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Abstract

The exploitation of computational fluid dynamics for nonelam aeroelastic
simulations is mainly based on time domain simulations efEuler and Navier-
Stokes equations coupled with structural models. Currehtstrial practice relies
heavily on linear methods which can lead to conservativegdesd flight envelope
restrictions. The significant aeroelastic effects causeddmlinear aerodynamics
include the transonic flutter dip and limit cycle oscillatt An intensive research
effort is underway to account for aerodynamic nonlineaaitg practical computa-
tional cost. To achieve this a large reduction in the numbedegrees of freedoms
is required and leads to the construction of reduced ordefelaovhich provide
compared with CFD simulations an accurate description ofifm@amical system
at much lower cost.

In this thesis we consider limit cycle oscillations as |dgifdircations of equi-
libria which are associated with degenerate behaviour ofséem of linearised
aeroelastic equations. This extra information can be uséatinulate a method for
the augmented solve of the onset point of instability - thiéedhypoint. This method
contains all the fidelity of the original aeroelastic eqoas at much lower cost as
the stability calculation has been reduced from multiplsteady computations to
a single steady state one. Once the flutter point has beeud ftlm centre mani-
fold theory is used to reduce the full order system to two edegrof freedom. The
thesis describes three methods for finding stability botiadathe calculation of a
reduced order models for damping and for limit cycle ostidlas predictions. Re-
sults are shown for aerofoils, and the AGARD, Goland, and aujical transport
wing.

It is shown that the methods presented allow results corbfata the full
order system predictions to be obtained with CPU time redostof between one
and three orders of magnitude.
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Chapter 1
Introduction

Aeroelasticity is the science concerned with the mutuarattion between inertial,
elastic and aerodynamic foré¢es!. Static aeroelasticity arises from the interaction
between the inertial and aerodynamic forces, while dynaaeioelasticity com-
prises all three as shown in Figure 1.1 which is called theaCdilagram. The first

Aerodynamic
Force

Divergence
Control Reversal

Control Effectivene

Dynamic Stability
Flight Mechanics
Buzz

Flutter
Dynamic Response

Elastic Mechanical Vibrations Inertial
Force Force

FIGURE 1.1: Collar diagram - The aeroelastic triangle of forces

recorded flutter incident was on a Handley Page O/400 twimerigplane bomber
in 19164, The flutter mechanism consisted of a coupling of the fusetagsion

mode with an antisymmetric elevator rotation mode. Theatte on this aero-
plane were independently actuated and the solution wasdoconnect them with
a torque tube. Aeroelastic instability (flutter or divergencan potentially lead to
structural failure. This has lead in the aircraft induswtlie aeroelastic penalty.
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Solutions to aeroelastic problems generally involve iasneg the structural stiff-
ness or mass balance, which increases weight while decget® performance.
The development of aeroelasticity and its effect on dessgdeiscribed in the re-
view articles!® ! with a survey of more recent applications given by Friedn¥ann
Bhatid® and Livné®l.

It is argued in Henshawt al.[1% that more sophisticated aeroelastic mod-
elling and prediction will be required in the future compavath the linear methods
used today. For example lighter and more structurally efficdesigns will reduce
stiffness increasing the chances of encountering aetaepdseenomena. At present
flight test programs are used to expand or contract the fligietlepe. Problems
identified this late in the development cycle may be very aspe to fix. Recently
several incidents were reported of cracks in the tail seatibthe Guided Bomb
Unit (GBU) 10 mounted on a Pylon Internal Dispenser SystetD$y pylon on a
F-16. The Royal Netherlands Air Force together with Air FoBasek Eagle Of-
fice and National Aerospace Laboratory NLR executed a fliggttpprogram to find
the cause of the probléM! which turned out to be high vibration levels in the
GBU 10 tail at transonic Mach numbers. The configurationsewercertified with
limitations to minimise operation in the transonic regimeile the manufacturer
was informed of the finding in order to redesign the GBU 10a&asembly. This
is an examine of a limit cycle oscillation (LCO) which is a sglistaining limited
amplitude oscillation produced by fluid structure intei@es. Both the F-162:13]
and F/A-18' have encountered LCO at high subsonic and transonic speeds fo
store configurations with AIM-9 missiles on the wingtips drehvy stores on the
outboard pylons.

It is clear that prediction of aeroelastic instability irettransonic regime
plays an important role in the definition of the flight enveddpr many high per-
formance aircraft. Computational Fluid Dynamics (CFD) hasumel to become
an effective tool for simulating transonic aerodynamicewldver, the use of mul-
tiple time domain calculations for each aircraft state ispatationally expensive
and provides limited insight into the dependence of therpatars on the type of
response in the vicinity of the instability boundary. ThEf particular importance
when trying to reconcile anomalous aeroelastic bifurcepibenomena associated
with aerodynamic nonlinearities. Consequently there isaalrier a systematic and
efficient methodology to predict flutter boundaries in thensonic regime, sub-
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sequent LCO responses, and to relate design and operatiagngiar variations
guantitatively to the response characteristics. The nustippesented in this thesis
are intended to address these points.

1.1 Aeroelastic Prediction

Since the 1950 2 aerodynamic strip theory was used in flutter prediction$ wit
corrections added to account for compressibility, aspaat effects and loss of lift
at the wing tip&®°!. Aerodynamic strip theory assumes that the strips havefaotef
on each other, which is valid if the wing is thin and beam likée inclusion of T-
tails required a more advanced method and this was providgzinel method!,

The doublet-lattice method (DLM) is a method for modellihg aerodynam-
ics of oscillating lifting surfaces. The DLM reduces to thertex-lattice method at
zero reduced frequency. Since it is based on potential flearth the DLM cannot
describe nonlinear compressible or viscous aerodynarfectsf Industrial flutter
analysi§i%, using MSC NASTRAN for example, tends to use the DLM, and the
linear predictions have been successful as part of an dyeadess for predict-
ing flutter, despite the theoretical limitations. As suckytiprovide an essential
point of reference for more sophisticated methods, suchasetbased on the Euler
equations. The output from the DLM is a set of aerodynamiciarfte coefficients
(AICs). The structural model is determined using the finiesvent method (FEM)
with a combination of beam and shell elements. The aerodyniads are then
coupled to all the structural nodes via spline functionsolhinterpolate the loads
onto the structure.

To help improve the capability of the method in the transaegime it is
possible to correct the AICs with unsteady aerodynamic Brdehe commercial
package ZAERO has the non linear option ZTA€. The transonic effects are
included via a set of steady pressures supplied by the uderselpressures can
be from experiments or CFD codes. These pressures areditiiseverse design
an aerofoil shape using the transonic small disturbancatiou The final aerofoil
sections then match the user-supplied pressures. Unspradgure coefficients
on the aerofoil section are then computed by solving theeaaist transonic small
disturbance equation.

Linear methods have served the industry well over the lagieads but they
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cannot predict non-linear effects due to shock waves. Agstig moves forward
to increasingly lighter designs the risks of flutter and LC@l&ying an important
effect increases and this motivates the development ofinear methods.

1.2 Computational Aeroelasticity

The term computational aeroelasticity (CAE) refers to thepting of a computa-
tional fluid dynamics (CFD) method with a structural dynanmmuosdel to perform
aeroelastic analyslél. The advances in CFD over the last 40 years are well docu-
mented. Usable models have increased in fidelity throughrémsonic small dis-
turbance and full potential in the 1970’s, Euler equationthe 1980’s, Reynolds-
averaged Navier-Stokes equations (RANS) in the 1990’s armé mezently to de-
tached eddy simulations (DES) and large eddy simulatiorS)LEA review of the
last 30 years in CFD can be found in Shefyg

A flutter boundary was obtained for the AGARD wing by solving thn-
steady Euler equations of motion coupled to the normal moflése structure in
Lee-Rausch and Batir&2%. The inclusion of viscous effects in the form of the
thin layer approximation of the Navier-Stokes (NS) equatiovas made by the
same authoF&!! and showed that the inclusion of the viscous terms improkied t
capture of the transonic dip. Liet al.!?2 presented a coupled code for flutter cal-
culations based on a parallel multiblock, multigrid flownalfor the NS equations.
The solver was strongly coupled with the structural modalasgics. This strong
coupling allowed for a dual time stepping scheme to be usétbwi a sequencing
error. The cost of this type of time domain simulation is naihpbitive when the
intention is to examine behaviour at previously identifiedigem conditions and
there are several recent impressive demonstrations okithasfor complete F-16
aircraft configurations (e.g. Farhettal.[23] and Melvilld24]).

CAE has been used to examine a wide range of aeroelastic ple@aotuf-
feting is an instability caused by vortical flow, separationshock motions from
one part of the aircraft interacting with another part pr@dg a random forced vi-
bration. The F-18 high angle of attack research vehicle (MAlSes wing leading-
edge extensions (LEX) to generate vortices which increasg it and two ver-
tical tail fins which interact with these vortices to enhameaneuverability. At
high angles of attack the vortices break down before thditailresulting in tail fin
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buffef?°]. Geeet al.used RANS and an overset grid method to calculate the flow
around the HARV at high angle of attdé®. Grid refinement around the fore-body
and LEX region improved the prediction of vortex breakdowomni previous work.
Morton et al.[?”] used the commercial version of Cobalt with different turbeke
models to predict the position of the vortex breakdown aradréred the frequency
content at points on the vertical tail. The choice of turbokemodel is critical for
the prediction of these types of flow with the DES version cdl8g-Almaras com-
paring well against the flight-test data. These works wergazhout with rigid tail
fins and hence no aeroelastic coupling was taken into camsioe. Shet®8! used

a multidisciplinary approach to solve the coupled aerdielggoblem to examine
the effect of the LEX fences to alleviate tail fin buffet. RAN&swsed to solve the
aerodynamic flowfield and the dynamical response of the taivéis solved using
a direct finite element analysis. The LEX fences shifted theebof the maximum
buffet condition to higher angles and the results compareld tov both full scale
wing tunnel experiments and flight tests.

Buzz is normally associated with an oscillating control aoefin the presents
of an oscillating shock. Transonic buzz responses weretegphm flight tests on the
T45 Goshawk trainer aircraft in the U.SI®! The oscillations were attributed to a
shock induced instability and were removed via the use ob2lsktrips. Fuglsang
et al.[2% predicted the location of the shock on the vertical tail firotlgh steady-
state NS calculations with the wings removed. Rampurdifalearried out a de-
tailed aeroelastic study of this case and found the inchssod the wings weakened
the shock on the vertical tail and hence reduced the buzerdkilbuzz has also been
simulated on the supersonic transport (SST) designed éoNttional Aerospace
Laboratory of Japan. Yangt al.used the thin-layer Navier-Stokes equations cou-
pled with the structural equations of motion expressed idahform to examine
the aileron behaviour of two different structural model.eT®ST structural model
which was weakened by reducing the hinge stiffness exh#iiéson oscillations
between Mach ®8 and Mach 15.

Divergence is a static aeroelastic phenomena which occhenthe aero-
dynamic forces on the wing exceed the elastic restoringeforcHollowell and
Dugundjin investigated the effects of wing bending-tonsgiffness coupling on
the divergence speed of unswept lifting surface in incosgibde flow. The
divergence speed was obtained from the V-g médithadhen both the structural
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damping and frequency abruptly go to zero. The results wegeod agreement to
low speed wind tunnel tests. They showed that wings with tnegyatiffness cou-

pling exhibited divergence in the first bending mode. BaktkmaffZ presented

an analytical solution to the transonic small disturbarmtemtial equation with the
Kutta-Joukowsky boundary conditions for a zero thicknessfil at non-zero an-
gle of attack. The resulting equation for the divergenceedmhowed explicitly a
transonic dip dependant on the angle of attack.

If the flow about a lifting surface becomes partial or comgietseparated
during any part of the periodic oscillation then the indligbis called stall flutter.
Stall flutter is normally associated with compressor cassad turbojets and he-
licopter rotor blades. Datta and Chopra used a loosely cduplENS code and
structural model on a single UH-60A blade to show the firdt syale was caused
by high trim angles in the retreating blade while the secdall sycle was caused
by the elastic twid#3!.

There has been recent interest in the LCO behaviour of wing stonfig-
urations. Store induced LCOs have been simulated for thangatar Goland
wing343°]. The aeroelastic solver was developed by integrating a hstdectural
model from MSC/NASTRAN with the commercial CFD solver FLUENTsAline
matrix was used to transfer data from the non matching aeaodic grid and struc-
tural grid. Store aerodynamics were found to affect the LGQsvb ways first be
adding loads to the structure and secondly by interferindp Wie flow over the
wing.

As a prelude to the work reported in this these, the parallgfiblock codé!
(PMB) was extended to allow CAE computations. A number of aersitions were
required

(a) The movement of the CFD grid by transfinite interpolatir?’]

(b) Sequencing in time between the CFD/CSD solutléhs?]

(c) The intergrid transfer of dat&? 411
Time domain flutter predictions have been obtained with Phigpfoblems ranging
from model wing&?! to in production aircraft!.

Time-domain methods are general and have been shown toatelgupre-
dict non linear effects. Despite the significant gains iroathm efficiency and raw
computing power, which has reduced the computational ddghe response cal-
culations of complete aircraft down to a few hd@#s they remain too costly for
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routine prediction of flutter boundaries and LCO amplitudedaction. Multiple
calculations must be undertaken across the flight envelmfiad the flutter point
and the LCO behaviour. This has motivated a research effegdoch for methods
which account for nonlinear effects but at a much reducedpeational cost.

1.3 Reduced Order Modelling

Reduced order model (ROM) or low dimensional approximattoreslarge system
of equations greatly reduces both the central processing@RU) cost and stor-
age requirements of aeroelastic calculations. These madelvital for parametric
studies, optimisation of structures and control problefmdswever, to be useful,
they must be capable of reproducing the important lineamamdlinear behaviour
of the full system.

There are two approaches to model reduction. System idstidn methods
take the response of the system to inputs and use this inflomi@ build a low
order model. The second method is to manipulate the fullrasgstem to reduce
the cost of calculations. In this thesis the second classethod will be consid-
ered. More comprehensively, the review papers of Dowelltdati*#! and Lucia,
Beran and SilVd% examine a number of techniques which include proper orthog-
onal decomposition (POD), Volterra series, the harmonlarize method, and an
eigenmode method.

1.3.1 The Eigenmode Methodology

Halll*8] constructed ROM'’s using an unsteady vortex lattice methoidwassumes
the flow to be incompressible, inviscid and irrotational. €ider the iterative

scheme
AW BW = R+ (1.1)

wherew is the solutiont is the time level andR is the residual. Consider the
homogeneous part of (1.1) then the generalised eigenvabiem is

APA+BP=0 (1.2)

where\ is a diagonal matrix of ordeN containing the eigenvalues amtis an
N x N matrix whose columns are the right eigenvectors. Analogous

ATQA+BTQ=0 (1.3)
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whereQ is aN x N matrix whose rows are the left eigenvectors. These eigéongec
can be scaled to satisfy the following orthogonality coiodis

Q'AP=1, Q'BP+A=0. (1.4)

Then the dynamic behaviour of the system can be determineging the mode
superposition method by representing the response asrthefall the eigenvectors

w=Pc (1.5)

wherec is the vector of normal mode coordinates for the eigenma8ebstituting
equation (1.5) into (1.1) and using the orthogonality ctods equation (1.4) yields
N uncoupled equations

A= Q"TR*L. (1.6)

The ROM is now constructed by keeping only a few of the origmades. A
static correction technique is often required to improweR®OM to give satisfactory
result$*6.47]

Static correction is applied by decomposing the unsteatiytiso into the
response of the system if the disturbance is quasi-steadyha dynamic part

W= Whs+ Wy = Whe+ PE (1.7)
The quasi-steady pant is given by
(A+B)wgs=R (1.8)
and hence the corrected ROM is
T —AE = Q'R — QT (AWL! + Bwy). (1.9)

Hall used this model on a rectangular wing of aspect ratio Eetluce the
number of degrees of freedom from 480 to 40. He showed thabwitthe static
correction 40 modes is not adequate to capture the behaaidigh reduced fre-
qguencies. For fluid models where the dimension of the eigeaevaatrix is of the
order 1¢ it is possible to use a standard eigensolver package torothtaieigen-
values. Romanowski and Dowéfll, applied this ROM to subsonic unsteady flows
around the NACA 0012 aerofoil, based on the Euler equatiortse digenvalue
problem was solved using the Lanczos melfdit has been shown that the exis-
tence of zero eigenvalues in the eigensystem is the maiamdasneeding to apply
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a static correction technique. Hence Shahvetdil.[*® constructed a reduced-
order model based only on the wake eigenmodes with, the baalsi-gtatic eigen-
modes removed. They applied this technique for unsteadydtonputations based
on the boundary element method (BEM). When the Prandtl-Giaoerpressibility
correction is used to consider linear compressibility@#ehe results were in good
agreement to the Euler solutidf.

This methodology cannot easily be extended to the threerdiineal Euler
eqguations since it is very expensive to calculate eigemgaluhen the order of the
matrix is above 1)

1.3.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a modal methoticghye to systems
for which multiple measurements are simultaneously abvkalaEarly application
was to the analysis of experimental data with a view to ektrgdrends and dom-
inant featurel81l. In the aeroelastic context POD is applied to a matrix of iplet

measurement locations sampled through time. POD can hedpaiee the number
of active modes in an oscillatory system and can be used agtanab representa-
tion of the form of the modes and hence is used to construaceztorder models
[521, This method has been successfully applied to a wide rangebfems includ-

ing complete aircraft configuratiofs 54,

A POD basis® = [el, €,€;3,..., ej] is orthogonal and can be used in a modal

decomposition
M

w(t) ~Wo+ 3 Wi(t)er =Wo+ PWi(t) (1.10)
=1

wherew is the vector of modal amplitude®) is some baseline solution ail is
the number of modes.

For dynamical problems the POD modes are constructed byc@mnputing
a number of snapshots of the full order system response &) tim

S= Whw2 w3, W] (1.11)
A new basis is formed from the linear transformation of thapshot matrixs

® =SV (1.12)



CHAPTER 1. INTRODUCTION 10

and maximising the projection of the snapshot matrix onécR@D basis yields the
following eigenvalue problem
STSV=VA. (1.13)

The eigenvalues satisfyy > 0 sinceS' Sis symmetric positive semi-definite. The
/

eigenvectory are normalised so th&t"V = |, and then scaling by )\fl 2 gives
an orthonormal set of modes, i@/ ® = 1.

In practise fewer tha¥l modes are retained. This is done by limiting the set
to only the eigenvectors corresponding to sufficientlydegggenvalues. A property
of this decomposition is that it minimises the approximatssror when a member
of the classSis approximated through a linear projection omMdasis vector2l.

There are a number of different techniques for obtainingteoteeduced
order equations fow(t) with different projections. These have recently been re-
viewed in Luciaet al.[*]. The data samples for a POD are collected over a small
region of state space, this focused sampling allows for eegurate ROM at the
training point. However a ROM is not usually robust with respto changes in the
model paramet&®). Ideally the ROM should be reconstructed whenever the model
parameter is changed. To avoid this CPU intensive effecthtsc®OM adapta-
tion techniques have been used. There are at least 4 diffie@miques used in
aerospace problems:

(1) The global POD (GPOIPf! which has only been demonstrated to be
effective at low free stream Mach numbers.

(2) The method of direct interpolation of the reduced ordasi® vectors’!
which has delivered poor results in the transonic regimebse the vectors vary
non linearly with Mach number and angle of attack.

(3) The subspace angle interpolatfdr8] adapts two ROMSs associated with
two different sets of model parameters to a third set by paiating between the
basis rather than the vectors of the basis. Lieu showed lieapiincipal angles
between subspaces of 2 ROMs appear to vary linearly for sibdéach numbers
for intervals of 02 of a Mach number, this interval is halved in the transorgme.
Hence the adapted ROMs do a reasonable job of predictinganamflow if there
is enough ROMs throughout the Mach number range.

(4) The final interpolation method based on the Grassmanifohdyits tan-
gent space at a point and the computation of geodesic path&’he Grassmann
manifold¥ (k, n) is a space which parameterises all linkaimensional subspaces
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of an n-dimensional vector space i.€7(2,3) is the space of all planes that pass
through the origin. The last two methods are closely linkeé &avo point Grass-
mann manifold corresponds to a subspace angle interpolatio

The generation of the training data is still costly as urdge@FD compu-
tations must be undertaken. More importantly it is also \diffrcult to produce
a ROM and at present there are no POD aeroelastic resultssfoyus full order
models.

