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Summazy 

Summary 

1. The Norway lobster (Nephrops norvegicus) is one of the most valuable shellfish 

resources in the north east Atlantic ocean and considerable knowledge exists with 

regard to its biology and life history. During the late 1980s, populations of N. 

norvegicus were shown to harbour an infection by a parasite of the genus 
Hematodinium (Dinoflagellata: Syndinidae). Although studies on the pathology, 

progression and prevalence of infection have since been carried out, considerable gaps 

exist in our knowledge of the effects of parasitism on host life history and cycling of 
the parasite in the field. This study aims to develop techniques for monitoring 
Hematodinium infection in natural populations of N. norvegicus and to study the 
interactions between parasite-induced pathological changes and the life history of host 

animals. 
2. The two major field methods (body colour and pleopod index) for the diagnosis of 

infection in N. norvegicus by Hematodinium were compared. The pleopod index was 
then used to collect infection prevalence data in the Clyde Sea area over a period of 31 

months from December 1998 to August 2000. Peak infection prevalence occurred 
during the spring and was highest in small lobsters and in females. Mean infection 

severity increased during the main infection season (Jan - May), highlighting the 

progressive nature of patent infection. Infection prevalence was synchronous between 

the sexes in some years but not in others. 'Me proportion of recently moulted, infected 

males in the late season extended the duration of peak infection prevalence in certain 

years. Sites with a smaller mean animal size showed higher infection prevalence. The 

methods available for monitoring Hematodinjum infection in N. norvegicus are 

evaluated. The relationships between fishing pressure, population structure of N. 

norvegicus and seasonal Hematodinium infections are also discussed. 

3. While useful for studying advanced (patent) infections of the haemolymph, the pleopod 

diagnostic method failed to identify low-level haemolymph (sub-patent) and tissue- 

based (latent) infections. The development and application of an immunoassay for the 

detection of antigens from Hematodinium in N. norvegicus is described. Infected tissue 

and haemolymph samples were detected as multiple-band reactions to a polyclonal 

antibody (anti-Hematodinium). The sensitivity limit of the method was 204 

parasites. mm3 - which is approximately ten times more sensitive than the pleopod 
diagnosis method. Use of the immunoassay on tissue samples taken from catches 
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Summary 

showed that the pleopod method considerably under-diagnosed infection prevalence in 
the early part of the season, though this under-diagnosis decreased as infected lobsters 
in the field progressed from latent and sub-patent to patent infections. The 
immunoassay failed to detect any infected lobsters during the summer months, 
suggesting that infection may not be carried over from one season to the next. Data are 
discussed in relation to the epidemiology of latent and sub-patent Hematodinium 
infections, to the transmission of parasites to other hosts and to the use of this 
immunoassay for the routine assessment of Hematodinium infection prevalence in N. 

norvegicus populations. 
4. The haemolymph free amino acid (FAA) composition of X norvegicus at different 

stages of infection by Hematodinium sp. was determined by reverse phase high 

performance liquid chromatography (HPLQ. Uninfected animals had a total 
haemolymph FAA concentration of 3.79 pmol. ml-1. The concentrations of several 
FAAs, notably serine, were reduced in early infections (Stage 1), while at later Stages 
(24) several FAAs were increased in concentration. The most significant change was 
in taurine, which increased by 13-fold (from 0.22 to 2.56 gmol ml-1) in Stage 4, when 
its relative contribution to the total FAA was 41.6%. Possible causes of these changes 
in the lobster haemolymph FAAs are the breakdown of host tissues, haemocyte lysis, a 
host stress response and the release of FAAs from parasite cells. These results have 
implications for the biology of X norvegicus, and indicate that the taurine: serine ratio 
in the haemoIymph provides a sensitive diagnostic measure of patent Hematodinium 

infections. 

