorpe, 2010). QSOX shares some similarities with Ero1, both are flavoproteins 

able to catalyse de novo disulfide formation producing H2O2 (Kodali and Thorpe, 

2010b). In contrast to Ero1, QSOX can introduce disulfides to a broad range of 

substrates other than PDI, however, the formation of native disulfide bonds in 

proteins is greatly improved in the presence of PDI (Rancy and Thorpe, 2008). This 

might be due the fact that QSOX is not able to isomerise non-native disulfides 

(Rancy and Thorpe, 2008). Mammalian QSOX has a sulfydryl oxidase module 

composed of Erv domain harbouring the oxidase activity and oxidoreductase 

module composed of two thioredoxin domains (Figure 1.12) (Limor-Waisberg et al., 

2013).  
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Figure 1.12 Schematic representation of QSOX. QSOX contains a sulfydryl 

oxidase module composed of Erv domain harbouring the oxidase activity and 

oxidoreductase module composed of two thioredoxin domains. Trx1 domain 

accepts electrons from thiol substrate and transfer it to Erv domain of the sulfydryl 

oxidase module and then to FAD cofactor. Electrons can be then transferred to 

oxygen or passed to PDI. Adapted from Limor-Waisberg et al., 2013 
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1.8 Glutathione in the ER 

 
 
It has been proven that in the ER the ratio of GSH:GSSH is lower than elsewhere in 

the cell, around 3:1 (Hwang et al., 1992). The fact that this GSH:GSSG ratio in the 

ER is optimal for disulfide-bond formation indicates the importance of GSH for this 

process (Lyles and Gilbert, 1991). However, for a long time the exact role of GSH 

in the disulfide bond formation was unclear. Until the discovery of Ero1 it was 

believed that the primary role of GSSG was to oxidise PDI. It was found that the 

production of GSSG is an indirect consequence of Ero1 activity. Only recently have 

new roles for GSH in the ER emerged (Cuozzo and Kaiser, 1999, Molteni et al., 

2004).   

 

1.8.1 Role of glutathione in the ER 
 
Although the GSH:GSSG ratio in the secretory pathway is low, the overall GSH 

buffer system is still reducing (Cuozzo and Kaiser, 1999). It was observed in yeast 

that if cellular levels of GSH are decreased, the growth of the ero1 depleted strain 

can be restored (Cuozzo and Kaiser, 1999). The activity of Ero1 is also 

counterbalanced by GSH in mammalian cells clearly suggesting that the generation 

of GSSG is an indirect consequence of Ero1 activity (Cuozzo and Kaiser, 1999). 

The reducing environment provided by GSH is important in keeping PDI family 

members partially reduced (Chakravarthi et al., 2006, Jessop and Bulleid, 2004). 

This is important for preventing formation of non-native disulfide by facilitating 

substrate reduction (Chakravarthi et al., 2006, Jessop and Bulleid, 2004). Cells 

treated with the reducing agent dithiothreitol (DTT) rapidly re-established the normal 

cellular GSH:GSSG ratio (Appenzeller-Herzog et al., 2010). Moreover, after treating 

cells overexpressing Ero1 with DTT the six-fold excess of GSSG in the ER was 

quickly restored to normal cellular levels after the washout of the reducing agent 

(Appenzeller-Herzog et al., 2010). These data indicate that maintaining the cellular 

level of GSH is important, also the GSH:GSSG ratio in the ER must be tightly 

balanced. 

 

The mentioned results highlight two central features of ER redox control. Because 

of the high total GSH concentration in the ER (in millimolar range) GSH is able to 

provide an excellent buffering capacity against reductive and oxidative stress 
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(Appenzeller-Herzog et al., 2010). In addition to free GSH, glutathionylated proteins 

in the ER also constitute a major cellular pool for buffering oxidative stress (Hansen 

et al., 2009). However, more research needs to be done in order to precisely quantify 

the amount of glutathionylated proteins in the ER as well as their role. It has been 

shown that feedback regulation of Ero1 activity is an important factor in ER redox 

control. In fact, the activity of all forms of Ero1 is shut down in response to 

hyperoxidation, this is due to the presence of regulatory disulfides (Bulleid and 

Ellgaard, 2011). In the case of Ero1α the regulatory disulfide is formed depending 

on the redox state of PDI (Appenzeller-Herzog et al., 2008). When reduced PDI is 

abundant and Ero1α is active, however, if the levels of oxidised PDI are high Ero1α 

becomes inactivated (Appenzeller-Herzog et al., 2010). Using this mechanism PDI 

“informs” Ero1 about the redox status of the ER to ensure that Ero1 does not 

generate disulfides and H2O2 unless it is necessary (Appenzeller-Herzog et al., 

2010). The reason why PDI can sense the ER redox state is most likely the fact that 

PDI reacts very rapidly with both GSH and GSSG, this feature is probably shared 

by most PDI family members (Lappi and Ruddock, 2011). Moreover, the reaction 

between PDI and GSSG is much faster than between GSSG and any other reduced 

substrate (Karala et al., 2009a). Interestingly GSH is not the first choice substrate 

for  all the enzymes described in section 1.6, instead they prefer interaction with PDI 

family members (Karala et al., 2009b). The general conclusion is that all the 

enzymes described in section 1.6 are generating oxidizing equivalents which are 

passed on to PDI family members. The PDI then oxidise substrate proteins or – in 

a competing reaction – GSH (Bulleid and Ellgaard, 2011).  

 

1.8.2 Maintenance of GSH:GSSG ratio inside the ER 

 

There is one important question related to GSH in the ER. How is the GSH:GSSG 

ratio maintained and regulated inside the ER? It was shown that microsomes 

derived from the ER can import GSH, however, this is not the case for GSSG, 

suggesting that GSSG may not be transported to the cytosol at substantial levels 

(Banhegyi et al., 1999). GSSG was found to exit the ER through vesicular transport 

but this mechanism of efflux did not prove to be effective in restoring the ER GSH 

homeostasis when cells were treated with reducing agent (Appenzeller-Herzog et 

al., 2010). Adding the fact that microsomes lack reductase activity gives rise to the 

question of how GSSG generated in the ER is removed to prevent the ER from 
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hyperoxidation. (Bulleid and Ellgaard, 2011). Perhaps importing GSH together with 

other reducing equivalents, such as free sulfydryl groups on newly synthesized 

proteins from the cytosol is the key factor preventing hyperoxidation of the ER. 

However, when this hypothesis was tested by inhibiting protein translation and 

decreasing cellular GSH levels, the distribution of oxidized and reduced PDI proteins 

did not change (Appenzeller-Herzog et al., 2010). Therefore, the most logical 

explanation of how the ER redox homeostasis is restored after oxidative stress and 

how GSSG is removed from the ER is that GSSG reacts with substrate proteins or 

PDI family members (Bulleid and Ellgaard, 2011). This clearly indicates the 

importance of GSSG in oxidative protein folding, as high reaction rate of GSSG with 

PDI shows that GSSG is not just a by-product of redox reactions that needs to be 

removed from the ER (Bulleid and Ellgaard, 2011). 
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1.9 Glutathione transporters 

 

GSH is synthesised in the cytoplasm and functions as a cellular redox buffer. GSH 

is also present in most organelles within the cell, including mitochondria, nucleus, 

chloroplast (in plants), and the ER. GSH is also present in vacuoles and extracellular 

milieu. Cells have the ability to uptake GSH from extracellular environment  as well 

as exporting GSH outside the cell (Bachhawat et al., 2013). The total GSH 

concentration and GSH:GSSG ratio is different in each organelle, suggesting that  

the transport and homeostasis inside each organelle must be regulated. Although 

we have been aware of the requirement for GSH transporters, to date very few have 

been identified, and these have been mostly found in yeasts (Figure 1.13).  

 

 

 

 

 

Figure 1.13 Diagrammatic representation of Saccharomyces cerevisiae with 

indicated GSH transporters. Adopted from Bachhawat et al. (2013) 
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1.9.1 Glutathione efflux 

 
Multidrug resistance-associated protein (MRP), a member of a subclass of the ATP-

Binding Cassette (ABC) transporter superfamily, was the first GSH transporter 

identified in the yeast Saccharomyces cerevisiae. MRP is involved in GSH efflux 

from the vacuole in yeast, however, MRP was also identified as being responsible 

for GSH efflux at the plasma membrane in mammalian cells (Rebbeor et al., 1998b). 

There are nine MRP family members in humans, MRP1 to MRP9, all of them are 

plasma membrane localised and use ATP hydrolysis for pumping substrates out of 

the cell (Bachhawat et al., 2013). MRP is a multi-specific organic anion transporter 

and as the name suggests, MRP’s main role is in multidrug resistance. The progress 

in our understanding of the role of MRP in GSH efflux had been slow and has 

encountered many technical difficulties such as the presence of multiple 

transporters in the plasma membrane that interfere with the studies, the lack of 

suitable inhibitors and the inherent technical difficulties in studying efflux 

(Bachhawat et al., 2013). Despite the difficulties, over the years evidence had 

confirmed that MRP is indeed involved in GSH efflux, but has low affinity for GSH 

and primarily transport GSH conjugates rather than GSH itself (Bachhawat et al., 

2013). The strongest evidence for a role of MRP family in GSH efflux in mammalian 

cells comes from the overexpression of MRP1, which correlates with an increased 

efflux of GSH (Zaman et al., 1995, Lautier et al., 1996). Overexpression of MRP2 

lead to a similar effect but in addition to secreting more GSH, the level of intracellular 

GSH levels were lower when compared to cells which did not overexpress MRP2 

(Rebbeor et al., 2002). The yeast cadmium factor 1 (Ycf1p), yeast orthologue of 

mammalian MRP1, confirmed the role of MRP in GSH transport in experiments 

measuring the uptake of radiolabelled GSH by vacuolar membrane vesicles 

expressing Ycf1p (Rebbeor et al., 1998b). Later these results were validated by 

MRP1 reconstitution in proteoliposomes, ultimately proving MRP’s role in GSH 

transport (Mao et al., 2000). Unfortunately, the mechanism of GSH efflux by MRP 

is not well understood and there are at least four different suggested mechanisms 

of GSH transport by MRP. These mechanisms include GSH transport being 

enhanced by certain compounds that are not themselves substrates for MRP1, GSH 

being required for the cotransport of certain MRP1 substrates, GSH stimulating the 

transport of certain compounds by MRP1 but is not translocated across the 

membrane itself and GSH acting as a direct low-affinity substrate for MRP1 

(Ballatori et al., 2005, Bachhawat et al., 2013).  
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There are other examples of mammalian transporters responsible for GSH efflux, 

however, they are less well characterised than MRP. These include ATP-binding 

cassette sub-family G member 2 (ABCG2) belonging to the ABCG subfamily of ATP-

binding cassette (ABC) transporters. ABCG2 protects cells against chemical 

damage similar to MRP. First evidences of ABCG2 involvement in GHS transport 

came from the observation that extracellular levels of GSH increased in an ABCG2-

dependent manner when treated with 2-5-dihydroxychalcone (2-5-DHC), the results 

were validated by inhibiting the transport of MTX, a known ABCG2 substrate 

(Bachhawat et al., 2013). These results suggest that there is a competition between 

MTX and GSH for export through ABCG2 (Bachhawat et al., 2013). A further 

confirmation of a role for ABCG2 in GSH efflux came from experiments in yeast. 

Overexpression of ABCG2 in S. cerevisiae lead to a 2.5-fold increase of extracellular 

GSH. Moreover, this effect was inhibited by MTX (Bachhawat et al., 2013). 

Decrease of extracellular levels of GSH was observed in mammalian cells after 

shRNA silencing of ABCG2 mRNA (Brechbuhl et al., 2010). 

 
There has been evidence that gap junctions, channels between two adjacent cells, 

are able to release GSH from cultured rat astrocytes (Ranat and Dringen, 2007). 

Each gap junction channel is made up of hemi-channels, which are made up of 6 

connexin proteins. The role of gap junctions is to control the passage of molecules 

smaller than 1 kDa in size (Stout et al., 2002). The role of gap junctions in GSH 

transport has been validated by inhibiting the transport either by specific hemi-

channel blockers or by an increase of calcium concentration in the media 

(Bachhawat et al., 2013).  

 
The OATP (SLCO1A2 — solute carrier organic anion transporter family, member 

1A2) belongs to family of transporters functioning independently of ATP and sodium 

gradients (Hagenbuch and Meier, 2003). A role for OATP in GSH transport has been 

demonstrated in X. laevis oocytes, however, there are many independent studies 

questioning these results (Li et al., 1998, Mahagita et al., 2007). 

 
Initial investigation of GSH uptake in S. cerevisiae implied there must be a 

mechanism responsible for transporting GSH into the cytoplasm (Miyake et al., 

1998). The following studies identified Hgt1p as the first high affinity GSH 

transporter needed for GSH uptake from the extracellular medium (Bourbouloux et 

al., 2000). Knockout of the yeast gene encoding Hgt1p resulted in the inability to 
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uptake radiolabelled GSH from the medium (Bourbouloux et al., 2000) Hgt1p 

belongs to the oligopeptide transporter family (OPT), it was thought that OTP are 

only able to transport short oligopeptides, 4 to 8 amino acids in length (Bachhawat 

et al., 2013). The simultaneous discovery, by a different group, that Hgt1p also 

transports some oligopeptides, including leu-enkephalin (Tyr–Gly–Gly–Phe–Leu) 

and met-enkephalin (Tyr–Gly–Gly–Phe–Met), led to confusion and to question the 

true nature of Hgt1p as high affinity GSH transporter (Hauser et al., 2000). However 

further research confirmed that the main role of Hgt1p is in fact GSH transport 

(Srikanth et al., 2005, Osawa et al., 2006, Miyake et al., 2002). It was not possible 

to inhibit Hgt1p mediated transport of GSH by competition with amino acids or other 

tripeptides, however the uptake was sensitive to inhibition by GSSG and GSH 

conjugates, implying these are also substrates for Hgt1p (Bourbouloux et al., 2000). 

Unfortunately, there is no Hgt1p homologue in higher eukaryotes (Bachhawat et al., 

2013). 

 

1.9.2 Glutathione uptake from the extracellular environment 

 

It has been established that in order to maintain intracellular and interorgan GSH 

homeostasis mammalian cells require GSH transport across the plasma membrane 

(Bachhawat et al., 2013). For many years the uptake of the GSH molecule into the 

cell had been debated, despite the fact that transport of GSH into the cytoplasm was 

proposed as early as 1979 (Griffith and Meister, 1979, Lash, 2005). Nowadays there 

are several pieces of evidence supporting two main mechanisms of glutathione 

uptake into the mammalian cells (Bachhawat et al., 2013).  

 

There is evidence for both Na+ dependent and Na+ independent GSH transport in 

different tissues, including brain cells, small intestine, and renal basolateral 

membrane (Iantomasi et al., 1997, Lash and Jones, 1984, Kannan et al., 1999). 

Inhibition of γ-glutamyl transpeptidase (γ-GT) by the irreversible inhibitor acivicin did 

not block GSH uptake, suggesting there is a transporter able to take up intact GSH 

(Lash and Jones, 1983, Bachhawat et al., 2013). Studies on renal basolateral 

membrane using various substrates and inhibitors of known GSH transporters 

helped identify three putative GST transporters responsible for GSH uptake 

(Bachhawat et al., 2013). Two of these transporters are sodium independent renal 

organic anion transport (OAT) systems, OAT1 (Gene name SLC22A6 — solute 

carrier family 22 (organic anion transporter), member 6 and OAT3 (Gene name 
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SLC22A8 — solute carrier family 22 (organic anion transporter), member 8. In 

addition sodium-dependent dicarboxylate carriers (NaC3 or SDCT-2, Gene name 

SLC13A3 — solute carrier family 13 (sodium-dependent dicarboxylate transporter), 

member 3 has been implicated in GSH uptake across the renal basolateral (Lash, 

2005, Lash and Putt, 1999). Reconstitution of OAT3 into proteoliposomes also 

showed GSH transport (Bachhawat et al., 2013).  

 

By extracellular degradation and uptake of its constitutive amino acids (glutamate, 

cysteine and glycine), GSH can be transported indirectly into the cytoplasm 

(Bachhawat et al., 2013). Extracellular degradation of GSH is catalysed by γ-GT 

which breaks down GSH into cys-gly dipeptide and glutamate (Bachhawat et al., 

2013). These GSH precursors are then transported back into the cell where GSH is 

resynthesised (Bachhawat et al., 2013). This model of indirect GSH transport is 

presumed to operate in all mammalians cells. The facts that inhibition of γ-GT 

activity, or its inactivation due to genetic disorder, resulted in glutathionuria, a high 

level of GSH in the urine, only confirms the role of γ-GT in indirect GSH transport 

(Griffith and Meister, 1979, Njalssson and Norgren, 2005) 

 

1.9.3 Glutathione transport in organelles 

 
 
GSH is present in the nucleus where it plays an important role in the cell cycle, in 

cell proliferation and redox signalling (Markovic et al., 2007). Small molecules and 

ions are allowed to diffuse through the nuclear pore complex, therefore it was 

assumed that GSH can also enter the nucleus by diffusion (Bachhawat et al., 2013). 

Some evidence suggests ATP dependent GSH transport into the nucleus by 

antiapoptotic factor Bcl-2, which forms a pore-like structure (Voehringer et al., 1998). 

However the role of Bcl-2 in GSH transport has not been clearly established 

(Voehringer et al., 1998). 

 

GSH in the mitochondria constitutes around 10-15% of total cellular GSH.  In the 

mitochondrial inner membrane several transporters had been characterised as 

capable of transporting GSH,  dicarboxylate carriers (DCC or DIC, gene name 

SLC25A10 — solute carrier family 25 (mitochondrial carrier; dicarboxylate 

transporter), member 10) and 2-oxoglutarate carriers (OGC, gene name SLC25A11 

— solute carrier family 25 (mitochondrial carrier; oxoglutarate carrier), member 11) 
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(Bachhawat et al., 2013). The role of these transporters in GSH transport has been 

established by reconstitution in proteoliposomes (Chen et al., 2000). It is assumed 

that the presence of porins in the outer mitochondrial membrane allows GSH to 

diffuse through the outer membrane (Bachhawat et al., 2013). The evidence 

supporting this theory comes from observations that the level of GSH in the 

mitochondrial matrix did not change after disruption of the integrity of the outer 

mitochondrial membrane, also implying that the influx into the mitochondrial matrix 

is not limited by the rate of GSH transport across the outer membrane (Bachhawat 

et al., 2013). However, no significant decrease of GSH transport was observed after 

disruption of pore forming proteins, suggesting there may be other GSH transporters 

present (Cummings et al., 2000).  

 

Because of low GSH:GSSG ratio in the ER it was suggested that only GSSG is 

selectively transported across the ER membrane (Hwang et al., 1992). Although, 

later studies suggested that GSH is the preferred substrate for transport into the ER, 

GSSG is also transported into the ER at slower rate (Banhegyi et al., 1999). Some 

evidence suggests that the ryanodine receptor, RyR1 (ryanodine receptor calcium 

channel type 1) may play an important role in GSH transport into the ER or 

sarcoplasmic reticulum (SR) of skeletal muscles (Csala et al., 2001). Microsomes 

prepared from a HEK-293 cell line transfected with RyR1 showed an increase of 

GSH transport when compared to microsomes prepared from a non-transfected 

HEK-293 cell line, suggesting that RyR1 may have a role in GSH transport. RyR1 

contains a high number of cysteine residues and some studies argue that the 

increase of GSH transport might be in fact a consequence of S-glutathionylation 

(Bachhawat et al., 2013). The fact that the kinetics of GSH transport across SR 

membrane is different than the transport across the ER membrane in liver cells is 

also controversial (Bachhawat et al., 2013). 

 
 

 

 

 

 

 

 



34 
 

1.10 Summary 

 

Despite over 125 years since the initial discovery of GSH, there are still many things 

unknown related to this tripeptide, especially its transport. Some of GSH functions 

were only mentioned briefly in this introduction. The main function of GSH is 

however, considered to be a cellular thiol “redox buffer” used to maintain a required 

level of thiol/disulfide redox potential. In the ER GSH plays a central role in 

maintaining the ER redox homeostasis. GSH equilibrates with PDI to provide 

feedback and to regulate Ero1. This system prevents the generation of disulfide 

when unnecessary, therefore preventing hyper oxidation.  

 

GSH is also essential for correct protein folding. Protein folding is a complicated 

process, therefore it is not surprising that it is prone to errors. Misfolded proteins 

result in a wide variety of pathological conditions. Some of diseases related to 

protein misfolding result from proteins not being able to fulfil their proper biological 

function, for example cystic fibrosis (Dobson, 2003). These diseases are often 

caused by genetic mutations and are referred to as familial disorders. Because 

proteins will always try to find their most energetically favourable state some 

proteins will achieve it by aggregation. These proteins usually escape all the quality 

control mechanisms ensuring correct folding. As more and more aggregates 

accumulate within the cell, or extracellular space, the disease progresses. Type II 

diabetes, Alzheimer’s disease, Parkinson’s disease and the spongiform 

encephalopathies are the most common disease caused by the aggregation of 

misfolded proteins. There are some known proteins able to transport GSH across 

the plasma membrane, but few known transporters are able to transport GSH to 

other organelles.  