1.3.3 Harmonic Balance Method

The formulation of the harmonic balance (HB) method of Hall. (5% yields an
efficient method for the calculation of time periodic sobms of large non linear
systems of equations. The semi-discrete form of the systerdmary differential
equations is

o dw(t)

I(t)=—4,~ +RO=0. (1.14)

Assume that the solution and residual are periodic in tinth Wwequencyw. Then
they can be expanded in a Fourier series which is truncatsd terms as

NH

W(t) ~ Wo+ 3y (Wa, COYwNt) + Wiy, Sin(cont)) (1.15)
=1
NH

R(t) ~Ro+ 3 (Ra,cogwnt)+ Ry, sin(wnt)) (1.16)
n=1

The expansions (1.15) and (1.16) are then substitutednetthe original governing
equations (1.14) to give a system of equations for the unkrnttavmonic terms,

A

Rb = 0
W\, + Ry, = O (1.17)
—WMWa, + Ry, = 0
The difficulty in solving the system of equations (1.17) idimding a relationship
between the solution and residual in the frequency domasravdid this problem
the system is converted back into the time domain. The solugisplitinto Ny + 1
discrete equally spaced sub-intervals

wW(to + At) R(to + At)
W(to + 2At) R(to + 2At)

(1.18)

W(to+T) R(to+T)
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whereAt = 21t/ (w(2Ny +1)). There exists a transformation matkxsuch that
W=EW and R=ER. (1.19)
and then the system of equations (1.17) can be written as
wDW +R =0 (1.20)

whereD is a Ny + 1 x 2Ny + 1 matrix of the form

2 T o

The standard pseudo-time steady-state approach to sehendB equation (1.20)
can be applied. So, in effect, by using the truncated perisdiution the unsteady
problem has been converted intold 2 1 steady state problem. Good results have
been claimed with even a small number of modes when modehlied.CO be-
haviour of the F-16. This method is closely related to the non-linear frequency
domain methods of McMulleet al. (%263 They employ a very similar approach
but solve the system of equations (1.17) in the frequencyaitemAssumingV
is known, the time domain solution can be constructed. Téadst-state residual
operatorR is then applied to each of these time instances and theseaverted
back into the frequency domain via a fast Fourier transfawuoMullen et al. also
derive a gradient approach for the class of problems whergirtie period is not
known a priori®3]. An iterative approach is used which adjusts the time peatod
each iteration by using the derivate of the square of thelwasin the frequency
domain with respect td as the correction.

Two HB formulations have been analysed in detail for Duffingscillator
in Liu et al.[%4 the formulation by Hall was denoted as the high-dimensibasa
monic balance (HDHB) method due to its applicability for hidiimensional dy-
namical systems. It was shown that the HDHB system alwaysgwmore terms
than the classical HB system for the same number of harmoniesse extra terms
have the effect of producing non physical solutions and mayeiase the number
of harmonics required for a given accuracy. Maspteal.introduced an adaptive
harmonic baland€ %61 to reduce the computational cost further. Each cell was ex-
amined to see what fraction of spectral energy containebdlerntghest computed
Fourier frequency and refined if they exceed a thresholdevaltiwas shown to
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work well for supersonic/subsonic diverging nozzle whére periodic solution is
mostly continuous and low frequency but with a shocked regio

The cost of mapping a stability boundary by the HB could bestaritial. If
it is not known a priori which modes interact, then there isestimate of what
frequencyw is required in (1.15) and (1.16). So a number of calculatwriis
be required to explore the frequency domain. A flow contgrhighly non-linear
features that need to resolved accurately, e.g. shocKsiegilire a large number
of modes for each calculation at added further computaltioost.

1.4 Dynamical Systems Based Methods

In CAE the partial differential equations are turned into steyn of ordinary differ-
ential equations, making it logical to appeal to dynamigstasms theory in order
to calculate flutter boundaries and predict LCOs. The godahisfthesis is to take
these standard ideas and turn them into practical methatisdh be used to solve
large aeroelastic systems.

1.4.1 Numerical Analysis of Bifurcations Points

Bifurcation theory is the study of changes in the qualitabiebaviour or topologi-
cal structure of a given problem. A bifurcation occurs whemell smooth change
in a parameter(s) leads to a sudden topological change t@msysehaviour. Given
a set of ordinary differential equations depending on a Epaicameters the idea
is to obtain its bifurcation diagram. These diagrams divite parameter space
into regions within which the system has topologically eglent behaviour. Dy-
namic pressure vs Mach number and flutter speed index vs Maulber are two
common diagrams in aeroelastics. These regions for astmetystems include:
stable - all modes are damped, unstable - there is at leadivergent mode, or
LCOs. All these regions have been shown on the rectangulan@aling model
with tip stord®’l. For a fixed Mach number as the velocity is increased the wing
passes from being stable to being unstable at around 688.ftHowever between
Mach 0.92 and Mach 0.94 there is a small pocket of LCOs at a wglot 450
ft/sec. Mapping the boundaries where the system flips froeregion to another
is important. Other information of interest is how fast thedas are damped in the
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stable regions and the amplitude of any LCOs. All these questan be answered
with time marching CAE, but at the expense of significant cotaptime.

1.4.2 Calculation of Bifurcation Points

The first part of mapping out the behaviour of a system of OBEs calculate the
equilibrium points where the system switches behaviour. sitian the system of
non-linear ordinary differential equations

x=f(x,u) xeR" peR (1.22)

where u is the bifurcation parameter. The equilibrium points of &tpn (1.22)
satisfies
f(x,u)=0. (1.23)

The system switching behaviour is characterised by a chiantdpe eigenvalues of
the Jacobian matrix
A= fy(X, ). (1.24)

For example if all the eigenvalues Afhave negative real part then the equilibrium
point is stable. In the case of a simple LCO the Jacobian maéisxa complex pair

of eigenvalues valued = A; +iA; with A, > 0 andA; # 0 with all other eigenval-
ues having negative real part. The boundary for the changehaviour between a
stable equilibrium point and an LCO is when a complex pair géavalues crosses
the real axis. This bifurcation point is called a Hopf bifation. Seydé?8! di-
vided methods for locating bifurcation points into two das indirect and direct
methods. For indirect methods a bifurcation point is caltad by solving equa-
tion (1.23) repeatedly for different values pfand detecting a change of sign of
a test function which classifies the bifurcation point. Fae Hopf bifurcation one
possible test is to calculate all the eigenvalues of (1.24) see when one pair
crosses the real a%§8l. When the crossing has been detected the secant method
can be used to solve for the real partlofs zerd®®l. The direct methods solve
the system of equations (1.23) augmented by additionaltemsahat characterise
the bifurcation point. Roo$®! proposed a direct method for the computation of
Hopf bifurcations which was to solve a augmented system miedsion 2+ 2.
Griewank and Reddiéfl! developed a similar method which solves a system of
dimension B+ 2. Holdniok and Kubtek’?! compared 4 different methods two of
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which required the evaluation of the coefficients of the abtaristic polynomial of
the Jacobian matrix.

1.4.3 Normal Forms for Bifurcations

The normal form of a bifurcation is a simplified system of dtas that approx-
imates the dynamics of the system in the vicinity of a biftiara point. The
simplification can be obtained by using a number of methaoés, centre man-
ifold reduction’3], the Lyapunov-Schmidt methB@ and the method of multiple
scale&’® 781, The dimension of the normal form is generally much lowenttre di-
mension of the full system of equations. For a Hopf bifulmathe normal formis a
two-dimensional systefi’! Dessi and Mastroddf! have used the method of mul-
tiple scales to examine a three degree of freedom airfoildtagfiguration with two
non-linear torsional springs (cubic) in two-dimensionaampressible flow. Vio
et al.["® applied a number of bifurcation analysis techniques tordesterse gal-
loping of a square sectioned beam in a normal steady flow. @ragnamic force
was expressed as a seventh order polynomial function otigland the struc-
ture as a mass with linear stiffness and non-linear dampiing. methods used in
the study included centre maniféi#l, normal form®, numerical continuatidf?!
and higher order harmonic balafft® (HOHB). Only two of the methods exam-
ined, namely HOHB and Numerical continuation where ableliy find accurately
characterise the problem.

1.5 Thesis Outline

This thesis is concerned with the development of fast mettiodthe prediction
of flutter boundaries and LCO responses in transonic flow. i®ehd the Euler
equations are used to capture the changing behaviour okslicesponse to the
motion of the aircraft. An a priori assumption is made on tlyaainics of the
flutter, namely that it is a Hopf Bifurcation which signals aaoge from stable
steady motion to periodic motion.

Chapter 2 summarises the theory of Hopf bifurcations and odstthat can
detect when such a bifurcation has been encountered. Timelfation is extended
and used to calculate the value of a single parameter forndneigenvalue of the
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system Jacobian matrix crosses the imaginary axis. Theti@haepncludes with a
model example of a 1D tubular reactor.

Whilst knowledge of the onset of the instability is importambre informa-
tion is required in practice. For example the fast comparisbpredictions and
flight test damping data is required to inform decisions alfwre test points dur-
ing flight testing. If the stability boundary is crossed imgfit, knowledge of the
LCO amplitude is required. Chapter 3 contains the theory ofreenanifold pro-
jections and highlights some of the difficulties involvedusing such a method
when the system of equations is of the ordef. Ithe chapter concludes again with
a model example of a 1D tubular reactor.

In chapter 4 the method outlined in chapter 2 is developedargcheme that
is applicable to the two dimensional Euler equations calipléh a pitch-plunge
dynamics model. The method shows a two orders of magnitutietion in CPU
time to calculate a flutter boundary compared with time-rnizg.

Chapter 5 takes the method of chapter 4 and demonstrates lirea di-
mensional test cases. It is shown that the method has reachdticient level of
maturity that it has been used on real aircraft problemsimttie research activities
of industry19].

In chapter 6 the theory outlined in chapter 3 is turned intoegfical method
for calculating the damping and limit cycle oscillations feings. The method
uses information obtained from the approach of chapter ®doae the system
of equations down to 2 degrees of freedom. This allows for nesantaneous
calculation of LCO responses once the model is formed.

The methods presented in chapters 4-6 provide a unique amerfub set
of tools for exploiting the modelling capability of CAE. An portant feature of
the work is the demonstration of the methods that can beeppdi problems of
realistic size. These methods have all been published mgbpapers listed at the
start of the thesis.



Chapter 2

Calculation of Hopf Bifurcation

Points

2.1 Introduction

Recent studies by Morton and Bel&n°l suggest that, for a large class of transonic
aeroelastic problems, a more direct evaluation of thecatistability boundary is
feasible, based on numerical path following techniéfiféand the augmented sys-
tem of Griewank and ReddiEAl. Here, the parameterised aeroelastic equations of
motion are expressed notionally in semi-discrete form.dltifurcations of equi-
libria are associated with degenerate behaviour of thelised aeroelastic equa-
tions in which one or more of the eigenvalues of the Jacobiinix(1.24) has zero
real part. For example, the onset of LCO, at which a steadg-stdution transitions
to an oscillatory solution with zero amplitude under theuafice of a single param-
eter, can be identified with a simple Hopf bifurcation in whtbe Jacobian matrix
possesses a conjugate pair of pure imaginary eigenvaldlesam-zero frequency.
These are the critical eigenvalues.

Under the variation of multiple parameters, more compleyeteracies are
possible. The degree of degeneracy (or co-dimension) afieatpoint is defined
by the minimum number of parameters required to fully explre qualitatively
distinct solution behaviour in the vicinity of the criticabint. Numerical path fol-
lowing (continuation) techniques enable particular degacies of steady state so-
lutions of prescribed co-dimension to be tracked with respe the free-stream
and structural parameters, thereby identifying directlfical stability boundaries

17
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in parameter space. From a knowledge of the type of deggnataxiticality it is
possible to infer qualitatively generic local bifurcatioharacteristidg®!. In addi-
tion, the critical eigensolutions associated with the degate Jacobian matrix are
automatically determined as an integral part of the proeedihereby providing
insight into the composition of the critical aeroelasticdas. This modal infor-
mation also forms the basis of quantitative model redugpimcedure§”! which
can be used to explore sub- and post-critical behaviouraméighbourhood of the
critical bifurcation parameters.

Of practical importance, direct path-following methodshgelly demand
less computational effort than existing time-integratmocedures for the evalu-
ation of stability boundaries whilst offering additionaformation in the sub- and
post-critical aeroelastic behaviour over a range of pataraén the vicinity of crit-
icality. The approach operates directly on the semi-diec@#D/CSD representa-
tion of the aeroelastic system. Moreover, the direct apgros not limited to the
prediction of simple nonlinear flutter phenomena but canrporate aeroelastic be-
haviour associated with higher-order degeneracies antipeutritical eigenvalues
such as the double Hopf bifurcation which has been obsemedsingle degree of
freedom bluff body with a tuned mass danip8r

2.2 One Parameter Bifurcation Equilibria
Consider a continuous time system depending on a parameter
w=f(w,u), weR" peR, (2.1)

where f is smooth with respect to both andu. The eigenvalues of the Jacobian
matrix 0 f /dw, are important for determining the stability characté&ssof the
equilibria of the system. Let = xo be a hyperbolic equilibriuth point of the
system foru = pp. Consider the two dimensional= 2 system then the Jacobian
matrix has either two real eigenvalugs and A, or one complex conjugate pair
A12 = Ar £iAj. There are 3 topological classes of hyperbolic equilibriomthis
system®’l namely nodes, saddles and foci. These are distinguishduetyositive
and negative real parts of the eigenvalues, see Table 2.1.

Li.e. there are no eigenvaluesaif/ dw on the imaginary axis
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Real/Complex Eigenvalues Class Stability

Real A1 <A2<0 Node stable

Real 0<A1<A2 Node unstable

Real A1 <0< Ay Saddle unstable
Complex A <O Focus stable
Complex Ar >0 Focus unstable

TABLE 2.1: Classification of two dimensional hyperbolic equilibriumims

There are only two ways in which the hyperbolicity conditaan be violated.
Either a simple real eigenvalue approaches zero h&pee0, or a pair of simple
complex eigenvalues reach the imaginary axis &ngl= +iay, ap > 0 for some
value of the parameter. It can be shown that more than onengéeais required to
allocate extra eigenvalues on the imaginary &is.

For one parameter bifurcations only two of these types assipte. The first
is called a fold and is associated with the appearance ofeaeigenvalue. This is
also referred to as a limit point or a turning point. The omae&hsional system

f(W, 1) = p+W

is the simplest possible system that has an equilibriumtf@aif0,0) and satisfies
the fold bifurcation conditiorfy(0,0) = 0. The second type is the Hopf bifurcation
which is associated with the appearance of a purely imagiesigenvalue.

2.3 Classes of Hopf Bifurcation

Consider the following system of two differential equatialepending on one pa-
rameteru

Wi = Ui — Wy — Wi (W] + W),
W2 = Wi+ W2 — W2 (W5 +W3). (2.2)

This system is the simplest possible that exhibits a Hopfrbétion. This system
has the equilibriumwv; = wy = 0 for all u with the Jacobian matrix

()
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having eigenvalues; » = p+i. If the complex variable = w; +iw; is introduced,
then the complex conjugate is given by w; — iw,, and the magnitudig|?> = zz=
X% +x2 . This variable satisfies the differential equation

2=y + iV = p(Wy +iwWp) + i (Wy +iwp) — (Wp 4 iwz) (W5 +W3),
and equation (2.2) can be rewritten in the complex form
7= (u+i)z—2z>
With the change of variable= re® then
7=t +rife® =ré®(u+i—r?).
which gives thegpolar form of equation (2.2).

o= r(u-r?
6 = 1 (2.3)

Bifurcations of the phase portrait of the systenpugsasses through zero can
easily be analysed using this polar form since the equatmmsand 6 decouple.
Sincer > 0 the first equation has the equilibrium paint O for all values ofu. The
equilibrium is linearly stable ifu < 0, nonlinearly stable fopu = 0, and linearly
unstable fory > 0. There is an additional stable poif(u) = /i for pu > 0.
The second equation describes a rotation with constantdspisking these two
pieces of information the following description of the bifation behaviour can be
obtained.

The behaviour of the system can be seen in Figure 2.1. Themsyatvays
has an equilibrium point at the origin. This is a stable fofarsu < 0 and an un-
stable focus fopu > 0. At the critical value ofu = 0 the equilibrium is nonlinearly
stable and topologically equivalent to the focus. This Eouum at the origin is
surrounded by an isolated closed orbibft cycle) that is unique and stableif > 0.
The cycle is a circle of radiug(u) = /f. All orbits starting outside or inside the
circle (with the exception of the origin) tend to this cycketa— 4. There is a
Hopf bifurcation atu = 0.

A system having nonlinear terms with the opposite sign taéqo (2.2)

Wi o= pWg — W+ Wi (W2 +W3),
W2 = W1—|—[,lW2+W2(W%—|—\N%) (2.4)
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FIGURE 2.1: A supercritical Hopf bifurcation in the plane

has the following complex form
2= (u+i)z+22>

which can be analysed as above. The system passes througif hifdocation at
¢ = 0. Since the nonlinear terms are of opposite sign to equé2@) there is an
unstable limit cycle in equation (2.4) as can be seen in EigL2.

There are two types of Hopf bifurcation. The bifurcation ystem (2.2) is
called a supercritical bifurcation because a stable dxguiln exists before bifur-
cation and a stable limit cycle after. The bifurcation inteys (2.4) is called a
subcritical bifurcation because an unstable limit cycleéselefore the bifurcation
and an unstable equilibrium solution after.

If higher order terms are added to equation (2.2) and writtenvector form
then

(W1)=<“ _1>(Wl)—<m&+wé><wl>+ﬁ<||wu4> (2.5)
Wy 1 pu Wo Wo

wherew = (wy,w2)T, [|w|[2 = w2 + w3, and&'(||w||*) terms can smoothly depend
on u. The system (2.5) is locally topologically equivalent nds origin to sys-
tem (2.2) and the higher order terms do not effect the bifionédehaviour of the
system.
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FIGURE 2.2: A subcritical Hopf bifurcation in the plane

2.4 Numerical Methods for Calculating Equilibrium

Solutions

The calculation of an equilibrium solution requires theusioin of a nonlinear sys-
tem of algebraic equations (2.1) for a givgn An attractive method for achieving
this is Newton’s method, or a variant. For clarityhas been dropped in the methods
are outlined below.

2.4.1 Newton’s Method

Let A(w) =2 f/dw denote the Jacobian matrix bevaluated at a poimt. Suppose
w! is the current approximation to the solution of equatiod)2If we linearise the
left hand side of equation (2.1) neat then

f(wh) + AwhH (Wt —wh ~ 0.
If the matrix A(w!) is invertible this linear system will have the solution
w = wh— AT (wh) F(wh), (2.6)

which should be closer twg thanw!. Let w® be a given initial point near the
equilibrium pointw. Then Newton’s iteration is defined by the recurrence refati
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(2.6). It should be noted that matxw!) need not be inverted to compwi&*! but
equation (2.6) must be solved. If the Jacobian has a speaiatgre, for example
sparse, it is very useful to take this into account.

Suppose the system (2.1) is smooth and has an equilibsigiat which no
eigenvalue is zero in the Jacobian matrix. Then there isghbeurhood?” of wg
so that the Newton iterations convergentgfrom any initial pointw® € % and

W —wol| < Kollw' —wol2, t=0,1,2,... (2.7)

for somekp > 0. A practical method is however needed to obtain an initisss
which is within’#". The convergence of this method is independent of the gtabil
of the equilibrium since the no zero eigenvalues in the Jacainatrix is equivalent
to equation (2.6) having a solution. The estimate above m#éaat the error is
approximately squared from one iteration to the next, givime famous quadratic
convergence.

2.4.2 Relaxed Newton’'s Method

Newton’s method requires that the initial gueglis close, in some sense, to the
equilibrium solutionvg. Newton’s method can be modified to increase this domain
of convergence at the expense of reducing the rate of coeneegoy adding a time-
like term onto the diagonal of the Jacobian matrix so that

1

(EI +AWH) (W —wh) = —f(wh). (2.8)

The termAT can be a physical time step or can be adjusted locally to axatel
convergence. As the time step is increased the pure Newtwilsod, and quadratic
convergence, is recovered.