5. Changes in the biochemistry and ultrastructure of the deep abdominal flexor (DAF) 

muscles were studied in X norvegicus at different stages of infection by 

Hematodinium. Muscles from infected lobsters showed slight, but significant increases 

in total water content, greatly depleted glycogen reserves and an altered free amino 

acid profile. However, protein concentration and composition remained unchanged. 
Parasitic infection also caused an alteration in sarcolemmal structure and localized 

disruption of myofibrillar bundles around the fibre periphery. The implications of these 

changes for normal escape swimming are evaluated. The altered carbohydrate titre 

could reflect the parasites acting as a carbohydrate sink in the haemolymph, a 
disruption of normal tissue glycogenesis, or some alteration in the host's hormonal 

regulation. The changes described could also adversely affect the taste, texture and 
marketability of infected meat. 
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Summary 

6. The effects of Hematodinium on carbohydrate metabolism were examined in N. 
norvegicus. Five stages of infection were observed, including uninfected, sub-patently 
infected, lightly infected (Stage 1), and moderately and heavily infected (Stages 2 and 
3-4, respectively). Lobsters that were in Stages 1-4 of infection had significantly lower 
levels of hemolymph glucose than uninfected or sub-patently infected animals. These 

results were accompanied by significantly lower levels of hepatopancreatic glycogen in 
Stages 2-4 compared to Stages 0-1. Due to the disruption of the normal feedback loops 
that control the release of crustacean hyperglycaernic hormone (CHH) from the sinus 
gland, plasma concentrations increase with infection severity. The increase in CHH 

concentrations occurred concomitantly with reduced concentrations of plasma glucose 
and tissue glycogen. Data are discussed from the perspective that the parasite places a 
heavy metabolic load on the host lobster. 

7. A post-capture muscle necrosis of rapid onset has been identified in N. norvegicus. 
Economic losses, due to mortality of these animals in transport, were encountered by 
Scottish wholesalers during the summer and autumn of 1999. The pathology causes a 
loss of the normal function of the abdomen, thus preventing the normal 'tail flip' 

swimming. Electron microscopy of affected tissue failed to reveal any obvious 
causative agent but showed a disruption of sarcomeric organization, a loss of Z-line 

material, a condensation of myofibrils; and an infiltration of necrotic regions by 

granulocytes. SDS-PAGE of affected muscle tissue revealed a great reduction of most 
of the major contractile proteins. The condition most closely resembles idiopathic 

muscle necrosis, a pathology previously reported from both wild and cultured 
crustaceans. Damage to the integument in conjunction with exposure to various 

stressors during and immediately following capture is the most likely cause of the 

pathology. The rapid onset of the pathology has implications for the post-capture 
handling procedure for N. norvegicus and their subsequent vivier transport to market, 

and may also be partially responsible for the high mortality rate of undersized N. 

norvegicus returned to the sea after capture and aerial emcrsion. 
8. Various components of swimming performance were measured in uninfected N. 

norvegicus and compared to animals at different stages of infection by Hematodinium. 

Animals showed a progressive decline in overall swimming performance as infection 

severity increased, with reductions in the number of tail-flips performed, the number of 
swimming bouts and the total distance travelled by swimming. The velocity of the first 
(giant-fibre mediated) tail flip and average velocity over the swimming bout were also 



Summary 

significantly reduced in infected lobsters. Possible reasons for this decreased 

swimming performance are suggested, and the implications of this for predator 

avoidance of infected lobsters in the benthic habitat, and for capture of Nephrops by 

trawl rigs, are discussed. 

9. The pattern of tail flipping in uninfected and Hematodinium-infected N. norvegicus 

over a complete swimming sequence, and the subsequent performance following 4h of 

recovery are described. Swimming in uninfected X norvegicus was divided into two 

phases, the first comprising 80 to 100 high power tail flips, and the second comprising 

a variable number of less powerful flips which precede cessation of swimming. Lightly 

infected X norvegicus showed a similar pattern, though the number of flips comprising 

the second phase was much less. Heavily infected N. norvegicus produced a smaller 

number of weak flips before cessation of swimming. Following recovery, uninfected N. 

norvegicus produced 84.3 % of the flips produced in the initial trial, this reduction 
being due to a smaller number of Phase 2 tail flips. Infected lobsters showed a lower 

recovery rate than uninfected animals, this being proportional to the severity of 
infection. The metabolic basis of this swimming pattern and the reasons for less Phase 