 

1.10.1 Aims of the project 

 

In this project, we tried to develop an assay suitable for measuring the transport of 

GSH into the ER, using microsomes prepared from a cell line expressing the ER 

localised roGFP. roGFP is a powerful tool used in redox biology, by localising roGFP 

into a specific cellular compartments it is possible to understand the differences in 

redox potential in different parts of the cell. However, in our assay roGFP is used as 

an indirect indicator of GSH transport across the microsomal membrane. A more 
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quantitative assay relying on GSH conjugation to different substrates by glutathione 

S-transferase (GST) was also developed. These two assays complement each 

other and help understand GSH transport across the microsomal membrane in 

different ways. The ultimate aim of the project was to identify the ER glutathione 

transporter(s). Although this can potentially be achieved by several methods we 

presumed there must be a direct interaction between GSH and the transporter, thus 

by exploit this interaction we may be able to separate the transporter from other 

proteins present in the ER membrane.  

 

1.10.2 Impact of the project 

 

This project will contribute to expanding our knowledge in several fields, including 

protein folding. Secreted proteins contain disulfide bonds, which are essential for 

protein stability. However, the knowledge of how correct disulfides are formed, and 

incorrect disulfides are removed, is still limited. In the last decade, many proteins 

contributing to disulfide bond formation and non-native bond isomerisation were 

described. GSH plays an important role in disulfide bond formation, therefore by 

understanding how GSH is transported into the ER it might be possible to 

understand more about how disulfides are formed and proteins are folded. 

 

The redox homeostasis within the cell and other organelles, including the ER is 

tightly regulated, however this process, especially in the ER, is still not clearly 

understood. When the redox homeostasis in the ER is disrupted it has strong impact 

for all the functions of the ER. Disruption of the transport of GSH into the ER maybe 

the main cause of redox imbalance in the ER. By knowing more about GSH transport 

it might be possible to understand more about how redox homeostasis is maintained 

within the ER. 

 

The molecular identity of many GSH transporters is still not known. There are also 

many ambiguities related to the known GSH transporters. Therefore, identifying the 

first ER GSH transporters would have an enormous impact on the entire field. More 

over by knowing more about the ER GSH transporter it might be possible to 

stimulate it in a way that would accelerate GSH transport, possibly having a 

beneficial effect on disulfide bonds formation, possibly mitigating effects of some 

diseases related to misfolded protein.  
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Chapter 2 
Materials and methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

2.1 Cell culture 

 

All cells were propagated in Dulbecco's Modified Eagle Medium (ThermoFisher, cat. 

No. 21969035) supplemented with 10% (v/v) fetal bovine serum, 50 U/ml of 

penicillin, 50 µg/ml streptomycin and 2 mM L-glutamine until confluent at 37°C under 

5% CO2. Cells were cultured in 75 cm2 flasks and split 1:10 when they became 

confluent. Before the passage cells were washed with 1X PBS (ThermoFisher, cat. 

No. 14190094) and then trypsinised with 0.05% Trypsin-EDTA (ThermoFisher, cat. 

No.25300054). 

 

2.2 Protein methods 
 

2.2.1 SDS-PAGE 
 

All proteins were analysed by 12.5% SDS-PAGE under reducing conditions followed 

by Coomassie blue (10% (v/v) phosphoric acid, 10% (v/v) ammonium sulfate, 0.12% 

(w/v) Coomassie G250, and 20% (v/v) methanol) staining or silver staining. 4X 

sample buffer (200 mM TrisHCl pH 6.8, 8% (w/v) SDS, 0.4% (w/v) bromophenol 

blue, 40% (v/v) glycerol) was added to proteins before separation by SDS-PAGE. 

Gel electrophoresis was carried out in 1 X running buffer (25 mM Tris, 20 mM 

Glycine, 3 mM SDS) for 2 h at 20 mA. 

 

2.2.2 Silver staining 
 

The polyacrylamide gel was fixed for 10 min in 50% (v/v) methanol, 12% (v/v) acetic 

acid and 0.05% (v/v) formalin. The gel was washed three times in 35% (v/v) ethanol 

for 5 min. After sensitizing in 0.02% (w/v) Na2S2O3 polyacrylamide gel was washed 

three times in H2O for 5 min. 0.2% (w/v) AgNO3 and 0.076% (v/v) formalin was used 

to stain the gel for 20 min. After staining the gel was washed two times in H2O for 1 

min before developing in in 6% (w/v) Na2CO3, 0.05% (v/v) formalin and 0.0004% 

(w/v) Na2S2O3. The development of the gel was carried until protein bands became 

visible. The development of the gel was stopped using 50% (v/v) methanol and 12% 

(v/v) acetic acid for 5 min. The gel was stored in H2O. 
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2.2.3 Western blot  

 

Proteins separated on SDS-PAGE were electrophoretically transferred onto an 

Amersham Protran 0.45 NC nitrocellulose membrane (GE Healthcare, cat. No. 

10600007) at 150 mA for 2 h in 1 X transfer buffer (25 mM Tris, 20 mM Glycine, 3.5 

mM SDS, 20% (v/v) methanol). The transfer was blocked with either 5% (w/v) milk 

or 3% (w/v) BSA (in the case of biotinylated proteins) for 1 hour. The membrane 

was treated with the primary antibody (1:1000 dilution) for 4 hours, followed by three 

5 minute washes with TBST buffer (20 mM Tris (pH 7.8), 150 mM NaCl, 0.1% (v/v) 

TWEEN® 20 (Sigma, cat. No. P1379-1L)) and incubation with the secondary 

antibody (1:10000 dilution) for 40 min. Biotinylated proteins were incubated with 

streptavidin-800 for 40 min. Proteins were visualised by using a Li-cor Odyssey Sa 

fluorescence scanner. 

 

2.3 GSH transport assay (roGFP) 
 

2.3.1 Preparation of microsomes 
 

Fully confluent HT1080 cells expressing super-folded roGFP1-iE-KDEL were 

trypsinised, washed two times with ice cold PBS and resuspended in Buffer A (50 

mM Tris-HCl (pH 7.4), 0.25 M sucrose, 25 mM KCl, 0.5 mM MgCl, 1 mM EDTA). 

HT1080 cells were harvested from four T225 cm2 flasks, combined and then 

homogenised using a ball-bearing homogeniser (12 µM ball, 4 passes) and 

centrifuged at 6000 x g for 8 minutes to yield the postnuclear supernatant (PNS). 

PNS was centrifuged at 150,000 x g (Beckman Optima™ MAX-XP Ultracentrifuge, 

rotor TL 100.3) for 40 min at 4°C to sediment microsomes. The pellet was 

resuspended in 500 µl of Buffer A by pipetting. Microsomes were frozen using liquid 

nitrogen and stored at – 80 C° or used immediately. 

 

2.3.2 Optimising the concentration of reducing agents 
 

Two aliquots of microsomes were treated with different concentrations of 

dithiothreitol (DTT, Melford, cat. No. MB1015), tris(2-carboxyethyl)phosphine 

(TCEP, Thermo Scientific, cat. No. 20490) or GSH (Sigma, cat. No. G4215). The 
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first aliquot consisted of intact microsomes while the second aliquot was solubilised 

by 0.15% (v/v) Triton X-100 (Sigma, cat. No. T8523). The absorbance of both 

aliquots was measured using PHERAstar® FS after approximately 1 hour after 

addition of reducing agents. 

 

2.3.3 roGFP transport assay of reducing agents across the ER membrane 
 

To measure the rate of transport of individual reducing agent microsomes were 

loaded into a 96 well flat bottom plate. Each reducing agent (DTT, TCEP and GSH) 

was added to a different well to a final concentration of 0.2 mM DTT, 0.2 mM TCEP, 

5 mM GSH and the fluorescence of roGFP was measured at 390 nm and 460 nm 

every 30 seconds for 55 minutes using PHERAstar® FS. In order to assess how the 

presence of ER membrane affects transport the experiment was repeated after 

addition of a detergent (Triton X-100) to microsomes (the final concentration- 0.15% 

(v/v)) before adding reducing agents. 

 

2.3.4 Serine protease digestion of microsomes 
 

Microsomes were treated with a concentration range (25 µg/ml - 100 µg/ml) of either 

proteinase K, trypsin, or chymotrypsin and incubated at room temperature for 

approximately 20 min. After protease treatment a transport assay was performed. 

 

2.3.5 Alkylation of glutathione 
 

200 mM of N-Ethylmaleimide (NEM) was added to 500 µl of 200 mM GSH and 

incubated for 10 min at room temperature. The sample was analysed and purified 

using RP-HPLC performed on an AKTA Explorer 10 instrument. 100 µl of each 

sample was flowed through a Jones Chromatography HPLC C8 Column using a 

200 µl/min flow rate with gradients of increasing concentration (0-100%) of methanol 

(containing 0.1% trifluoroacetic acid).  
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2.3.6 Inhibition of transport by N-ethylsuccinimido-S-glutathione (ESG) 

 

Microsomes were treated with a concentration range (25 µg/ml - 100 µg/ml) of ESG 

and incubated at room temperature for approximately 20 min. After ESG treatment 

a transport assay was performed.  

 

2.3.7 GOH synthesis 
 

GOH was synthesised using Solid Phase Peptide Synthesis (SPPS) with BOP as a 

coupling reagent, N,N-Diisopropylethylamine (DIPEA) as non-nucleophilic base and 

Dichloromethane (DCM) as an organic solvent. The first step of the synthesis 

involved addition of Boc-Ser to HCl-Gly. Boc-Ser (25 mM), HCl-Gly (30 mM), Bop 

(30 mM) and DiPEA (60 mM) were added to 100 ml of DCM. The mixture was placed 

on ice before adding DiPEA to avoid ester bond formation between Boc-Ser. The 

solution was mixed for 2 h and analysed by thin layer chromatography (TCL) in 6 ml 

Ethyl Acetate, 4 ml Hexane 4-5 drops of Acetic Acid (AcOH) were added, checked 

under UV light and then stained with Ninhydrin. The solvent was evaporated under 

vacuum at +40˚C. Acid-Base extraction was performed using 80 ml of Ethyl Acetate, 

followed by 100 ml of KHSO4 and 100 ml of NaHCO3 and 100 ml of Brine. Solvent 

was dried by adding Magnesium Sulfate and filtered. Mixture was evaporated under 

vacuum at +40˚C and purified using a silica (geduran si 60) column. Purified 

fractions were collected and analysed using TLC. Fractions containing the 

compound were combined into a 1L flask, evaporated under vacuum at +40 ˚C and 

then left overnight under high vacuum. Finally, the structure of Boc-SerGly-OtbuBoc 

was confirmed by 1H NMR. The Boc protective group was removed by HCl/dioxane 

as described by Han, G. et al (Han et al., 2001). Boc-Glu-Otbu was added to purified 

SerGly-Otbu. Boc-Glu-Otbu (5.5 mM), SerGly-Otbu (4.5 mM), Bop (5.5 mM) and 

DiPEA (11 mM) were mixed in 20 ml DCM. The reaction and purification proceeded 

as described above for SerGly-Otbu with additional TFA/DCM step to remove Otbu 

protection groups before removal of Boc by HCl/dioxane. 5 ml of TFA and 5 ml of 

DCM was added per 100 mg of compound. The mixture was mixed for 1 hour and 

evaporated under vacuum at +40 ˚C in a fume hood. Next Ether was added to the 

mixture and the evaporation was repeated. After evaporation the mixture was freeze 

dried overnight. Structure of GOH was confirmed by 1H NMR (Figure 2.1). GOH 

was freeze dried and stored at room temperature. 
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Figure 2.1 1H NMR spectrum of GOH.H NMR (D2O,400 MHz) ẟ 4.52 (t, J = 5.3 

Hz, 1H), 4.04–4.01 (m, 3H), 3.90 (d, J = 5.3 Hz, 2H), 2.62 (td, J = 7.2, 2.3 Hz, 2H), 

2.27–2.22 (m, 2H) 

 

 

 

 

 

2.3.8 GOH inhibition of GSH transport 
 

Different concentrations (5 mM – 50 mM range) of GOH and 5 mM GSH were 

simultaneously added to microsomes and a transport assay was performed as 

described above. 
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2.4 Generation of stable cell line expressing GSTP1-1A in the ER 

 

2.4.1 GSTP1-1A plasmid construct designing 
 

A GSTP1-1A-KDEL construct was designed using the GSTP1-1A sequence 

(accessed online at https://www.ebi.ac.uk/ena/data/view/AAA56823). An EcoRI 

restriction site followed by IgG signal sequence were added to the 3’ end of GSTP1-

1A sequence. Flag tag followed by KDEL sequence and NotI restriction site were 

added to the 5’ end of the sequence. The designed construct was ordered using 

GeneArt™ Plasmid Construction Service in the pMA-RQ vector. 

 

2.4.2 Transformation 
 

Plasmids were transformed into E. coli rubidium chloride competent cell. 100 ng of 

GSTP1-1A-KDEL_pMA-RQ plasmid was added to 50 µL of competent cells and left 

on ice for 30 min. Cells were exposed to a heat shock at 42°C for 45 secs and placed 

on ice for 2 min. LB broth (850 µl) was added and the cells were incubated for 1h at 

37°C. 100 µL of bacteria were plated on 1% agar plates containing Ampicillin (100 

μg/ml). 

 

2.4.3 Plasmid purification 

 

A single colony was picked from the agar plate and incubated overnight at 37°C in 

2 ml of LB broth containing Ampicillin (100 μg/ml). Cells were pelleted and 

resuspended in GTE buffer (25 mM TrisCl pH8, 50 mM glucose, 10 mM EDTA) with 

RNase A (10 mg/ml) followed incubation at RT for 2 min. 200 μL of freshly made 

NaOH/SDS (0.2 M NaOH, 1% (w/v) SDS) was added and cells were placed on ice 

for 5 min and 150 μl of 5 M potassium acetate solution (pH 4.8) was added. The 

resulting solution was centrifuged at 16,000 x g for 5 min. The supernatant was 

transferred into a clean Eppendorf tube containing 450 μl phenol:chloroform:isoamyl 

alcohol (25:24:1), mixed and centrifuged at 16,000g for 2 min. The upper phase was 

transferred to a new tube containing 450 μl chloroform:isoamyl alcohol, mixed and 

centrifuged at 16,000 x g for 2 min. The upper phase was transferred to a new tube 

containing 800 μl 95% (v/v) ethanol and 16,000g for 5 min. The pelleted DNA was 

https://www.ebi.ac.uk/ena/data/view/AAA56823
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washed with 1 ml 70% (v/v) ethanol and air-dried. Plasmid DNA was resuspended 

into 30 μl dH2O and stored in -20°C. 

2.4.4 Restriction digest 
 

Double restriction digest of GSTP1-1A-KDEL_pMA-RQ and empty pcDNA3.1 vector 

was performed using EcoRI and NotI endonucleases manufactured by NEB. The 

double digestion was performed following the manufacturer’s guidelines using 

CutSmart® Buffer.  

 

2.4.5 Agarose gel electrophoresis 
 

10 µL of SYBR™ Safe DNA Gel Stain (Invitrogen, cat. No. S331103) was mixed 

with 100 ml of 1% agarose gel (Bio-Rad cat. No. 1613102). 6X blue/orange loading 

dye (Promega, cat. No. G1881) was added to DNA before analysis. A 1 Kb plus 

DNA ladder (Invitrogen, cat. No. 10787018) or a 100 bp DNA ladder (NEB, cat. No. 

N3231S) were used to estimate DNA fragment size.  

 

2.4.6 DNA gel extraction/purification 
 

Endonuclease digested DNA was extracted from a 1% agarose gel and purified 

using QIAquick Gel Extraction Kit (QIAGEN, cat. No. 28706) following the 

manufacturer’s protocol. The concentration of purified DNA was determined by 

measuring the OD at 260 nm using the Spectrostar nano plate reader (BMG 

Labtech).  

 

2.4.7 Ligation 
 

GSTP1-1A-KDEL sequence was ligated into 100 ng of empty pcDNA3.1 vector. 3:1 

or 5:1 insert vector ratio was calculated using the following formula: 

 

ng of vector x kb size of insert

kb vector size
 x 

molar ratio of insert

ng of vector
 = ng of insert 
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The volume of the ligation mixture contained vector, insert DNA, ligation buffer (250 

mM Tris-HCl (pH 7.6), 50 mM MgCl2, 5 mM ATP, 5 mM DTT, 25% (w/v) 

polyethylene glycol-8000) (Invitrogen, cat. No 46300018), 1 unit T4 DNA ligase 

(Invitrogen, cat. No 46300018) was brought to 10 μl with dH2O. The ligation mixture 

was incubated overnight at 4°C. 

2.4.8 Plasmid purification and sequencing 
 

GSTP1-1A-KDEL_pcDNA3.1 plasmid was transformed into E.coli as described 

above. Plasmid DNA was extracted and purified from a single colony incubated 

overnight in LB broth containing Ampicillin (100 μg/ml) using the Qiagen® Plasmid 

Midi Kit (QIAGEN, cat. No. 12143) following the manufacturer’s protocol. Purified 

GSTP1-1A-KDEL_pcDNA3.1 plasmid was sequenced using T7 forward primer and 

BGH reverse primer by the GATC biotech Sanger sequencing service. 

 

2.4.9 Transfections into HT1080 
 

The GSTP1-1A-KDEL_pcDNA3.1 plasmid was transfected into HT1080 cells using 

MegaTran 1.0 (OriGene, cat. No. TT200003) following the manufacturer’s protocol. 

 

2.4.10 Selection 
 

Various concentrations (1:10 to 1:10,000) of transfected HT1080 cells were plated 

on 15 cm2 dishes. Cells were grown in Dulbecco's Modified Eagle Medium 

(ThermoFisher, cat. No. 21969035) supplemented with 10% fetal bovine serum, 50 

U/ml of penicillin, 50 µg/ml streptomycin, 2 mM L-glutamine until confluent and 200 

µg/ml Hygromycin B until colonies appeared. Single colonies were picked and 

transferred to 12 well plate using Scienceware® cloning discs (Sigma, cat. No 

Z374431-100EA). Cells were grown until confluent and then transferred to 25 cm2 

flask and then 75 cm2 flask when confluent. The presence of GSTP1-1A was 

confirmed by Western blot using ANTI-FLAG® M2 antibody (Sigma, cat. No F316S). 

2.4.11 Cultivation 
 

Cells were cultivated as described in section in 2.1 



45 
 

2.5 Cloning and purification of GSTP1-1A 

 

2.5.1 Polymerase chain reaction (PCR) 
 

GSTP1-1A-KDEL sequence was amplified by PCR in order to remove the IgG signal 

sequence and the KDEL sequence, using the following conditions: 5 min of initial 

denaturation at 94°C, 35 cycles each consisting of 30 sec denaturation at 94°C, 

annealing at 66°C for 60 sec, 1 min extension at 72°C, and final extension at 72°C 

for 10 min. Each PCR tube contained: 50 ng of template DNA, 1 X Accuzyme buffer 

(60 mM TrisHCl, 6 mM (NH4)2SO4, 10 mM KCl, 2 mM MgSO4, pH 8.3) (Bioline, cat. 

No. BIO-21052), 2 mM MgCl2 (Bioline, cat. No. BIO-21052), 10 mM dNTP mix, 2% 

(v/v) DMSO, 2.5 units Accuzyme (Bioline, cat. No. BIO-21052), 10 μM forward 

primer (3’GGCCATGGATGCCGCCCTAC5’), 10 μM reverse primer 

(3’GACGACAAGTGAGAATTCGG5’), dH2O was added to make the total reaction 

volume of 50 µl. 

 

2.5.2 PCR product analysis and purification 
 

5 µl of the PCR product was analysed on a 1% Agarose gel as described above. 

The remaining 45 µl was purified using the QIAquick PCR Purification Kit (QIAGEN, 

cat. No. 28104) following the manufacturer’s protocol.  

 

2.5.3 Cloning into pET28 expression vector 
 

pET28 and the PCR product were digested using EcoRI and NotI endonucleases 

manufactured by NEB. The double digestion was performed following the 

manufacturer’s guidelines using CutSmart® Buffer. The PCR product and pET28 

were gel purified and ligated as described above. 

 

2.5.4 Transformation  
 

GSTP1-1A _pET28 plasmids were transformed using BL21(DE3) Competent Cells 

(Agilent Technologies, Cat. No. 200131) using the company's protocol. 
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2.5.5 GSTP1-1A Expression  

 

For the protein expression and solubility test bacteria were grown in 10 ml of medium 

containing kanamycin (50mg/µl) until the OD 600 = 0.6 - 0.8 and then induced with 

0.4 mM IPTG. Before IPTG induction 1ml of each sample was taken and stored for 

further analysis (uninduced sample). After IPTG induction the bacteria were further 

incubated at 37°C for 4 h. Bacteria were pelleted by centrifugation (16,000g for 5 

min) and lysed by boiling in 4X sample buffer (200 mM TrisHCl pH 6.8, 8% (w/v) 

SDS, 0.4% (w/v) bromophenol blue, 40% (v/v) glycerol). Cell debris were pelleted 

by centrifugation (16,000 x g for 10 min) and the remaining supernatant was 

analysed on 12.5% SDS-PAGE. 