2.4.3 Modified Newton’s Methods

If no analytical formula for the Jacobian matrix is availabien an expensive eval-
uation by numerical differentiation is required. Some appnations may be pos-
sible to reduce the required cost, as for example is donenre$oFD codd$®l.

One possible simplification is to freeze the Jacobian matrilke initial value.
This is called the Newton chord method. This simple ideagge to the iteration

wHl=wt+ow', t=0,1,2,3,...
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wheredw! is now given by
AWO) W' = —f (wh). (2.9)

This also converges g but at a rate given by

t+1

Wt —wol| < Kal|w' —wol|, t=0,1,2,... (2.10)

for some O< k1 < 1. Hence the convergence is only lin€4&t.

The BroydeR! update is a member of a family of methods which use rank
one updates, that &1 — Al is a matrix of only one linearly independent row. The
idea is that two successive iterates and the correspondirggion values are used
to update the matrix involved in the computationd@f. Broyden’s method is a
generalisation of the secant method when applied to thebTmatrixA

AL W —wh) & F (W) — F(wh). (2.11)

Unless the dimension af is one this equation is under determined. Broyden sug-
gested using a rank one updatefto calculateA+1

AFL = Al uvT (2.12)
whereu,v € R". Requiring thaiA'*1r = Alr for all r orthogonal tov'** —w! and
using equation (2.11) implies

v Wt+1 _Wt U F(WH'l) o F(Wt) o At(Wt—i—l —Wt)
- - (Wt+1 _ Wt) . (Wt+1 _ Wt)

This gives rise to the following algorithm, starting with anitial guessw®

and an estimate of the Jacobian ma#ixthen
Wt+1 - wi— (At)—lF(Wt)
d — wti_wt
y' = Fwh—F(w)
(' —A'S)(s)T
g.d
fort =1,2,3,.... Better convergence than the Newton chord method is obt8fhed

A’H—l _ At‘l—

but there is no expectation that converges to the Jacobian matixw) at the
equilibrium pointwg, even if the method converges wg ast — «. Hence, the
final matrix cannot be used to compute, say, the eigenvaludsabwg. Normally

the Jacobian matriA(w) has a special structure (for CFD methods, this is banded
and sparse) and this is always used to allow efficient linelatisn. However the
rank one update of Broyden’s method may not preserve thistatel
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2.5 Numerical Methods for Calculating Hopf Bifur-

cations

Consider the continuous time system (2.1) depending uporparanete. An
equilibrium solution satisfies
f(w,u)=0. (2.13)

At the critical valueug of the parameteu there is a Hopf bifurcation if the follow-
ing conditions are satisfidef! The Jacobian matrixy (Wo, Ho) has a simple pair of
purely imaginary eigenvaluesiw while all other eigenvalues have non zero real
part. And foru = L then the critical eigenvaluk® = A; =iw have a non zero speed
crossing the imaginary axis.

2.5.1 Indirect Calculation

Seyddf®! classes the indirect approach of locating bifurcation fsoaf equation
(2.1) as the tracing out the solutions of (2.13) as the pa@rpevaries and to detect
where the stability changes. The sequence of solutions @iru') take the form

f(whp®+txAu)=0 t=0,1,2,3,.... (2.14)

For the detection of the Hopf bifurcation point, a test fumaty(w, ) is defined
which has regular zeros at the bifurcation points.

A natural choice for the test functignis the maximum of all real parts of the
eigenvalues of the Jacobi&ndenoted b:

y:=max{Re(A1),...,Re(An)}. (2.15)

This choice has the advantage of being physically meaniihgitause/ < 0 guar-
antees local stability and continuity providé@v, i) is continuously differentiable.
During the computation of the sequence (2.4 calculated. There is unlikely to
be a solution pair such thgtw!, ut) = 0 so a change of sign between these points

t+1

y(wh, phy(wt ut)y <0

is monitored instead. The point can be located more acdyiayeapplying New-
ton’s method to the system

(2.16)
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To apply a Newton-like method the test functigtnas to be defined and differen-
tiable in the neighbourhood of the curve. If the system giveaquation (2.16) is
singular then another method must be used to find the solutiassar* located
Hopf points by solving by the secant method for the eigerevaftsmallest real part.

The calculation of this test function is non-trivial. Fittstere is a concern
about how the eigenvalues are influenced by the accuracyedaaluation of the
Jacobian matrix. The Jacobian can possibly be calculatéiddbyrder approxima-
tions 8 or numerical differentiation as a practical alternativatalytical evalua-
tion. The question for a detection method is how useful ageeigenvalues of an
approximate Jacobian tg,. They might be expected to be reasonable except where
stability is lost, where the real part of the critical eigalue is close to zero and the
relative error possibly high.

A critical part of a detection method based on this choiceesf function is
the evaluation of the eigenvalues of the Jacobian matrixthbtés based on QR
factorisationf*®! which calculate all the eigenvalues of a matrix, have a costhv
grows likeO(n®) and so will be too expensive for the current application. Ewsy
the QR method gives much more information than is requiradhé current case
only the sign of the eigenvalue with maximum real part is egledThis can be
obtained from the inverse power meth6d.This strategy needs an initialisation for
the first solution but more importantly a test is required ttkensure the eigenvalue
is indeed the one with maximum real part. This is differennfrcalculating the
eigenvalue of largest or smallest magnitude, which is comiyndone. There is
a way around this problem by means of a generalised Caylegftrari*®! on the
Jacobian matriA.

C:=(A—al) YA-ayl) (2.17)

for reala; anday. By this transformation the eigenvalues of A are mapped to the
eigenvalues of C. The eigenvalue of A which is dominant inpeal, denoted , can
be calculated from the eigenvalue of C which is dominant igmitade, denote@d,

from
o a16 —adp

—_— ﬂ. (2.18)



CHAPTER 2. CALCULATION OF HOPF BIFURCATION POINTS 27

2.5.2 Direct calculation

Griewank and Reddiéf! proposed the following direct method for the calculation
of Hopf bifurcations which is also the third algorithm usadHoldniok and Kubtek
comparative numerical stubfy!.
For A to be an eigenvalue of the Jacobian makithen the following equa-
tions is valid
Ap = Ap. (2.19)

wherep = p; +ipj is the right eigenvector. A Hopf bifurcation with respecthe
parametemu occurs whem\(wp, 1) has one pair of eigenvalues of the forhncw
then equation (2.19) reduces to

Ap = iwp. (2.20)

One possible normalisation to make the eigenvegtonique is as follows, choose
a constant real vectare R" so that

s'pr=0 s'pi=1 (2.21)
Taking real and imaginary parts of equation (2.20)

Apy = —wp;
Apj = wpy

A Hopf bifurcation point can be calculated directly by solgiequations (2.13)
(2.22) and (2.21) together

(2.22)

f
Apr + wpj
FA: Apl — WPy =0 WA: [Wv prvpial-l,w]T- (223)
s'pr

| s'Tpi—1 |

This system will be referred to as tlaeigmented systenthroughout this thesis.
This method is also used in the code Aut697

Holdniok and Kubtek’? suggested that the dimensionality of the augmented
system (2.23) can be reduced frgBn+ 2) to (2n+ 2) by noting the following: if

2 Auto is the standard bifurcation and continuation packdde latest version of Auto and can
be found at http://indy.cs.concordia.ca/auto/
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w is non-zergp, andp; are linearly independent. The mat¥ has a double real
eigenvaluel = —w? with a two dimensional eigenspace spannedyp;} at the
Hopf point. Taking a vectar ¢ {p,,pi}, there exist$ € sparfpr,pi} with ||S|| =1
and orthogonal to. The augmented system then becomes

f

A2S+ S
Fa= N =0 Wa=[w,Suw.
S's—1

r's

This system is one third of the size of the original augmestatiem but is likely to
suffer from ill-conditioning since the condition numbertbe new system will be
the square of the original system.

The augmented system (2.23) can be solved by applying N&wogthod
with a Newton update given by

OFa B ¢

whereAW = W4 — WY The Jacobian matrix on the left hand side of equation
(2.24) is given in expanded form as

A0 0 f, O
Awvpr Al Aupr i
= Awpi —lw A Api —pr |- (2.25)
o s 0 0 o0
0 0 s 0 0

OFa
OWp

The functionF has 314 2 unknowns ifw has dimension n which is the same as the
number of equations in (2.25). Hence equation (2.24) isclos

2.5.3 Evaluation

In both of the alternative methods the solution of large ma@ar systems of equa-
tions is required. The augmented system is significanthellathan systems arising
in CFD calculations. The indirect method relies on the caltoh of the eigen-
value of largest real part for large matrices. It is potdlytian easier task to solve
the larger systems arising from the augmented system thahably calculate the
required eigenvalue for detection. Therefore the curremtkwwill focus on the
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direct solution of the augmented system. This decision dsfihe numerical prob-
lems which must be overcome. First, the Jacobian matrixefribst be calculated
exactly since it is included ir of the augmented system (2.23). Secondly, the
second Jacobian matr#, must be at least approximated if the iteration (2.24) is
used. Finally, the resulting linear system must be solvédiently. These issues,
for aeroelastic systems, are the central challenges oitrik.

2.6 Model Problem

To test the solution methodology for the augmented systednitansolution via
(2.24), a model problem is considered which describes tegeady behaviour of a
non-adiabatic tubular reactor with axial mixiffg—27!

dy 1 0% oay r
ot = P ox WP\ "o
90 1 9°0 00 —
-
+uayexp(r — 6)

wherePey, Pe,, B3, a, T, ando are fixed constants andis the bifurcation param-
eter. The boundary conditioris > 0) are given by

oy 00

dy 00 B
&_5_0 (x=1)

For the results presented here the constants are &eite- 5, Pe, =5, f = 2.5,
a =05, =25, andd® = 1.0.

The system is discretised using a cell centred finite diffeeescheme so that
the first and second differences are approximated by

0%| _Yiri—2i+Yic1 9y _ Vir1—VYi1
X2, h2 ox|; 2h

Here a uniform mesh of spacirgis used with the i-th point at; = ih for (i =
0,...,n). The boundary conditions for= 1 are applied by setting halo cell values
to be identical to the values in the adjacent interior cetlefe are three possibilities
for applying the condition at = 0.
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First there is the first order approximatigg= yo which leads to

ay_
Y-1=Yo—hPan(yo—1) oY1 1—hPey (2.27)
Yo
dy-1
—=0.
o1
The first of the two second order approximationggs= (Yo +Y-1)/2 which leads
to
Yo(2—hPan) +2hPan, dy-1  2—hPan
-1= = 2.2
" 2+ hPen dyo ~ 2-+hPen (2.26)
dy-1
——=0.
oY1

The alternative second order approximatioggs= (3yo — y1)/2 which leads to an
extra term being added into the Jacobian matrix

hPean, oy 1 3hPeg,,
1=Vo— —|3yo—V1—2| ——=1— —— 2.29
y-1=Yo—— [Byo—y1—2] v > (2.29)
9y-1_ hPen
oy1 2

For this problem having the first order boundary conditiosegly effects the accu-
racy of the results so that even a grid with 512 cells does metaygrid converged
answer, as shown in figures 2.3 and 2.4.

The solution of equation (2.27) is by the full Newton methoithvthe use
of the exact Jacobian on the left-hand side. For the cortioug@roblem (2.14)
this is solved using a banded LU decomposition. For the immuif the augmented
system (2.23), since the bandwidth has grown to nearly tdéwaf the full matrix,
a full LU decomposition is used. It is possible to use a dismdver for the linear
system since the dimension is small in the model problem.

To check these results, unsteady time stepping is alsodenesi. An explicit
method is used which results in a large number of time stAps-(1/500 is re-
quired for stability). The bifurcation point is bracketeetWeen a stable solution at
one parameter value and an unstable solution at a secorel Edich new calcula-
tion halves the length of the region bracketing the bifucsavalue. This method
however does not give the eigenvalue and eigenvector aatigrinstability as part
of the solution. This information is found as part of the ol of the augmented
system.

The rich solution space for this model problem is shown inrBg2l5. This
includes stable and unstable equilibria, limit points armpHbifurcation points.
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FIGURE 2.3: The grid convergence of thesolution with a first order treatment of
the boundary condition at= 0
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FIGURE 2.4: The grid convergence of thesolution with a second order treatment
of the boundary condition at= 0
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FIGURE 2.5: The equilibrium solution as mapped out by a continuationhoet
varying the bifurcation parametgr
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FIGURE 2.6: The time history o® atx = 1 with u = 0.1648

There is also a hysteresis loop for increasing and decigasinThe solution is
characterised by the maximum value®fwithin the domain. The equilibrium so-
lutions for varyingu are shown in figure 2.5. For valuesiok 0.165 andu > 0.180
this equilibrium is stable and the solution to equation 2.8 steady. For values
of u in between these extremes the equilibrium is unstable ammditaclycle oscil-
lation is formed. Depending on whether the paramgtés increased (solid line)
or decreased (solid and dashed lines) a different equihioiis obtained, indicat-
ing hysteresis. The equilibria were mapped out using thémastion method with
Newton’s method for the corrector stage. In addition, timerching calculations
were done to map out the stability of these equilibria. Theethistory for® at
x=1is shown in figures 2.6 and 2.7 far= 0.1648 andu = 0.1668 respectively.
It is clearly seen that the solution is steady in the first case oscillates in the
second.
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FIGURE 2.7: The time history o® atx = 1 with u = 0.1668

Next, the augmented system was solved to find the bifurcadmnts. If
the initial guess is poor then the solution diverges. Fordimeent calculations
the following initial guess was usegt = 0.16, Xpx = 1.0, Xok+1 = 0.0, p, = VN,
Piy = VN, Piy,, = —VN, s=p; andN is the number of cells in the mesh. By
changing the initial conditions the Newton iterations ca&nbade to converge to
the second Hopf point gt = 0.1796. Starting from this guess the iterations had
to be under-relaxed by a factor 0.5 until the domain of quadmnvergence was
reached (the criteria used was based on the initial reslokiaty reduced by half).
A sequence of grids was used to show mesh independence acdrad saethod
of initialisation was used taking the final solution from theevious grid in the
sequence as the starting solution on the next grid. No riétaxa/as required using
this technique.

The convergence of the bifurcation parameter is shown ie @8. The num-
ber of Newton iterations required with and without the gedjgencing to initialise
the iteration is given in the fourth and sixth columns. Thgusnced start-up is
obviously very beneficial in reducing the cost of the caltala From the conver-
gence plots shown in figures 2.8 and 2.9 for the residual gndchition value ofu
respectively it is clear that the Newton iterations take #dento reach the domain of
guadratic convergence when not using the sequenced gtaHawever, once the
guadratic region is reached the convergence is rapid. Thet®fd shown in the
fifth column of the table scale witN® since a full Gaussian elimination was used
on the full matrix for this test problem. The exact Jacobiairir of the augmented
system has a large bandwidth.
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TABLE 2.2: Grid convergence for the solution of the Augmented System

No. of Cells Bifurcation Newton CPU Time Nested

parameter Iters
8 0.16508010 24 0.0 N/A
16 016504272 29 0.1 6
32 016503947 32 1.3 5
64 016503896 34 11.2 5
128 016503886 37 329 5
256 016503883 40 8109 5

2.7 Conclusions

The iteration scheme (2.24) has been applied to a modelgobhd both Hopf
bifurcation points could be found however the current impatation did show
some difficulties. The current linear solve cannot be usethfge problems due to
the O(N3) operation count this will be changed in the aeroelastic tdation to an

iterative method. The initial guess used in the model prolded not allow for fast

convergence of the system of equations (2.24). Indeed bylhasging the size of
the under-relaxation parameter it was possible to conwergeth Hopf points from

exactly the same starting solution. A reliable method fécuwating the initial guess
for the aeroelastic solution will need to be found. In gehien@as not possible to
removeA,, in (2.24) and make the system loosely coupled. In the aestielease

an approximation of this term will be difficult and being abddoosely couple the
system highly desirable. An inner iteration will have to benfiulated to take this
into account.



Chapter 3

Model Reduction

3.1 Background

The use of coordinate transformatiéiisto simplify nonlinear equations in the
vicinity of a bifurcation is a well known technique for systise of low order (eg
order 10 inl®8l). The original variables are transformed so that a smallbemof
critical variables are isolated which can describe qualély the behaviour of the
full system for changes in the parameter near the bifunsgimnt. This is known
as topological equivalence. In this way the structure ofttip@logical equivalence
dynamical system can be studied near the bifurcation pbieagly. The focus of
this chapter is the method of projection by Kuznet&Bvfor the computation of
centre manifolds which is based on Hassaral.[®! The transformation avoids
having to compute the eigenvalues of the Jacobian matrixsarmén cope with the
very large systems of ordinary differential equations (QBREsing from a discrete
aeroelastic system. Kuznet$V derived explicit computational formulas for the
coefficients of the normal forms for all codim 1 and 2 equilibn bifurcations
by using the reduction/normalisation technique of Coulled Spiegel!®! This
technique combines the calculation of the centre-manifatld the reduction to the
normal form into one step.

3.2 Centre Manifold Theorems

The invariant manifold of a nonlinear system of ordinaryeténtial equations near
an equilibrium point or a limit cycle is determined by theusture of its vector

36
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field. Two methods can be used to simplify the original nagdinsystem; the cen-
tre manifold”3! or the normal form theoBPY. The normal form theory is a method
for transforming the original nonlinear differential edqjoa to a simpler standard
form by an appropriate change of coordinates so that the featares of the man-
ifold become clearer. Transformations have been used id fhechanics since
Blasius(!02]

The Hartman-Grobman theoréf¥! states that a system of ODEs in the form
w=f(w), weR" (3.1)

with an equilibrium pointf (0) = 0 is dynamically equivalent near the origin to the
linear system
w = fy(0)w (3.2)

if the matrix f,(0) has no eigenvalues with zero real part.

The reduction theorelf?4 is at the heart of the study of topological equiva-
lence of system of ODEs. According to this theorem there isppingY such that
the non-linear system of differential equations

« - B
y = €y+h(xy)
is topological equivalent to the partial linearised system
y = ¢y

if matrix & has no eigenvalues with zero real part and all the eigensaiu# lie on
the imaginary axis. The original proof of this theorem waggiby Reizin&%! for
the case ok in a one-dimensional vector space. More general cases waregby
Shoshitaishvil%4, and Paimédtl. The important thing to notice is that the equa-
tions forx andy are decoupled in (3.4). The first equation is the restriotiofB.3)
to its centre manifoldVC.lI”3] The dynamics of the topological equivalent system
(3.4) are easier to understand since the equatignsrinear and has exponentially
decaying solutions if all the eigenvalues@fhave negative real part.

For a Hopf bifurcation with4; » = +iw) then

0 —w
B = ,
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x € R?, andy € R"2. Using the complex from by use of the transformatioa
X1 + iX2 then the system (3.3) looks like

{'z = iwz+G(zzy) 35)

y = ¥y+H(zzy)

whereG andH are smooth complex-valued functionszf € C.