2 tail flips being produced during Hematodinium infection are discussed in relation to 

the catchability of infected X norvegicus by trawlers and predators. 
10. Time-lapse video recording was used to study the burrow-related behaviour of 

uninfected and Hematodinium-infected X norvegicus in aquarium conditions. 
Uninfected lobsters were more active during the hours of darkness, while infected 

lobsters were equally as active in the light and dark periods. The absolute number of 

departures performed by infected lobsters (70 day) was more than double that of 

uninfected lobsters (30.1 day-'), while the duration of burrow departures performed by 

infected lobsters (258.5 s. departure") was more than six times greater than in 

uninfected lobsters (38.7 s. departure"). This led to a more than ten times increase 

(from 1.7 to 19.4 0/6) in the percentage of the day spent out of the burrow by infected 

lobsters. The altered burrow-related behaviour could be due to the increased nutritional 

or oxygen requirements of infected lobsters, both of which may cause the host to 

emerge from the burrow onto the sediment surface. Increased time spent out of the 

burrow has implications for the catchability of infected lobsters by trawlers and by 

predators, and for the estimation of infection prevalence from trawl-caught samples. 

11. In Conclusion, this study has greatly increased our understanding of the complex 

relationship between Hematodinium parasites and their hosts. By linking biochemical 



Summary 

and physiological data to effects observed in the field, it has been shown that 
Hematodinium infection may provide an excellent model system for studying stress 

responses in aquatic invertebrate hosts. The study has described in much greater detail 

than before the effect of parasitism on host lobsters, and has related these effects to the 

moult cycle and to host condition. Furthermore, it has shown how changes in host 

behaviour and locomotion during infection may be directly or indirectly linked to 

biochemical and physiological changes brought about by infection. The implications of 

these changes in the life history of N. norvegicus for the availability of infected 

lobsters to be captured by trawlers and predators is discussed. 
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Chapter One - General Introduction 

Chapter 1 

General Introduction. 

The Norway lobster (Nephrops norvýgicus). 

The Norway lobster, Nephrops norvegicus (L. ) is a burrowing decapod crustacean which 

is an important member of the marine benthic community on soft sediments, and over the 

past 50 years it has been the subject of an important fishery in the northeast Atlantic. Due 

to its availability in large numbers throughout the year, its adaptability to aquarium 

conditions and its convenience for laboratory studies on whole animals and isolated tissues, 

it has proved to be a model species for research on various aspects of crustacean biology 

and ecology. Laboratory studies and field observations, addressing aspects of its general 

biology; including feeding ecology (Loo et al., 1993; Cristo, 1998), reproduction (Fanner, 

1974a) and moult cycle (Gonzilez-Gurriar6n, 1998) and of its behaviour (Rice & 

Chapman, 1971; Farmer, 1974b, c; Ar6chiga & Atkinson, 1975; Atkinson & Naylor, 1976; 

Newland & Chapman, 1989) have led to considerable advances in our understanding of the 

life history of N. norvegicus in the field. Although other studies have been concerned with 

N. norvegicus as a fisheries target (Tuck et al., 1997a, b; Merella et al., 1998; SardA, 1998), 

there are still considerable gaps in our knowledge of the population dynamics and fisheries 

biology of this important species (Briggs, 1997). 

Up until the 1950s, these lobsters were usually discarded by fishermen due to their 

troublesome blockage of trawl nets, thereby impeding fin-fish capture (Briggs, 1997). 

However, more recently they have become one of the most important shellfish species 

captured in the northwest Atlantic, with annual landings of around 60,000 t (Tuck et al., 

1997a, b). Large fisheries for X norvegicus exist around the south and west coasts of 
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Chapter One - General Introduction 

Iceland, the North sea, the west coast of France, the Irish sea, the Kattegat, the Skagerrak, 

the Bay of Biscay, the Adriatic and the Tyrrhenian sea (Dow, 1980). It also supports a 

major fishery in the United Kingdom, with the Scottish fishery contributing over 76 % of 

this (22,000 tonnes, L57 million in 1999). The bulk of Scottish landings (c. 80 %) are from 

trawler capture, with lobsters usually being 'tailed' at sea and landed as 'scampi'. Creeling 

on the other hand is generally used for the capture of larger animals in sheltered waters or 

where trawling is not feasible. Creel-caught animals are usually landed live, after which 

they are transported via specially designed 'vivier' vehicles, often to supply the lucrative 

continental European markets (Anon, 1999). 