 

2.5.6 Purification of GSTP1-1A 
 

GSTP1-1A_pET28 BL21(DE3) competent cells were grown overnight in 500 ml of 

autoinduction medium (6g Na2HPO4 (~42 mM), 3g KH2PO4 (~22 mM), 10g Tryptone, 

5g yeast extract, 5g NaCl (85 mM), 10ml 60% v/v Glycerol, 5 ml 10% w/v Glucose, 

25 ml 8% w/v lactose per one litre of medium) containing kanamycin (50 mg/µl). 

Cells were harvested by centrifugation at 15000 x g for 50 min and lysed by repeated 

freeze/thaw cycles. 500 ml of cell lysate was incubated with GST beads for 1 hour 

and washed 3 times with 50 ml of 50 mM Tris-HCL (pH 8.0). GSTP1-1A was eluted 

with 10 mM GSH (pH 8.0). Eluted proteins were analysed on 12.5% SDS-PAGE 

followed by Coomassie blue staining (10% (v/v) phosphoric acid, 10% (v/v) 

ammonium sulfate, 0.12% (w/v) Coomassie G250, and 20% (v/v) methanol). 

Purified GSTP1-1A was concentrated to ~2.8 µg/ml using Vivaspin® Turbo 10k 

MWCO (Sartorius, cat. No. VS15T01). The concentration was measured using 

Spectrostar nano plate reader (BMG Labtech). 

 

2.5.7 Purified GSTP1-1A activity  
 

1 mM of GSH and CDNB (1 mM) or Cl-BODIPY (150 nM) were added to various 

concentration (50 nM – 500 nM) of purified GSTP1-1A in PBS buffer (cat. No. 

14190250) and the increase in absorption at 340 nm (CDNB) or 530 nm (Cl-
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BODIPY) was measured every 30 seconds for 60 minutes using a PHERAstar® FS 

plate reader (BMG Labtech).  

 

2.6 GSH transport assay (GST) 
 

2.6.1 Estimate concentration of GSTP1-1A inside microsomes 
 

GSTP1-1A microsomes were lysed and separated by 12.5% SDS-PAGE and 

subjected to Western blotting. Increasing concentration of purified GSTP1-1A (25 

nM – 250 nM) was added to the blot to help estimate the concentration of GSTP1-

1A inside microsomes. Band intensities were compared and analysed using ImageJ 

software. 

 

2.6.2 In vivo activity of GST 

 

HT1080-GSTP1-1A-KDEL cells were lysed and incubated with glutathione 

Sepharose® 4B (Sigma-Aldrich cat. No. 17-0756-01) for 30 min at room 

temperature. Glutathione Sepharose® 4B beads were washed 3 times with PBS 

and then eluted with GSH (50 mM). Eluted samples were analysed on 12.5% SDS-

PAGE gel followed by silver staining, as described in section 2.2.2. 

 

2.6.3 GST based transport assay using Cl-BODIPY as substrate (fluorescence 

spectra) 
 

0.1 mM GSH was added to 100 µl of GSTP1-1A microsomes pre-treated with 100 

nM Cl-BODIPY. Emission spectra was measured every 15 minutes using 

Fluorolog® fluorometer (Horiba) to observe the increase fluorescence at 540 nm 

and the decrease in fluorescence at 512 nm. 

 

2.6.4 Mass spectometry identification of conjugates 
 

GSH was added to GSTP1-1A microsomes (1 mM final concentration) pre-treated 

with Cl-BODIPY (150 nM) or CDNB (250 µM) and microsomes were incubated for 
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2 h at room temperature.  Microsomes were centrifuged at 150,000 x g (Beckman 

Optima™ MAX-XP Ultracentrifuge, rotor TL 100.3) for 40 min at 4°C to sediment. 

Microsomal pellet was washed 3 times with ice cold PBS before solubilising in 0.5% 

Triton X-100 and analysed by mass spectometry. Purified GSTP1-1A incubated with 

Cl-BODIPY (150 nM) or CDNB (250 µM) was used as a positive control. Microsomes 

prepared from HT1080 cells (not expressing GSTP1-1A) were used as a negative 

control. The conjugated product was analysed using liquid chromatography mass 

spectrometry (LCMS) carried out on a Thermo Scientific LCQ Fleet quadrupole 

mass spectrometer with a Dionex Ultimate 3000 LC using a Dr. Maisch Reprosil 

Gold 120 C18 column (110 Å, 3 μm, 150×4.0 mm) and a 0-100% linear gradient of 

buffer B (acetonitrile/H2O 95:5 with 0.1% TFA) into buffer A (acetonitrile/H2O 5:95 

with 0.1% TFA) at a flow rate of 1.0 ml·min-1 

 

2.6.5 GST based transport assay endpoint and time course (CDNB and BODIPY) 
 

GSH (1 mM) was added to GSTP1-1A microsomes pre-treated with Cl-BODIPY 

(150 nM) or CDNB (250 µM). For the endpoint samples were incubated for 2 hours 

at RT following precipitation using 10% TCA. For the time course samples were 

collected at different time points and precipitated using 10% TCA. Samples were 

centrifuged, and the absorbance of the supernatant was measured at 530 nm (Cl-

BODIPY) or 340 nm (CDNB). 

 

2.6.6 Inhibition of GSTP1-1A activity using GOH 
 

GSH (1 mM) and CDNB (250 µM) were added to 250 nM of GST incubated with 

various concentrations of GOH (0.2 mM – 1 mM). The increase in 340 nm 

absorbance was measured and plotted over time. 
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2.7 Isolating a GSH transporter 

 

2.7.1 Preparation of rat liver microsomes (RLM) 
 

Rat liver(s) was washed thoroughly with homogenisation buffer (50 mM Tris (pH 

7.5), 25 mM KCl, 1 mM EDTA (pH 7.5)) weighed and then chopped. The liver tissue 

was homogenised in a volume of homogenising buffer equal to three times the 

weight of the liver using a Potter Elvejham homogeniser. The homogenate was 

centrifuged at 13,000 x g (Beckman Optima™ XL-80K Ultracentrifuge, rotor 70.1 Ti) 

for 10 min at 4°C. Floating lipids were carefully removed from the top of the 

supernatant using Pasteur pipette and the supernatant was transferred into a clean 

tube taking care not to disturb the bottom pellet. This step was repeated to make 

sure that lipids and heavy molecular weight materials were removed. The 

supernatant was centrifuged at 150,000 x g (Beckman Optima™ XL-80K 

Ultracentrifuge, rotor 70.1 Ti) for 90 min at 4°C to sediment microsomal membranes. 

The supernatant was discarded and microsomes resuspended in 0.2M potassium 

phosphate buffer (pH 7.0). The concentration of microsomes was measured by 

measuring OD at 280 nm using Spectrostar nano plate reader (BMG Labtech). The 

concentration of miceosomes were adjusted to approximately 0.5 mg/ml by addition 

of 0.2M potassium phosphate buffer (pH 7.0). Microsomes were either frozen using 

liquid nitrogen and stored at – 80 C° or used immediately. 

 

2.7.2 Isolation of proteins using glutathione Sepharose beads. 
 

RLM were incubated with glutathione Sepharose® 4B (Sigma-Aldrich cat. No. 17-

0756-01) for 30 min at room temperature and solubilised with TWEEN20 (0.2%). 

Glutathione Sepharose® 4B were washed 3 times with washing buffer (TrisHCl (pH 

7.5), 1% (v/v) Triton X-100). GSH binding proteins were eluted with 35 µl of GSH 

(50 mM). Eluted samples were analysed on 12.5% SDS-PAGE gel followed by silver 

staining. 

2.7.3 Mass spectometry identification 
 

Fraction of eluted samples or proteins cut from silver stained polyacrylamide gel 

using scalpel and were sent to the proteomics facility at the University of St Andrews. 
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2.7.4 Conjugation of GSH to Mts-Aft-Biotin  

 

Mts-Aft-Biotin (Santa Cruz, cat. No. SC-223339) was incubated with excess of GSH 

for 1 h at room temperature. The resulting GS-Mts-Aft-Biotin was analysed by high-

pressure liquid chromatography (HPLC) carried out on a Shimadzu instrument 

comprising a communication module (CBM-20A), autosampler (SIL-20HT), pump 

modules (LC-20AT), UV/Vis detector (SPD-20A) and system controller 

(Labsolutions V5.54 SP), with a Phenomenex Gemini C18 column (110 Å, 5 μm, 

250×4.60 mm). UV measurements were recorded at 214 and 254 nm, using a 

standard protocol: 100% buffer A (acetonitrile/H2O 5:95 with 0.1% TFA) for 2 min 

followed by a linear gradient of buffer B (acetonitrile/H2O 95:5 with 0.1% TFA) into 

buffer A (0-100%) over 28 min at a flow rate of 1.0 ml·min-1. Purification of GS-Mts-

Aft-Biotin was performed on an Agilent Technologies 1260 infinity preparative 

system using both UV and ELSD detectors with a Phenomenex Gemini C18 column 

(110 Å, 10 μm, 250×20 mm). Auto-collection of fractions was used based on the UV 

measurements at 214 or 254 nm, using a standard protocol: 100% buffer A for 5 

min followed by and linear gradient of buffer B into buffer A (20-100%) over 65 min 

at a flow rate of 12.5 mL·min-1 using the same buffers as described for analytical 

HPLC. The presence of GS-Mts-Aft-Biotin in purified sample was confirmed by liquid 

chromatography mass spectrometry (LCMS) carried out on a Thermo Scientific LCQ 

Fleet quadrupole mass spectrometer with a Dionex Ultimate 3000 LC using a Dr. 

Maisch Reprosil Gold 120 C18 column (110 Å, 3 μm, 150×4.0 mm) and a 0-100% 

linear gradient of buffer B into buffer A with the same flow rate and buffers as 

described for analytical HPLC. GS-Mts-Aft-Biotin was freeze dry and stored in -

20°C. 

 

2.7.5 Photocrosslinker isolation of GSH binding proteins 
 

RLM were incubated with GS-Mts-Aft-Biotin (250 µM) for 30 min at RT occasionally 

mixed. RLM were placed on ice and then exposed to UV light (Spectroline® Model 

SB-100P/FB 365 nM) for 5 min. Samples were centrifuged at 150,000x g (Beckman 

bench top ultracentrifuge, rotor TL 100) for 40 min at 4C°. Microsomes were washed 

3 times with ice cold PBS prior to solubilisation in 500 µl of immunoprecipitation (IP) 

buffer (50 mM Tris-HCl (pH 7.5), 1% (v/v) Triton X-100, 150 mM NaCl, 2 mM EDTA, 

0.5 mM PMSF, 0.02% (w/v) Na-azide). RLM were incubated with streptavidin beads 
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rotating at RT for 30 min. RLM were washed 3 times with radioimmunoprecipitation 

(RIPA) buffer (10 mM Tris-Cl (pH 8.0), 1 mM EDTA, 0.5 mM EGTA, 1% (v/v) Triton 

X-100, 0.1% SDS, 140 mM NaCl, 1 mM PMSF) containing 1 mM DTT and eluted 

with Biotin (20 mM). The samples were separated on 12.5% SDS-PAGE and 

visualised by silver staining. 
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Chapter 3 
roGFP assay for GSH 

transport 

 

 

 

 

 

 

 

 

 



53 
 

3.1 Introduction 
 

To answer the question about how GSH is transported across the ER membrane a 

transport assay able to distinguish between GSH and other thiols was needed. The 

existing assays for glutathione transport rely on light scattering methods or 

radioactive GSH assays using filtration (Banhegyi et al., 1999, Inoue et al., 1984). 

However, these techniques are not GSH specific and are not GSH sensitive. 

Therefore, the first part of my project was focused on developing a GSH assay 

specific for GSH that would allow a further investigation of an ER localised GSH 

transporter.  

In 2004 Cline (Cline et al., 2004) conducted a study in which they characterised, as 

well as describing the synthesis, of three different methyl ester derivatives of tris(2-

carboxyethyl)phosphine (TCEP). Part of the study was focused on membrane 

permeability of the newly synthesised compounds using liposomes containing 5,5-

dithio-bis-(2-nitrobenzoic acid) (DTNB, also known as Ellman's Reagent), a 

compound that absorbs strongly at 412 nm upon reduction. In their publication, Cline 

et al. demonstrated that GSH and TCEP were not able to cross a liposomal lipid 

bilayer while dithiothreitol (DTT) simply diffused across the bilayer.  

We decided to modify the method described by Cline et al. to make it more suitable 

for our research. The GSH transport assay we developed relies on selective 

permeability of cellular membranes (Cooper, 2000). Cell membranes determine the 

boundary of cells and all the organelles within the cell, allowing separated 

environments to exist inside the cell (Shi, 2013). Lipid membranes function as a 

physical barrier for molecules within the cell, the hydrophilic exterior and 

hydrophobic interior of the membrane makes it permeable to small molecules with 

no charge, on the other hand polar substances cannot cross a membrane (Shi, 

2013). However, a group of proteins specialised in mediating the exchange of 

molecules across the membranes have evolved (Shi, 2013). The main function of 

transport proteins (often called transporters) is to carry molecules, such as lipids, 

ions, sugars, peptides or fully folded proteins, across the lipid bilayer, however, they 

also play an important role in energy conversion, signal transduction, diseases, 

drugs delivery and more (Rubio-Aliaga and Daniel, 2008, Shi, 2013). There are a 

great variety of different transporters, some of them are very specific, for example 

the GLUT family of glucose transporters is specialised in transporting glucose and 
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some of the other hexoses (Hebert and Carruthers, 1992, Oka et al., 1990). 

However, many transporters have a broad spectrum of substrates. Examples 

include cationic amino acid transporter (CAT) family of transporters which is 

responsible for the transport of cationic L-amino acids, ATP-binding cassette (ABC) 

transporters which transport a variety of molecules at the expense of ATP, and the 

peptide transporter (PTR) family that facilitate uptake of di- and tripeptides (Borst 

and Elferink, 2002, Hatzoglou et al., 2004, Tsay et al., 2007). There is strong 

evidence suggesting that GSH is not able to cross a phospholipid bilayer (Cline et 

al., 2004) thus GSH transport is likely to be facilitated by a transport protein. 

 

Cellular membranes differ greatly from each other in both lipid and protein 

composition (Van Meer et al., 2008). The ER membrane contains a relatively low 

concentration of sphingolipids and sterols, however it is rich in 

phosphatidylcholine (Van Meer et al., 2008). There are many membrane proteins 

found exclusively in the ER membrane of mammalian cells, for example trans-

locating chain-associated membrane protein (TRAM) (Zimmermann et al., 2011, 

Shao and Hegde, 2011). To investigate GSH transport we needed a system which 

mimics the properties of the ER membrane. Therefore, we decided to use 

microsomes which are widely used in studies investigating processes occurring in 

the ER, especially processes involving ER membranes, such as translocation of 

newly synthesised proteins (Walter and Blobel, 1981). Microsomes are small 

vesicles isolated from the ER following fragmentation by homogenisation of the cell 

and separated by centrifugation. They were first recognised and described by Albert 

Claude in 1941 (Claude, 1941). Microsomes contains all the ER luminal proteins 

and most important for our research they have the same lipid and protein 

composition as ER membrane.  

 

To establish an assay for GSH transport we also needed a molecule or protein 

sensitive to redox changes which would report the transport of GSH across 

microsomal membrane, such as DTNB used by Cline et al. in liposomes. We 

decided to take advantage of the properties of a redox sensitive Green Fluorescent 

Protein (roGFP) (Meyer and Dick, 2010). This modified version of GFP contains two 

genetically engineered cysteines (in the place of Ser147 and Gln204) that allow 

formation of a disulfide bond (Meyer and Dick, 2010). Disulfide formation influences 

the fluorescent properties of the protein (Ostergaard et al., 2001). The ratio of 
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emission intensities between two excitations peaks (390 nm and 460 nm) reflects 

the redox status of the protein. The 390/460 ratio increases when roGFP is oxidised 

and decreases upon reduction. Importantly, ratiometric measurements are 

independent of the amount of protein, changes in pH or photobleaching effects. 

roGFP has been widely used in the redox biology field (Meyer and Dick, 2010b). 

The ER localised version of roGFP (roGFP-iE) was selected as a probe for the 

experiment. Thanks to several engineered amino acids (C48S, Q80R, S147CE, 

H148S, Q204C) the redox potential of roGFP-iE is similar to the redox potential 

found within the ER lumen (Lohman and Remington, 2008). roGFP-iE had been 

successfully used to monitor changes in the ER in both yeasts and mammalian cells 

(Birk et al., 2013, Delic et al., 2010). The superfolder roGFP-iE (SFroGFP-iE) used 

contains another four amino acids substitutions (S30R, Y39N, T105N and I171V) 

which improve protein folding, thermostability and enhanced the dynamic range of 

redox change (Hoseki et al., 2016). 
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3.2 roGFP transport assay 

 

Microsomes were prepared from HT1080 cell line expressing superfolder roGFP-iE 

localised in the ER (ER retention sequence - KDEL) (Birk et al., 2013). Therefore, if 

GSH is transported it should be able to reduce roGFP-iE and a decrease in 390/460 

ratio should be observed. Because of the fast equilibration of roGFP-iE and GSH 

we assumed that the rate of roGFP-iE reduction would be directly proportional to 

the transport rate of GSH across the ER membrane. In order to validate the results 

of the assay we included two potent reducing agents DTT and TCEP. DTT is widely 

used membrane permeable thiol reducing agent (Cleland, 1964). It has been 

demonstrated in many instances that DTT can reduce disulfide bonds in intact cells, 

therefore, it was used as a positive control in our assay (Cline et al., 2004). Because 

of its charge density at neutral pH, TCEP is not able to cross a lipid bilayer, therefore 

TCEP was used as a negative control in our assay (Cline et al., 2004). In our 

hypothesis, we assumed that GSH will only be able to cross the microsomal 

membrane, and reduce roGFP-iE, if a GSH transporter is present. We also used 

permeabilised microsomes (with 0.15% Triton-X) as a control, this should allow all 

the reducing agent to fully reduce roGFP-iE at the maximum rate. The approach is 

summarised in Figure 3.1. 
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Figure 3.1. GSH transport in microsomes. Superfolder roGFP-iE, present inside 

microsomes, will become reduced upon addition of different reducing agent (TCEP, 

DTT and GSH), the rate of reduction is directly proportional to the rate of reducing 

agent passing through the ER membrane. A) Intact Microsomes. Due to its polarity 

TCEP will not be able to cross the microsomal membrane and reduce roGFP-iE. 

DTT will diffuse across the membrane and reduce roGFP-iE at a very fast rate. GSH 

will only be able to cross the membrane if the protein responsible for GSH transport 

is present. Since GSH is transported, it should be able to reduce roGFP-iE at a 

moderate rate. B) Permeabilised Microsomes. Microsomes will be permeabilised 

with 0.15% of Triton X-100. The membrane is no longer a barrier for reducing 

agents, therefore, all of them should be able to reduce roGFP-iE at their maximal 

rate. 
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3.2.1 Optimising the concentration of reducing agents 

 

In order to determine the minimum concentration of TCEP needed to fully reduce 

roGFP-iE a simple titration method was carried out (Figure 3.2). 

 

 

 

 

 

Figure 3.2. Optimising the concentration of TCEP. Microsomes were treated with 

different concentrations of TCEP and fluorescence at 390 nm and 460 nm was 

measured approximately 1 hour after treatment. Triton X-100 permeabilises the 

membrane allowing TCEP to reduce roGFP-iE at its maximal potential. The 390/460 

ratio was calculated, and the concentration of 0.15 mM was chosen for further 

experiments as it was able to fully reduce roGFP-iE. The data was plotted using 

three technical replicates, error bars represents standard deviation.  

 

 

1 mM 0.75 mM 0.5 mM 0.25 mM 0.1 mM 0 mM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

3
9

0
/4

6
0

 R
a

ti
o

TCEP concentration

 Intact Microsomes

 + 0.15% Triton X-100



59 
 

TCEP is not able to cross the membrane of intact microsomes therefore there were 

only minor differences between each sample. In permeabilised microsomes almost 

all concentrations of TCEP are able to fully reduce roGFP-iE. The decrease in 

roGFP-iE ratio starts at concentration 0.1 mM and gets higher as TCEP 

concentration increases. Thereafter 0.15 mM TCEP was used in all experiments as 

this concentration is sufficient to fully reduce roGFP-iE but does not significantly 

reduce roGFP-iE in intact microsomes. 