3.3 Change of Coordinates

Following the notation used in Kuznet$®& suppose equation (3.1) has an equi-
librium atw = 0 and remove the linear parts frofn

w=Aw-+F(w), weR" (3.6)

whereF (w) has at least quadratic terms. Consider the right hand sid8.6f (
written in a Taylor expansion abowt= 0

WZAW—|—%B(W,W)—I—éC(W,W,W)—}—ﬁHWHA'. (3.7)
where
A = fu(0) (3.8)
N 9%F (&) :
Bi(x,y) = XiYk, 1=21,2,...,n (3.9
| j,g_l 9¢&;ék £=0 :
N 93F (&) .
Ci(x,y,z) = ' Xi¥z, 1=212...,n (3.10)
' (e 0818k gy

and F(v) can be written as

1 1
F(w) = SB(w,w) + cC(w, w,w) + O||lwl*. (3.11)

To be able to apply the reduction theorem to system (3.6) #@ueixrA must
be partitioned into eigenvalues of zero real parts and thraeder. It is theoret-
ically possible to use Jordan blocks to find a linear mappurghghat the system
is diagonalisabl&®! However, this requires the computation of all the eigenvec-
tors of the Jacobian matrix. It is possible to store this nends vectors up to the
order of 1¢ but after this storage requirements become too expensikie. c@st
of calculating all the eigenvalues and eigenvectors grikesi® and hence rapidly
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becomes computationally expensive. Since matfixloes not have to in Jordan
form SeyddP8] suggests a different changes of coordinates. At the Hopfdaf
tion where the Jacobian matrixhas 2 critical eigenvalue’, » = fiw. The corre-
sponding critical eigen-space Afis 2-dimensional and non-critical eigen-space of
A hasm= n— 2 dimensions. Then equation (3.6) can be transformed by sn&fan

) [ Su S ]
W = w
S1 2
whereS(n x n), $11(2 x 2), S1(mx 2), S;2(2 x m), S(mx m) are matrices. The
first 2 rows ofSare left eigenvectors @k corresponding to the critical eigenvalues

A12. To defineS; andSy, let

the following

R=S1=

Ri1 Ro
R21 Imxm
wherelnxmis them x midentity matrix and the first 2 columns & are the right

eigenvectors oA corresponding to the right critical eigenvectors. Hereldifieand
right eigenvectors are normalised such that their dot poduunity. Then the

matricesS andR satisfy
S1 = —RaSi
S = Imxm—Re1Si2
R, = —SiS»

and these relations define bdfandR completely in terms of the critical left and
right eigenvectors.
Applying a Taylor expansion of the right hand of the transfed system
gives
W = AW+ O||W?|| (3.12)

Following the partitioning oSandR, A is written as

Ca AT
A | Ao A
| A1 A |
andA as -
~ Air A
Ao | A A
| Ao1 A |
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Then in particular the blocRy, = A211 + Aoo(l — Rp1S;2) is full. This means that
the matrix@ in equation (3.3) is also full and non trivial to calculate fosystem
of large dimension.

Both of the above change of coordinates suffer from the fattttte function
H is not the same as the originaldue to the change in variable. The derivatives
of the new function can in theory be computed using the chal@. r However,
computationally this will only be possible for systems ofadhaimension.

3.4 Method of Projection

The method of projection by Kuznetdd{ for the computation of centre manifolds
which is based on Hassaedl al. [%*! avoids the problems discussed above as it does
not transform system (3.6) into its eigenbases. Like thenotebf Seydel above
it uses the left and right eigenvectors of the critical eigdmes but its “projects”
the system onto these eigenvectors instead of using therntramsformation. The
method is based on the Fredholm alternative thedt&th.

Below shows how the method of projection can be used to caéctha cen-
tre manifold for a Hopf bifurcation. This method has beenligpopto the Hopf
and other types of bifurcations and the resulting normain&ican be found in
Kuznetsov8”-99 Suppose the matrik in system (3.6) has a pair of complex eigen-
values on the imaginary axi¥ » = iw, w > 0. Letp be the right eigenvector
corresponding td,. Thenp is the right eigenvector correspondingipand

Ap=iwp, Ap=—iwp.
The left eigenvectoq also has the same property
ATlg=—iwgq, ATq=iwq.

These can be normalised such tt@ip) = 1 where(q,p) = 3 ; g pi- The eigenspace
Scorresponding tetiw is two dimensional and is spanned {3¥, pi }, i.e. the real
and imaginary parts gf. The eigenspacg corresponds to all the other eigenvalues
of Ais n— 2 dimensional. They € T if and only if (q,y) = O follows from the
Fredholm alternative theoreh{]

It is possible to decompose amye R" as

W=2p+2p+Yy (3.13)



CHAPTER 3. MODEL REDUCTION 41

whereze C, zp+2zp € S andy € T. This decompose is the critical idea of the
method asw has been partitioned into a part which is critical eigensg&and a
part which is in the rest. Taking the inner product af with equation (3.13) gives

(a,w) = z(q,p) +z(a,p) +(a,y) = z+Zd,p) (3.14)

sinceq andp were normalised such thé&g, p) = 1 andy € T implies(q,y) = 0.
It can be shown thafq,p) = 0 using the definitions of the left and right
eigenvectors.

W
sincew # —iw asw > 0 then(qg,p) = 0. Using this with equation (3.14) gives
(q,w) =z (3.15)

Combining equations (3.15) and (3.13) yields the systefmef2) coordinates

{z = (W)
y = w—{(q,w)p—(q,w)p.
Using these coordinates the system (3.6) has the form

{'z = iwz+{(q,F(zp+2p+VY))

y = Ay+F(+2p+y)—(q,F(Z+2p+Yy))p—(d,F(zp+20+Y))p.
(3.16)

This system ign+2) dimensional however singec R" andq is complex there are
two real constraints oy as the real and imaginary part @f,y) vanish and hence
is closed. The system (3.16) is now in the form of (3.3) andchehe reduction
theorem can be applied.

The system (3.16) is Taylor expandedznz andy to give the following
approximation

{2 = iwz+ 3Gp0Z% + Gz + 3Go2Z2 + $G12°Z+ (G1o,Y) 2+ (Gor,Y) Z+

y = Ay+%H2022+H1122_—|—H0222—|—...
(3.17)

whereGyg, G11, Go2, G21 € C; Goy, G1o, Hij € C". These can be calculated from
the following
dj+k

. i > .
Gjk = 02,ﬁik<qF(zp+z_p>>Z:0, j+k=2, (3.18)
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2

Groj = %dsz(zpumy» RN EECISCICED
_ 92 .
Goyj = aylaz<q,F<zp+zp+y)> oy’ i=12...,n (3.20)
otk 7 _
Hik= 5 35" (@ + D) Z:o_cs,-kp—cskjp j+k=2, (3.21)

Using (3.11) and the definitions of the left and right eigenwes the following
formulas for equations (3.18) and (3.21) can be computed:

GZO: <q7B(pap)> Gllz (q,B(p,5)> GO?_: <an(575)> GZZL: <q7C(pap75>>
(3.22)

and
Hxo = B(p,p)—(d,B(p,p))p—(q,B(p,p))p

Hll - B(p7 5) - <q7 B(p7 F_)>>p - <a7 B(pa 5))5
Sincey € R", Hpo = Hyo. The inner products in system (3.17) can be computed:

(3.23)

(G1o,y) = (a,B(p,Y));  (Gow,y) = (d,B(p,Y))- (3.24)

The method of project has lead to system (3.17) which costhimfirst second and
third Jacobians of the original functiohand inner products of the left and right
eigenvalues. As long as analytic expressions or approlmsto the second and
third Jacobians are available the calculation of the Tagtmfficients of (3.17) is
not intractable. All that remains is to apply the centre rfaditheorem to system
(3.17) to approximatg so the restricted system has dimension 2.

The centre manifold®! can be represented by

1 _
y=Y(z2) = Ek2022+k11zz+ ko2Z 4 0|2 (3.25)

with the constraintg, kij) = 0. The vectork;j € C" can be found from the linear
equations
(2iwl —A)kao = Hazo
—Ak11 = Hn (3.26)
(—2iwl —A)ko2 = Hop2
These equations are invertible since 0, arftilw are not eigenvalues & Then the
restricted equation can be written as

zZ = i(JL)Z—f—%(32022—1—(31122_4—%Gozz2

+ 3(Ga1—2(q,B(p, A *H11)) + (4, B(P, (2iwl — A)MH20)))ZZ+ ...
(3.27)
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Using these equations and the identities

1 — 1_ 1 _ 1 _
Alp="p Alp="p (Ql-Alp="p Q2w -A"p=-"
p=:-p p=:-p (2wl -A"p=-p (2wl -A)"p=z"p
the restricted equation can be rewritten as
. 1 _ 1 1 _
Z=1WzZ+ §G2022+G1122—|— zGoz?—f— 5921222 (3.28)

where

o1 = <q7C(pvp35)>
— 2(q,B(p,A"B(p,p))) +(a,B(p. (2wl —A)'B(p,p)))
+ %<q,8(p,p)><q,8(p@>

1 _
(0, B(p,P))I* — 51(a,B(p.p)*

2
iw
It should be noted that equation (3.28) is not the normal fo¥rof the Hopf bifur-
cation

7=iwz+c12z+ 0||7)|*. (3.29)

To transform equation (3.28) into normal form requires agtitamhal transformation
to be applied to remove all the quadratic terms for exampeHassardet al. [°4]
Equation (3.28) will be the bases of the 2 degree of freedoietsaised in the rest
of this thesis.

3.5 Centre manifolds with one parameter dependent

systems

To be able to carry out parametric studies of equation (3dijuxcation parame-
ter must be added to the system and included in the calcutateirle manifolds.
Consider the parameterised equation

w = f(w,u) (3.30)

wherew € R"andu € R. Suppose that at = 0 the system has a Hopf bifurcation
atw = 0 with two eigenvalues on the imaginary axis. Then systeh6j3can be
rewritten as

{'Z = iwz+(q,F(+D+y,H)
y = AY+F(+2p+y,u)—(q,F(zp+2p+Yy,1))p—(a,F(Zp+20+Yy,1))p
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This system ign+ 2) dimensional but we have two constraintsyorThe system is
Taylor expanded iz, zandy to give the following approximation

2 = iwz+ 3Go02 + Gruzz+ 5Go2Z + 3G212°Z+ (Gao,Y) 2+ (Gor,Y)Z

+(q, fup) +2zu(a, Aup) + z11(q, Aup) + H(a, Any) . -

y = Ay+%H2022+H1122_+%H0222+...
(3.32)

whereGyq, G11, Goz, G21 € C; Go1, G, Hij € C", involve inner products of the
second and third Jacobian operators. The four extra tegnis 1), zu (g, Aup),
zu(q,Aup) andu(q,A,y) compared to equation (3.17) arise from an expansion of
the f in u and provide the reduced model with a parameterisatign iAll of the
scalars and vectors are functionsfobr inner products of], f and its derivatives,
and this makes the manipulation of the system feasible, faresystems of large
dimension. The equation (3.31) is again restricted ontac#mre manifold of the
Hopf bifurcation point to yield a 2 degree of freedom modedttts topological
equivalent to of equation (3.30).

3.6 Computational Cost of the Method of Projection

With these identities it is possible to calculate all thertemrequired for both the
transformed system (3.17) and the projected system (3T2#.direct calculation
of the bifurcation point provideg, p, wo, Lo andw so only the adjoint eigenvector
g must be calculated in addition. This can be done easily amckiguwith the
inverse power method since we know the value of the eigeeatd hence have an
excellent shift. This method is already employed in thealitgfurcation solver to
obtain initial estimates fgo and is cheap compared to the direct bifurcation solution
itself. The values 06,9, G11, andGq; are calculated using the identities above and
require just eight function evaluations and a few inner pas. The same applies
for Gy1. All these terms are fixed and only need to be calculated once.

To avoid having to computB(p,y) andB(p,y) at each iteration, sincgis
not fixed, two more complex linear systems are required seati@ns(3.26). This
is due to the reduction onto the centre manifold and aganahefixed at the start
and so only need to be calculated once. Once the above iniorma calculated
the use of the reduced model is independent of the numberlafowms in the
original system.
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FIGURE 3.1: Comparison of the time history computed with full and reducexl-
els ofy atx = 1 with u = 0.16508and an initial deflection o3® = 0.01

3.7 Model Problem

The model problem is the non-adiabatic tubular reactor waxial mixing used in
section 2.6. For reduced models the prediction is only ebggeto represent well
the original model in the neighbourhood of the bifurcatiannp. The size of this
neighbourhood is vitally important if the reduced modelasng to be of practical
use. The time history foy at x = 1 is shown in figures 3.1 and 3.2 for initial
deflections of M1 and 0001 respectively i® atx = 1. For the larger deflection the
reduced model over-predicts the size of the initial osidiabut quickly recovers
to obtain the correct amplitude and damping. This over-ptigsh causes a phase
shift in the solution with the reduced model response diygimder-predicting the
frequency.

Figure 3.3 shows the comparison of the amplitudes for tHeafud reduced
models with varyingu. The straight line shows perfect agreement. As the bifurca-
tion parameter is increased both the size of the amplitutieeadscillation increases
as well as the discrepancy between the two models. The tisterhifory atx =1
is shown in figures 3.4 and 3.5. Close to the bifurcation patantieere is very little
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FIGURE 3.2: Comparison of the time history computed with full and reducexdl-
els ofy atx = 1 with u = 0.16508and an initial deflection oc3® = 0.001

difference between the two models while far from the bifticyapoint the reduced

order model over-predicts the amplitude of the oscillatma under-predicts the
frequency. Similar behaviour has been obtained on the rahgeshes and can be
seen in figures 3.6 and 3.7 with a mesh 32 times finer.

3.8 Conclusions

We have shown that the use of the direct bifurcation methagoavide extra useful
information that can be incorporated into a reduced ordedehokuznetsov8’!
method of projection was chosen since it avoids the tramsdtion of the system
into its eigenbasis which is inconceivable for aeroelasygtems of realistic size.
The tubular reactor is probably a hard test for the reductiethod since the solu-
tion changes rapidly for very small increases in the biftioeceaparameter, (eg see
the steep gradient in figure 2.5 aroyme- 0.1605). The accuracy of the two-degree
of freedom model was independent of the size ahd enough terms have been re-
tained in the system equations (3.31) to allow for reas@approximation of the
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FIGURE 3.3: The correspondence of amplitudes for the full and reducedefso
The comparison of time histories at point A is shown in FigBr and in Figure

3.5 for point B
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FIGURE 3.7: Comparison of time histories far from the bifurcation pogmt+
0.00075 The full model was used to compute the solid line and the dsiekk line
for the reduced model

LCO amplitude. These observation make using the system atieqs (3.31) seem
a viable method for aeroelastic analysis.

The remaining issues for aeroelastic systems are two fatdtlythe coeffi-
cients in equation (3.22) were calculated analyticallytfas model problem. This
will not be possible in the aeroelastic case. Hence a way afrately calculating
the second and third Jacobians of a second order spatiahsolél be required to
build the two-degree of freedom model. Secondly the twoalirgy/stems need to
be solved in (3.26) will contain the Jacobian of the seconligospatial scheme so
a robust linear solver is required.

A possible approach to practical aeroelastic analysis talculate a steady
state using the coupled solver, then to calculate the kfiome (flutter) point using
a direct solve which in turn yields the information requifedthe model reduction.
The reduced system can then be used to calculate the damgdungs\below the
flutter point, and the LCO amplitudes above it, which can thenised to compare
with flight test data.



Chapter 4

Two Degree of Freedom Aeroelastic
System

The augmented system was solved for an aeroelastic systesisting of an aero-
foil moving in pitch and plunge by Morton and Beféfl. The linear system was
solved using a direct method and this motivated the use oparoaimate Jaco-
bian matrix to reduce the cost of this calculation. Robustieblems were en-
countered when applying the method, particularly at traitsach numbers. A
complex variable formulation was introduced™§! which resolved some of these
problems. An approach considered to reduce the difficuttfespplying a direct
solver to large linear systems was to use domain decompiosdireduce the size
of the system at the expense of an outer iteration over theaohenThis was tested
on a model problem in referend&s108]

The main problem with applying the solution of the augmerggstem in
the referenced work® 97:108l¢can pe traced to using a direct solver for the linear
system, both in terms of the approximations to the Newtamdtiken to reduce the
cost of solving these systems, and in application to largdlpms. The aim of
the current chapter is to circumvent this problem by appjyparse matrix solvers.
The chapter continues with the CFD and CSD formulation follb'wg the formu-
lation of the augmented system. The two main challengesnipiamenting the
augmented solver are then considered, namely the gemeddttbe Jacobian ma-
trix and the solution of the linear system. Based on resuitfhiese two topics, an
iteration scheme is proposed for the solution of the augetesystem and results
are then presented to illustrate the performance of thesehe

50



CHAPTER 4. TWO DEGREE OF FREEDOM AEROELASTIC SYSTEM 51

4.1 Aerodynamic and Structural Simulations

A strong conservation law form of the two-dimensional, tidependent Euler equa-
tions for a perfect gas with conservative variabigs= (p, pu, pv, pE)T and time-
variant curvilinear coordinates, n,t) can be written in nondimensional form as

(Stegelt09), _ .
OWi N oF' N 0G'
ot 0§  on
wherews =Wt /J. Here,J = &ny — éynx is the determinant of the transformation.

0 (4.1)

The flux vectors' andG! are,

pyU
puU + &p
pvU +¢yp
(PE+pU —é&p

(4.2)

pVv
Gi— 1 puVv + nxp
J PW +nyp
(PE+Pp)V —nip

where the contravariant velocities along thandn coordinates are defined as,

4.3)

U = &x(u—xg) +&y(V—Yg)

(4.4)
V = nx(U—Xg) + Ny(V—Yg)-

In the abovep, u, v, p andE denote the density, the two Cartesian components of
the velocity, the pressure and the specific total energyesely. Xy andyg are
the local grid speeds in Cartesian coordinates.

The flow solution in the current work is obtained using theec®MB (par-
allel multi-block). A summary of the applications examineging this code can be
found in referenc€®l. A fully implicit steady solution of the Euler equations is-0
tained by advancing the solution forward in time by solvihg tiscrete nonlinear

system of equations

Wtf+ 1

At
The term on the right-hand side, called the residual, is theretisation of the con-

—wt
L= Re(wttl). (4.5)

vective terms, given here by Osher'’s approximate Riemarvest®, MUSCL in-
terpolation1 and Van Albada’s limiter. The sign of the definition of theidesl
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is opposite to convention in CFD but this is to provide a setrdir@ary differen-

tial equations which follows the convention of dynamicasteyns theory, as will
be discussed in the next section. Equation (4.5) is a nanlisggstem of algebraic
equations. These are solved by an implicit meti8 the main features of which
are an approximate linearisation to reduce the size andittmmchumber of the

linear system, and the use of a preconditioned Krylov sutespaethod to calcu-
late the updates. The steady state solver is applied toadysfaoblems within a
pseudo-time stepping iteratidi2]

The aerofoil is allowed to move in pitanand plungén. Letws= [h, h,a, al’
be the vector of structural unknowns with dot indicating penge or pitch rate.
Then the nondimensional equations of moti@meglecting structural damping and
structural non-linearities, are

“— LM Kws =M1, (4.6)

wherefy = (0,2C; / usTT,0,4Cm/ UsTr) T is the vector of integrated fluid forces with
lift coefficientC, and moment coefficier@,, about the elastic axis. The matridds
andK are the mass matrix

1 0 0 O
01 0%
M = (4.7)
0 010
2
|0 % 0 % |
and the stiffness matrix )
0 -1 0 O
“5 9 0 0
Uz , (4.8)
0O 0 0 -1
0 0 % o

respectively. Here, = \/Wn is the radius of gyration defined in terms of the
pitch moment of inertidy and the aerofoil mass per unit spamx, is the offset
between the centre of mass and the elastic gxis; m/mp.b? is the aerofoil to
fluid mass ratio defined in terms of the fluid free-stream dgnsi and the semi-
chordb, wr = wh/wy is the ratio of the natural frequencies of plunging to pitchi
U= U/ wyb is the reduced velocity. These equations are solved by atages
Runge-Kutta method.
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The aerodynamic grid positions and speeds depengsosince no aerofoil
deformation is present the initial grid can be rotated aaddiated according to

[x] [ cosa  sina ] [xo—xea]
- +
y —sina cosat | | Y°—Vea

where the superscript 0 indicates the initial position @f(thy) point and the sub-

Xea

4.9
Yea+h (*9)

script ea indicates the location of the elastic axis. The grid speedsthen be
calculated from

[Xg ] :[ o —yeat) | (4.10)

Yo —a(%,j —Xea) +h
For coupled CFD-CSD calculations the aerodynamic and staictalutions

must be sequenced. For steady solutions, taking one stéye @@FkD solver fol-
lowed by one step of the structural solver will result in therect equilibrium.
However, for time accurate calculations more care must bentéo avoid intro-
ducing additional errors. The exact formulation used tacatis is discussed in
referencd!13],

4.2 Formulation of Augmented System

Consider the semi-discrete form of the coupled CFD-CSD system

dw

o R(w, u) (4.11)
where

w = [wi,wg]" (4.12)

is a vector containing the fluid unknownsg and the structural unknowng; and
R=[Rf,Ry (4.13)

is a vector containing the fluid residudk from equation (4.5) and the structural
residualRs = M~1(f; — Kws). The residual in equation (4.11) also depends on a
parametemt which is independent ofv. In the case of the pitch-plunge aerofoil
there are a number of possible choicesiicaandU was chosen.