The natural history of X norvegicus impinges in many ways upon its availability to the 

fishery. As lobsters can only be captured when present on the surface of the sediment, both 

trawl and creel capture depend upon lobsters leaving their burrows (Fig. 1), and out-of- 

burrow activity provides the most likely explanation for the short term variations seen in 

catches (Fanner, 1974c). Burrow excursions are principally for the acquisition of food, and 

periods of maximal activity may coincide with the presence of principal prey items 

(Atkinson & Naylor, 1976). Female lobsters, which spend much of the winter within their 

burrows incubating eggs, are largely unavailable to the fishery during these times, causing 

a strong predominance of males in the catches (Farmer, 1974b). The feeding ecology of 

the female lobster during incubation is not well understood, though suspension feeding 

may play a significant role in nutrient supplementation (Loo et al., 1993). Following 

spawning, females emerge from the burrow to feed, moult and be mated by hard-shelled 

male lobsters. During this period, the sex ratio within the catch can return to approximately 

1: 1; the different sex ratios at different times of the year represent the significant seasonal 

changes in the burrow-oriented behaviour of female lobsters (Farmer, 1974a). 

Once on the surface of the sediment, capture by trawlers is further affected by the ability 

of lobsters to perform escape swimming. Following disturbance by the ground rope of the 
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Chapter One - General introduction 

trawl (Fig. 2); lobsters undergo a series of rapid abdominal flexions and extensions (tail 

flips), which propel the animal backwards and away from the source of threat (Newland et 

al., 1992). Both the speed and endurance of tail flip swimming have implications for 

capture by trawl nets. In a study of the reaction of N. norvegicus to trawl nets, two capture 

zones have been observed: the 'catching zone' immediately in front of the net mouth, and 

the 'peripheral herding zone', where tail flipping lobsters are apparently herded (into the 

catching zone) by the otter boards of the trawl. Lobsters which are in the catching zone or 

herded in to this zone by the otter boards are usually overtaken and captured, while those 

tail flipping away from the catching zone evade capture (Newland & Chapman, 1989). 

Once within the net, the retention of captive lobsters is dependent upon the size of the 

lobster, the mesh size and the crowding of the net with other species. 

In addition to the possibility of physical damage from the trawling process itself 

(Symonds & Simpson, 1971), after landing on the deck of a fishing vessel, N. norvegicus 

are exposed to a significant period of air-emersion during sorting of the catch. This period 

of emersion may be expected to lead to considerable physiological stress caused by 

extremes of temperature, light, desiccation and hypoxia (Santos & Keller, 1993; Jussila et 

al., 1997; Paterson & Spanoghe, 1997; Chapman et al., 2000). Stress responses occur when 

regulated physiological systems are pushed beyond their normal limits of operation by 

external stressors acting upon them (Paterson & Spanoghe, 1997). Failure of all or part of 

these regulatory responses will lead to increasing physiological disturbance and ultimately 

death (Morris & Airriess, 1998) and such stresses have been blamed for considerable post- 

harvest losses in commercially important crustacean fisheries (Cawthorn, 1997; Paterson & 

Spanoghe, 1997), The cumulative effect of these stresses has also been implicated in the 

low survivorship of undersized discarded N. norvegicus (Uhnestrand et al., 1998). Creel- 

capture is thought to impart considerably less stress upon N. norvegicus than trawl-capture 

(Wileman et al., 1999). However, in addition to the aggressive conflicts and starvation 
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which may occur within creels, lobsters will be exposed to an array of stressors during 

emersion, handling, pounding and transportation to the market place (Whyman et al., 1985; 

Spicer et al., 1990; Paterson & Spanoghe, 1997; Schmitt & Uglow, 1997). As such, any 

lobster in sub-optimal condition at the point of capture (e. g. recently moulted, diseased, 

damaged etc. ) may be less likely to survive post-capture handling, storage and 

transportation (see Zhou & Shirley, 1995). Additionally, loss of physiological condition in 

the post-harvest period has been implicated in the deterioration in the flavour and texture of 

crustacean meat (Boyd & Sumner, 1973). 