A similar titration was carried out using GSH (Figure 3.3). When compared to TCEP 

none of the GSH concentrations used could fully reduce roGFP-iE, therefore, a 

concentration with the greatest difference of roGFP-iE reduction between intact 

microsomes and detergent treated microsomes was used. A concentration of 5 mM 

GSH was used in all future experiments for two reasons. First, GSH at 5 mM 

significantly reduces roGFP-iE in detergent treated microsomes and there is 

considerable difference in 390/460 ratio between intact and permeabilised 

microsomes. Second, 5 mM GSH is within the concentration range of GSH found in 

the cytosol (Birk et al., 2013). DTT was able to fully reduce roGFP-iE at all tested 

concentrations therefore a concentration of 0.2 mM was chosen, and used in all 

experiments, to have a better comparison with TCEP (Figure 3.4). 
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Figure 3.3. Selecting an optimum concentration of GSH for the transport 

assay. Microsomes were treated with different concentrations of GSH and 

fluorescence at 390 nm and 460 nm was measured approximately 1 h after addition 

of GSH. Triton X-100 permeabilises the microsomal membrane allowing GSH to 

reduce roGFP-iE. The 390/460 ratio was calculated and the concentration with the 

greatest difference between permeabilised and intact microsomes was chosen for 

further experiments. The data was plotted using three technical replicates, error bars 

represents standard deviation. 
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Figure 3.4. Optimising the concentration of DTT. Microsomes were treated with 

different concentrations of DTT as indicated and fluorescence at 390 nm and 460 

nm was measured approximately 1 h after treatment. Triton X-100 permeabilises 

the microsomal membrane allowing DTT to reduce roGFP-iE. The data was plotted 

using three biological technical, error bars represents standard deviation. 

 

 

 

 

 

 

 

 

1 mM 0.5 mM 0.2 mM 0.1 mM 0 mM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

3
9

0
/4

6
0

 R
a

ti
o

DTT concentration

 Intact Microsomes

 + 0.15% Triton X-100



62 
 

3.2.2 Kinetics 

 

Intact microsomes were resuspended in PBS and each of the reducing agents (DTT, 

TCEP and GSH) was added to individual aliquots of microsomes (Figure 3.5a). 

Upon addition of DTT (0.2 mM final concentration), roGFP-iE within microsomes 

became rapidly reduced. This result can be explained by the fact that DTT is able 

to diffuse across ER membrane. The rate of roGFP-iE reduction after addition of 

TCEP (0.15 mM) was very slow, almost undetectable, when compared to DTT. GSH 

was able to reduce roGFP-iE at a moderate rate.  

To assess how the microsomal membrane affects the transport of reducing agents 

the experiment was repeated after the addition of Triton X-100 (0.15%) (Figure 

3.5b). In the previous experiment TCEP was not able to cross the membrane and 

reduce roGFP-iE but after Triton X-100 treatment TCEP is able to reduce roGFP-iE 

as effectively as DTT and at similar rate. There is no difference between intact and 

permeabilised samples treated with DTT; this confirms that the ER membrane is not 

a barrier for DTT and the compound is able to diffuse across the lipid bilayer. After 

treating microsomes with Triton X-100 GSH is able to reduce roGFP-iE at a higher 

rate and reaches steady state much faster compared to intact microsomes. This 

further confirms that the ER membrane is a barrier for GSH and GSH is not able to 

diffuse across the membrane by its own and requires transport. GSH reduces 

roGFP-iE very rapidly because of much higher concentration, this can be observed 

by fast drop of 390/460 ratio in Figure 3.5b, however, because GSH has a higher 

reduction potential than DTT and TCEP, it is not able to reduce roGFP as effectively 

as other reducing agent used in the experiment and reaches 390/460 ratio equal to 

0.91 compared to 0.44 reached by TCEP and DTT. 
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A)                                

 

Figure 3.5a. roGFP-iE based GSH transport assay in intact microsomes. A) 

Kinetics of roGFP-iE reduction in intact microsomes. GSH (5 mM), DTT (0.2 mM) 

and TCEP (0.15 mM) were added (indicated by arrow) to intact microsomes. The 

average change of 390/460 ratio was plotted over time, representing the rate of 

transport across the microsomal membrane. GSH is able to cross microsomal 

membranes at moderate speed compared to DTT. DTT diffuses through membrane 

at relatively high rate. Due to its polarity TCEP cannot cross the membrane. The 

data was plotted using three biological replicates to make sure the results are 

replicable. 
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B)

 

 

 

Figure 3.5b. roGFP-iE based GSH transport assay in permeabilised 

microsomes.  Kinetics of roGFP-iE reduction in Triton X-100 permeabilised 

microsomes. 5 mM GSH, 0.2 mM DTT and 0.15 mM TCEP were added (indicated 

by arrow) to permeabilised microsomal membrane therefore all reducing agents can 

reduce roGFP-iE at maximum rate. The change of 390/460 ratio was plotted over 

time, representing the overall rate of transport across microsomal membrane. The 

data was plotted using three biological replicates to make sure the results are 

replicable. 
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3.3 Inhibition of GSH transport 

 

The previous experiment demonstrated that GSH is transported across the 

microsomal membrane rather than diffusing. If this really is the case there must be 

a protein responsible for transporting GSH. Therefore, it should be possible to inhibit 

GSH transport. This is a very important step in validating our previous results.  

 

3.3.1 Broad range proteases inhibition 

 

Because there is very little information available related to mammalian GSH ER 

transporters, we speculated that a broad range proteases may be successful in 

inhibiting GSH transport. Trypsin, chymotrypsin and proteinase K are all well studied 

and characterised (Muller et al., 1994, Rawlings and Barrett, 1994). All three 

proteases used in the experiment have broad substrate specificity, therefore, we 

assumed that they might digest the protein responsible for GSH transport and thus 

inhibit its transport. 

 

Proteinase K (EC 3.4.21.64) from Tritirachium album belongs to family of serine 

proteases known as the subtilases family (Ebeling et al., 1974). Proteinase K 

cleaves peptide bonds adjacent to the carboxylic group of aliphatic and aromatic 

amino acids (Ebeling et al., 1974).  

 

Microsomes were treated with different concentrations (25 µg/ml – 100 µg/ml) of 

proteinase K and the transport assay was performed as normal (Figure 3.6). When 

compared to the untreated sample roGFP-iE initially was reduced only slightly 

slower, however after 40 minutes all the samples reached the same point and 

progressed at the same rate. Although there are some differences in the reduction 

rate of roGFP-iE between proteinase K treated samples and untreated sample, 

especially at the beginning of the assay, they are not significant enough to be 

considered to inhibit GSH transport. Moreover, there are no differences in samples 

treated with different concentrations of proteinase K, this further confirmed the 

protease has no effect on GSH transport across microsomal membrane. 
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Figure 3.6. Proteinase K treatment of intact microsomes. Intact microsomes 

were treated with various concentrations (25 µg/ml – 100 µg/ml) of proteinase K for 

20 min prior to carrying out a transport assay with the addition (indicated by arrow) 

of GSH (5 mM).  Triton X-100 (0.15%) was added to one of the sample to represent 

the maximum rate of roGFP-iE reduction. The average change of 390/460 ratio was 

plotted over time, representing the overall rate of transport across microsomal 

membrane. The data was plotted using three biological replicates to make sure the 

results are replicable. 
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The same approach was tested using the of serine proteases, trypsin (EC 3.4.21.4) 

and chymotrypsin (EC 3.4.21.1). Trypsin and chymotrypsin are digestive enzymes, 

both are very similar in structure, but each have a different substrate specificity 

(Hedstrom et al., 1992). Trypsin cleaves peptides at lysine and arginine residues 

while chymotrypsin prefers to cleave the peptide at tyrosine, tryptophan, and 

phenylalanine residues (Rawlings and Barrett, 1994).  

 

Microsomes were treated with different concentrations (25 µg/ml – 100 µg/ml) of 

trypsin and chymotrypsin, after the treatment a transport assay was performed as 

previously (Figure 3.7). In all samples treated with serine proteases roGFP-iE was 

reduced at the same rate as untreated sample. There is almost no difference in the 

initial rate of roGFP-iE reduction in all 3 samples as well as in the level of reduction 

in all samples. 
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Figure 3.7. Trypsin and chymotrypsin treatment of intact microsomes. Intact 

microsomes were treated with trypsin and chymotrypsin (50 µg/ml) and incubated 

for 20 min prior to carrying out a transport assay in the presence of 5 mM GSH 

(indicated by arrow).  Triton X-100 (0.15%) was added to one of the sample to 

represent the maximum rate of roGFP-iE reduction. The change of 390/460 ratio 

was plotted over time, representing the overall rate of transport across microsomal 

membrane. The data was plotted using three biological replicates to make sure the 

results are replicable. 
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3.3.2 Alkylation of GSH 
 

Treating microsomes with broad substrate specificity serine proteases did not inhibit 

GSH transport. Therefore, the next approach we tried involved relying on modifying 

GSH itself using stoichiometric amounts of N-ethylmaleimide (NEM) to create a 

competitive inhibitor of GSH transport. NEM is an alkylating agent able to react with 

the thiol group of cysteines. NEM forms an irreversible covalent bond with cysteine 

therefore preventing disulfide bond formation. When GSH reacts with NEM it forms 

N-ethylsuccinimido-S-glutathione (ESG) (Figure 3.8) and it loses its ability to reduce 

thiols and proteins (Mojica et al., 2008).  

 

 

 

 

 

 

 

 

Figure 3.8. Reaction of GSH with NEM to form N-ethylsuccinimido-S-

glutathione (ESG) 
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Alkylated GSH will not be able to reduce roGFP-iE but may still be transported 

across microsomal membranes acting as a competitive inhibitor for GSH transport. 

GSH and NEM were mixed in 1.2:1 ratio to make sure no free NEM was be present 

and all NEM will react with GSH. Reversed phase high-performance liquid 

chromatography (RP-HPLC) was used to make sure alkylation of GSH is completed 

and there is no excess of either GSH or alkylating agent, but also to purify ESG 

(Figure 3.9a). RP-HPLC is a powerful technique used to separate molecules based 

on their hydrophobicity. Separation of molecules relies on the hydrophobic binding 

of the solute molecule from the mobile phase to the immobilised hydrophobic ligands 

attached to the stationary phase. When introduced to the sorbent molecules are in 

aqueous buffer. The molecules are then eluted by increasing the concentration of 

organic solvent (acetonitrile). 

 

The chromatographic properties of GSH were also determined (Figure 3.9b) and 

NEM (Figure 3.9c) alone to determine their elution profiles. By comparing all three 

chromatographs it was possible to identify each peak present in ESG sample 

(Figure 9a). 
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Figure 3.9. RP-HPLC chromatogram of ESG (a), GSH (b) and NEM (c). 1 – GSH, 

2 – GSSG, 3 – NEM, 4 – ESG, 5 – peak due oversaturation of the column. 
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In the GSH sample (Figure 9b) the strong peak (1) represents GSH, the minor peak 

(2) may represent GSSG. In the NEM only sample (Figure 9c) the sharp peak (3) 

corresponds to NEM, the small peaks (1) and (4) may correspond to GSH/GSSG 

and ESG, respectively. The presence of GSH in the NEM sample could be simply 

contamination from previous analysis. In ESG sample (Figure 9a) ESG is 

represented by two sharp peaks (4), these two peaks may represent protonated and 

deprotonated version of ESG, two minor peaks around (1 and 2) are representing 

remaining GSH and GSSG, respectively, while the small peak (3) corresponds to 

unreacted NEM. The peak present at the beginning of every sample (5) is probably 

caused by over saturation of the column. The purified sample from collected 

fractions were combined and freeze dried.  Alkylated GSH was used in the transport 

assay and added to microsomes (Figure 3.10). 
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Figure 3.10. ESG inhibition of GSH transport. Various concentrations of ESG 

were added to intact microsomes and incubated for approximately 15 min. Following 

the addition (indicated by arrow) of GSH (5 mM) the change of 390/460 ratio was 

measured and plotted over time, representing the overall rate of transport across 

microsomal membrane. The data was plotted using three biological replicates to 

make sure the results are replicable. 
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The effects of adding ESG to microsomes were opposite to what was expected. 

Samples with high concentration of ESG displayed an increase in the rate of roGFP-

iE reduction and were able to reach lower 390/460 ratio, thus they were reducing 

roGFP-iE greater and faster than the control sample with no ESG added. If ESG 

would act as an inhibitor of GSH transport the drop in the transport rate should be 

observed. Interestingly no change in 390/460 ratio was observed in the sample 

treated with ESG alone. 

 

3.3.3 Glutathione analogue synthesis 
 

ESG was not able to inhibit GSH transport, however the results were unexpected 

and very interesting. It was possible that the addition of quite bulky NEM to GSH 

was the reason why we saw no inhibition. By altering the GSH structure a new 

competitive inhibitor was designed, and this time the alterations were subtler. The 

analogue was synthesised using a simplified version of solid-phase peptide 

synthesis (SPPS) from its precursor amino acids glutamate, serine and glycine 

therefore its structure is very similar to GSH (Figure 3.11) (Coin et al., 2007). The 

only difference between GSH and the analogue was the substitution of the –SH for 

an –OH group, therefore the new compound was named GOH. 
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Figure 3.11 GOH synthesis. GOH was synthesised using a simplified version of 

solid-phase peptide synthesis from its precursor amino acids glutamate, serine and 

glycine. 1) Boc-Ser and Gly-OtBu coupled together using BOP reagent. 2) Boc 

group removed from Boc-SerGly-OtBu by 4M HCl in dioxane. 3) Boc-Glu-OtBu 

coupled to SerGly-OtBu using BOP reagent. 4) All the protection groups are 

removed by trifluoroacetic acid (TFA) and dichloromethane (DCM) solution. 5) GOH 

together with TFA salt are formed. 
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GOH was purified by HPLC, the compound was freeze dried and analysed by both 

mass spectometry and proton nuclear magnetic resonance (1H NMR) (Fig 2.1). A 

synthesis of GOH was already described in previous study (Jao et al., 2006). 

However, the Jao et al. used a different method to synthesise the product and the 

purpose of the study was also different. Because the results from 1H NMR were 

already published, it was possible to simply match them with our results confirming 

that indeed the synthesised product was the compound of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

3.3.4 GOH effect on GSH transport 

 

After confirming that the synthesised compound was indeed GOH, its effect on GSH 

transport was tested by adding GOH to microsomes and performing our standard 

transport assay (Figure 3.12).  

 

 

 

 

 

Figure 3.12. GOH effect on GSH transport in intact microsomes. Various 

concentrations of GOH were added to intact microsomes and incubated for 

approximately 15 min. Following addition (indicated by arrow) of GSH (5 mM) the 

change of 390/460 ratio was measured and plotted over time, representing the 

overall rate of transport across microsomal membrane. The increased 

concentrations of GOH have accelerated the rate of GSH transport and lowered 

390/460 ratio when compared with GSH only sample. The data was plotted using 

three biological replicates to make sure the results are replicable. 
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When microsomes were treated with GOH only, roGFP-iE became more oxidised 

with the 390/460 ratio increasing much faster than the untreated sample. In 

microsomes treated with GOH and GSH, roGFP-iE was more reduced (reached 

lower 390/460 ratio) than in the sample with only GSH added, moreover the rate of 

reduction was also increased when compared with the sample treated with GSH 

only. Because of the structural similarities it was expected GOH to act as a 

competitive inhibitor when included in the GSH transport assay, however GOH 

seems to have an opposite effect and accelerates GSH transport. This effect seems 

to be concentration dependent as increasing the concentration of GOH also 

increased the rate of reaction and degree of roGFP-iE reduction. These results were 

similar to the results obtained from ESG experiment. 

We wanted to make sure that GOH has an effect on GSH transporter or the 

microsomal membrane rather than roGFP-iE itself. To do that microsomes were 

permeabilised by adding Triton X-100 (0.15%) to all microsomes and treated with 

different concentrations of GOH (Figure 3.13). 
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Figure 3.13. GOH effect on GSH transport in permeabilised microsomes. 

Various concentrations of GOH were added to microsomes (indicated by arrow) 

permeabilised using Triton X-100 (0.15%) together with 5 mM of GSH. The change 

of 390/460 ratio was plotted over time, representing the overall rate of transport 

across microsomal membrane. The increased concentrations of GOH had no 

significant effect on the rate of GSH reduction when compared with GSH only 

sample. GOH on its own had no effect on roGFP. The data was plotted using three 

biological replicates to make sure the results are replicable. 

 

 

 

 

All samples reduced roGFP-iE at the same rate and were able to reduce roGFP-iE 

to the same level while GOH on its own did not affect 390/460 fluorescence ratio of 

roGFP. This finding indicated that GOH does not affect roGFP-iE directly. Thus, the 

effect of GOH on GSH transport remains unknown.  
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3.4 Glutaredoxin roGFP fusion 
 

It was not possible to inhibit GSH transport in previous experiments. The reason for 

that maybe a low specificity of roGFP-iE towards GSH. Contrary to the previously 

stated hypothesis, the rate of roGFP-iE reduction measured in the experiment may 

not correspond to GSH transport across microsomal membrane. It is possible that 

a cascade effect, in which GSH reduces another substrate and then the unknown 

substrate reduces roGFP-iE, is taking place. In order to increase the specificity of 

the GSH assay we used roGFP fused to glutaredoxin (GRx). In this instance roGFP-

iL was used (Figure 3.14). roGFP-iL is very similar to roGFP-iE and has been used 

to monitor redox changes in the ER (Lohman and Remington, 2008, Van Lith et al., 

2011). roGFP is able to exchange disulfide bonds with a variety of thiols and does 

not have specificity for GSH (Meyer and Dick, 2010). Therefore by fusing roGFP 

with a protein which reacts highly specifically with GSH it is possible to increase 

roGFP specificity towards GSH (Meyer and Dick, 2010). The fused protein GRx is 

part of the family of proteins with glutathione-disulfide oxidoreductase activity, that 

interact very specifically with GSH (Fernandes and Holmgren, 2004, Meyer et al., 

2009). roGFP probes can equalibrate with GSH, however, this equilibration is slow 

and requires endogenous redox catalysts, such as GRx (Meyer and Dick, 2010). 

Therefore, the availability of endogenous GRx can limit the intracellular response of 

non-fused roGFP, thus the covalently attachment of GRx to roGFP facilitate the 

equilibration between roGFP and GSH, making it more rapid and complete (Meyer 

and Dick, 2010). roGFP fused to GRx not only becomes catalytically self-sufficient 

but also have a very high specificity for GSH because the presence of GRx in close 

proximity ensures that the interaction between roGFP and other redox couples do 

not occur (Meyer and Dick, 2010). Taking all of it together, Grx_roGFP-iL offers 

several advantages over SFroGFP-iE, especially a higher specificity for GSH and 

faster equilibration rate (Meyer and Dick, 2010). 

 

 



81 
 

 

Figure 3.14. (A) Molecular mechanism of the Grx1–roGFP. Each individual step of 

the three-step thiol-disulfide exchange is fully reversible. (B) Diagrammatic 

representation of Grx1–roGFP-iL, a His-Tag was introduced to allow purification of 

the protein. 

 

Because the fusion protein is more specific for GSH lower concentrations of GSH 

can be used. After carrying out a GSH titration 1 mM of GSH was used in all further 

experiments involving ER localised GRx_roGFP-iL. The GSH transport assay was 

performed as described previously, to find out if there are any differences between 

SFroGFP-iE and GRx_roGFP-iL (Figure 3.15a and figure 3.15b). 
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A) 

 

Figure 3.15a. Kinetics of GRx_roGFP-iL reduction in intact microsomes. 1 mM 

GSH, 0.2 mM DTT and 0.2 mM TCEP were added (indicated by arrow) to intact 

microsomes. The change of 390/460 ratio was plotted over time, representing the 

overall rate of transport across the microsomal membrane. GSH is able to cross the 

microsomal membrane at moderate speed compared to DTT which diffuses through 

the membrane at high rate. TCEP is membrane impermeable, therefore, there is no 

drop in 390/460 ratio. Untreated microsomes were stable over time and 390/460 

ratio did not change over time. The data was plotted using three biological replicates 

to make sure the results are replicable. 
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B) 

 

Figure 3.15b. Kinetics of GRx_roGFP-iL reduction in Triton X-100 

permeabilized microsomes. 1 mM GSH, 0.2 mM DTT and 0.2 mM TCEP were 

added (indicated by arrow) to permeabilised microsomes so all reducing agents can 

reduce roGFP at maximum rate. The change of 390/460 ratio was plotted over time, 

representing the rate of roGFP reduction. Untreated microsomes were stable over 

time and 390/460 ratio did not change over time. The data was plotted using three 

biological replicates to make sure the results are replicable. 

 

 

The assay results were very similar to the results obtained from roGFP-iE. However, 

this time GRx_roGFP-iL was reduced by GSH almost as effectively as DTT. This 

happens not only because fusing GRX increased roGFP-iL specificity for GSH but 

also because roGFP-iL has a slightly lower reduction potential than roGFP-iE, 

therefore roGFP-iL is more easily reduced (Meyer and Dick, 2010b).   
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3.4.1 Glutaredoxin roGFP fusion – GOH inhibition 

 

After confirming that GRx_roGFP-iL is in fact more specific for GSH we decided to 

test how GOH will affect the transport of GSH in this model (Figure 3.16). The same 

ratios of GSH:GOH were used as in previous experiment (1:2, 1:5 and 1:10). 