The semi-discrete equation (4.11) then can be augmenteésasilied in
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section 2.5.2 with

R
Apr + wp;
Ap; — wpy (4.14)

sTpr

| sTpi—1
andwp = |w, pr,pi,u,w]T. Newton’s method can be used to solve this type of
problem. A sequence of approximationy to a solution is generated by solving
the linear system
—Awp = —R
dWA A A

—wh. The Jacobian matrix on the left-hand side of equation

(4.15)

— il
whereAwp = W,

(4.15) is given by equation (2.25).
There are three key issues for the application of equatiatbj4 First, as
was shown with the model problem in chapter 2, a good initisdsg is required
or the iterations converge slowly or even diverge. Secqrttlly Jacobian matrix
JRa/0wa is required. Thirdly, the large sparse linear system giverduation
(4.15) must be solved. These points will be considered ifidh@ving sections.
One simplification arises if we are dealing with a symmetralgbem, eg a
symmetrical aerofoil at zero inciden&8!. In this caseR ;7 = 0 and hence can be
calculated from equation (4.11) independently of the olthef conditions in equa-
tion (2.23). Then, a smaller system can be solved for thiscehaf the bifurcation
parameter i i
Apr + wp;
Ap; — wpr

(4.16)
s"pr

s'pi—1

with wa = [pr, pi, 4, @]". The Jacobian matrix in Newton’s method then becomes

ORs _

aWA

A 1w Aypr
—lw A Api
s 0 O
0 s 0

Pi
—Pr
0
0

(4.17)

For the rest of this chapter we will concentrate on solvirgggpmmetric problem.
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4.3 Calculation of the Jacobian Matrix

The difficult terms to form in the Jacobian matrix of the augted system (4.17)
areA andA;,. The calculation ofA is most conveniently done by partitioning the

matrix as 5 5
Rt Rt
W, Iwe Ars  Ag
A= | oW ows | . (4.18)
IRs  ORs A A
ows  Ows s f SS

The blockAss describes the influence of the fluid unknowns on the fluid tesid
and has by far the largest number of non-zeros for the pilchge aerofoil prob-
lem. The fluid residual is calculated using Osher’s schendelam Jacobian matrix
is calculated analytically in two stages. The residual fo oell in the grid is built
up from fluxes. Following the usual approach for Riemann sslve

fe = fe(wi,wy)

wherew; = W (Wj_1 j,W; j,Wit1,j) andwy = W (Wj j,Wiy1j,Wit2j). The left and
right states are computed from the cell values using MUSGérjpalation. Assum-
ing a uniform mesh spacing the extrapolation to the left agiak Istates are

o(ri,j)

Wi = Wi j 4 = (1= Xx)A-wij+ (14 x)Aywij] (4.19)

Wr = Wijy1j—

(P(ri;:u) (1= X)A Wit j+ (14 X)A-Wiga ] (4.20)

whereA wij =Wip1j—Wij, A_Wj=Wwj—Wi_1j, @(ri;j)isthe limiter and
ri,j = A_w; j/Acwij. In the current work the alternative form of the van Albada
limiter is used namely

2r
Using equation (4.21) angd = O gives the following left and right states
1 (A_wij)(Arwij)+&
W = Wi j+ - ( i) (B Wi j) [A_WLJ' —I—A_,_Wi?j} ) (4.22)

2(D-w ()% + (Apwij)2+2¢

1 (Awiygj)(AiWig1j) +€
Wy =Wiji1i— = ; ’ A Wi i+Awiiqi|. (4.23
r I+1’J 2(A—Wi+17j)2+(A+Wi+1,j)2+28[ 1+ (4.29)

whereeg is a small number to avoid division by zero. For the cell ifgtee there are

four contributions to the Jacobian matrix arising from

dfe dfe 0fe dfe
OWi_1j  OWij OWit1j OWijoj
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The calculation of the terms

ofe Ofe
0_w| and v,

is non-trivial but has been coded, tested and used in the CRBrs#l. These are
exploited to calculate the exact Jacobian terms for therskorder spatial discreti-
sation by using the chain rule

ofe  0ofe dw
OWi_1j OW OWj_1j

Ofe Ofe Ow, 0fe oW,
OWi | - OW| OWj  OWr OW; |
ofe  dfe dw, ofe oOwy
OWit1] OW OWiy1j OW OWiyq |
ofe  dfe ow
OWi 2 0w, OWi 2

Some care must be taken at boundaries where halo cells atéousienplify imple-
mentation. The halo values are functions of the internalegip; = Wy (W1, Wo)
andwyy = Wpp(W1, W) The value of the halo cells is determined by the boundary
condition. For example a simple outflow boundary sets theshahlues to free-
stream so making/,; andwy, independent ofv; andw,. Applying the chain rule,

ofy,  dfp ow  ofy dw,  Idfy dw dwp  Ofy Owr dwpy  Ofp Owy dwyp
oWy 0w, 0wy OW; OW1 OW, OWpg OW1  OW, OWpy OW1  OW| OWp OWq

and

dfb o dfb 0W| 5fb (3Wr (3fb (3W| del (3fb (?W| dez
(3W2 N (3W| aWZ 5Wr 5W2 5W| del (3W2 5W| 0Wb2 (3W2 '

The dependence of the halo values on the interior values teaimilar extra terms
from the adjacent interfaces to the boundary also.

The Jacobians of the second-order spatial scheme werel tegtiorming
matrix vector products against random vectors and comgavith the results from
a matrix free product. In two dimensions there are nine reme-Ax4 blocks for
every cell in the grid. The Jacobian calculated in this wanefsrred to as second
order throughout this chapter.

An approximate Jacobian matrix, referred to as modified midelso used
in the iteration scheme defined below, and has been usedwitess to accelerate
CFD only calculation&8]. The approximation is to equate the terms arising from a
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flux calculation associated with cells to the left and righao interface without the
dependence on the left and right states calculated from th8GL interpolation.

Ofe o Ofe _ Ofe Ofe _ ofe  Ofe _0
OWi_1j ' OWi | ow,’ OWii1j ow,’ OWi |

With this approximation the number of non-zero contribog@rising from each
flux calculation is reduced from four blocks to two. This stieeis similar to cal-
culating the exact Jacobian matrix for a first-order spatistretisation, with the
modification that the MUSCL interpolated values at the istegfare used in the
evaluation rather than the cell values that would be used first-order spatial
scheme. In fact these approximations are exact for a fid#ra@patial discretisa-
tion wherew; = wj_1 j andw, = w; j.

The dependence of the fluid residual on the structural unksasspartially
hidden by the notation used. The fluid residual depends Hgtamnthe fluid cell
values but also on the location of the grid points themsel¥é fluid and struc-
tural unknowns are independent variables and hence tolatddhe termA;s the
fluid unknowns are kept fixed. The influence of the structurdnowns is felt
through the moving grid. For example, for an aerofoil movimgitch and plunge
the grid is translated and rotated according to the currahieg of the structural
solution. In addition the residual also depends on the mpsbkds. The easiest
way of computingAss is, keepingw; fixed, to increment the structural unknowns
inturn (iea,a,h, h), to update the grid locations and speeds, re-evaluatettiake fl
residual and use a finite difference to calculate the Jandbians one column at a
time. This requiress fluid residual evaluations wherg is the number of structural
unknowns, and is relatively cheapnf is small, as is the case for the pitch-plunge
aerofoil wherens = 4.

The termAgt essentially involves calculating the dependence of imtiegr
fluid forces on the fluid unknowns. For example, for the pipdtrge aerofoil the
fluid variables contribute to the structural equations tigto the lift and moment
coefficients. In turn, these coefficients are calculatedgiailinear combination of
the values of pressure in the two cells adjacent to the aiésofidace. It is therefore
straight-forward to calculate the exact terms in the Jasomatrix.

Finally, the exact Jacobian matrix for the dependence o$thestural equa-
tions on the structural unknowns is easy to calculate frooaggn (4.6).

For the two-degree of freedom aerofoil the bifurcation paeter U in this
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case) only appears in the structural equations and in tewo$ving the structural
unknowns. Therefore, for this case, we have

Au:

0O O

0 ORs (4.24)
ouows

Due to the simple algebraic expression &Rs/dws it is straightforward to calcu-

late the required term analytically.

A simplification is used to reduce storage requirementshiieravaluation of
the augmented residual, which requires the proddptsandAp;. This can be done
using a matrix free formulation as
R(w+ hx) — R(w —hx)

AX ~
2h

(4.25)

wherex denotes the real or imaginary part of the critical eigereadadh is the
increment applied. Computing this expression is not costliy eequires only two
residual evaluations. This gives a very accurate apprdxméo the required prod-
uct without having to evaluate and stoke The matrixA is required for the left
hand side coefficient matrix but the modified order approxiomais used for this
purpose which reduces the storage. Hence, using the matexevaluation of
the augmented residual reduces the memory requirementséacheme overall
and simplifies the code considerably. The use of automdfierentiation114 11°]
tools, with some effort put into recoding the residual cktians, would allow the
required terms for the right-hand side to be evaluated Bxact

4.4 Solution of the Linear System

The calculation of the Newton updates requires the solutibthe large sparse
linear system in equation (4.15). Experience with solvingd@fly problem&16]
shows that the system can potentially be solved efficientigdylov subspace type
iterative solverd1’l. The majority of the non-zero terms in the matrix are assedia
with the eigenvector real and imaginary parts. Hence,ahékperiments for the
linear solver were carried out for the system with coeffitraatrix

A lw
—lw A

C= (4.26)
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where the matriA is evaluated at an equilibrium solution for the NACA0012 aero
foil at a freestream Mach number of 0.5 and zero incidence. réduced velocity
was chosen to be the bifurcation value anthe imaginary component of the crit-
ical eigenvector. The calculations shown here were dondemiedium grid, as
described below, and the matrix is of modified accuracy sni#iserwise stated.

For the formulation of the Newton iterations the matrix isggnted in a block
form, which is convenient for calculating, coding and ddsng the various con-
tributions to the iteration. These blocks are not used inlittear solution which
operates on non-zeros in the matrix regardless of theirorigowever, within the
Jacobian matrixA there is also a natural block structure since the discteiisaf
the Euler equations is expressed cell by cell, with four eoved variables in each
cell. This means thaf consists of 4x 4 blocks. For the discussion of the pre-
conditioning of the iterative solver this latter block stture is either exploited (i.e.
operations in the factorisation are done on theblocks) or it is ignored, in which
case operations are done directly on the elements of théxmakre former case is
referred to as block and the latter as point wise.

The key issue for iterative linear solvers is usually thecpralitioner. The
incomplete LU factorisation famill*1”] can be very effective at approximating the
inverse of the coefficient matrix with a small number of terrer CFD calcula-
tions, block ILU factorisations with no fill in have provedryesuccessfulf®l. Here
no fill in means that the factorisation has the same sparatteqm as the coefficient
matrix.

Due to the structure of the coefficient matrix and the prewisuccess in
calculating effective preconditioners for the matAxinitial attempts to factorise
the matrixC focused on the two block factorisation

A lw
—lw A

| 0
—wA 1 |

A lw

0 Ara?all (4.27)

However, manipulating the teri+ w?A~1 efficiently is not straightforward (in
particular the inverse of this term is required) and so tledfets were abandoned.
The BILU factorisation of the matri is calculated directly as opposed to being
constructed in terms of a factorisation/Af

The sparse matrix package Az{&t! was used to carry out experiments for
the solution of this system. This package has three mairesobwvailable, namely
GMRES, CGS and TFQMR, although the differences in performaocthé cur-
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Consecutive ordering

Block re-ordering

RCM re-ordering

FIGURE 4.1: Sparsity patterns for various orderings of the augmentddxna
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rent problem were found to be small. The last solver was fdondork best for
the current problems and so is used throughout this chaptariety of precondi-
tioners are also available including pointwise ILU (i.e.rkiog on the elements)
and block ILU (working on the matrix in its block structureatin). Various levels
of fill in can be generated in the factorisation. The poinenlisU preconditioner
allows reordering to minimise the bandwidth by the reversthitiMcGee (RCM)
algorithm. This is not available for the BILU factorisatioiwo different order-
ings have also been used for the matrix when generated. Hhdidis all of the
unknowns associated with the real and then the imaginatg pathe eigenvector,
and the second orders the real and imaginary parts of thevegsr components
associated with each cell in the grid consecutively, reféto as block reordering.
The sparsity patterns for these two orderings and the RCM eeioiglare shown in
figure 4.1 and verify which shows RCM reordering is effectivarimimising the
bandwidth of the matrix.

Various calculations were carried out with the test matix26). First, the
value ofw was set to zero to obtain a system which is close to that of th&aC&D
only problem. Secondly the problem was solved with the @brvalue forw and
with the various orderings for ILU and BILU factorisationsin&lly, one of these
cases was rerun with a second-order Jacobian matrik.fofhe results are sum-
marised in figure 4.2. First, the system withset to zero was most easily solved
and the performance of the iterative solver in this case isparable with previ-
ous experience for the CFD-CSD only system. The RCM reorderingmthe
largest difference between all of the options for the modifieder matrix but the
performance for all three orderings is similar. Also, th&land BILU factorisa-
tions give similar convergence behaviour. Finally, theoselorder system does not
converge when using preconditioning with no fill-in. For quamison a calculation
was run using level one fill-in for the factorisation. Thisués in about ten times
the number of terms being generated in the factorisatioghvimeans it is a better
preconditioner but is much more expensive to calculate aed Although the level
one preconditioned system required fewer iterative sepstiverge, the CPU time
required for the level one solution was around twenty tinoeg/ér and the memory
required is an order of magnitude higher.

The following conclusions were drawn for the solution of linear system:

e The preconditioning for the augmented system cannot ebsilyased on
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FIGURE 4.2: Convergence histories for TFQMR solution of augmented gyste
using several preconditioning options

factorisations ofA alone.

e The augmented linear systems are significantly more difftoidolve than
CFD-CSD only systems.

e The second-order Jacobians cannot be solved with zera fillacondition-
ers whereas the modified order Jacobians can.

¢ Using RCM reordering marginally improves the convergence. rat

4.5 [teration scheme for flutter boundaries

Many approximations to the coefficient matrix on the leftitiaside of equation
(4.15) are possible which still lead to a convergent iterascheme. Approxima-
tions will tend to reduce the rate of convergence (and ini@ddr will lead to the

loss of quadratic convergence). However, the potentialgydithe linear system
is made easier to solve can outweigh this effect. This has beploited for CFD

only solvers where, for example, the Jacobian matrix aasediwith a first-order
spatial scheme has been used to drive a higher order schecomvergendé®!,
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The advantages are first, the linear system is much bettelitemred and can be
solved in a smaller number of iterations, secondly the nurobaon-zero blocks
in the matrix is reduced by a factor of 8 and finally, since the stencil is reduced,
parallel communication is also reduced during the solubiche linear system. For
inviscid flows around aerofoils, a reduction in the time toneergence for a CFD
solver by a factor of four has been achiel&d.

The results from the tests on the linear solver suggest liedirtear system
associated with the second-order Jacobian matrix is toty lwawhditioned to be
solved efficiently by the methods used in this chapter. Thdifieal-order Jacobian
is therefore considered as a replacement. This means th#ethtion scheme is

given by _
ORA _ on
where - B ~
A o Apr pi
= —lw A Ap —
ORA _ ubi =Pro (4.29)
owp s' 0 0 0
0 s 0 0
Here B
— Ass A
_ | T s (4.30)
Asf Ass

whereA_ff is the modified-order fluid Jacobian as described above.

As was shown with the model problem in chapter 2 a good irgss is im-
portant to obtain fast convergence of system (2.24). Assgrthat the method will
be used to trace out a stability boundary for varying valdesgarameter, which in
the current work is the freestream Mach number. At low vabidglach number,
linear aerodynamic theory gives a good estimate of the ¢ation parameter and
frequency of the unstable solution (the critigghndw). Alternatively time march-
ing calculations can be used to find these values at one Mautiheu We adopt
the notation that thé" approximation to the critical values at tk8 Mach number
MX are denoted byt* andw'¥, and the converged values pf andcK. With this
notation, the chosen values foi! andw!! are assumed to be good estimates of
ul andw?. Also, the converged values at the previous Mach numberagireason-
able initial guess for the next one, ikt = X andw*+1 = W are satisfactory
starting values a1k+1.
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The initial guess for the eigenvector is crucial to obtagnaonvergence. If
a good estimate for an eigenvalue is known then the inveraempmethod can be
used to calculate the corresponding eigenvédf®r For a matrixA, the inverse
power method iteration is given by

(A—ial)pt =x5t (4.31)
and
t_ P (4.32)
X = . .
P 1Pt e

This iteration converges to the eigenveqiarhich corresponds to the eigenvalue in
the spectrum oA which is closest tows. Writing out the system in equation (4.31)
in real and imaginary parts leads to a coefficient matrix effttm given in equation
(4.26) and so the linear system to be solved is close to thheadugmented system
(4.17). Therefore, the eigenvector is calculated for thelifrexl order Jacobian
A to again allow easier solution of the linear system. Thersweower method
is used to generate the initial approximation to the ciitesgenvector at the first
Mach number. At subsequent Mach numbers the convergedveigien from the
previous one is used as the initial guess.

For the second-order Jacobian the inverse power methodecasedl to trace
the behaviour of an aeroelastic eigenvalue as the bifarcatlue is changed. In a
manner similar to linear methods, for each structural mtidestructural frequency
is used as a shift and the corresponding aeroelastic eigenvalculated. This can
then be used as a shift at the next parameter value and so emaniping of each
mode can then be traced.

Since the Jacobian matrix has been approximated it is sttegeto see if
additional approximations can be made, particularly sinbes already been seen
that the linear system (4.26) without the terms in the off-diagonal blocks is much
easier to solve. In addition, the part of one of these term®sponding to the fluid
unknowns was set to zero by Morton and Bétanto allow for a more efficient
direct solution of the linear system. Experiments wereiedrout to solve the aug-
mented system at a Mach number of 0.5 with various combinsitdd these terms
left out. The convergence rates omitting neither (fulb),co (lower), I w (upper)
and both (both) of these terms is shown in figure 4.3 with thel&in brackets
used on the figure. For the case when one of the terms is orttigateration fails
to converge. When both terms are omitted the iteration cgegeout to the wrong
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value ofu. Hence, it appears that, in general, making further appratons to the
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FIGURE 4.3: Comparison of convergence rate for retaining various coattmns
of l w terms in augmented Jacobian matrix

augmented Jacobian adversely effects the performances cdctheme. The itera-
tion scheme for calculating the bifurcation behaviour aa Mach numbeM¥ is
therefore the following:

e CalculateA at the converged fluid-structure steady state (all of whidlept
Assare independent gf due to symmetry).

e Set starting values for the iteration@&* = w1, ytk = p*1andptk =

pk—l_

« Solve equation (4.28) and update solutionidy ** = wx* + waw, where
Y is a relaxation parameter chosen to be between 0 and 1, irgpeatil conver-
gence.

4.6 Results for Symmetric Problem

The test problem considered to illustrate the performaii¢beoproposed scheme
is that of a NACA0012 aerofoil at zero incidence. The paransdte the structural
model are given in table 4.1. Two cases are considered fgmgaaerofoil mass.
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The first, called the light case, hag = 10 and the second, called the heavy case,
hasus = 100.

TABLE 4.1: Structural model parameters

Parameter Value
rq 0.539
Xa -0.2
R 0.343
Us 100.0 (heavy case)
Us 10.0 (light case)
Xea 0.4
Yea 0.0

The starting grid used for the calculations is of C topologg has 257 points
wrapped around the aerofoil and 65 points normal and is shioviigure 4.4. The
mesh is divided into three blocks for the solver and the blomlkndaries are indi-
cated on the figure, running normal and streamwise from Hikny edge. The far
field is located 15 chords away and the first spacing on thd@ksorface is one
hundredth of the chord. A medium grid was defined by takingyesecond point
in each direction, a coarse grid by taking every fourth pamd a very coarse grid
by taking every eighth point.

To check the mesh used a steady state calculation was madertoinci-
dence andM,, = 0.8 and the results on the fine and medium grids are shown in
figure 4.5 and agree closely, with only minor differenceshe shock resolution.
These results give confidence in the medium grid, which id @sethe bifurcation
calculations.