Disease as an additional stressor. 

Infectious and non-infectious diseases affect both wild and cultured crustacean species. 

An understanding of crustacean pathogens and the natural reactions of host animals to 

disease is necessary for the efficient husbandry of cultured species and for the management 

of wild stocks. Non-infectious pathologies, such as those brought about by heat, cold, 

detergents, pesticides and heavy metals, may be important factors in the regulation of host 

populations (Pauley, 1975a). They may also cause significant economic losses in 

aquaculture situations, with disease events normally coinciding with overcrowding, 

handling, hypo- or hyperthermia, hyperactivity, changes in salinity or hypoxia (see 

Akiyama et al., 1982; Nash et al., 1987). 

However, the majority of infections in crustaceans are caused by pathogenic 

microorganisms. The most important pathogens include representatives of the viruses, 

bacteria, fungi and protozoa. Over 30 species of virus have been described infecting 

crustaceans (Brock & Lightner, 1990), some of which, such as the one causing Taura 

syndrome in the shrimp Penaeus vannamei, cause significant economic losses under 

aquaculture conditions (Tu et al., 1999). Bacteria have been reported as residual inhabitants 

of the normal crustacean haemolymph (Colwell et al., 1975). The Family Vibrionaceae 
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(especially Vibrio spp., Aeromonas spp. ) most commonly cause bacterial infections 

(Lightner, 1977), and these are often associated with host stress reactions to sub-optimal 

environmental conditions (Lightner & Lewis, 1975; Johnson, 1976; Stewart, 1980). 

External pathologies of the carapace, such as 'rust disease' and 'black spot' have been 

attributed to chitinivorous species of Vibrio and Pseudomonas (Baross et al., 1978). 

Bacterial colonization may also occur as a secondary effect of infection by other parasites. 

In these cases, impairment of the normal immune response of the host caused by the 

primary pathogen may allow infestation by secondary opportunists (Meyers et al., 1987; 

Field et al., 1992). 

Diseases caused by fungi may also have significant impact on crustacean populations. 

Shell diseases, commonly in conjunction with bacterially-induced lesions, have been 

attributed to various fungal species. One such disease in European species of crayfish is 

Burned Spot disease. In this, fungal hyphae growing within the cuticle cause dark lesions 

and breaches to appear, which allow secondary invasions by bacteria to occur. A similar 

disease, Black Mat syndrome (caused by the ascomycete Trichomaris invadens) has been 

described in Tanner crabs (Chionoecetes bairdi and C opilio) from Alaska. In this 

infection, the connective tissue surrounding the organs may be largely replaced by fungal 

hyphae, with the highest prevalence of infection being found in mature female crabs 

(Brock & Lightner, 1990). Ile most notable example of a fungal disease of wild 

crustacean populations is 'Crayfish Plague' caused by the PhycomyCete Aphanonýyces 

astaci. First reported in Italy in the mid- I 800s, the disease spread rapidly through mainland 

Europe, destroying many native populations of Astacus astacus, A. leptodactylus and 

Austropotamobiuspallipes by the early 1900's (Johnson, 1983). North American species of 

crayfish, which show resistance to the parasite, can however act as carriers. It has thus been 

suggested that Crayfish Plague may have been introduced to Europe with imported animals 

and subsequently formed cpizootic infections in native populations (Johnson, 1983). 
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Infections caused by yeasts have also been described in Daphnia, Artemia, amphipods and 

freshwater crayfish (Brock & Lightner, 1990). 