 

Figure 3.16. GOH effect on GSH transport in GRx_roGFP-iL intact 

microsomes. Various concentrations of GOH were added (indicated by arrow) to 

intact microsomes together with 1 mM of GSH. The change of 390/460 ratio was 

plotted over time, representing the overall rate of transport across the microsomal 

membrane. The increased concentrations of GOH accelerated the rate of GSH 

transport and lowered 390/460 ratio when compared with GSH only sample. The 

data was plotted using three biological replicates to make sure the results are 

replicable. 

 

 

The results matched the result obtained by using roGFP-iE. The higher the 

concentration of GOH the faster the GSH transport and 390/460 ratio becomes 

lower.  
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3.5 Discussion 

 

How glutathione is transported from the cytosol to other cellular compartments is 

still unknown. In my PhD project we were trying to tackle this important question. 

The assay which is described in this chapter might be used as a basis to identify a 

GSH transporter in the future. 

The assay presented allows us to monitor the transport of reducing agents across 

the ER membrane. The overall change in roGFP redox state measured over time 

reflects the rate of transport of reducing agents. By using this system it was 

demonstrated that the ER membrane constitutes a barrier for GSH. It was also 

shown that GSH does not simply diffuse through the ER membrane and transport 

is necessary for GSH to cross the ER membrane. This assay is not limited to 

reducing agents only and can be used to monitor the transport of any compounds 

able to alter the redox status of roGFP. 

The results, in respect to DTT and TCEP, are similar to those presented by Cline et 

al. in their assay, however GSH behaves different in our assay because of the 

difference between liposomes and microsomes. Liposomes used by Cline et al. do 

not contain any proteins embedded into bilayer thus any molecule that requires 

transport is not able to cross the lipid bilayer. Microsomes, in contrast to liposomes, 

contain all the membrane proteins normally present in the ER, therefore, it is 

assumed that a GSH transporter present in the ER membrane is also present in 

microsomes and allows GSH to move across the membrane. The different results 

from liposomes and microsomes indicates that GSH is transported across the ER 

membrane rather than by simple diffusion.  

A potential drawback of the assay is the variation between each batch of prepared 

microsomes. Therefore, each experiment was repeated at least three times to make 

sure the results are replicable. Indeed, the results were replicable as each batch 

followed the same trend, however, different batches tend to behave slightly different, 

for example the starting 390/460 ratio of roGFP differs between each batch and 

needs to be tested prior to conducting any experiment. Usually the differences are 

not significant but may lead to confusion and misinterpretation of the data. The 

microsomes are prepared as mixture of intact and disrupted vesicles (Burchell et 

al., 1988). If the microsomes are not intact, the membrane is disrupted and GSH 

may be able to get inside microsomes by other means than being transported and 
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thus lead to false positive signal in the transport assay. It is very interesting that 

despite being a membrane impermeable reducing agent, TCEP was still able to 

reduce roGFP to some degree. This indicate a possible leakage of microsomes, 

thus it is possible to use TCEP to assess the intactness of our microsomes. If 

microsomes were very leaky TCEP would be able to reduce roGFP more, however 

if microsomes are intact the degree of roGFP reduction by TCEP would not be 

significant (for examples see appendix). DTT also played an important role as a 

control, it shows the maximum rate of roGFP reduction that can be achieved.  

The biggest challenge was to inhibit GSH transport. Trying to inhibit it with broad 

range serine proteases was not effective. We were afraid that factors like 

temperature, pH, and in the case of proteinase K, presence of calcium, could 

compromise the activity of the proteinases used. However, proteinase K is very 

stable (optimal activity between pH 7.5 and 12 and temperature range of 20C - 

60C) and despite requiring calcium for its stability the catalytic activity is not 

compromised in the absence of calcium. Therefore, our conditions were within the 

activity range of all proteinases. The activity of proteinase K can be stimulated when 

up to 2% SDS or up to 4 M urea is added into the buffer (Hilz et al., 1975), however 

adding these compound would most likely affect our transport assay. Trying to 

digest the GSH transporter with serine proteases have other flaws. GSH 

transporting protein is most likely a membrane embedded protein, therefore could 

be protected from digestion.  

The fusion of GRx to roGFP makes the roGFP more specific towards GSH, thus 

making the assay more sensitive allowing the use of lower concentrations of GSH. 

This seemed to be an improvement, however, the fluorescence of GRx_roGFP-iL is 

weaker then SFroGFP-iE, due to the lack of the superfolder mutations. The 

fluorescence brightness appeared to be an issue in GRx_roGFP-iL as the signal 

was weak. We are planning to solve this problem by fusing super folded roGFP to 

GRx. This will eliminate the drawback of GRx_roGFP-iL. 

Probably the most unexpected results came from testing ESG and GOH effect on 

GSH transport. The results from ESG experiment could be simply explained by the 

fact that NEM group is bulky and maybe ESG gets “stuck” and somehow makes the 

transporter stay in an open conformation. However, because of the structural 

similarities between GOH and GSH it was expected that GOH would act as an 

inhibitor of GSH transport. However, samples with high concentration of GOH 
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displayed an increase in transport rate and were able to reach lower 390/460 ratio, 

thus they were reducing roGFP greater and faster than control sample with no GOH 

added. The results are not fully explained but one of our hypotheses is similar to 

what may happen to ESG. GOH is able to bind to the GSH transporter and keep it 

in an open conformation thus allowing GSH to enter microsomes freely, reducing 

roGFP greater and faster than normally. Other possible reason for the increase in 

reduction rate of roGFP is a simple gradient effect. As a greater amount of analogue 

was added this could cause GSH to move inside microsomes faster. 
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Chapter 4  
GST assay for GSH 

transport 
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4.1 Introduction 

 

The previous chapter described the development of novel assay for glutathione 

transport in which redox sensitive GFP was used as reporter protein. The assay 

proved that the ER membrane is a barrier for GSH and that GSH is transported 

across the ER membrane. To validate these findings, it was necessary to inhibit the 

transport process, however, despite taking different approaches to inhibit GSH 

transport we did not succeeded in this task. We tried crude methods using broad 

ranged serine proteases but also more targeted methods like inhibiting the transport 

with a GSH analogue. 

We had some concerns about the roGFP assay and we were careful to restrict our 

interpretation of the results. Because disulfide exchange reactions are dynamic and 

there are many proteins and/or molecules in the ER lumen able to exchange 

disulfides, these can be potential substrates which can reduce roGFP. We wanted 

to make sure GSH interacts directly with the reporter protein in our assay. Therefore, 

we decided to change our approach and develop a new assay, alongside roGFP 

assay, which will be more specific. To complement the roGFP assay we developed 

an assay that uses glutathione transferase (GST) targeted to the ER lumen. 

Glutathione transferases (EC 2.5.1.18), formerly named glutathione S-transferases, 

are a family of isoenzymes whose primary role is detoxification of xenobiotics by 

nucleophilic reactions with glutathione (Keen and Jakoby, 1978). GSTs can bind a 

variety of exogenous and endogenous ligands non catalytically, they can also 

protect cells against H2O2 induced cell death, and have isomerase and peroxidase 

activities (Sheehan et al., 2001). GSTs are classified into 3 main families, cytosolic 

(classes alpha, zeta, theta, mu, pi, sigma, and omega), mitochondrial (class kappa) 

and membrane-associated proteins in eicosanoid and glutathione metabolism 

(MAPEG) which consist of four subgroups (I-IV) (Hayes et al., 2005). The three-

dimensional structure of cytosolic and mitochondrial classes of GSTs are very 

similar, however MAPEG classes of GSTs share no structural similarities to other 

GSTs classes (Ladner et al., 2004, Holm et al., 2002). The typical structure of the 

cytosolic family of GSTs consists of a C-terminal region rich in α-helixes and an 

βαβαββα topology of a N-terminal thioredoxin-like domain (Oakley, 2011). The 

structure of mitochondrial kappa class of GSTs is very similar to cytosolic GSTs 

enzymes, it also contains a thioredoxin-like domain, however it has a DsbA-like α-
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helical domain inserted between helix-α2 and strand-β3 (Oakley, 2011). In order to 

become catalytically active cytosolic and mitochondrial GSTs form homodimers 

(Oakley, 2011). Because MAPEG class of GSTs consists of membrane associated 

proteins they are very different in structure when compared to cytosolic and 

mitochondrial GSTs. All MAPEG GSTs have helical bundles (four left-handed α-

helices) assembled into trimers and orientated orthogonally in the plane of the 

membrane (Oakley, 2011). However structurally different, all three GSTs families 

have similarities when it comes to catalytic activity, such as glutathione peroxidase 

activity, or conjugation of GSH with 1-chloro-2,4-dinitrobenzene (CDNB) (Hayes et 

al., 2005). 

 

In our assay, we decided to use cytosolic GST class-pi (GSTP1-1) for the following 

reasons. Most importantly, GSTP1-1 is expressed in more tissues than any other 

GST (Suzuki et al., 1987). Among all GSTs, GSTP1-1 was the first one for which a 

three-dimensional structure was determined at 2.3 angstrom resolution by multiple 

isomorphous replacements (Reinemer et al., 1991). Since then GSTP1-1 was 

studied extensively, to date GSTP1-1 is probably the most characterised member 

of the GST family. Different polymorphic variants of GSTP1-1 differ in substrate 

affinity however we decided to use wild type GSTP1-1A (Ile105, Ala114). Compared 

to other cytosolic GSTs, GSTP1-1A has moderate peroxidase activity and high 

affinity for CDNB (Km = 0.33 mM, Vmax= 62.3 µmol-1mg-1) and GSH (Km= 0.45 mM) 

(Aliosman et al., 1997, Seeley et al., 2006, Goodrich and Basu, 2012). Because the 

Km for GSH is lower than the Km for CDNB it is possible that GSH might be the rate 

limiting factor in the conjugation reaction. Because the moderate peroxidase activity 

of GSTP1-1A we knew it should not affect the redox state of ER. 

Two suitable substrates for GST were selected, CDNB and the membrane 

permeable fluorescent dye 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY). 

BODIPY has many qualities that make it a good choice as fluorescent probe, for 

example, resistance to photobleaching, narrow and high-intensity emission peaks, 

stability at physiological conditions and insensitivity to pH changes (Loudet and 

Burgess, 2007). Moreover, BODIPY also allows us to monitor changes not only in 

fluorescence but also in absorbance (Niu et al., 2012). To date many derivatives of 

the “core” BODIPY have been synthesised and characterised, we were interested 

in chloro-BODIPY (Cl-BODIPY) as it has properties making it selective for GSH and 

it has very low non-enzymatically activity between Cl-BODIPY and GSH (Loudet 
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and Burgess, 2007, Niu et al., 2012). GSTs catalyse the conjugation of GSH to Cl-

BODIPY, this creates a shift in both emission (512 nm to 540 nm) and absorbance 

(503 nm to 530 nm), which allows for monitoring either a decrease or increase in 

emission/absorbance (Niu et al., 2012, Wang et al., 2014).  

CDNB is the standard substrate choice for GSTs in the conjugation assay with GSH 

(Habig et al., 1974). The conjugation of CDNB to GSH results in a formation of stable 

product, GS-DNB conjugate, that absorbs strongly at 340 nm wavelength (Habig et 

al., 1974). The increase in absorbance at 340 nm reflects the enzymatic activity of 

GST. The process of conjugation of GSH to CDNB is well described and has 

become a standard method to assess activity of various GSTs (Aliosman et al., 

1997, Suzuki et al., 1987). Moreover, CDNB is membrane permeable and can enter 

cells rapidly, which is very important for our assay (Lindwall and Boyer, 1987).  

The principles of the new GST based transport assay are exactly the same as in 

previous roGFP based assay (Figure 4.1). As mentioned before there are many 

potential proteins and/or molecules involved in redox exchange reactions that could 

interact with GSH and then reduce roGFP. Since nothing else present inside the ER 

lumen/microsomes is able to conjugate GSH to Cl-BODIPY/CDNB the reaction can 

only be carried out by the ER localised GSTP1-1A. This makes the GSH transport 

assay using GST more direct than the previous assay based on roGFP reduction. 

Because of the dynamic state of roGFP it was impossible for a roGFP based 

transport assay to be quantitative. However, because GST based transport assay 

results in a stable product formation (GS-DNB/GS-BODIPY conjugate) the assay 

can be quantified and various other experiments can be carried out, for example 

product analysis by mass spectometry or HPLC.   
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Figure 4.1. Principles of GSH transport based on conjugation of GSH to CDNB 

by GST. (1) GSH and CDNB are added to microsomes and cross the membrane. 

(2) GSH is conjugated to CDNB by GST. (3) GS-DNB conjugate is formed and 

absorbance at 340 nm can be measured. 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

4.2 GSTP1-A-KDEL cell line 

 

A stable HT1080 cell line overexpressing GSTP1-A was created. A FLAG tag and 

KDEL sequence were added to C-terminus to make the protein easier to 

characterise on Western blot and to make sure GSTP1-1A stays in the ER (Hopp et 

al., 1988, Stornaiuolo et al., 2003). After isolating clones and confirming GSTP1-1A 

expression, by Western blot, microsomes were prepared and the presence of 

GSTP1-1A was confirmed by Western blot (Figure 4.2).  

 

 

 

 

 

Figure 4.2. Immunofluorescence Western blot analysis of FLAG tagged 

GSTP1-1A. GSTP1-1A microsomes were lysed and separated by 12.5% SDS-

PAGE and subjected to Western blotting. The blot was incubated with α-FLAG 

(Mouse) antibody (1:1000) for 4 hours followed by 40 minutes incubation with 

secondary α-mouse-800 antibody (1:10000). Lane 1 - GSTP1-1A (~25 kDa). Lane 

2 - a positive control - FLAG tagged SNARE protein. 
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4.3 GST based transport assay 

 

Both CDNB and BODIPY assays were performed to check which one would be more 

suitable for monitoring GSH transport across the microsomal membrane.  

Due to the high florescence intensity and poor water solubility a low concentration 

of BODIPY (100 nM) was used in the transport assay. Microsomes were treated 

with BODIPY (100 nM) and GSH (0.1 mM) was added. The change in in 

fluorescence spectra was monitored over time (Figure 4.3). The relatively low 

concentration of 100 nM was enough to give a strong fluorescence signal and to 

observe a shift in emission peaks, indicating GS-BODIPY formation. There is a clear 

decrease in 512 emission peak, however, the increase in 540 emission peak is not 

as clear as seen in BODIPY related publications (Wang et al., 2014, Niu et al., 2012). 

Moreover, the shift in emission peaks in our assay requires much more time 

compared to previous publications and is still not completed even after 2 h (Niu et 

al., 2012). This could possibly indicate low activity of GSTP1-1A and its low 

specificity for Cl-BODIPY. If the rate of GSH to Cl-BODIPY conjugation is slower 

than GSH transport across membrane the rate of GS-BODIPY formation is 

measured instead of the rate of GSH transport.  
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Figure 4.3. Fluorescence spectra of Cl-BODIPY. To assess GSH transport across 

microsomal membrane 0.1 mM GSH was added to GSTP1-1A microsomes pre-

treated with 100 nM Cl-BODIPY. Fluorescence spectra was measured every 15 

minutes. Different colours represent measurement at different time. Over time a 

slow shift in emission was observed (512 nm to 540 nm). The data was plotted using 

average of three technical replicates. 
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It has been reported that high concentrations of CDNB can disturb the cell 

membrane, therefore a low concentration of CDNB was used in the assay. 

Microsomes were treated with CDNB (250 µM) and GSH (1 mM) was added. The 

change in in 340 absorbance was monitored over time (Figure 4.4). The experiment 

was carried out three times and all replicates are shown in Figure 4.4 to demonstrate 

the problem with this approach. The absorbance at 340 nm fluctuated dramatically. 

Even the untreated sample containing only microsomes shows a lot of variability 

over time. All three samples treated with CDNB and microsomes behave differently 

and it is difficult to draw any conclusions in regard to GSH transport. The reason for 

these fluctuations is most likely due to a high background turbidity from the added 

microsomes.  

Both of CDNB and Cl-BODIPY assays did not provide information about GSH 

transport. The investigation of why the assays did not work and how to improve both 

approaches, was required.  
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Figure 4.4 GST based assay of GSH transport across microsomal membranes. 

To assess GSH transport across microsomal membranes 1 mM GSH was added to 

GSTP1-1A microsomes pre-treated with 250 µM CDNB. The change in absorbance 

at 340 nm was plotted over time representing the activity of GSTP1-1A inside 

microsomes. All triplicates are included to show unreliability of the approach. 
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4.3.1 Purified GSTP1-1A activity 

 

To evaluate the GSTP1-1A activity we overexpressed the protein in E.coli and 

carried out purification using glutathione Sepharose beads. Both FLAG tag and 

KDEL sequence were included in E.coli construct to make sure that activity of the 

protein is not affected by addition of these sequences. 

To test how GSTP1-1A reacts with CDNB, GSH (1 mM) and CDNB (250 µM) were 

added to different concentrations of GSTP1-1A (50 nM – 500 nM) the increase in 

340 nm absorbance was monitored over time (Figure 4.5). As expected, the rate of 

GS-DNB conjugate formation is concentration dependent, as the concentration of 

GSTP1-1A increases the rate of GSH to CDNB conjugation also increases. In order 

to check the non-enzymatic activity between GSH and CDNB one sample without 

adding GSTP1-1A was included. The conjugation of GSH to CDNB without the 

presence of enzyme is slow and was treated as a background and results were 

normalised against it.  
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Figure 4.5. Purified GSTP1-1A activity. 1 mM of GSH and 250 µM CDNB were 

added to different concentrations of GST. The increase in 340 nm absorbance was 

plotted over time, representing the overall GSTP1-1A activity. As the concentration 

of GSTP1-1A increases the rate of GSH to CDNB conjugation also increases 

together with the maximum absorbance. Sample with no GSTP1-1A added shows 

slow non-enzymatic conjugation of GSH to CDNB. The data was plotted using three 

biological replicates to make sure the results are replicable. 
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To test GSTP1-1A activity towards Cl-BODIPY, GSH (1 mM) and Cl-BODIPY (150 

µM) were added to different concentrations of GSTP1-1A (50 nM – 500 nM) the 

increase in 530 nm absorbance was monitored over time (Figure 4.6). When 

compared to CDNB the rate of GS-BODIPY conjugation was slow even at the 

highest concentration of GSTP1-1A. When plotted on the graph the slower rates did 

not resemble typical sigmoid curves seen in enzymatic reactions but were linear. 

The activity of low concentrations of GSTP1-1A are hard to distinguish from 

background non-enzymatic activity between Cl-BODIPY and GSH. The slow and 

low activity of GSTP1-1A with Cl-BODIPY can explain what was observed 

previously when Cl-BODIPY was used with microsomes. 
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Figure 4.6. Purified GSTP1-1A activity towards Cl-BODIPY. GSH (1 mM) and Cl-

BODIPY (150 nM) were added to different concentrations of GST. The increase in 

530 nm absorbance was plotted over time, representing the overall GSTP1-1A 

activity. As the concentration of GSTP1-1A increases the rate of GSH to Cl-BODIPY 

conjugation also increases together with the maximum absorbance. Lower 

concentrations of GSTP1-1A shows linear increase in absorbance. Sample with no 

GSTP1-1A added shows slow non-enzymatic conjugation of GSH to Cl-BODIPY. 

The data was plotted using three biological replicates to make sure the results are 

replicable. 

 

 

This result confirmed that GSTP1-1A is active and able to conjugate GSH to CDNB 

despite the presence of KDEL and FLAG sequences. However, Cl-BODIPY is not a 

good substrate for GSTP1-1A. Cl-BODIPY seems to react slowly with GSTP1-1A, 

because of this Cl-BODIPY does not seem to be a good candidate for the GSH 

transport assay. Therefore, from now on the main focus of the project was on 

improving CDNB approach. 
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4.3.2 Estimate the concentration of GSTP1-1A inside microsomes 

 

To have a rough idea of GSTP1-1A activity inside microsomes, estimating the 

concentration of GSTP1-1A inside microsomes was necessary. Solubilised 

microsomes were compared against the known concentration of purified GSTP1-1A 

on 12.5% SDS-PAGE followed by Western blot analysis (Figure 4.7). By comparing 

the bands intensities using ImageJ software, the concentration of GSTP1-1A inside 

microsomes was estimated to be around 150 nM. Compared to previous results 

from purified GSTP1-1A activity, 150 nM should still give enough activity to be able 

to monitor the increase in absorbance of CDNB. The concentration of 150 nM should 

also be enough to see changes in Cl-BODIPY absorbance/fluorescence, however, 

due to its slow kinetics it would be difficult. 