A check on the augmented solver can be made for the very cgarséy
computing using Matlab the complete eigenvalue spectruaffixed values of
u = U for the light case. The value bf obtained on this grid for a Mach number of
0.5isU = 1.6311. The eigenspectrum for valuedbbf 1.62, 1.6311 and 1.64 are
plotted on various scales in figure 4.6. The critical eig&rearosses the imaginary
axis at the value computed by the augmented solver, prayichmfirmation of the
accuracy of the solver.

The scheme proposed in the previous section was first useahpute the
stability boundary for the light case between Mach numbés®and 0.95. This
range includes transonic effects. The initial valuesJoand w were found from
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time marching calculations at the first Mach number. Therbétion calculation
was first made on the coarse grid for Mach number steps of (@3hen on the
medium grid for similar steps. These calculations indiddteat the behaviour in
the region 0.8 to 0.95 had not been resolved adequately arrdgblution here was
increased to steps of 0.01 on each grid. The resulting gfabdundaries on the
two grids are compared in figure 4.7 and are in good agreenidm.augmented
residual was reduced by three to four orders of magnitudi, wy to 20 steps per
Mach number used. This was sufficient to converge the bifimcgparameter to
five significant figures and so is very conservative. The cayerece behaviour in
terms of the original calculation on the medium grid is showfigure 4.8 where
the reduction in residual and the convergencetas shown as a function of the
augmented solver iteration. The residual of the linearesolvas reduced by two
orders at each augmented step. On average this means thagl80 steps are re-
quired per solution of the linear solve, partly due to theégda encountered at the
start of each solve. Hence, there is scope for improving erctinrent performance
by modifying the preconditioner and relaxing the convergeariteria. Neverthe-
less, the stability boundary using the initial 10 Mach nursheas traced out for the
medium mesh in 4500 CPU seconds on a 1 GHz processor. An additiwenty
Mach numbers were calculated in 7578 seconds.

The main cost of the direct solution is divided almost everdyween the
CFD-CSD calculation of the steady state and the augmentetiolT he cost of
calculating the flutter point is about equivalent to a CFD dyestate calculation
at each Mach number. To put this in perspective, each timehiray calculation
requires about 3300 seconds on a 1 GHz processor to computeyfdes of the
response. Four cycles indicates whether or not a solutidivésging for simple
problems like the current one but may be insufficient to seebtshaviour for a
complex system which involves a larger number of degreeseefioms. Care was
taken to ensure convergence of these solutions with respéoe time step. Two
sets of tests were carried out. First, the convergence dirtireehistories with re-
gard to the pseudo time stepping tolerance was examinedt avaisifound that
the residual had to be reduced by three orders of magnituelgchtreal time step,
leading to between 6-8 pseudo iterations. Secondly, a tiegeconvergence study
was carried out and again to achieve a converged predictitimeayrowth of the
response a time step of 0.125, corresponding to about 1Pmeasteps per pitch-
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ing cycle, was required. It is considered that there islisitope for speeding up
the time marching calculations using the current solvecesithe number of time
steps required is fixed by accuracy requirements and no¢ispdguirements such
as stability. For each Mach number at least three time magctalculations are
required to locate the flutter speed, and several more wailetquired to locate
the value to five significant figures. The behaviour of the tmerching responses
at conditions chosen to straddle the stability boundargamepared with the direct
boundary in figure 4.9 on the medium grid and are in close ageeé

The heavy case proved more challenging for the augmenteersdhis case
has stability up to larger values gfbut also has two regions of high gradients in the
transonic region of thg-Mach stability curve. The initial calculations on the csar
grid successfully traced the curve over the entire Macheargl then for refined
resolution in the transonic range, as for the light case. ¢é¥an the augmented
calculations on the medium grid diverged at the two valugdlat¢h number (0.83
and 0.89) with maximum change pn. The solution to this was to calculate the
three regions separately, starting from information atgdion the coarse grid. The
agreement between the calculations on the two grids is showgure 4.10 and
again is close. The comparison with selected time marchahguations is shown
in figure 4.11 and again shows consistency. The costs of thelagons are as for
the light case.

4.7 Conclusions

A new iteration scheme for the direct calculation of aerstanstability bound-
aries has been proposed. The scheme builds on the origimklofdlorton and
Beran by first using an iterative sparse linear solver to impan the cost of direct
methods, and secondly approximating the Jacobian mattixeiriteration scheme
without overly disrupting the convergence or robustnesh@scheme. To improve
robustness the inverse power method is used to obtain &ngtadlution for the
critical eigenvector.

The method has been tested on a symmetric pitch-plungecaguadblem.
The stability boundary at zero incidence and ten Mach nusx»ethe medium grid
was traced out by the direct scheme in less than one hour ontdzlp@cessor.
There is scope for reducing this cost by relaxing the coremg criteria and by
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improving the preconditioning. In any case, the methodaalyeonly requires a
time to calculate the stability boundary at each Mach numidech is similar to
a steady state CFD calculation. The whole boundary definel Btezh numbers
requires the time needed for about 3-4 time marching calouls. There appears
to be little scope for reducing the cost of the time marchialgwations further.

Some difficulties were encountered with the basic contionatrategy used
which did not allow different branches on the stability auto be traced auto-
matically for the heavy case. Using information from therseagrid the different
branches of the solution were traced separately. Some woekjuired on this prob-
lem. However, it would be a lengthy business to map out theecur all its detalil
using time marching.

The method has been developed with a view to generalisdtiost, building
the CFD-CSD equation into the iteration loop to compute nansagtric problems
is not likely to contribute greatly to the cost. The simpla@sproach is to iterate be-
tween the equilibrium calculation which provides a Jacolmatrix and the direct
solver which provides the bifurcation parameter. The cbshis, especially since
the previous equilibrium point can be used to restart thg@leslstatic solution and
the previous critical eigenvectors to restart the diretitgm, is likely to be low.
Secondly, incorporating a grid movement technique to aactar deforming ge-
ometries is a small modification which is described in thet mbapter. The extra
Jacobian terms arising from the dependence of the fluiduabmh the structural
solution through the mesh deformation can be calculateddpn@ination of ana-
lytical terms and finite differences, although it has notrbeecessary to exploit this
in the current chapter. Finally, the Krylov linear solvechaiques are practical for
three dimensional problems, and this extension will be ntepldn the next chapter.
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Chapter 5

Aeroelastic Stability Prediction for
wings

5.1 Introduction

This chapter extends the method to calculate flutter boigslfor wings. The addi-
tional issues to be considered are the treatment of a movidgugpund a deforming
geometry (as opposed to rigid motions for the aerofoil cashe use of a modal
structural model (instead of the pitch-plunge equatioms) the resulting require-
ment to pass information between non-matching grids, amtbtiger problem size,
and especially the impact of this on the solution of the lirmestem. The formu-
lation is considered in the following two sections and thesutts are presented for
the AGARD 445.6 wing test cas®’ to demonstrate the feasibility of the method
for three dimensional problems. The chapter finishes withritroduction to a new
linear solver which can solve equations (3.26) and its appbn to symmetric and
unsymmetric wings.

5.2 Aerodynamic and Structural Simulations

5.2.1 Aerodynamics

A strong conservation law form of the three-dimensionahetidependent Euler
equations for a perfect gas with conservative variaiiles= (p, pu, pv, pw, pE)T
and time-variant curvilinear coordinat¢s, n,,t) can be written in nondimen-

77
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sional form as (Pulliam and Stedjét]),

owi O0F 9G' oH
wherews =Wy /J. Here,J = &ny{z+ EyNzdx + E2Nxly — E2Nydx — EyNx{z — ExNzdy

is the determinant of the transformation. The flux vecir<' andH' are,

pyU
N puuU + éxp
F = 3 pvU + &,p ; (5.2)
pwuU +&2p
(PE+pU —¢&
pVv pW
1 puvV +nxp N PUW +¢xp
G'=35| pW+nyp H'=51  pwW+gp |- (5.3)
PWV +nzp PWW + (zp
(PE+p)V — 1t (PE+p)W — &

where the contravariant velocities along the) and{ coordinates are defined as,

U = &(U—Xg) + &y(V—Yg) + & (W—Z)
V = Nx(U—Xg) + Ny(V—Yg) + Nz(W— Zg) (5.4)
W = {x(U—Xg) + {y(V—Yg) + {z(W— 7).

In the abovep, u, v, w, p andE denote the density, the three Cartesian components
of the velocity, the pressure and the specific total energyaetively anckg, yg and
zg are the local grid speeds in Cartesian coordinates.

The variables here have been non-dimensionalised witlece$p the wing
root chordc for x, y andz, the freestream velocity., for u, vandw, the freestream
densityp., for p, Us, /c for t andp,,UZ2 for p.

5.2.2 Structural Dynamics, Inter-grid Transformation and Mesh

Movement

The wing deflection®xs are defined at a set of pointg by

M

OXg = ;aigq (5.5)



CHAPTER 5. AEROELASTIC STABILITY PREDICTION FOR WINGS 79

where@ are the mode shapes calculated from a full finite element hmfdéne
structure from the commercial FE package MSC/NASTRAN anpdre the gen-
eralised coordinates. By projecting the finite element agnatof motion of an
elastic structure onto the mode shapes and assuming thatdtle shapes have
been scaled to give dimensional generalised massesl, the modal equations of
motion i, dar )

g DI teai=pgfs (5.6)
are obtained wherg is the vector of aerodynamic forces at the structural gridgso
andD; is the coefficient of structural damping. Here a non-dimemaiisation con-
sistent with the flow solver has been used. The bifurcatioarpatery = pw/pw
in this case is a density ratio whepg is the density of the wing structure. This pa-
rameter was chosen so flutter speed index vs Mach numbergycaphbe plotted.

These equations are rewritten as a system in the form

%‘; =Rs (5.7)
wherews = (......, i, di,....) " andRs = (......, Qi, U@' fs— wPa; — Did;, ....)T. This
equation can be solved by a two stage Runge Kutta method, wddcires a knowl-
edge offt andf{!. To avoid introducing sequencing errors by approximathreg t
value offi!, the Runge-Kutta solution is iterated in pseudo time alori wie
CFD solver, with the latest pseudo iterate being used to givaluee forfit. At
convergence the fluid and structural solvers are propedyessced, at very little
extra computational cost beyond what is required for thedygramic solution.

The aerodynamic forces are calculated at face centres oaetfoelynamic
surface grid. The problem of communicating these forceseostructural grid is
complicated in the common situation that these grids nat dalnot match, but are
also not even defined on the same surface. This problem, andfthence it can
have on the aeroelastic response, was considered in 8étit&3lwhere a method
was developed, called the constant volume tetrahedron (@d@$formation. This
method uses a combination of projection of fluid points o $tructural grid,
transformation of the projected point and recovery of theajtplane component
to obtain a cheap but effective relation between deformatan the structural grid
and those on the fluid grid. Denoting the fluid grid locatiomsl @erodynamic
forces axg andfy, then

O0Xa = 7 (Xa, Xs, OXs)
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where.# denotes the relationship defined by C¥#2 In practice this equation is
linearised to give
6Xa — S(Xa, Xs) 6XS

and then by the principle of virtual works = ST f,. The matrixSis called the spline
matrix.

The grid speeds on the wing surface are also needed and tteeappaoxi-
mated directly from the linearised transformation as

5Xa — S(Xa, Xs) 5Xs
where the structural grid speeds are given by
OXs = 20aiqQ. (5.8)

The geometries of interest deform during the motion. Thiamsehat unlike
the rigid aerofoil problem, the aerodynamic mesh must berdefd rather than
rigidly translated and rotated. This is achieved usingdfiaite interpolation of
displacement$?4! (TFI) within the blocks containing the wing. More elaborate
treatments which move blocks to maintain grid orthogopadite possiblé”] but
are not necessary here because only small wing deflectierenaountered and the
blocks in the mesh can be extended well away from the wing. Wihg surface
deflections are interpolated to the volume grid pokajis as

OXijk = W) OXajk (5.9)

wherey? are values of a blending functidt?*! which varies between one at the
wing surface (here j=1) and zero at the block face opposite.shirface deflections
Xa ik are obtained from the transformation of the deflections ensthuctural grid
and so ultimately depend on the valuesopf The grid speeds can be obtained by
differentiating equation (5.9) to obtain

6Xijk = l1Uj05)'(a,ik. (5.10)

The surface velocitie®, i are obtained from the transformation of the velocities
on the structural grid in exactly the same way the deflectivese above and so
ultimately depend on the values of.
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5.3 Formulation of Augmented Solver

The augmented solver is set up in an analogous way to the itwendional case
shown in section 4.3. Here the structural unknowssand structural residud®g
are associated with the modal equations (5.6). The Jacamadmx A is partitioned
as in equation (4.18).

The block As¢+ describes the influence of the fluid unknowns on the fluid
residual and has by far the largest number of non zeros snttien a modal struc-
tural model is used and is calculated in an analogous wayettvtb-dimensional
case in section 4.3.

The dependence of the fluid residual on the structural unksoywanda; is
partially hidden by the notation used. The fluid residualete}s not only on the
fluid cell values but also on the location of the grid pointsritiselves and the cell
volumes. The fluid and structural unknowns are independatdiMes and hence to
calculate the termss the fluid unknowns are kept fixed. The influence of the struc-
tural unknowns is felt through the moving grid. Using the mlogtructural model,
the updated grid locations and speeds are calculated byngntive structural grid
according to the values of the generalised coordinates aluotities, transferring
these to the fluid surface grid using the transformation &ed &applying TFI to
transfer these boundary values to the volume grid. As wittvardimensional case
second order finite differences, the term#g can be calculated inmg evaluations
of the aerodynamic residual if there axgstructural unknowns.

The termAgs involves calculating the dependence of the generalised flui
forces on the fluid unknowns. The surface forces on the aeendic grid are cal-
culated and then transferred to the structural grid usiegttansformation. The
inner product is then formed using the forces on the stratfynid and the modal
coefficients. The Jacobian matrix for the forces on the siratgrid with respect
to the fluid unknown®fs/dws can be calculated analytically sinégis a linear
combination off;. Then the required terms fé s can be calculated through

_ 0Rs 0

T owr | g ots/ows

When calculating the termssit is important to remember that the generalised
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force will change with the structural unknowns since thefeszeg normals to the
wing will change as the wing moves. A second-order finiteedéhce calculation
is used to include this effect.

The bifurcation parametegr only appears in the structural equations. There-

fore,
0 0
Ay = 2R, (5.11)
0 ouows

Due to the simple algebraic expression &Rs/dws it is straightforward to calcu-
late the required term analytically.

5.4 Results for Symmetric Problem

54.1 TestCase

An important problem with the development of aeroelastiswusation tools is the
lack of experimental data available for assessment. Thergmpnts are intrinsi-
cally destructive and require careful model constructmmensure proper scaling,
and hence the expense is much higher than rigid model testonmfplete set of
measurements is available for the AGARD 445.6 wing and reswdve been in-
cluded in most papers on computational aeroelasticityngia wide range of data
to evaluate the current method. However, a disadvantagesofdst case is that it
does not feature significant non-linear aerodynamic effertce the wing is thin.
Despite this, it is the first test case commonly used to tes tharching codes and
is suitable for the current work because it is symmetric.vietes time marching
results are reviewed in referenéé&!

The AGARD 445.6 win§2% is made of mahogany and has &4fuarter
chord sweep, a root chord of 22.96 inches and a constant NAGB®4 symmetric
profile. A series of flutter tests, which were carried out al"VASA Langley tran-
sonic dynamics tunnel to determine stability charactiesstvas reported in 1963 .
Various wing models were tested (and broken). The case fatwhost published
results have appeared is the weakened wing (wing 3) in aiis Wimg had holes
drilled out which were filled with plastic to maintain the adynamic shape whilst
being structurally weaker. Published experimental datludes the dynamic con-
ditions at which the wing was viewed to be unstable for Macimbers in the range
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0.338t0 1.141. The structural characteristics of the wirganprovided in the form
of measured natural frequencies and mode shapes derivedafrinite element
model. Full details of the structural model used are giveGaura’s thesis22]
Four modes are retained with the first two bending modes bdx@guencies of 9.7
and 50.3Hz, and the two torsional modes of 36.9 and 90.0Hz.

A problem with the published results for the AGARD 445.6 wiaghat most
are of a demonstration nature in the sense that verificasidraidly ever shown.
There is a significant spread of the results obtained whemgusilutions of the
Euler equations. The results which cluster around the medsiata in the region
of the flutter dip tend to be on coarser grids, with finer CFD ggénerally giving
lower flutter speeds. The only published attempt at a systergad refinement
study was shown in referen€&>! In this commendable study the fine and medium
grid results were further apart than those on the medium aarse grids and hence
grid independence was not achieved, casting doubt on otl#isped results on
coarser grids. The main obstacle to a rigorous study is ofseothe cost of the
calculations. A second question mark against the publisksdits is that in the
majority of cases no structural damping was used. In therihti®n of the experi-
ment a value of 2% is suggest&d&® although it is not clear how certain this value
is.

5.4.2 Time Marching Solutions

An attempt was made to perform a detailed grid convergenclky stithin the limits
of the computers available. All calculations reported is gection were done with
the PMB code. To optimise the grid used, two requirement&whntified. First,
since the calculations are inviscid, and hence no wake neells preserved, an
O-grid was used which helps to maximise the number of gridtsamn the surface
of the wing. A genuine multiblock topology was used to allovg@od quality
mesh to be preserved in the tip leading and trailing edgensgs shown in figure
5.1. Secondly, the important quantities which must be welticted for the flutter
calculations are the generalised modal forces. The preskffierence between the
upper and lower surface therefore must be predicted aetyrahe flutter response
is dominated by the first bending mode which features somst tveiar the tip but
is essentially a plunging motion near the root. The signitigaessure difference,
and following from this the main contribution to the genesad force, comes from
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the region towards the wing tip. The grid points were thaefmncentrated in this
region. Most structured grids shown in the literature haasenof the C-H topology
and are reasonably uniform in the spanwise direction.

The finest grid in the current work has 1.43 million pointsg &7700 on the
wing surface. Medium and coarse grids were extracted fraswthich have 190
thousand and 27 thousand points respectively, with 4453148d points on the
wing surface. The number of volume points used in the refimesteidy of refer-
encell?%] where the fine, medium and coarse grids have 2.1 million t86dsand
and 274 thousand points respectively, is comparable toutrerat grids but signif-
icantly the number of surface points is less (9231, 5343 &tb 2espectively). It
is stressed however that the topology in the current studyldvoot be ideal for
RANS calculations which were the main focus'&fl. Comparison is also made
with the structured and unstructurétf! studies by Batina and co-workers. The
structured grid has 517 thousand points with 5289 on the winfpce. The un-
structured grid has 129 thousand tetrahedra and, althooghformation is given
about the number of points on the wing surface, the pictunesvs in the paper
suggest that the grid points are more strongly clusteredémting region than is
possible for structured grids.

A number of tests using the medium grid were made on the teshpar
rameters (time step and convergence level) at a Mach nunilBe9® a freestream
velocity of 308 m/s, a density of 0.0&)/m? and structural damping of 0.5%. First,
the responses when using 10 or 20 pseudo steps per real émeste identical,
indicating that 10 steps was more than adequate. Secorsiihg a reduced time
step of 0.01 and 0.02 also gave an identical response and bentarger time step
is adequate.

The influence of grid resolution is harder to test due to theutation cost on
the density of grids that are required. The three grid lewsdse used to locate the
flutter point for a range of Mach numbers. Two calculationsenin at different
values of freestream density for each Mach number and thetlymaf the response
calculated using the approact!d?! where the ratio of consecutive peaks was taken
to define an amplification factor. Linear interpolation of gamplification was then
used to estimate the value of density at which a neutrallylst@sponse would be
obtained. The medium grid calculations took about 5-6 houara 2.5 GHz PC to
calculate 5 periods of the flutter response.
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The comparison at Mach 0.96, which is close to the bottomeflttiter dip,
between the predicted flutter speeds on the three grid lextisother predictions
is shown in table 5.1. The results B85 show a downward (and accelerating)
trend in the flutter speed, with bigger differences betwéerfine and medium than
between the medium and coarse. The value ffbtnis lower still. The current
results suggest that the medium grid provides good spasalution, with the 3
grids showing behaviour consistent with spatial convergehe grid converged
value using no structural damping is much lower than expemimUsing a value
of structural damping of 2% shifts the flutter speed indexvalibe experimental
value.