It is likely that all decapod crustaceans harbour protistan parasites, although relatively 

few species are known due to the small number of decapod species that have been 

examined (for review see Sprague & Couch, 1971). The most important protozoan 

parasites of crustaceans are the microsporidians, with over 140 species described (Brock & 

Lightner, 1990). The microsporidians are intracellular parasites with great reproductive 

capacity. Transmission is normally by ingestion of spores by the host organism. Spores 

hatch and sporoplasms: gain entry to the primary site of infection (usually the gut wall) via 

the spores' polar filaments. From here, the infection can spread to target tissues and organs. 

Once inside the target cell, a period of rapid multiplication (binary fission of schizogony) is 

followed by sporogony, whereby sporonts divide into sporoblasts and then to spores. I'liese 

spores can then infect other host cells, often completely replacing the cell contents with 

parasite material (Canning, 1977). Microsporidian parasites are commonly found infecting 

the skeletal muscles (Findley el al., 198 1; Olson & Laman, 1984; Dennis & Munday, 1994) 

the hepatopancreas (Anderson et al., 1989, Kabre, 1992), the gut wall (Kelly, 1979) and the 

reproductive tissues (Baticados & Enriquez, 1982) of crustaceans. In addition to the 

economic threat of microsporidiosis to the survival of cultured species, the presence of 

infections in wild crustacean populations may impact upon reproductive output and stock 

recruitment (by causing parasitic castration - Breed & Olson, 1977) and may also affect the 

marketability of infected animals (Olson & Laman, 1984). 

Protozoan parasites of the subphylum Sarcomastogophora are generally thought to play a 

minor role in crustacean diseases (Sprague & Couch, 1971). However, one species of the 

family Paramoebidae, Paramoeba perniciosa, the causative agent of Grey Crab disease in 

the blue crab (Callinectes sapidus), causes seasonal infections along the eastern coast of 

the USA (Johnson, 1977). Moribund specimens have a translucent, grey appearance, with 
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internal symptoms that include lysis of muscle and blood cells and a reduction in 

carbohydrate and protein reserves (Pauley et al., 1975). The parasite is responsible for 

commercially significant mortalities in wild populations and epizootics in holding tanks 

(Sawyer et al., 1970; Johnson, 1988). 

Ciliate diseases are also relatively uncommon in crustacean hosts. The early descriptions 

of ciliate infections of crabs were attributed to the genus Anophrys, but more recently these 

forms have been transferred to the genus Paranophrys (Sparks et al., 1982). They are 

generally described as being problematic under hatchery and holding conditions (Bang et 

al., 1972) but have also been reported in wild populations (Poisson, 1930; Armstrong et al., 

1981). Recently, studies on the infection by the scuticociliate Anophryoides haemophila 

have suggested this to be one of the three most important diseases in the American lobster 

(Homarus americanus), contributing significantly to post-capture economic losses 

(Cawthorn, 1997). Though initially described as being 'blood parasites', ciliate infections 

are now known to be systemic pathogens, capable of invading all major tissues (Sparks et 

al., 1982). Death of the host is probably due to a major disruption of normal haernolymph 

and tissue function caused by the massive proliferation of parasites which accompanies late 

infection (Armstrong et al., 198 1). 

In addition to their importance in the phytoplankton, the dinoflagellates are found as 

symbionts in a phyletically wide range of marine invertebrates (Trench, 1987). The first 

well-documented parasitic life style amongst the dinoflagellates was by Pouchet in 1885. 

He described Gymnodinium pulvisculus (later named Oodinium pauchetti) as an 

ectoparasite on Oik-opleura (Pouchet, 1885 in Coats, 1999). However, knowledge of 

parasitic dinoflagellates was poor until the contributions of Chatton were collected in a 

volume of parasitic dinoflagellates in the 1920s and reviewed in the 1930's (Chatton & 

Poisson, 1931 in Taylor, 1987). The work of Chatton was considerably expanded by Jean 

and Monique Cachon in the mid 1900s, who described the cytology and life history of 
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numerous parasitic dinoflagellate forms (for review see Cachon & Cachon, 1987). It is now 

known that approximately 35 genera, representing four orders of dinoflagellates (the 