 

 

 

 

 

 

Figure 4.7 Western blot analysis of FLAG tagged GSTP1-1A. Lysed GSTP1-1A 

microsomes were separated on 12.5% SDS-PAGE and subjected to Western 

blotting. Increasing concentrations of purified GSTP1-1A were added to the blot to 

help estimate the concentration of GSTP1-1A inside the microsomes. The blot was 

incubated with α-FLAG (Mouse) antibody (1:1000) for 4 hours followed by 40 

minutes incubation with secondary α-Mouse-800 antibody (1:10000).  
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4.3.3 In vivo activity of GSTP1-1A 

 

Previous experiments proved GSTP1-1A to be active in vitro, however, an indication 

of protein being active in vivo was especially important for our GSH transport assay. 

A simple experiment using glutathione Sepharose beads was performed to find out 

if GSTP1-1A present inside the ER is able to bind GSH and thus be active and 

correctly folded. Glutathione Sepharose beads are normally used for purification of 

GSTs and GST tagged proteins but in this experiment it was used as an indication 

that GSTP1-1A had folded correctly and would be active. HT1080-GSTP1-1A-KDEL 

cells were lysed and incubated with glutathione Sepharose beads, washed 3 times 

with PBS then eluted with a high concentration of GSH. Both eluate and wash flow 

were analysed on 12.5% SDS-PAGE gel followed by silver staining (Figure 4.8). A 

strong band above 25 kDa in eluted sample corresponds to GSTP1-1A, other minor 

bands may represent endogenous cytosolic GSTs or proteins that bind GSH. The 

flow through sample contained a diffuse smear with a large number of bands 

present, this is not surprising as the majority of proteins do not interact with GST 

therefore were washed through. This indicates GSTP1-1A is active and able to bind 

GSH, otherwise it would not be possible to separate it from the rest of the proteins 

present in the lysate. As a control a mix of purified GSTP1-1A and ERp 27 was 

used. Because ERp27 does not bind GSH it should be possible to separate these 2 

proteins based on GSH binding, thus ERp27 should only be seen in flow control. 

The elute control contained a strong band corresponding to GSTP1-1A while a band 

corresponding to ERp27 was only visible in the flow through control. This proved 

that the principles of the experiment work, it is possible to separate proteins based 

on GSH binding. In order to identify GSTP1-1A and ERp27 purified versions of these 

proteins were also run on the gel. Total cell lysate was also included as another 

control to check differences between the flow through samples. As expected a band 

corresponding to GSTP1-1A was present in total cell lysate sample. The results from 

the experiment are encouraging and showed that GSTP1-1A binds to GSH and is 

likely to be active in vivo, therefore it should be active in microsomes during GSH 

transport assay. 
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Figure 4.8 In vivo binding of GSTP1-1A to GSH-Sepharose. HT1080-GSTP1-

1A-KDEL cells were lysed and incubated with GSH-Sepharose beads, washed 3 

times with PBS then eluted with high concentration of GSH. Proteins were silver 

stained . Lane 1 - HT1080-GSTP1-1A-KDEL cell lysate eluted sample. 

Lane 2 - HT1080-GSTP1-1A-KDEL cell lysate unbound sample. Lane 3 – purified 

GSTP1-1A/ERp27 mix, GSH-eluted sample. Lane 4 – purified GSTP1-1A/ERp27 

mix, unbound sample. Lane 5 - HT1080-GSTP1-1A-KDEL total cell lysate. Lane 6 

– purified ERp27. Lane 7 – purified GSTP1-1A. 
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4.3.4 Mass spectometry and HPLC identification of conjugated product 

 

The main advantage of GST based transport assay is the formation of a stable GSH 

conjugated product, GS-DNB or GS-BODIPY. We decided to use this property of 

the GST based transport assay to detect the conjugated product using HPLC 

followed by mass spectometry (Figure 4.9). Microsomes were treated with CDNB 

(250 µM) and GSH (1 mM) for approximately 2 h and protein was precipitated using 

trichloroacetic acid (TCA) 10% v/v. Adding TCA precipitates protein but not small, 

water soluble molecules such as GSH. Therefore, following centrifugation the GSH-

conjugate product remains in the supernatant ready for further analysis. After TCA 

treatment HPLC was performed followed by mass spectometry. Peak areas were 

also indicated on chromatograms to allow quantification of any conjugate present in 

each sample. Overall 6 samples were analysed. CDNB alone was used to identify 

the peak corresponding to CDNB (Figure 4.9a), GSH alone to identify the peak 

corresponding to GSH (Figure 4.9b). A mixture of CDNB and GSH was included to 

identify the peak corresponding to the conjugated product and to determine the non-

enzymatic background of conjugation (Figure 4.9c). A mixture of CDNB and GSH 

was incubated with GSTP1-1A to determine the maximum product that can be 

obtained from given concentrations of CDNB and GSH (Figure 4.9d). A sample 

containing GSTP1-1A microsomes incubated with CDNB and GSH was analysed 

(Figure 4.9e). A control sample containing microsomes made from untransfected 

HT1080 cell line, incubated with CDNB and GSH was included in analysis (Figure 

4.9f). A chromatogram from the mass spectometry of the sample containing GSTP1-

1A microsomes treated with CDNB, and GSH is also included to demonstrate that 

the peak corresponding to GS-DNB conjugate contains the right product (Figure 

4.9g).      

Because all samples were treated with high concentration of TCA (10%), an 

oversaturated peak (RT = 1.85) is present in every sample. CDNB is less polar than 

other molecules tested thus its retention time (RT) is longer (RT = 14.93), CDNB is 

represented by sharp peak, however a smaller peak (RT = 14.36) is also present. 

GSH was eluted earlier (RT ~ 2.26) after the TCA. For the reason still unclear in 

sample containing GSH only (Figure 4.7b), GSH is eluted later (RT = 3.16) than in 

any other tested sample. GS-DNB conjugate was identified as sharp peak (RT ~ 

11.53) varying in size depending on the sample tested. Mass spectometry analysis 

verified the GS-DNB peak (RT ~ 11.53) contain the right product by confirming its 
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mass (474 g·mol−1) (Figure 4.9g). In both microsomes samples, one additional small 

peak appeared (RT ~ 8.19), however, the origin of this peak is unknown.  

By comparing peak areas values (indicated “AA” on chromatogram) it is possible to 

gain an estimate of how much GS-DNB conjugate has been formed and compare 

samples between each other. Microsomes containing GSTP1-1A (Figure 4.9e) can 

be compared to HT1080 microsomes (Figure 4.9f) as the only difference between 

them is presence of GSTP1-1A. Peak area value for GS-DNB conjugate in GSTP1-

1A microsomes is equal to 17.5 x 106 while peak area value for HT1080 microsomes 

is equal to 6.8 x 106. Making some simple calculations it is possible to estimate that 

there is approximately 2.5 times more GS-DNB conjugate formed in GSTP1-1A 

microsomes sample due to GSTP1-1A activity. However, it is important to remember 

that these numbers are not definitive and should only be used as an 

estimate/indication of relative abundance of compounds in each sample.  

The HPLC/mass spectometry experiment proved not only that GSH is transported 

inside microsomes and is conjugated to CDNB but also that GSTP1-1A is active 

inside microsomes and able to catalyse conjugation of GSH to CDNB. By comparing 

peak area values from different samples it became clear that in the presence of 

GSTP1-1A more product is formed. The presence of GSH to Cl-BODIPY conjugate 

was also confirmed by mass spectometry (see appendix).  
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Figure 4.9 HPLC and mass spectometry analysis of GS-DNB conjugate in different samples. A) CDNB, B) GSH, C) CDNB + GSH, D) 

CDNB + GSH + GSTP1-1A, E) GSTP1-1A microsomes + CDNB + GSH, F) HT1080 microsomes + CDNB + GSH G) Mass spectometry 

chromatograph of GSTP1-1A microsomes + CDNB + GSH sample. Retention times (RT): CDNB = 14.93, GSH = ~2.25/3.16, GS-DNB = ~ 

11.53, TCA = 1.85. GS-DNB mass = 474. AA = Peak area 
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4.3.5 Transport assay – endpoint 

 

Experiments similar to previous mass spectometry were then conducted, however 

this time the absorbance was measured after TCA treatment. This approach is much 

simpler than mass spectometry or HPLC and gives us information related to amount 

of conjugated product present in each sample.  

Microsomes were treated with CDNB (250 µM) and GSH (1 mM) for approximately 

2 h at RT until TCA was added to the final concentration of 10% v/v. Samples were 

centrifuged and the absorbance of supernatant was measured at 340 nm (Figure 

4.10). The intensity of absorbance represents the amount of GS-DNB conjugate 

formed, higher absorbance means more GS-DNB is present in the sample. GSTP1-

1A microsomes were compared against HT1080 microsomes and a purified GSTP1-

1A sample. Background (non-enzymatic reaction between GSH and CDNB) was 

subtracted from all samples. When we compared GSTP1-1A microsomes to 

HT1080 microsomes the absorbance at 340 nm was almost 4 times higher in 

sample containing GSTP1-1A microsomes. This is very similar to what was 

observed with peak areas during HPLC experiment. The result is not surprising and 

is simply explained by the fact that HT1080 cell line do not express GSTP1-1A inside 

the ER, therefore there is no GSTP1-1A inside HT1080 microsomes, however there 

are still endogenous MAPEG enzymes present. Purified GSTP1-1A (500 nM) 

sample shows the maximum absorbance that could be obtained from given 

concentration of GSH (1mM) and CDNB (250 µM) at the given timepoint is 

approximately 2.5 fold higher than in GSTP1-1A microsomes and 8-10 folds higher 

than in HT1080 microsomes. 
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Figure 4.10 Endpoint measurement of GS-DNB conjugate after 2 h incubation. 

Microsomes treated with GSH (1 mM) and CDNB (250 µM) were incubated for 2 h 

at RT and precipitated using TCA. Samples were centrifuged and the absorbance 

of the supernatant was measured at 340 nm. Average absorbance from 3 

independent experiments were plotted on the histogram, the error bars represent 

standard deviation. Background (non-enzymatic reaction between GSH and CDNB) 

was subtracted from all samples. 
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It has been shown that the reaction between GSH and Cl-BODIPY catalysed by 

GSTP1-1A is slower than that with CDNB, however, because the reaction kinetics 

are not measured in this experiment, Cl-BODIPY was also analysed. Microsomes 

treated with Cl-BODIPY (150 nM) and GSH (1 mM) were incubated for 2 hours at 

RT and precipitated using TCA. Samples were centrifuged and the absorbance of 

the supernatant was measured at 530 nm (Figure 4.11). Background (non-

enzymatic reaction between GSH and Cl-BODIPY) was subtracted from all samples. 

The results from the Cl-BODIPY experiment were very similar to what was observed 

when using CDNB. 530 nm absorbance from GSTP1-1A microsomes sample was 

equal to 0.12 ± 0.008, it is 3.2 times higher than 530 nm absorbance measured in 

HT1080 microsomes sample (0.03 ± 0.0053). Purified GSTP1-1A (500 nM) sample 

shows the maximum absorbance (0.31 ± 0.0155) that could be obtained from given 

concentration of GSH (1mM) and CDNB (250 µM). 

The experiment confirmed the results from HPLC experiment about GSH being 

transported across microsomal membrane and GSTP1-1A being active inside 

microsomes.  
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Figure 4.11 Endpoint measurement of GS-BODIPY conjugate after 2 h 

incubation. Microsomes treated with Cl-BODIPY (150 nM) and GSH (1 mM) were 

incubated for 2 h at RT and precipitated using TCA. Samples were centrifuged, and 

the absorbance of the supernatant was measured at 530 nm. Average absorbance 

from 3 independent experiments were plotted on the histogram, the error bars 

represent standard deviation. Background (non-enzymatic reaction between GSH 

and Cl-BODIPY) was subtracted from all samples. 
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4.3.6 Transport assay – time course 

 

TCA precipitation has proven to be successful in removing the high background 

noise that was a problem in early attempts to monitor GSH transport. In the previous 

experiment samples were treated with TCA and end point absorbance was 

measured. In order to find out more about GSH transport several time points were 

collected. CDNB (250 µM) and GSH (1 mM) were added to samples, TCA (10%) 

was added to each sample after specific time interval, samples were centrifuged, 

absorbance at 340 nm was measured and collected time points were plotted over 

time (Figure 4.12). Background (non-enzymatic reaction between GSH and CDNB) 

was subtracted from all samples. Three sets of samples were used, GSTP1-1A 

microsomes, permeabilised GSTP1-1A microsomes and HT1080 microsomes.  

Compared to other samples the absorbance in HT1080 microsomes sample 

increased slowly and after 50 minutes reached 0.23, this is the lowest value of all 

tested samples. The sample containing GSTP1-1A microsomes reached 

absorbance equal to 0.71 after 50 minutes of incubation and the rate of reaction was 

higher when compared to HT1080 microsomes. To solubilise the microsomal 

membrane, which constitutes a barrier for GSH, 0.15% of detergent TWEEN20 was 

added to one of GSTP1-1A microsomes samples. Permeabilised GSTP1-1A 

microsomes displayed the highest rate of reaction and reached the highest 

absorbance of 0.94 after 50 minutes of incubation. Because Cl-BODIPY is a poorer 

substrate for GSTP1-1A, than CDNB, it was not used in this experiment.  
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Figure 4.12 GST based assay of GSH transport across microsomal 

membranes. To assess GSH transport across microsomal membranes CDNB (250 

µM) and GSH (1 mM) were added to the samples, TCA (10%) was added to each 

sample after specific time interval, samples were centrifuged, absorbance at 340 

nm was measured and collected time points were plotted over time. Average 

absorbance from 3 independent experiments were plotted on the graph, errors bars 

represent standard deviation. Background (non-enzymatic reaction between GSH 

and CDNB) was subtracted from all samples.   
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4.3.7 Inhibition of GSH transport 

 

Inhibition of GSH transport is important validation step needed for further progress 

of GSH transporter identification. As stated in previous chapter, if a protein is 

responsible for transporting GSH, it must be possible to inhibit it. However, GSTP1-

1A used in the assay has a high specificity for GSH. Therefore, using GSH 

analogues such as GOH may have direct effect on GSTP1-1A making it impossible 

to distinguish between the inhibition of a GSH transporter and inhibition of GSTP1-

1A. A simple test in which different concentrations of GOH (0.2 mM – 1 mM) were 

added to GSTP1-1A (250 nM), GSH (1 mM) and CDNB (250 µM), proved that GOH 

is in fact an inhibitor of GSTP1-1A activity (Figure 4.13). Both the rate of GSH to 

CDNB conjugation, as well as total conjugate formation, decreased proportionally 

to the amount of GOH added.  

 

 

 

 

 

 

 

 



118 
 

 

Figure 4.13. GOH inhibition of GSTP1-1A. GSH (1 mM) and CDNB (250 µM) were 

added to 250 nM of GST incubated with various concentrations of GOH. The 

increase in 340 nm absorbance was plotted over time, representing the overall rate 

GSH to CDNB conjugation reaction. As the concentration of GOH increases the rate 

of GSH to CDNB conjugation decreases together with the maximum absorbance. 

Background (non-enzymatic reaction between GSH and CDNB) was subtracted 

from all samples. The experiment was repeated once. 

 

 

 

 

 

 

 

 

0 1000 2000 3000 4000 5000 6000 7000

0.0

0.2

0.4

0.6

0.8

A
b

s
o

rb
a
n

c
e
 3

4
0
 n

m

Time (s)

 0 mM GOH

 0.2 mM GOH

 0.4 mM GOH

 0.6 mM GOH

 0.8 mM GOH

 1 mM GOH



119 
 

4.4 Discussion 

 

The GST based GSH transport assay presented in this chapter allows the 

monitoring of transport of GSH across the ER membrane. GSTP1-1A present inside 

microsomes can conjugate GSH to various substrates. In our experiments, CDNB 

and Cl-BODIPY were used as substrates. Overall CDNB turned out to be a better 

substrate for GSTP1-1A, thus CDNB was the main substrate used. By measuring 

the total absorbance over time it was possible to link the change in absorbance to 

GSH transport. Because the product of the conjugation is very stable it should allow 

further improvement. In one approach HPLC and mass spectometry were performed 

to validate GSH transport and to detect the formation of GS-DNB conjugate to prove 

transport of GSH across the microsomal membrane. 

There are a few drawbacks to this approach. First of all the results depend on 

concentration of GSTP1-1A expressed in HT1080 cell line. The low concentration 

proved to be an issue with Cl-BODIPY in which it was difficult to monitor kinetics of 

GSTP1-1A activity. It has been reported that CDNB induces cell permeability at high 

concentrations (Zou et al., 2002). This report looked at plasma membrane 

permeability however, high concentrations of CDNB may have an effect on 

microsomes and, therefore, it is advisable to use low concentrations of CDNB. In 

the transport assay HT1080 microsomes displayed activity above background. 

HT1080 microsomes do not contain GSTP1-1A however there are still endogenous 

MAPEG enzymes associated with ER membrane. These MAPEG enzymes display 

activity towards CDNB and GST, however, as shown in the experiment the activity 

is lower compared to GSTP1-1A microsomes (Bresell et al., 2005). Also it might be 

difficult to find an inhibitor of GSH transport that will affect GST transporter and will 

not affect GSTP1-1A activity. GOH used in the experiment is a good example of 

GSH analogue which inhibits GSTP1-1A and, therefore, cannot be used to inhibit 

GSH transporter, because if a drop in GSTP1-1A will be observed it will be 

impossible to distinguish between the drop in GSH transport and GSTP1-1A activity, 

however, GOH could be a good control if we can confirm that GOH is not transported 

across the microsomal membrane. To avoid confusion and to be able to distinguish 

between inhibition of GSH transporter and inhibition of GSTP1-1A activity, perhaps 

more specific inhibitor can be designed. 

There are many ways in which the assay can be improved. There are many 

members of GSTs protein family, each have different specificity for different 
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substrates. Therefore, trying using different versions of GST might prove to be a 

better choice than GSTP1-1A used. However, different substrates can also be used. 

There are plenty of commercially available substrates for GSTs, some of them might 

be better than CDNB used in the experiment. 
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Chapter 5 
Isolating putative GSH 

transporters 
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5.1 Introduction 

 

In the previous two chapters, we focused on developing an assay able to monitor 

glutathione transport across the ER membrane. Two different approaches have 

been developed, one that relies on a change in fluorescence ratio of roGFP upon 

reduction by GSH, the other approach relies on conjugation of GSH to different 

substrates (CDNB or Cl-BODIPY) and measuring the change in absorbance. Both 

of these assays have advantages as well as limitations and can complement each 

other. However, the ultimate goal of the project was to identify the GSH transporter. 

To do this we decided to focus on the direct identification of a putative transporter. 

GSH is an important molecule having crucial roles in many biological processes for 

example, apoptosis, signal transduction, gene expression, cell proliferation, 

differentiation and cell metabolism (Sies, 1999). Because glutathione is involved in 

so many biological processes it is important to maintain its normal homeostasis 

(Lushchak, 2012). The disturbance in GSH homeostasis has implications in several 

human diseases, including cancer, neurodegenerative diseases, diseases related 

to aging, inflammatory, immune and cardiovascular diseases (Lushchak, 2012). 

Therefore, finding an ER GSH transporter may lead not only to better understanding 

of GSH homeostasis but possibly also to controlling it, for example by designing an 

antagonist for GSH transport.  

However, to date there is very little known about mammalian GSH transporters, 

especially the ER GSH transporters.  Most of our knowledge comes from studies in 

yeast (Bachhawat et al., 2013). Multidrug resistance-associated protein (MRP) is a 

subclass of the ATP-Binding Cassette (ABC) transporter superfamily and has been 

identified as the first transporter capable of GSH transport (Rebbeor et al., 1998a, 

Rebbeor et al., 1998b). However, MRP is involved in efflux of GSH in the 

Saccharomyces cerevisiae vacuolar membrane and in the mammalian plasma 

membrane (Rebbeor et al., 1998a, Rebbeor et al., 1998b). Moreover, low affinity for 

GSH and primary efflux of GSH conjugates together with broad substrate specificity 

makes MRP not the best example of a GSH transporter (Ballatori et al., 2005). 

Saccharomyces cerevisiae Hgt1p/Opt1p was the first high affinity and high 

specificity GSH transporter to be discovered (Bourbouloux et al., 2000). 

Hgt1p/Opt1p is a member of a new oligopeptide transporter (OPT) family and has 

no mammalian homologue (Yen et al., 2001). Because of the importance of GSH 
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transport and our lack of understanding, there is an increasing demand in the field 

to identify a high affinity and high specificity mammalian GSH transporter 

(Bachhawat et al., 2013). 