The trends from these results suggest that the grid conveation without
structural damping is significantly below the experimengsult. Adding structural
damping brings the flutter speed back up into the range of tbasorements, as
shown in figure 5.2. The solution obtained using 0.5% stmattdamping is in
good agreement with the experimental values.

5.4.3 Augmented Solver Results

The augmented solver was applied on the coarse and medids dine medium

grid is the largest problem which can be tackled on the coerpuivhich were

available. This case requires 1.5 Gb of memory. CPU time casge between
the augmented and time marching calculation costs are &sguie@s multiples of the
CPU time required for a steady-state calculation with theesaade. The timings
are likely to be conservative when assessing the perforenaht¢he augmented
solver because additional gains are likely from writing @idated linear solver
(i.e. one which is not configured to handle general sizedirlincks).

Guided by the time marching results, a value of structuraedglag of 0.5%
was used. The comparison on the medium grid between the neglasme march-
ing and bifurcation results is shown for the dip region in fega.3. The bifurcation
boundary was computed first for eight Mach numbers betwdg&hdnd 0.67, with
a Mach number interval of 0.05, and subsequently for 12 Machbers in the dip
region, with an interval of 0.01. The frequency from the timarching calculations
was used with the inverse power method at the largest Maclbeutu initiate the
calculations. Good agreement between the predictionseditth codes is observed
as required.
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An assessment of the relative cost of the time marching dudciaition cal-
culations can be made from the times in table 5.2. Here theageeCPU time
of an unsteady calculation and the average bifurcationfoogtach Mach number
have been expressed in multiples of the cost of a steadycsthtiglation using the
respective codes. The steady state calculation in eachheaskeen converged 5
orders of magnitude. The augmented solver has been convergéleast 3 signif-
icant figures for the flutter speed, as indicated in figure Bl stopping criterion
is based on reducing the magnitude of the augmented resakfaded by equation
(4.13), by one order from the starting value. The time foruhsteady calculations
is based on 750 time steps resolving 5 cycles.

Similar conclusions to the previous aerofoil study shownhapter 4 can be
drawn. The time required to trace out the flutter boundarjiMach numbers is
about half the cost of a single time marching calculation. Staering the number of
time marching calculations required to trace out a fluttermatary, the calculation
cost can be reduced by 2 orders of magnitude by using thechifon method.

One concern was that the performance of the linear solvetdiadeterio-
rate for larger problems. On average for the aerofoil 3Gattens were required
to achieve a reduction of two orders in the residual. The ramob linear solver
iterations at each bifurcation iteration is shown in thetseglot in figure 5.5 along
with the average number of iterations required for the newiaerofoil calcula-
tions. The fact that the number of linear solver iteratiasaread about the average
two-dimensional cost indicates that the performance oKitydov solver has been
maintained for the larger three-dimensional problems.

5.5 Formulation of a Dedicated Linear Solver

The linear solver in the Aztec package which has been usedrergte all results
to date. As a test case we use the system- b where

A lw
—lw A

C= . (5.12)

Here A is Jacobian matrix of the CFD equations plus the CSD equatidiss
system is used in the inverse power iterations and is clogwtaised for the aug-
mented solver.
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Reference Grid Grid  Damping Flutter Speed Index
Volume Surface

Current Coarse 1131 0 0.227

Current Medium 4453 0 0.192

Current Fine 17700 0 0.175

Current Coarse 1131 2% 0.401

Current Medium 4453 2% 0.381

Current Fine 17700 2% 0.375
[125] Coarse 2366 0 0.314
[125] Medium 5340 0 0.304
[125] Fine 9231 0 0.285
[19] Unstructured  N/A 0 0.230
[21] Structured 5289 0 0.294

TABLE 5.1: Grid Refinement Influence on Flutter Speed Index at Mach 0.96

Calculation Type CPU (sec) CPU (relative)

steady state 787 1
unsteady solution 19810 45
steady calculation 1767 1

bifurcation calculation 3304 1.87

TABLE 5.2: Average calculation cost using the PMB code for the first toves and
the augmented solver for the bottom two rows in the table. réladive costs have
been scaled by the time for a steady-state calculation wékappropriate code

The following conclusions were drawn for the solution of timear system
with Aztec in section (4.4):

e The augmented linear systems are significantly more difftoidolve than
CFD only systems.

e The second-order Jacobians cannot be solved with zera pillacondition-
ers whereas the approximate first-order Jacobians can.

The removal of both these are performance restrictions avbaluseful for
two reasons. Firstly the linear systems in (3.26) requieedblution of systems
with second-order Jacobians. Having to use non zero filkégc@nditioners in 3D
would limit the potential problem size greatly. Secondivduld be possible to use
the ideas of indirect calculation shown in section 2.5.1dekd the behaviour of
the real part of the critical eigenvalue below and above tbpfibifurcation point
would allow graphs of damping vs speed to be produced.
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To facilitate easy testing of various options, an impleragan of a Krylov
method with BILU preconditioning was written in MATLAB. A gerad version of
the preconditioning was written which allows various levet fill-in.

5.5.1 Generalized Conjugate Residual

Eisenstat, Elman and Schut?! developed a generalized conjugate gradient method
that depends only oA rather thanATA and is called the generalized conjugate
residual (GCR) algorithm. Saad and Schultz developed the r@erex Minimal
Residual (GMRES) algorithm which is mathematically equintii® GCR but is

less prone to breakdown for certain problems, requiressesage and arithmetic
operations. However GCR remains the easier algorithm toameht especially in
parallel, and is given as

o = b—CX()
Po = o
Forj=0,1,2,..., until convergence. Do:
o 5Cpy)
a9 = Tpco)
Xj+1 = Xj+ajpj (5.13)
41 = rj—aiCpy
T (Cri;1.Cp) P ;
B = _—<cj|;,c|q> ,fori=0,1,2,....]
Pir1 = Tjir1+ 3] oBipi
Enddo

To calculate theB;; the vectorCrj and the previou€p;j’s are required. The
number of matrix vector products per step can be reduceddaf @pj. 1 is calcu-
lated by

j
Cpj+1=Crju1+ %Biij (5.14)
=

This may not be beneficial @ is sparse anglis large.

Arestarted version called GCR(m) is defined so that when thegibe reaches
stepm all the pj’s andCpj’s are thrown away. Techniques have been proposed to
include approximate eigen-components in later restart&fdRES127] and these
techniques and similar strategies may help GCR also.
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5.5.2 Block Incomplete Lower Upper Factorisation

For the block incomplete lower upper (BILU) factorisatioe tmatrix is partitioned
into 5x 5 matrix blocks associated with each cell in the mesh. Theofigkis
blocking reduces the memory required to store the matrixsipasse matrix format.
For the clarity of the rest of this section the block part wibhw be dropped.

Consider a general sparse matiiwhose elements agj,i,j =1,...,n. A
general incomplete factorisation process computers aspawer triangular matrix
L and a sparse upper triangular matsiso the residual matrik = LU — C satisfies
certain constraints, such as having entries in some lotatih common constraint
consists of taking the zero pattern of thé&J) factors to be precisely the zero pat-
tern of A. However the accuracy of the ILU(0) factorisation may bauffisient to
provide an adequate rate of convergence.

More accurate incomplete LU factorisations allowing exémens to be filled
into the factorisation are often more efficient as well asenabust. Consider
updating thecjj element in full Gaussian elimination (GE) the inner loop tedms
the equation

Cij = Cij — CikCj- (5.15)

If levj; is the current level of elemeny; then the new level is defined to be
levij = min(levij, levi + levij+1). (5.16)

The initial level of fill for an element;; of a sparse matri€ is 0 if ¢;j # 0
ande otherwise. Each time an element is modified in the GE protessvel of fill
is updated by equation 5.16. Observe that the level of filloé@ment will never
increase during the elimination. Thusdf # 0 in the original matrixA, then the
element will have a level of fill equal to zero throughout thiengation process.
The above gives a systematic way of discarding elementscéditJ(k) contains
all of the fill in elements whose level of fill does not excded
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For all non zero elements; define levcij =0
Fori=2,...,nDo:
Forj=1,2,...,i—1andfor levaj <k
Gij = Cij /Cjj
Ci =Ci—Gjcy I=j+1,...,n (5.17)
Update the levels of fill in for non zer;
EndDo
If lev cjj > kthencj; =0
EndDo

5.5.3 Real and Complex Variable Formulations

Section 4.2 used a real variable formulation with the tedtimnaritten as

Ais Afs wl O

A A 0 wl
c=| " e : (5.18)
—wl 0 Afs  Ass

O —wl ASf Ass

However this form has increased the bandwidth of the m&riA different ap-
proach would be to maintain the matrix in complex variables

. Il O
—|w[0 I]' (5.19)

At Ats
Asf Ass

Ce=

There are several ways to approximate the matfcasdC, before the incomplete
factorisation is applied. These approximations only ¢ffee rate of convergence
of the linear solver and not the solution if the original mats used in the linear

solver. Three possible methods were considered with isacrganumber of ele-

ments removed from the preconditioner.

Method 1

This is standard BILUK) on the complete re& or complex matridxCe.

Method 2

This is BILU(k) on the block diagonal of eith€l. orC i.e.

Ais O
0 Ass

2)

@ —

[ro
_leo I] (5.20)
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and _ -
Ass O 0 0
0 A 0O O
c@ = 58 . (5.21)
0 0 As O
0 0 0 Ass
Method 3

This extends the blocking in Method 2 by also including thecking of the multi-
block grid. This meang\;; loses all its inter block connectivity following the
method used in the CFD only solN#.

5.5.4 Results

Table 5.3 shows the number of non-zerex 5 blocks required for the different
methods with a modified-order Jacobian. Each complex blegkires twice the
storage of a real block due to the real and imaginary partenEaking this into

account the complex formulation always uses less memoryttiareal one. Also
the scaling of the memory requirements is much less for thgptex formulation as

the level of fill-in increases. The real formulation of medidresults in a singular
preconditioner ifAgsis singular.

Table 5.4 shows the number of non-zeroBblocks required for the different
methods with a second-order Jacobian. Comparing them watimibdified order
Jacobian with level 3 fill in the second-order Jacobian nesgué to 5 times the
storage. However there is a much larger decrease in stogggeements as terms
in the preconditioner are removed compared to the modifiddrarase.

Method Real or Number of Non Zeros<b Blocks
Complex BILU(0) BILU(1) BILU(2) BILU(3)
Real 396518 806558 1590985 N/A
Complex 175854 304151 511390 902146
Complex 151667 278915 485085 874617
Complex 141603 247315 402803 689403

WN PP

TABLE 5.3: Table of the number of non zero in the preconditioner for tloelified
order Jacobian

The test problem is derived from the AGARD 445.6 wing with T8 @ells at
Mach Q67 with w fixed at 028. This value was used as it is a good approximation
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Method Realor Number of Non Zeros<b Blocks

Complex BILU(3)
1 Complex 4273227
2 Complex 4241749
3 Complex 2741219

TABLE 5.4: Table of the number of non zero in the preconditioner for #eoad
order Jacobian

to the correct value ofv at bifurcation for both the modified and second order
systems. All the methods are used a restart size of 60.

Figure 5.6 shows the differences between the first two metluisthg both
real and complex versions of the preconditioner with a mediforder Jacobian
matrix. The performance drop from switching from method biethod 2 in the
complex case is smaller. This is thought to be because, éstethe complex case
retains some of the off-diagonal terms that are removedamehl case.

Figure 5.7 shows the differences between the first two metlisthg both
real and complex versions of the preconditioner with a seawder Jacobian ma-
trix. It is clear than the second-order Jacobian system ishnfarder to converge
than the modified order system. However the lack of perfoneatecrease from
switching from method 1 to method 2 when using a complex préitoner is still
valid. The use of method 3 improves the convergence rateeofitear solve so
even though the off-diagonal terms were using more fill-irnttendiagonal blocks
still has advantages.

Figure 5.8 shows the differences for all 5 methods with themex precon-
ditioner and a second-order Jacobian. It is clear that reamgdie connectivity has
degraded performance of the linear solver although coevesgis still obtained.

The complex formulation of the preconditioner requires l&®rage and pre-
conditions the linear system better than the real formutatiwith the dedicated
linear solver and this preconditioner the second-ordeshiao can now be solved,
opening up the possibility of finding the eigenvalue of sestlireal part of this
matrix directly using the inverse power method.



CHAPTER 5. AEROELASTIC STABILITY PREDICTION FOR WINGS 93

5.6 Symmetric case: AGARD Wing

In section 5.4.3 the prediction of the flutter boundary byetigmented solver, using
the Jacobian of the first-order scheme to drive the (apprata)rNewton method,
was compared with time domain predictions, which were irfigeéragreement. A
detailed grid refinement study was undertaken and for thietifing grid converged
solutions were published. The issue of the influence of giratdamping on the
solution in the dip at Mach 0.97 was considered in detailafyncomparison with
other published results, including measurements, was made

With the new dedicated linear solver the behaviour of thenarged solver
when using the full Newton’s method, and the inverse powethote are consid-
ered. These investigations are made possible by the avigjladd the Jacobian
matrix of the second-order spatial scheme from section #it# grid used is the
coarse grid discussed above.

The convergence of the flutter speed index at Mach 0.97 is sloigure
5.9. Rapid convergence is obtained through quadratic cgamee of Newton’s
method, with the critical value being obtained in 3 iteraio The inverse power
method was used to trace out the values of the aeroelasgowilyes, which are
associated with the structural modes, as a function of dimprassure = 0.50V?2.
The real and imaginary parts are shown in figure 5.10. Thearidynamic pres-
sure, which is when the real part of an eigenvalue goes pesiigrees with the
value from the direct calculation.

5.7 Asymmetric case: MDO Wing

The MDO wing is a commercial transport wing, with a span of 38nes, designed
to fly in the transonic regim&28.129] The profile is a thick supercritical section.
The structure is modelled as a wing box running down the aépurtion of the
wing. The structural model consists of 8 modes between h88l4.97 Hz. This
case has a non-symmetric section and so the static solidegendent on the
dynamic pressure, in contrast to the AGARD and Goland cadesiriverse power
method is used below to map out the behaviour of the eigetrspeavith and
without the effect of the static deflection. The grid has 20,@oints (110,000
degrees of freedom) and was derived by extracting points faofiner grid that
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has 600,000 points. Steady calculations on both grids eoefirthat the aerostatic
solution and the flow topology obtained, which at Mach 0.8& igoward bending

and nose down twisting at the wing tip, and a strong shockradswhe trailing edge

which is weakened by the deflection, are similar on both gatteough the coarse
grid solution has a more diffuse suction peak and shock.

This case introduces a new issue compared with the AGARD wirtpat
the MDO wing has a significant static deflection. This makesitiverse power
method preferable to calculate the flutter point since thethmd can naturally take
into account the static deformation. The real and imagiparys of the eigenvalues
of the aeroelastic system are plotted in figure 5.11 wheretac deflection is
allowed (that is the equilibrium solution is taken aboutriiged wing). The dynamic
pressure at which the second mode becomes undamped is R§5@4s’) The
equivalent plot when a static deflection is allowed looksyv&@milar except that
the crossing of the second mode happens at 5899ims’) i.e. the effect of the
static deflection is to increase the critical dynamic pressiihe reason for this is
clear from figure 5.12 where, as would be expected, the infi@hthe aerostatic
deflection is to bend the wing up and twist it nose down at theguip, as shown in
the figure. This weakens the shock, which is likely to be $&bg for the dynamic
behaviour. What is important here is that this aerostatecefs taken into account
naturally by the inverse power method, since the Jacobiad isscomputed at the
correct static solution for a given dynamic pressure.

5.8 Conclusions

The performance of the augmented solver and inverse powochér calculating
flutter boundaries has been evaluated for the AGARD 445.6 wa@sgcase. This
is the first time that such an augmented solver has been usedctdate a three-
dimensional aeroelastic instability problem. The goodgremance of the method
previously observed for aerofoil problems has been preseiw particular the cost
of the iterative linear solver in terms of the number of itemas required has not
increased as the size of the matrix has increased. It is @&stththat the cost of
tracing out a flutter boundary over ten Mach numbers has leshrced by 2 orders
of magnitude compared with the time marching method.

The augmented solver presented relied on the system bemgelyic which
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means that the equilibrium solution is independent of tifierbation parameter. In
the asymmetric case the equilibrium solution has to be cetsted as the bifur-
cation parameter is updated during the Newton iterationswev¥er the approach
considered here for the asymmetric The MDO wing was the thailedion of the
structural eigenvalues from the Jacobian matrix via thers® power method, and

included the effect of a static deflection.
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FIGURE 5.1: Grid topology (above) and medium surface mesh (below). we
only the inner blocks above the wing are shown on the symnpuddrye
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FIGURE 5.6: Comparison of the real and complex formulations for methodsd
2 with a modified order Jacobian
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FIGURE 5.9: Convergence of flutter speed index for AGARD wing at Mach 0.97
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Chapter 6

Prediction of Aeroelastic Limit Cycle
Oscillations

6.1 Introduction

Limit cycle oscillations (LCO)s have become one central fonuaircraft aeroe-
lasticity. A major reason for this is the widely reported LC&perienced (and
tolerated) on the F-16 in certain store configuratidf¥. The source of the LCO
is still a matter of conjecture, with both nonlinear aeragiyics and structural dy-
namics being considered by the uncertainty study of Thoenas [131 Predating
the first report of an LCO on the F-16 was the residual pitchllasicin for the B2
bombel32] which was attributed to an interaction between the wing benchode,
a shock movement on the upper surface and the control system.

LCOs can be tolerated (as illustrated by the F-16 examplékgifamplitude
is sufficiently low. Detrimental effects may accrue to theopand the airframe,
but the onset of LCO does not necessarily threaten the ityeafrthe airframe as
an unbounded flutter would. It has been suggested that faitceaft may even
tolerate regions of LCO in return for gains in performance.

To tolerate or eliminate LCOs requires reliable analysidstdo provide a
physical insight into the underlying mechanisms, and qtaivie predictions. If
nonlinear aerodynamics is involved then a general purpmseshould exploit com-
putational fluid dynamics (CFD). CFD simulations of aeroétasehaviour in the
time domain have reached an impressive level of maturitshdand co-workefs’]
carried out fundamental work on the numerical methods yndeing such a sim-

108
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ulation. Melvilld?4! used high-fidelity CFD to reproduce LCO behaviour for the
F-16. A similarly impressive effort was undertaken at Ni3R.,

Whilst time domain simulations are a powerful and generdlftraanalysis,
they suffer from one practical disadvantage, namely coatmurtal cost. For an
analysis of underlying mechanisms it is likely that a paraimeearch and sensitiv-
ity analysis will be required. If this must be done carryihg tost of time domain
simulations, then the overall cost is likely to be prohikati

This has stimulated active research in reduced order mogellhe aim is
to retain the predictive capability of full CFD aerodynamiost with reduced com-
putational cost. Two broad classes of method have appeaaetgly data driven
models and methods which work with the system residual. Bta driven models
a number of forced motion CFD calculations are computed. Enedynamic re-
sponse is then processed to provide a low order model. Exasniptlude proper
orthogonal decompositié¥: 134 and Volterra serie§'3%. The disadvantages of
these approaches is the lack of a general robust paranagiemisf the model, and
their inability to predict any physics which is not includedhe training data. This
class of method has met with some success.

The current chapter represents the final step in the basid&@lopment
within this research effort. Based on the knowledge of thicati eigenvector of
the aeroelastic system, and using Kuznet$®f'method of projection for the com-
putation of centre manifolds outlined in chapter 3 a mettsootbrmulated for the
prediction of wing limit cycle oscillations.

6.2 Model Reduction for LCO Calculation

The response of the system after bifurcation may be requp@dicularly if it is a
LCO. The semi-discrete form of the coupled CFD-FEM system is

dw
where
w = [we,we " (6.2)

is a vector containing the fluid unknownsg and the structural unknowng; and

R=[Rf,Rd’ (6.3)
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is a vector containing the fluid residuak from the three-dimensional Euler equa-
tions andRs is given by equation (5.7). The residual also depends on anpar
eter u which is independent ofv. As in section 5.2.2 the bifurcation parameter
H = P/ pw SO for a given Mach number and velocity it is possible to daleuthe
dynamic pressurg. An equilibrium of this systemvo(u) satisfiesR(wo, ) = 0.

Equation (6.1) is now expanded in a Taylor series so it is inrenfwhere
the method of projection shown in chapter 3 can be used taledécthe centre
manifold.