Knowing very little about the structure of mammalian ER GSH transporter, we 

decided to try to isolate the transporter relying on its properties of binding GSH. We 

aimed to isolate candidates based upon protein binding to modified ligand or/and 

substrate. Usually the ligand or/and substrate contains a unique feature that allows 

it to separate together with the protein of interest. This technique has been used 

widely in the biomolecular field to help identify many proteins with known ligands or 

known interactions with other proteins, the protein(s) are then further characterised 

by mass spectometry (Gavin et al., 2002, Ho et al., 2002). We assumed that at some 

point during transport GSH must be with direct contact, and possibly bind, to the ER 

GSH transporter. Therefore, we decided to use GSH as an affinity ligand. 
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5.2 Glutathione Sepharose beads approach 

 

In the previous chapter, a simple experiment using glutathione Sepharose beads 

was performed to determine whether GSTP1-1A present inside ER was able to bind 

GSH and thus being active and correctly folded. Although glutathione Sepharose 

beads are usually used to purify GSTs or GST tagged proteins, this experiment 

inspired us to use it in a different way.  

Any putative GSH transporter should bind to glutathione Sepharose, but because 

GSH is immobilised, it cannot be transported. It is possible that the interaction 

between GSH transporter and GSH will be strong enough that the transporter will 

remain attached to GSH even after solubilisation of microsomes, allowing us to elute 

it with excess GSH (Figure 5.1). This approach was chosen as a starting point in 

our attempts to identify the mammalian ER GSH transporter because of its 

simplicity.  
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Figure 5.1 Isolation of putative glutathione transporter. 1) Rat liver microsomes 

incubated with glutathione Sepharose beads. 2) Glutathione transporter binds to 

GSH linked to Sepharose beads. 3) Rat liver microsomes solubilised with detergent. 

GSH transporter remains bound to GSH linked to Sepharose beads. 4) Unbound 

proteins are washed away and GSH transporter is eluted with excess of GSH. 
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5.2.1 Isolating GSH interacting proteins using glutathione Sepharose beads 

 

As a preliminary experiment, rat liver microsomes (RLM) were solubilised prior to 

the incubation with glutathione Sepharose beads to see if it was possible to isolate 

bound proteins. Glutathione Sepharose beads were washed once with PBS, 

samples were eluted with high concentration of GSH (50 mM) and analysed on 

12.5% SDS-PAGE followed by silver staining (Figure 5.2). There are many clear 

bands present in the eluted sample (lane 1) especially around 25 kDa and above 46 

kDa. The unbound fraction (lane 2) did not show any difference to total sample 

present in lane 3, which was not subjected to incubation with glutathione Sepharose 

beads. 

This simple experiment has suggested that it is possible to isolate proteins based 

on their properties of binding GSH and using glutathione Sepharose beads. To 

develop the approach further we increased the number of washes and several 

controls were added. 
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Figure 5.2 RLM proteins bound to glutathione Sepharose beads analysed on 

12.5% SDS-PAGE followed by silver staining. RLM were solubilised with Triton 

X-100 (0.2%) and incubated with glutathione Sepharose beads for 30 min at RT. 

Samples were gently washed once with PBS, eluted with GSH and analysed on 

12.5% SDS-PAGE. Lane 1 – RLM proteins bound to glutathione Sepharose beads 

eluted with GSH. Lane 2 – Unbound proteins. Lane 3 – Total RLM proteins. 
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RLM were incubated with glutathione Sepharose beads for approximately 30 

minutes prior to the addition Triton X-100 (0.2%) to solubilise the microsomes. GSH 

transporter is most likely a membrane protein, therefore by solubilising the 

membrane while the transporter is still interacting with GSH may help to preserve 

its native conformation, and of course separate it from the membrane. Glutathione 

Sepharose beads were washed three times with TrisHCl buffer (50 mM, pH 7.5), 

samples were then eluted with high concentration of GSH (50 mM) and analysed on 

12.5% SDS-PAGE followed by silver staining (Figure 5.3). Sepharose beads were 

used as a control to show if there is any nonspecific binding between proteins and 

Sepharose. GSTP1-A1 has been shown to interact with glutathione Sepharose 

beads, therefore a mixture of GSTP1-A1 and annexin was used as a positive control 

to make sure the approach is working. Annexin is a phospholipid and calcium 

binding protein and does not interact with GSH, thus only GSTP1-A1 should be 

present in the elute when incubated with glutathione Sepharose beads (Gerke and 

Moss, 2002). When run on SDS-PAGE, GST/annexin mix shows two strong bands 

(lane 5), the lower band, around 27 kDa, corresponds to GSTP1-A1, while upper 

band, around 30 kDa, corresponds to annexin. To make sure the proteins will 

interact with GSH attached to Sepharose beads GST/annexin mix was incubated 

with glutathione Sepharose beads and treated the same way as the microsome 

sample. When eluted with GSH (50 mM), only the band corresponding to GSTP1-

A1 was present on the SDS-PAGE gel (lane 3). GST/annexin flow through was also 

analysed by SDS-PAGE (lane 4) and resulted in both GSTP1-A1 and annexin 

present on the gel, possibly due the oversaturation of the beads. The sample eluted 

with GSH following incubation of microsomes with glutathione Sepharose beads 

(lane 1) shows a distinct banding pattern with several strong bands present above 

46 kDa and around 25 kDa. This is a very similar to the pattern seen previously in 

samples solubilised prior to incubation with beads. The sample incubated with 

Sepharose beads and eluted with GSH (lane 2) shows similar pattern. Most of the 

bands seen in lane 2 seem to correspond to the bands seen in sample incubated 

with glutathione Sepharose beads, however, some of the bands present in lane 1 

above 46 kDa and around 25 kDa are not present. This suggest that these bands 

may be specific GSH binding proteins. Both flow through samples (lanes 6 and 7) 

look very alike and is hard to distinguish any specific differences between them.  
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The results strongly indicate that there is some specific binding between proteins 

and glutathione Sepharose beads, especially around 25 kDa and above 46 kDa, 

therefore bands present in these areas were cut from the gel and proteins were 

analysed by mass spectometry. 

 

 

 

Figure 5.3 RLM proteins bound to glutathione Sepharose beads and 

Sepharose beads analysed on 12.5% SDS-PAGE followed by silver staining. 

RLM were incubated with glutathione Sepharose beads for 30 min at RT and 

solubilised with Triton X-100 (0.2%). Samples were gently washed three times with 

TrisHCl buffer (50 mM, pH 7.5), eluted with GSH (50 mM) and analysed on 12.5% 

SDS-PAGE. Lane 1 – RLM proteins bound to glutathione Sepharose beads eluted 

with GSH. Lane 2 - RLM proteins bound to Sepharose beads eluted with GSH. Lane 

3 – GST/annexin eluted with GSH. Lane 4 – GST/annexin flow through. Lane 5 – 

GST/annexin mix. Lane 6 – Flow through glutathione Sepharose beads. Lane 7 – 

Flow through Sepharose beads.  
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5.2.2 Protein identification by mass spectometry 

 

The band pattern above 46 kDa and around 25 kDa showed the most differences 

between glutathione Sepharose beads and Sepharose beads therefore these areas 

were chosen for protein identification by mass spectometry. The areas around 46 

kDa and 25 kDa from both lanes were sent to the proteomics facility at the University 

of St Andrews and were prepared according to their recommendations. 

In order to identify proteins bound specifically to GSH, proteins identified from 

glutathione Sepharose beads were compared to proteins obtained from Sepharose 

beads, this allowed us to eliminate the background proteins bound non-specifically 

to Sepharose. If the protein was present in both samples (glutathione Sepharose 

and Sepharose) it was considered to bind non-specifically to Sepharose beads and 

marked red in the table. However, if the protein was present only in glutathione 

Sepharose sample it was considered GSH binding protein and was marked green 

in the table. Any contaminations present in the samples were marked orange in the 

table. There were several proteins binding specifically to GSH in the area around 25 

kDa (Table 5.1). All of the proteins around 25 – 26 kDa in size belonged to the GST 

family. The GST proteins had high number of matches and sequences, together 

with high emPAI number, thus confirming that identification of these proteins is not 

a coincidence and that these proteins bind to GSH (Table 5.1). There were only two 

positive matches in proteins isolated from 46 kDa gel fragment, elongation factor 1 

gamma and alpha (Table 5.2). A fraction of the remaining eluted sample was also 

sent for protein identification by mass spectometry to check if there any proteins 

present that were not detected by silver staining. All the proteins which were 

positively identified as binding to GSH, in the elute sample, belong to GST family 

(Table 5.3).  

The results of the experiment have demonstrated that this approach works and can 

be used to isolate GSH binding proteins. However, it was not possible to identify a 

putative GSH transporter using this approach.  There might be several reasons it 

was not possible to isolate GSH transporter.  Perhaps the interaction between GSH 

and the GSH transporter was not strong enough, therefore we decided to improve 

the approach. 
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Table 5.1. Mass spectometry identification of proteins in gel fragment around 25 kDa. Green – GSH binding proteins, Red – 

Background, Orange - contamination 

Score Mass Matches Sequences emPAI Description 
1034 25857 33 18 57.54 glutathione S-transferase Mu 2 [Rattus norvegicus] 
1019 25858 35 17 57.54 Chain A, Crystal Structures Of Class Mu Chimeric Gst Isoenzymes M1-2 And M2-1 
976 26049 30 14 26.16 rCG29047, isoform CRA_b [Rattus norvegicus] 

941 25921 30 14 26.54 
Chain A, First-sphere And Second-sphere Electrostatic Effects In The Active Site Of A Class 
Mu Glutathione Transferase 

571 25835 17 9 4.29 glutathione S-transferase Yb-3 [Rattus norvegicus] 
276 25781 9 5 2.05 glutathione S-transferase Mu 6 [Rattus norvegicus] 
480 25687 23 10 5.46 PREDICTED: glutathione S-transferase alpha-1 isoform X1 [Rattus norvegicus] 
411 25360 18 10 5.62 glutathione S-transferase alpha-3 [Rattus norvegicus] 

394 25657 19 10 5.46 
RecName: Full=Glutathione S-transferase alpha-2; AltName: Full=GST 1b-1b; AltName: 
Full=GST A2-2; AltName: Full=Glutathione S-transferase Ya-2; Short=GST Ya2 

105 26876 7 5 1.44 rCG25753, isoform CRA_b [Rattus norvegicus] 

344 21699 10 6 2.75 

RecName: Full=Membrane-associated progesterone receptor component 1; AltName: 
Full=25-DX; AltName: Full=Acidic 25 kDa protein; AltName: Full=Ventral midline antigen; 
Short=VEMA 

65 17402 2 2 0.73 progesterone receptor membrane component 2, isoform CRA_c [Rattus norvegicus] 
310 56699 11 10 1.34 keratin, type I cytoskeletal 10 [Rattus norvegicus] 
304 52936 9 7 0.89 keratin, type I cytoskeletal 14 [Rattus norvegicus] 
266 48378 9 7 1.01 keratin, type I cytoskeletal 17 [Rattus norvegicus] 
223 37932 8 6 1.14 PREDICTED: keratin, type I cytoskeletal 42 isoform X1 [Rattus norvegicus] 
145 51001 3 3 0.33 PREDICTED: keratin, type I cytoskeletal 16 isoform X1 [Rattus norvegicus] 

293 65190 8 6 0.56 
RecName: Full=Keratin, type II cytoskeletal 1; AltName: Full=Cytokeratin-1; Short=CK-1; 
AltName: Full=Keratin-1; Short=K1; AltName: Full=Type-II keratin Kb1 
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Table 5.2 Mass spectometry identification of proteins in gel fragment around 46 kDa. Green – GSH binding proteins, Red – 

Background, Orange – contamination 

Score Mass Matches Sequences emPAI Description 

1054 52719 44 25 11.54 epoxide hydrolase 1 precursor [Rattus norvegicus] 

598 25516 28 14 22.33 epoxide hydrolase 1, microsomal, isoform CRA_a [Rattus norvegicus] 

976 51171 23 14 3.43 ATP synthase beta subunit, partial [Rattus norvegicus] 

971 50371 32 16 3.53 elongation factor 1-gamma [Rattus norvegicus] 

737 49093 22 9 1.39 dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit precursor [Rattus norvegicus] 

643 50460 20 10 1.57 elongation factor-1 alpha [Rattus norvegicus] 

534 61055 21 11 1.36 UDP-glucuronosyltransferase 2B17 precursor [Rattus norvegicus] 

459 61068 17 10 1.18 UDP-glucuronosyltransferase 2B37 precursor [Rattus norvegicus] 

451 61032 18 10 1.18 PREDICTED: UDP-glucuronosyltransferase 2B17 isoform X1 [Rattus norvegicus] 

449 61117 19 11 1.36 unnamed protein product [Rattus norvegicus] 

362 61066 15 8 0.87 

RecName: Full=UDP-glucuronosyltransferase 2B37; Short=UDPGT 2B37; AltName: Full=17-beta-hydroxysteroid-
specific UDPGT; AltName: Full=UDP-glucuronosyltransferase R-21; Short=UDPGTr-21; AltName: Full=UDPGTr-5; 
Flags: Precursor 

210 31802 9 7 1.83 PREDICTED: UDP-glucuronosyltransferase 2B17-like [Rattus norvegicus] 

188 61459 9 8 0.86 
RecName: Full=UDP-glucuronosyltransferase 2B2; Short=UDPGT 2B2; AltName: Full=3-hydroxyandrogen-specific 
UDPGT; AltName: Full=RLUG23; AltName: Full=UDPGTr-4; Flags: Precursor 

167 61125 8 7 0.73 PREDICTED: UDP-glucuronosyltransferase 2B37 isoform X1 [Rattus norvegicus] 

80 61455 5 5 0.47 UDP-glucuronosyltransferase [Rattus norvegicus] 

34 60720 2 2 0.17 

RecName: Full=UDP-glucuronosyltransferase 1-6; Short=UDPGT 1-6; Short=UGT1*6; Short=UGT1-06; Short=UGT1.6; 
AltName: Full=A1; AltName: Full=P-nitrophenol-specific UDPGT; AltName: Full=UDP-glucuronosyltransferase 1A6; 
Short=UGT1A6; Flags: Precursor 
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Table 5.3 Mass spectometry identification of eluted proteins. Green – GSH binding proteins, Red – Background, Orange - 

contamination 

 

Score Mass Matches Sequences emPAI Description 

1655 25686 50 12 8.38 glutathione S-transferase Mu 2 [Rattus norvegicus] 

1482 25687 48 11 8.38 Chain A, Crystal Structures Of Class Mu Chimeric Gst Isoenzymes M1-2 And M2-1 

1448 25669 45 10 6.79 glutathione S-transferase (EC 2.5.1.18) [Rattus norvegicus] 

1435 25878 46 10 6.65 rCG29047, isoform CRA_b [Rattus norvegicus] 

389 25234 11 4 1.14 glutathione S-transferase mu 3 [Rattus norvegicus] 

449 11685 7 2 1.24 60S acidic ribosomal protein P2 [Rattus norvegicus] 

361 56470 16 7 0.82 keratin, type I cytoskeletal 10 [Rattus norvegicus] 

133 48840 6 3 0.34 keratin, type I cytoskeletal 15 [Rattus norvegicus] 

351 64791 11 4 0.35 
RecName: Full=Keratin, type II cytoskeletal 1; AltName: Full=Cytokeratin-1; Short=CK-1; AltName: 
Full=Keratin-1; Short=K1; AltName: Full=Type-II keratin Kb1 

339 60272 10 3 0.27 PREDICTED: keratin, type II cytoskeletal 6A-like isoform X4 [Rattus norvegicus] 

262 61889 8 4 0.37 keratin, type II cytoskeletal 5 [Rattus norvegicus] 

136 74442 5 4 0.3 PREDICTED: keratin, type II cytoskeletal 2 epidermal isoform X1 [Rattus norvegicus] 

334 25543 18 6 2.08 
RecName: Full=Glutathione S-transferase alpha-2; AltName: Full=GST 1b-1b; AltName: Full=GST A2-2; 
AltName: Full=Glutathione S-transferase Ya-2; Short=GST Ya2 

306 25573 18 6 2.08 PREDICTED: glutathione S-transferase alpha-1 isoform X1 [Rattus norvegicus] 

223 25303 16 5 1.57 glutathione S-transferase alpha-3 [Rattus norvegicus] 



134 
 

5.3 Mts-Aft-Biotin photocrosslinking 

 

One of the reasons why the previous attempts of isolating the ER GSH transporter, 

using glutathione Sepharose beads, were not able to isolate the transporter could 

be that the binding of GSH to the transporter is not strong enough and could be lost 

during washes. To strengthen the interaction between GSH and GSH transporter a 

photocrosslinking method was used. Mts-Aft-Biotin (2-[N2-(4-azido-2,3,5,6-

tetrafluorobenzoyl)-N6-(6-biotinamidocaproyl)-Llysinyl] ethyl methanethiosulfonate) 

was used as the crosslinking molecule. Mts-Aft-Biotin has three unique features 

making it a useful crosslinker for our studies, it contains a thiol reactive group 

(sulfhydryl reactive methanethiosulfonate (Mts)), photocrosslinking group 

(tetrafluorophenyl azide (Atf)) and biotin (Figure 5.4).  

 

 

 

 

Figure 5.4 Chemical structure of  (2-[N2-(4-azido-2,3,5,6-tetrafluorobenzoyl)-N6-(6-

biotinamidocaproyl)-Llysinyl]ethyl methanethiosulfonate) with 3 specific features 

marked: thiol reactive group, photocrosslinking group and biotin. 
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By attaching GSH to Mts-Aft-Biotin (GS-Mts-Aft-Biotin), through 

methanethiosulfonate group (Mts) (Figure 5.5a), it might be possible to create a 

covalent bond between GS-Mts-Aft-Biotin and GSH binding proteins, including the 

GSH transporter, allowing its isolation using streptavidin beads (Figure 5.5b). Once 

the Mts group reacts with a free thiol a disulfide bond forms that can be later broken 

with a reducing agent (Figure 5.5b). 

 

Figure 5.5a. Attachment of GSH to Mts-Aft-Biotin crosslinker. GSH can be 

attached to Mts-Aft-Biotin through methanethiosulfonate group (Mts). 
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Figure 5.5b. The mechanism of action of GS-Mts-Aft-Biotin. Proteins are able 

to bind GSH attached to Mts-Aft-Biotin through SH- group of Mts motif. Upon 

exposing to the UV light, the GSH binding protein is crosslinked to Atf motif of the 

crosslinker. DTT is used to break down disulfide bond between GSH and the 

crosslinker. Proteins are then isolated using streptavidin beads. 
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Mts-Aft-Biotin was mixed with GSH in 1:2 ratio to make sure all Mts-Aft-Biotin will 

react with the excess of GSH. Next GS-Mts-Aft-Biotin was purified by HPLC and 

collected as fractions (Figure 5.6). GSH is eluted early in the gradient bue to its 

polarity, the first two small peaks (a and b) seen in HPLC chromatograph 

corresponds to GSH and GSSG. It was assumed the last peak (e) in HPLC 

chromatograph corresponds to remaining Mts-Aft-Biotin, however the identity of 2 

very sharp peaks (c and d) is unknown. To identify the two unknown peaks and to 

make sure the last peak corresponds to Mts-Aft-Biotin all the fractions containing 

mentioned peaks were analysed by mass spectometry (Figure 5.7). Analysis of the 

first sharp peak (c) revealed molecular mass of 1041 g/mol (Figure 5.7a). After 

analysing what the mass can correspond to, it appeared that 1041 g/mol 

corresponds to GS-Mts-Aft-Biotin with the photocrosslinking group removed. This 

suggested that GS-Mts-Aft-Biotin is very light sensitive and should be kept in the 

dark all the time. The mass of the compound present in the second peak (d) equals 

to 1067 g/mol, this is the exact mass of GS-Mts-Aft-Biotin (Figure 5.7b). The 

analysis of the last peak (e) revealed a mass of 736 g/mol (Figure 5.7c). This was 

very surprising but the mass of 736 g/mol is most likely corresponding to Mts-Aft-

Biotin with both thiol reactive group and photocrosslinking group removed. The 

fractions corresponded to second sharp peak (d) were combined, freeze dried and 

used in the next experiment. 

 

 

Figure 5.6 HPLC chromatogram of GSH conjugation to Mts-Aft-Biotin. GS-Mts-

Aft-Biotin was analysed by high-pressure liquid chromatography (HPLC) carried out 

on a Shimadzu instrument with a Phenomenex Gemini C18 column (110 Å, 5 μm, 

250×4.60 mm). Peaks: a – GSH, b – GSSG, c and d – unknown, e - Mts-Aft-Biotin. 
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Figure 5.7 Mass spectometry analysis of HPLC peaks from GSH to Mts-Aft-Biotin conjugation. The conjugated product was analysed 

using liquid chromatography mass spectrometry (LCMS) carried out on a Thermo Scientific LCQ Fleet quadrupole mass spectrometer. A) 

GS-Mts-Aft-Biotin with photocrosslinking group removed (1041 g/mol). B) GS-Mts-Aft-Biotin (1067 g/mol). C) Mts-Aft-Biotin with both thiol 

reactive group (Mts) and photocrosslinking group (Aft) removed (736 g/mol). 