R(w, 1) = R(wo, 1) + A(Wo). (W — wo) + F (W — wo, 1)

For values of the bifurcation parameter below the Hopf loiftion where all
the real part of the eigenvalues are negative, it is posgidenplify equation (3.31)
farther. For a small interval below the bifurcation poingé teigenvalue of largest
real part will be associated with the critical eigenvalueSinAll the eigenvalues
associated with the noncritical spateare damped faster. Therefore the influence
of y can be neglected leading to the following damping model

z=iwz+ (0, Rup) +21(a, Aup) + 21(a, Aup)
This model will not predict the transient behaviour of thetsyn (6.1) but will have
the correct behaviour as— .
Restricting system of equations (3.31) on the centre mahifepresentation
(3.25) gives
z = iwz+ 3Gp2 + G11zz+ 3GgoZ

+  3(Go1+2(G1o,K11) + (Go1, k20))22Z

+ (9,Rup) +2u(q,Aup) +ZU(q, Aup)

+ B0, Auko0)Z+ p(a, Auka1) zZz+ 50, Aukoa) . .
If we write the quadratic and higher part Bf (which isF(w, u)), in terms of the
bilinear functionB(x,y) as in equation (3.9) and the trilinear functiG(x,y,z) as
in equation (3.10) then the restricted equation is in theafor

Z = iwz+ 3GZ + G122+ 3G 7
+ 3(G21—2(q,B(p, A H11)) + (a0, B(P, (2iwl — A)"tH20)))2Z
+ (@, Rup) +2zu(q, Aup) + 2 (d, Aup) (6.4)
+ 2(0,Au(2iwl —A)"Hp0)Z2 + p(a, AyA tH1) ZZ

— B{o.Au(2iwl +A)"Hep) 2+
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whereG;; are defined by equation (3.22) aH¢ i+ j = 2 by equation (3.23). This
is a two degree of freedom system for the response of the ffdédresystem in the
critical mode, eigenvalue with zero real part. The normahfof the Hopf bifurca-
tion given by equation (3.29) shows the same cubic termssetbf the two degree
of freedom model and hence contains enough information &bleeto predict limit
cycle behaviour after the bifurcation point. This model wascessfully able pre-
dict LCOs in the model problem in chapter 3. The reduced maehlculated
once and for all after the critical eigenvector, eigenvaod equilibrium point are
known. The model is parameterised through the Taylor expars the bifurca-
tion parameter, and so can be used to explore the behavidhe déll system in
the vicinity of the bifurcation. Analogous with chapter 2tbentre manifold that
the restriction takes place on is not parameter dependdrg.nTain challenge in
forming the model is in the matrix vector products againstdacond and third Ja-
cobians, and this will be discussed below. The linear systhiat need to be solved
to compute the coefficients in the centre manifold reducti@solved in the same
manner as described in the previous chapter and represemtaim computational
cost in forming the model.

6.3 Calculation of First, Second and Third Jacobians

The Jacobian is calculated as described in detail in seéti®n The second and
third Jacobians required in the model reduction are reptedéy the bilinear and
trilinear functionals

N 9%F (&) :
Bi(X,y) = XiVk, 1=21,2,...,n (6.5)
| j,g—l 9¢&; ¢k E=wp :
and
Ci(x,y,2) n 0"3F(£)’ Xiyz, 1=12 n (6.6)
i ) ) - j k ) - J A .
| 1 088k e,

as described in section 3.3. For the model problem shownapteh 3 these terms
were analytical however for the aeroelastic case analyiqaressions for the sec-
ond and third Jacobians my not be available. It is possibleatoulate all of the
contributions to equations (6.5) and (6.6) without havimgeisort to complex arith-
metic, or having to calculating all the second and thirdiphderivatives analyti-
cally. By the use of directional derivatives it is then poksti evaluate the bilinear
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and trilinear function®(x,y) andC(x,y,z) on any set of coinciding real vectors.
These derivatives can be approximated using finite diffegsn

B(V.Y) = 15 [R(Wo-+ hV. o) ~ 2R(w0. o) + R(Wo — . )] + O()  (6.7)

and

1
C(V,V,V) = o [-R3+8R;—13R; +13R_1 —8R_»+R_3]+0O(h*) (6.8)

whereh is small, andR; = R(wp + Ihv, Lip). Note at the equilibrium poiriRy = 0.
Using the polarisation identity?®!

B(v,u) = % [B(v+u,v+u)—B(v—u,v—u)]
and a similar identity for trilinear functionals
C(v,v,u) = %[C(v+ u,v+u,v+u)—C(v—u,v—u,v—u)—2C(u,u,u)]
it is possible to work out all the constants in equation (6et)

G11=(q,B(p,p)) = (ar+idi,B(pr,pr)+B(pi,pi))
= {ar, B(pr, Pr) +B(pi, pi)) —i{ai, B(pr, Pr) + B(pi, pi))
And finally there is the choice df, for clarity the example of the first order

Jacobian is used. Consider the Jacobian-vector product

Ay~ RW ANV, u%) —R(W, ko)

for some step sizh. In finite precision, due to rounding erroiR(w, L) + £(w) is
computed instead d®(w, tp). Assuming that the rounding error is less thdbr
allw

R(W+ hV? “0) + E(W+ hV) - R(W7 IJO) - S(W)
h

Av — = 0(h+¢/h)

The error is minimised when

IVil2
For the general case the error is

o +e/M hr We

of a finite difference ofjth order for thekth derivative. For the third Jacobian,
even in the best case where the componenendy; are of similar magnitude, the
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corresponding expression for the optimal stepsizesisy/s. For a standard double
precision number there are 53 bits in the mantissa whichsl¢éad = 1/2°3 ~
1.11x 10~18. Henceh = 0.0053 and at best six significant figures can be obtained.
However in general the answer is much less accurate tveey by many orders of
magnitude. One way to increase the accuracy is to increaseithber of bits in the
mantissa. This can be achieved by increasing the precisite @arithmetic for the
residual evaluation. A high precision version of sqrt, logl &xp functions are also
be required, in this case because of the contributions d¢f Butctions in Osher’s
flux function. The QD library'3"] was used to obtain this functionality. This library
allows extension of existing code to double-double preaigiwice that of doubles)
and quad-double precision (four times that of doubles)autimajor recoding, by
using operator overloading. Operator overloading does dimwvn the calculation
of theR but it is a one time cost.

The convergence of the reduced model coefficients uhdefinement for
the Goland wing example (discussed below) at Mach 0.92 iodstrated in table
6.1. We would expect these coefficients to behave as follBwst, for large values
of h there would be significant inaccuracy due to truncationredo small values
of hwe would see inaccuracy due to rounding error. The lattece®ould be more
significant for the coefficient which includes a third Ja@sbproduct, and also less
significant using quad-double arithmetic. For a usable otkthie need to obtain
consistent results over a significant rangénofThe table conforms to all of these
expectations and a reliable set of coefficients for the reducodel is obtained.

6.4 Results

The heavy version of the Goland wing is used to investigagegtiediction of LCO
behaviour. The Goland wing has a chord of 1.8288m and a sp&mebm. It
is a rectangular symmetric cantilevered wing with a 4% ttpekabolic section.
The structural model follows the description given in refesel®’l. The case used
here has a tip store in the structural model, but not in thedygramic model.
Four modes were extracted at frequencies (in Hertz) of ffigt bending), 3.05
(first torsion), 9.18 (second bending) and 11.10 (seconsladiwy. These modes
are shown in figure 6.1. An interesting feature of this teseda the appearance
of a region of limit cycle oscillation at a reduced value ofdynic pressure (a
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mode 1 mode 2

mode 3 mode 4

FIGURE 6.1: Structural Modes for Goland wing.
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precision h Gzo Goz G21 kll

d-d 102 1.15941e-03 3.81780e-04 -6.31471e-01 -8.57054e-04
d-d 104 3.83222e-04 3.04452e-03 5.28431e+00 -1.69352e-03
d-d 106 1.19108e-03 4.41072e-04 -1.50604e-03 -8.36232e-04
d-d 108 1.19108e-03 4.41072e-04 -1.91813e-03 -8.36232e-04
d-d 1010 1.19108e-03 4.41070e-04 3.67596e+02 -8.36229e-04
d-d 1012 1.12010e-03 4.57337e-04 -2.37683e+08 -8.66090e-04
g-d 102 1.07216e-03 4.67501e-04 -5.96457e-01 -8.09330e-04
q-d 104 3.83222e-04 3.04452e-03 5.28431e+00 -1.69352e-03
q-d 106 1.19108e-03 4.41072e-04 -1.50604e-03 -8.36232e-04
q-d 108 1.19108e-03 4.41072e-04 -1.50604e-03 -8.36232e-04
g-d 1010 1.19108e-03 4.41072e-04 -1.50604e-03 -8.36232e-04
g-d 1012 1.19108e-03 4.41072e-04 -1.50604e-03 -8.36232e-04
g-d 1014 1.19108e-03 4.41072e-04 -1.50604e-03 -8.36232e-04
g-d 1016 1.19108e-03 4.41072e-04 -1.50604e-03 -8.36232e-04
g-d 1018 1.19108e-03 4.41072e-04 -1.52353e-03 -8.36232e-04

TABLE 6.1: Convergence of reduced order model coefficient real partenmd
refinement. The behaviour of the real and imaginary partshowvn is identical.

Note that all columns include 2nd Jacobian-vector prodextept the column for
Go1 which contains a 3rd Jacobian-vector product. The abbfensd-d and q-d
stand for double-double and quad-double respectively

"bucket”) at a freestream Mach number of 0.92. This has beews using the Eu-
ler equation&38! and the transonic small disturbance equatfShsThe influence
of the tip store was examined in refereié8 and the effect of including the store
aerodynamics in referené@l.
Following the experience gained with generating gridslierAGARD wing,

a grid with 27 000 points (135 000 degrees of freedom) wasrgésd using a block
topology which concentrates points in the tip region. Thid geproduces the be-
haviour previously reported in the literature, namely angslutter speed around
Mach 0.9, a significant bucket with LCO behaviour about M=0&# then a rise
in flutter speed at the right-hand end of the bucket aroundl 0-Be values at which
these different behaviours happen is similar in the cunemk, and it is concluded
that the current grid for the Goland wing represents a progsrfor the methods
presented in chapters 5 and 6. The inverse power method dstasavestigate
the behaviour of the structural modes under the influenceaasbnic aerodynam-
ics. Mach numbers of 0.90, 0.92 and 0.94 were investigatexet values being
chosen because of prior knowledge of the system behaviouor the literature.
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However, without prior knowledge of the aeroelastic bebawihis Mach number
range would have been quickly identified by considering kheave behaviour for
the steady state solutions or by using the direct augmentedrs Starting with the
structural frequency as a shift, the eigenvalue in the d&sbe system was com-
puted for six values within a range of dynamic pressure, ehdssed on linear
flutter analysis. The results show that at Mach 0.90 and @@4third and fourth
modes interact, and eventually the fourth mode crossesrhginary axis. The
behaviour of the real part of the fourth mode is shown in figu& where it is also
seen that the behaviour of this mode at Mach 0.92 is veryaimilowever, at Mach
0.92 the second mode crosses the imaginary axis at a lowandgipressure, also
shown in figure 6.2, and it is this mode which results in a lioyitle oscillation.

Having gained some insight into the behaviour of the eigecspm, the di-
rect method was then used to find the bifurcation point at Ma@B. An estimate
of the dynamic pressure, frequency and eigenvector wasebt&rom the inverse
power results. The convergence of the dynamic pressurevsrsim figure 6.3 and
again shows quadratic convergence.

Finally, the behaviour of the limit cycle oscillation was/@stigated using
the reduced model. The model coefficients were formed usie@xpressions de-
scribed above, based on the critical eigenvectors, theilegum solution and first,
second and third Jacobian - vector products. Time domainlations were also
run to provide a comparison for the predictions of the redutedel. The time
domain simulations used a non dimensional time step of &/Bggabout 70 time
steps per period of response which provides time accuraayat computational
cost.

First the reduced model predictions are compared with tHerfadel for
damped responses. The comparison of the response of thenfds is shown
in figure 6.4 at 80% and 95% of the critical dynamic pressurebdth cases the
damped response is predicted well by the reduced model.

The comparison of the reduced and full nonlinear predistiohthe LCO
response of the first and second structural modes at a valdgnaimic pressure
which is 25% above the bifurcation value is shown in figure &Be two sets of
results agree well. The rise in amplitude with increasingadyic pressure is shown
in figure 6.6 and it is seen that the reduced model predictstiheeLCO amplitude
for values of dynamic pressure up to 40% above the bifuncatgue in this case.
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A set of visualisations of the wing location and the diffezerin pressure
from the equilibrium solution is compared in figure 6.7. Thagvmotion is a
combination of plunging and pitching towards the tip, and tluid response is
dominated by changes of pressure towards the leading edbduento the shock
motion. The predictions of the reduced order model and thesystem are very
similar qualitatively and quantitatively (note that théssets of results are plotted
on the same scale, with the extreme values beingo of the free-stream pressure).

6.4.1 Evaluation of Cost

The performance of the methods is assessed in the curregitrs€the benchmark
adopted is the cost of a steady state calculation sincestigisnierally quite modest
on modern computers, and with modern algorithms, even forpbex problems.
The summary of the cost for the different methods is giverie 6.2.

It is noted that the steady solver used here has proved effiore a wide
variety of CFD and aeroelastic test cases. To illustratettraly state performance
the Goland wing used 100 explicit time steps to start theutation, followed by
no more than 100 implicit time steps at a CFL number of 50 toediine residual
down at least 6 orders of magnitude. The unsteady solvemigasly considered
efficient in the sense that the time step was chosen for tim@racy considerations
only, resulting in around 70 time steps per cycle of respdoisthe Goland wing.

The cost of computing the LCO'’s of the Goland wing by the ful@rsystem
is very significant. The full system time marching can takeytaundreds of cycles
to reach the limit cycle, especially close to the bifurcatmint. The computation
using the reduced model has several stages whose cost isssig@enin table 6.2.
First, the inverse power method is used to map out the betnawfdhe eigenvalues.
This requires multiple applications of the inverse powetirad with different shifts
- for each of the four structural modes 6 dynamic pressureés s@mputed, giving
a cost of 130 steady state calculation. It was then quick topede the bifurcation
point using the direct method and to generate the two-degfrreedom model.
Overall the cost of generating the reduced model is less 1fi@rsteady state cal-
culations. If the critical frequency is known in advancerilithe inverse power part
of the calculation can be skipped, substantially reducivegdomputational cost.
Once the model is computed, it is parametrised, and so casdekta replace mul-
tiple unsteady full system calculations. The reductionamputational cost, even
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FIGURE 6.2: Behaviour of the damping of modes 2 and 4 for Goland wing at Mach
0.92. Here dynamic pressure is in unitkgf (mse@).
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FIGURE 6.3: Convergence of bifurcation parameter for Goland wing at MaéR.

when the inverse power calculation is required, is by twemaf magnitude when
several LCO calculations are required.

Case Steady IPM RootlLocus Direct Unsteady
Goland 1 5.4 130 9.2 1000

TABLE 6.2: Summary of the costs expressed in multiples of the steaty stdu-
tion.

6.5 Conclusions

This chapter has provided a formulation to allow LCO preditsi based on CFD
generated aerodynamics. If little is known about the inktalmnset then the in-
verse power method can be used to map out the behaviour ofgeevalues in
the regions likely to be of interest. This information caertbe used to setup an
augmented solve for the flutter point, along with other infation like the critical
eigenvector and the frequency of the instability. In turis thformation can then be
used to compute a two degree of freedom model for the systemmnags around
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FIGURE 6.6: Growth of the LCO amplitude in the first and second modes at Mach
0.92 for the Goland wing. The filled squares are from the satioh of the full
system, and the line is from the reduced model.

the bifurcation point, including limit cycle responses.

The model reduction requires the formation of matrix-veptoducts against
the second and third Jacobians of the system. This is achteveugh the use of
matrix free products using extended order arithmetic.

The featured Goland wing test case showed that the 2 equatioced order
model provides very good predictions of the LCO amplitudeneiee very large
increases in the dynamic pressure. The test case was cahgutelatively coarse
grids, but it was argued that the behaviour is represeetédivthe Goland wing,
and provides good test for the method.
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FIGURE 6.7: Response at extremes of the wing at 1.35 times the criticabval
dynamic pressure using the reduced and full models. Theflgietid tip position of
the wing is indicated by the blue line joining 2 dots at the gviip, and the surface
contours shown are for change of pressure from the equifibvialue. These results
are for the Goland wing at Mach 0.92.



Chapter 7
Conclusions

This thesis has demonstrated a of a number of methods foatbelation of tran-
sonic aeroelastic behaviour without having to resort tbdtder time domain anal-
ysis. If little is known about the instability onset the imse power method can be
used to map out the behaviour of the critical eigenvaluesiénréegions likely to
be of interest. This information can then be used to setupugmanted system to
solve for the flutter point along with information about théical eigenvector and
the frequency of the instability. In turn this informatioarcthen be used to com-
pute a two degree of freedom model for the system dynamicsdrite bifurcation
point, including limit cycle responses. The direct Hopfatdtion is the method
of choice for computing the flutter speed of a symmetric a@b@fing due to the
decoupling of the system in equation (4.17).

A number of components were described to formulate thesbadst The
ability to calculate first Jacobians of the second-ordetigp@FD discretisation
makes it possible to use the inverse power method to compgéavalues and
eigenvectors. The first Jacobians of the second-orderagigatieme are more ill-
conditioned than the first Jacobians of the first-order apatheme due to the Jaco-
bian having more off diagonal terms and hence less diagodafthinant. A robust
Krylov solver was formulated to solve these sparse lineatesys associated with
the first Jacobian of the second-order spatial CFD disctetisarhe means to cal-
culate second and third Jacobians vector products via @stearder arithmetic is
crucial to the model reduction.

Starting with the method proposed by Griewank and Redtierused for
aeroelastics by Morton and BeF&H. The use of analytical Jacobians and a Krylov

124
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iterative solver has allowed the stability calculation ® dpplied in 2D and 3D.
The method of projection proposed by Kuznet€6wto enable model reduction for
LCO calculation is unique for the full order aeroelastic ation.
The methods were tested on a pitch-plunge aerofoil and thieg cases.
The AGARD wing provided continuity with previous time marnogiwork. The
MDO wing exercised the inverse power method, and includeceffect of a static
deflection on the flutter point. The reduction in computagiotost for the aug-
mented solve of the flutter points is between one and two smfenagnitude form
using unsteady time marching to find the flutter point depgmadn the wing used.
The computational cost for computing LCOs depends on knayaexd the critical
frequency. Both the damping and LCO amplitude predictionsHerGoland wing
provides good agreement with time-marching even when theced model is well
above the flutter point. These represent the first 3D tesltsefan these methods.
Future work should include the application of the methodsiliaircraft test
cases on fine grids as well as the inclusion of viscous terrhe.nfajor challenge
for both of these steps will be forming an effective paratisdconditioned linear
solver. The Jacobian matrix becomes more ill-conditioné@t imcreasing in size
of the problem as well as the addition of viscous terms. Amigulence modelling
will have to be fully coupled together for the eigenvaluetheffirst Jacobian matrix
to be correct. The parallel implementation of a BILU prectiodier is non-trivial
due to its sequential natuf¢'? This can be overcome by neglecting all terms that
span processors at the expense of reducing the effectvehése preconditioner.
Due to the two orders of magnitude reduction in computaticoat it is
now possible to examine aeroelastic behaviour with resjpetiie uncertainty in
the structure. The different flutter speeds can be compuittdshght changes in
the structural model to ascertain the effect of these claogethe flutter speed.
It is possible to increase the number of parameters in the R®Mclude these
uncertainties and hence obtain a qualitative representafithe behaviour.
Creating multi-block grids for complex aircraft geometrisgime consum-
ing process. Unstructured, hybrid and polyhedral grideralvbeen employed to
reduce the time to generate these grids. An extension ofuttert code to allow
this functionality would allow for these complex cases tcegamined more easily
however the sparsity pattern of the Jacobian matrix couhtieso a large number of
non zero blocks per row. Consider the flux between two tetnahwtich is based
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on the cell centre value and its gradient. Then the stenciheae seventeen contri-
butions to it. The addition of limiting the gradient farthacreases the size of the

stencil.
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