 



141 
 

GS-Mts-Aft-Biotin was added to RLM and incubated for 30 min at room temperature 

and then exposed to UV for 5 min.  Triton X-100 (0.2%) was added to the RLM prior 

to incubation with streptavidin beads for 30 min at RT. RLM were washed 3 times 

with Tris buffer (50 mM, pH 7.5), and eluted with biotin (20 mM) before the samples 

were analysed on 12.5% SDS-PAGE and silver stained (Figure 5.8, lane 1). Mts-

Aft-Biotin was also incubated with cysteine in order to block the SH- group of the 

crosslinker and used as a control to monitor non-specific interactions to GSH (Figure 

5.8, lane 2). Both samples displayed several bands indicating protein binding but 

there were no differences between microsomes incubated with GS-Mts-Aft-Biotin 

and microsomes incubated with blocked crosslinker. The reason for not seeing any 

difference between both samples could be explained by a high background of non-

specific interactions with the beads. 

The interaction between biotin and streptavidin is very strong therefore more 

washes could be used to reduce the background. To further reduce background 1 

mM DTT was added to washes to break the disulfide bond between the crosslinker 

and free thiols.GS-Mts-Aft-Biotin was added to RLM and incubated for 30 min at RT 

and then exposed to UV for 5 minutes.  Microsomes were centrifuged and washed 

3 times with PBS in order to remove any residual crosslinker. Microsomes were 

solubilised in 500 µl of IP buffer and incubated with streptavidin beads for 30 minutes 

at RT. After incubation microsomes were washed 3 times with RIPA buffer 

containing 1 mM DTT and eluted with 20 mM biotin. In addition to cysteine blocked 

crosslinker two more controls were used. One control included UV inactivated Mts-

Aft-Biotin, the crosslinker was exposed to UV for 15 minutes in order to inactivate 

photoreactive crosslinking group. The second control included Mts-Aft-Biotin without 

any modifications. All the samples were analysed on 12.5% SDS-PAGE followed by 

silver staining (Figure 5.9). The sample containing GS-Mts-Aft-Biotin (lane 1) 

contained only a few proteins that bound to the beads. There are more proteins 

present in the cysteine blocked Mts-Aft-Biotin sample (lane 2), all the proteins 

present are also more abundant when compared to the GS-Mts-Aft-Biotin sample. 

All the proteins present in GS-Mts-Aft-Biotin sample are also present in cysteine 

blocked sample, indicating there are no GSH specific proteins present. It was 

expected that microsomes incubated with UV treated Mts-Aft-Biotin would not result 

in any proteins present on the gel, however, there are no differences in the banding 

patter between UV treated Mts-Aft-Biotin (lane 3) and Mts-Aft-Biotin (lane 4).  
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Figure 5.8 Silver stain analysis of proteins crosslinked and biotinylated by GS-

Mts-Aft-Biotin. RLM were incubated with GS-Mts-Aft-Biotin, exposed to UV for 5 

min, solubilised by Triton X-100 (0.2%) and incubated with streptavidin beads. 

Samples were eluted with biotin, separated on 12.5% SDS-PAGE and silver stained. 

Lane 1 –  RLM proteins crosslinked using GS-Mts-Aft-Biotin. Lane 2 – RLM proteins 

crosslinked using Mts-Aft-Biotin with SH- group blocked by cysteine. 

 

 

 

 

 

 

 



143 
 

 

 

 

Figure 5.9 Silver staining analysis of proteins crosslinked and biotinylated by 

GS-Mts-Aft-Biotin. RLM were incubated with GS-Mts-Aft-Biotin, exposed to UV for 

5 min. Microsomes were centrifuged and washed 3 times with PBS, prior to 

solubilisation in 500 µl of IP buffer and incubation with streptavidin beads for 30 min 

at RT. After incubation microsomes were washed 3 times with RIPA buffer 

containing 1 mM DTT. Samples were eluted with Biotin, separated on 12.5% SDS-

PAGE and stained using silver staining method. Lane 1 –  RLM proteins crosslinked 

using GS-Mts-Aft-Biotin. Lane 2 – RLM proteins crosslinked using Mts-Aft-Biotin 

with SH- group blocked by cysteine. Lane 3 - RLM proteins crosslinked using UV 

inactivated Mts-Aft-Biotin. Lane 4 - RLM proteins crosslinked using Mts-Aft-Biotin. 
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It is possible that silver staining is not sensitive enough to detect all the proteins 

isolated using GS-Mts-Aft-Biotin therefore analysing biotinylated proteins by 

Western blot using fluorescent streptavidin may allow for detection of proteins that 

have not been seen by silver staining. The remaining eluted samples were analysed 

on 12.5% SDS-PAGE and subjected to Western blotting (Figure 5.10). Western 

blotting confirmed the results seen by silver staining. Sample containing GS-Mts-

Aft-Biotin (lane 1) displayed even fewer proteins than in silver staining analysis. 

Sample treated with cysteine blocked Mts-Aft-Biotin sample (lane 2), contained 

more proteins than the GS-Mts-Aft-Biotin treated sample. There are no differences 

between UV treated Mts-Aft-Biotin sample (lane 3) and Mts-Aft-Biotin sample (lane 

4). The results indicating that there are no GSH specific proteins isolated using GS-

Mts-Aft-Biotin. 
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Figure 5.10 Western blot analysis of biotinylated protein. RLM were incubated 

with GS-Mts-Aft-Biotin, exposed to UV for 5 min. Microsomes were centrifuged and 

washed 3 times with PBS, prior to solubilisation in 500 µl of IP buffer and incubation 

with streptavidin beads for 30 minutes at RT. After incubation microsomes were 

washed 3 times with RIPA buffer containing 1 mM DTT. Samples were eluted with 

Biotin, separated on 12.5% SDS-PAGE and subjected to Western blotting. 

Streptavidin 800 (1:10000) for 40 min. Lane 1 –  RLM proteins crosslinked using 

GS-Mts-Aft-Biotin. Lane 2 – RLM proteins crosslinked using Mts-Aft-Biotin with SH- 

group blocked by cysteine. Lane 3 - RLM proteins crosslinked using UV inactivated 

Mts-Aft-Biotin. Lane 4 - RLM proteins crosslinked using Mts-Aft-Biotin. 
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5.4 Discussion 

 

Mammalian glutathione transporters are still not fully understood and some of the 

research regarding GSH transporters remain unclear. Finding the mammalian GSH 

transporter(s) is important to gain a better understanding, and possibly control, of 

redox balance within the cell. We focused on identifying the mammalian ER GSH 

transporter(s) using microsomes to mimic the ER environment separated from the 

rest of the cell. We were able to selectively separate proteins interacting with GSH. 

This might be the initial step in identifying the mammalian ER GSH transporter(s) in 

the future. 

Our first approach relied on affinity purification with glutathione Sepharose beads 

and further identification of proteins interacting specifically with GSH. All of the 

proteins identified belong to the GST family. As glutathione Sepharose beads are 

commonly used to purify GST-tagged proteins (Frangioni and Neel, 1993) these 

results were not surprising. Members of GSTs are well characterised (Sheehan et 

al., 2001) and it is unlikely that any of these proteins are involved in GSH transport. 

Initially elongation factor 1 appeared to be a surprising match, however, elongation 

factor 1 gamma also displays GST activity, therefore this explains why it binds to 

GSH (Koonin et al., 1994, Tshabalala et al., 2016) and possibly excludes its role in 

GSH transport. It is intriguing that except GSTs no other proteins were identified as 

binding specifically to GSH. It is very likely that the amount of various GSTs present 

in microsomes is higher than the amount of other proteins that could potentially bind 

to GSH (including GSH transporters), maybe there are not enough of them to be 

detected by mass spectometry, therefore other proteins cannot compete for GSH 

binding and only GSTs are isolated using this method. 

The other approach using Mts-Aft-Biotin, a photoactivated crosslinker, seemed to 

offer an improvement over glutathione Sepharose beads because it can form a 

covalent bond with substrate proteins, making it easier to isolate them. By attaching 

GSH to Mts-Aft-Biotin, and creating GS-Mts-Aft-Biotin, we expected to be able to 

isolate more GSH binding proteins than using the previous glutathione Sepharose 

approach, thanks to the crosslinking properties of the compound. However, when 

compared to the control, Mts-Aft-Biotin incubated with cysteine, in order to block a 

sulfhydryl reactive methanethiosulfonate group, no GSH specific proteins were 

present on both SDS-PAGE and Western blot. This raises the questions why there 
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was a distinct banding pattern present using glutathione Sepharose beads but not 

when using GS-Mts-Aft-Biotin. This can possibly be explained by the differences in 

how GSH is attached to Sepharose and Mts-Aft-Biotin. In the case of glutathione 

Separose beads, GSH is linked to Sepharose by 12-atom spacer arm, this give 

proteins a lot of space to interact with GSH. In the case of GS-Mts-Aft-Biotin, GSH 

is in close proximity to a bulky tetrafluorophenyl azide group (Aft), this may not allow 

enough space for proteins to interact with GSH. The fact that previously seen GSTs 

were not present while using GS-Mts-Aft-Biotin seems to confirm this hypothesis. 

UV inactivated Mts-Aft-Biotin was also an important control in determining if there 

are any strong interactions between Mts-Aft-Biotin and proteins that are not related 

to crosslinking. However, there were a lot of interactions between proteins and UV 

inactivated Mts-Aft-Biotin, possibly because Mts-Aft-Biotin was not fully inactivated. 

Perhaps longer exposure to UV will be needed to completely inactive Mts-Aft-Biotin.  

Both approaches did not succeed in isolating and identifying the ER GSH 

transporter, however, they may give an important clue on how to tackle the problem 

of identifying the ER GSH transporter in the future. In both approaches, glutathione 

Sepharose beads and GS-Mts-Aft-Biotin, GSH is immobilised by central SH group, 

this may impair GSH binding to some proteins as SH group may be involved. The 

binding mechanism of GSTs to GSH involves carboxylate group of the γ-glutamyl 

side chainand it does not require an active SH group, that is why it was possible to 

isolate GSTs proteins (Adang et al., 1990), however, the binding mechanism of GSH 

transporter might be different than the mechanism seen in GSTs and may require 

an active SH group. Therefore, in the future another method might be used, one that 

does not involve inactivation of SH group, and this may produce different results. 

However, compared to other methods of alteration of GSH structure, attaching GSH 

to other molecules via its SH group is the easiest and fastest way to modify GSH, 

thus it is often the first approach to try in many GSH related research. GSH is a 

small molecule so it is challenging and difficult to modify GSH in any way without 

substantially changing its structure. 
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Chapter 6 
Discussion 
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6.1 Discussion 

 

Glutathione (GSH) is the most abundant non-protein thiol compound present in 

mammalian/eukaryotic cells. GSH is essential in many cellular processes including 

protection against reactive oxygen species (ROS), detoxification of xenobiotics, 

disulfide bond formation, immune function, apoptosis, modulation of cell 

proliferation, and is also a key determinant of redox signalling (Sies, 1999). The 

synthesis of GSH takes place in the cytoplasm, from where GSH is transported to 

other parts of the cell, however this process is poorly understood. All of the currently 

used methods to assess/investigate GSH transport including, filtration, radiolabelled 

GSH and light scattering methods, have their limitations (Banhegyi et al., 1999, 

Csala et al., 2001, Csala et al., 2003). In our research we developed two novel 

assays able to monitor GSH transport into the ER. 

Both assays rely on the same principle of selective permeability of biological 

membranes but use different reporting proteins/molecules. Biological membranes 

allow some molecules to pass freely, through diffusion, while other molecules need 

to be transported in order to cross the membrane. Microsomes used in both assays 

mimic the ER membrane and the ER environment. The first assay developed uses 

roGFP as a reporter protein allowing the transport of GSH across the ER membrane 

to be monitored, as well as the transport of other reducing agents, or any 

compounds able to alter the redox status of roGFP. Because roGFP responds to 

changes in the redox status of the environment the transport of GSH, and other 

reducing agents, can be measured over time, revealing the kinetics of transport for 

each reducing agent. By using solubilised microsomes as a control this approach 

allowed us to demonstrate that the ER membrane is indeed a barrier for GSH 

transport. It was also shown that GSH requires a transporter to cross the ER 

membrane and is not able to simply diffuse across the lipid bilayer.  

The other assay also monitors the transport of GSH across the ER membrane but 

uses the properties of GSTs to conjugate GSH to variety of different substrates. 

GSTP1-1A present inside the microsomes has a high specificity for GSH however, 

the specificity for substrates vary, and therefore the selection of an appropriate 

substrate for this assay is crucial. In the experiment CDNB and Cl-BODIPY were 

used as substrates. As GSH was transported across the ER membrane, more 

conjugated product was formed. By measuring the increase in the absorbance 
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or/and fluorescence it was possible to estimate the rate of GSH transport. Because 

the conjugated product is very stable it is possible to use it for further analysis. In 

our case the conjugated product was analysed by HPLC and mass spectometry to 

prove the transport of GSH across the ER membrane. 

These two assays can greatly contribute to redox biology research and help us 

understand the redox control in the ER, therefore researchers are the main group 

of people who will benefit from our findings. Both assays can be used to investigate 

how GSH transport into the ER can be inhibited, or stimulated, perhaps by different 

GSH analogues as showed in the case of GOH and N-ethylsuccinimido-S-

glutathione (ESG). Moreover, roGFP based transport assay can also be used to 

investigate transport of other reducing agents into the ER and how they affect the 

redox status of the ER. 

The assays developed could also find an application in medical research. The 

inability of proteins to fold correctly may results in cell death and the accumulation 

of misfolded proteins, which could potentially lead to diseases like Alzheimer's 

disease or Parkinson's disease. The oxidative protein folding taking place in the ER 

is an essential process required for proper folding of secretory proteins, for example 

insulin. The inability of insulin to fold correctly and make native disulfide bonds 

results in a loss of secretion of insulin. By controlling GSH transport into the ER it 

might be possible to regulate redox status of the ER, for example making it more 

oxidative by inhibit GSH transport or more reduced by increasing GSH transport. 

This could possibly maintain an optimised redox balance in the ER and 

consequently lead to milder manifestation of the diseases caused by misfolded 

proteins. Our assays can be used to monitor this process, therefore, pharmaceutical 

companies could also be interested in our assays. 

Despite relying on similar principles, both assays are quite different, with their own 

pros and cons, providing different information about GSH transport and redox state 

of the ER. The roGFP based assay is more dynamic than GST based assay and 

informs about the overall redox state in the ER. It is important to remember that 

reduction of roGFP may not be caused directly by GSH, the addition of GSH into 

the microsomes may reduce other proteins which in turn reduce roGFP. Because 

roGFP can easily be reduced or oxidised it is possible to perform more complex 

experiments related to the redox state of the ER. In the roGFP assay we used 

oxidised roGFP to measure the transport of GSH, however, reduced roGFP can be 
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used to monitor the transport of GSSG, or other reducing/oxidising agents. The 

roGFP assay requires fluorescence measurment, therefore, roGFP based assay 

requires a more advance equipment that may not be accessible, for example 

fluorometer or in our case plate reader with fluorescence modules adjusted for the 

roGFP fluorescence wavelengths. 

GST based assay is more direct than roGFP assay because there is direct 

interaction between GSTP1-A1 and GSH. GST based assays results in stable 

product formation therefore the conjugated product might be analysed by many 

different methods/techniques, depending on the substrate used. However, the 

choice of substrate is crucial for GST based assay. Different substrates for GST 

may offer different advantages but may also have limitations, for example GTSP1-

A1 reacted very fast with CDNB and GSH however it required TCA precipitation as 

an additional step. Cl-BODIPY offered no background but the rate of reaction with 

GSH was very slow. Some substrates for GST based assays may be membrane 

impermeable or may cross membrane slower than GSH, making them inappropriate 

for the assay. Compared to roGFP assay, GST based assay can only be used to 

monitor the transport of GSH but not GSSG.  

Some research suggested that GSSG is also transported into the ER and is 

important to maintain reduced environmental of the cytosol, however, there is very 

little known about this process (Hwang et al., 1992, Banhegyi et al., 1999). This 

project focused exclusively on GSH transport into the ER, however, as mentioned 

previously the roGFP assay can easily be used to monitor transport of GSSG into 

the ER.  

One of the very interesting results came from GOH and ESG, a glutathione 

analogue and alkylated GSH, inhibition of GSH transport. Because of the structural 

similarities GOH was synthesised to act as an inhibitor for GSH transport but the 

results obtained were opposite to what was expected. It was expected that GOH 

and ESG will act as competitive inhibitors and slow down GSH transport, instead 

both seemed to accelerate GSH transport. It is not known how GOH and ESG 

accelerate GSH transport and if GSH transporter is involved in the process, 

however, it lead us to suggest that the GSH transport can be regulated using GSH 

analogues. Unfortunately, the effect of GOH and ESG on GSH transport could not 

be assessed using GST based transport assay as they both inhibit GST.  
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There have been few assays described previously to study GSH transport into the 

ER. G. Bánhegyi el al. (Banhegyi et al., 1999) used light scattering and rapid 

sedimentation to assess GSH transport into microsomes, M. Csala et al. (Csala et 

al., 2001) attempted to measure GSH transport into microsomes using rapid 

filtration. Although all of these techniques can provide information about GSH 

transport, however, they are not GSH specific nor GSH sensitive. Comparing to the 

methods mentioned above our assays show more versatility also more specificity 

and sensitivity for GSH, especially in GST based assay. 

The main goal of the project was to identify the mammalian ER GSH transporter, 

we tried to achieve this by isolating a GSH transporter using GSH as affinity ligand. 

The first approach used glutathione Sepharose beads was successful in separation 

of several proteins interacting specifically with GSH. However, after mass 

spectometry identification of isolated proteins we found that all of them belong to 

GST family. Despite not being able to identify the GSH transporter using glutathione 

Sepharose beads this approach proved to be capable of isolating other GSH binding 

proteins, therefore, we believed that the approach of using GSH as affinity ligand 

has a potential of helping us identify GSH transporter but needs to be improved. 

Using Mts-Aft-Biotin with GSH attached to its thiol reactive group (Mts motif) seemed 

to be a good way of improving glutathione Sepharose beads, mostly because of the 

ability of Mts-Aft-Biotin to create a strong covalent bond upon exposure to the UV 

light. However, Mts-Aft-Biotin did not bring us any closer in identifying the GSH 

transporter. It is possible that proteins are not able to bind GSH attached to Mts-Aft-

Biotin due to GSH being in very close proximity to bulky photocroslinking group (Aft 

motif). 

In the future the problem with Mts-Aft-Biotin could be solved by synthesising our 

own Mts-Aft-Biotin with a spacer introduced between Mts and Aft motifs. However, 

the attachment of GSH to Mts-Aft-Biotin and glutathione Sepharose beads may also 

be considered to be important. We do not know the interaction between GSH and 

the transporter, but it is possible that SH- group is involved in the transport process. 

GSH is attached to both glutathione Sepharose beads and Mts-Aft-Biotin by its SH- 

group, this type of attachment makes GSH lose one of its most important properties. 

The loss of SH- group may make GSH transporter unable to recognise and bind 

GSH. Therefore, attaching GSH to Mts-Aft-Biotin without involving SH- group may 

result in more protein binding to GSH. 
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In the future we are planning to continue searching for the mammalian GSH ER 

transporter using modified version of Mts-Aft-Biotin (or possibly another crosslinker) 

with longer linker. Upon successful identification of GSH transporter both transport 

assays can be used to validate the results. Because microsomes for the assays are 

prepared from stable cell lines it might possible to remove the transporter, using 

siRNA knockdown or CRISPR knockout, from the cells before preparation of 

microsomes and then perform the transport assays. Once the transporter will be 

identified we will try to gain knowledge about its mechanism of action, which 

consequently will allow us to design an inhibitor for GSH transport. We are also 

planning to investigate the transport of GSSG in more detail. At some point we want 

to validate the finding of other research groups including M. Csala claim of ryanodine 

receptor type 1 (RyR1) being involved in the ER GSH transport of sarcoplasmic 

reticulum (Csala et al., 2001) and the recent claim of AJ Ponsero about GSH 

transport into the ER by Sec61 (Ponsero et al., 2017). 

In the project we developed two assays able to monitor GSH transport across the 

ER membrane. Both assays rely on the same principle of selective membrane 

permeability however provide slightly different information about GSH transport and 

can complement each other. We also attempted to identify the mammalian GSH ER 

transporter by isolating GSH binding proteins using GSH as an affinity ligand. We 

were able to isolate several GSH binding proteins using glutathione Sepharose 

beads, however, they all belong to the GST family. We tried to improve this approach 

using Mts-Aft-Biotin, a photo crosslinking agent, however we were not able to isolate 

any specific GSH binding proteins. We plan to improve and continue this approach 

in the future. 
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Appendix 
 

TCEP can be used to determine intactness of microsomes. 4 different batches of 

microsomes were tested below. If microsomes were very leaky TCEP was able to 

reduce roGFP more, however if microsomes are intact the degree of roGFP 

reduction by TCEP was not be significant when compared to GSH. 
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The presence of GSH to Cl-BODIPY conjugate was confirmed by HPCL and mass spectometry. The retention time for GS-BODIPY was 

equal to 12.63 and the mass was confirmed to be 525 g/mol 
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