Phytodiniales, Gymonodiniales, Blastodiniales, and Syndiniales) contain species which are 

known to be parasitic. The majority of these are parasites of marine and estuarine 

organisms (Coats, 1999). In addition to the crustaceans, parasitic dinoflagellates are known 

to infect algae, protozoa, annelids, molluscs, salps, tunicates, rotifers and fishes (with over 

140 species out of the 2000 described being parasitic) (Shields, 1994). Concerns over the 

importance of dinoflagellates as agents of disease in marine fisheries have led to a large 

expansion in the body of literature on this subject. In particular, much interest is now 

focussed on aspects of parasite-host ecology and on the molecular identification of 

parasitized hosts and the different parasite taxa responsible (Coats, 1999). 

A number of parasitic dinoflagellate 'tribes' have been distinguished: the Blastodinida, 

Duboscquodinida, Syndinida and the Dinococcidia (which differ in morphology of the 

vegetative stage, in nuclear development and in their structural and metabolic relationship 

with the host) (Cachon & Cachon, 1987). The Blastodinida, Duboscquodinida and the 

Syndinida have life cycles consisting of two phases: the vegetative phase (trophont) and the 

reproductive phase (sporont). The reproductive phase leads to the formation of two 

dissimilar forms of bi-flagellate dinospore ('swarmers') which arise from different parent 

individuals and ensure dispersal and new infection (Cachon & Cachon, 1987). 

The Syndinidae are generally considered as parasites of the haemocoel of metazoan 

hosts. They occur mainly as plasmodial forms which continue to grow and multiply until 

production of the motile spore stage. There are no chloroplasts and osmotrophy is the rule 

during the trophic phase (flagella not present), where lipid and polysaccharide inclusions 

suggest active feeding at the expense of the host. Sporogenesis is simple, with 

multiplication of the nuclei, plasmodia and cytoplasmic divisions up until the last 

generation of sporocysts, following which the bi-flagellate spores are produced and 
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liberated (Cachon & Cachon, 1987). Four genera of syndinids are known to be parasitic of 

crustaceans; Actinodinium, Trypanodinium, Syndinium and Hematodinium. Of these, 

Actinodinium (in copepods) and Trypanodinium (on copepod eggs) have not been well 

documented, while Syndinium and especially Hematodinium have been studied by a 

number of workers (Shields, 1994). Infection by Syndinium turbo and S. gammarai have 

been described in copepods and inoculation presumably occurs by ingestion of dinospores 

by the host. Pathology includes degeneration of the host musculature, castration and 

eventually death. It is assumed that such infections may play a significant role in the 

regulation of host populations (Shields, 1994). 

Infections caused by Hemato&nium spp. 

Members of the genus Hematodinium are primarily parasites of decapods. Questions 

relating to host specificity are complicated by limited species descriptions and the lack of 

recognized morphological traits for sorting taxa of some parasitic dinoflagellates (Coats, 

1999). Until recently, there was only one described species in the genus Hematodinium. 

This type species, Hematodinium perezi. was first described from the portunid crabs 

Carcinus maenas and Docarcinus depurator in European waters (Chatton & Poisson, 

193 1). More recently, description of a second species, H. australis (Hudson & Shields. 

1994) and molecular studies showing differences in Hematodinium isolates from other 

crustacean hosts (Hudson & Adlard, 1996), indicate a higher species diversity and host 

specificity than first thought (Coats, 1999). 

Hematodinium infection has now been reported from a number of crab hosts from around 

the world, including Callinectes sapidus (Newman & Johnson, 1975; Messick, 1994), 

Cancer pagurus (Latrouite et al., 1988), Cancer irroratus, Cancer borealis (Maclean, 

1978); Chionoecetes bairdi (Meyers et aL, 1987; Eaton et al., 1991; Love et al., 1993), 

Chionoecetes opilio (Taylor & Khan, 1995), Necora (= Liocarcinus) Puber (Wilhelm & 
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Boulo, 1988; Wilhelm & Mialhe, 1996), Ovalipes ocellatus (Maclean, 1978) Portunus 

pelagicus (Hudson & Shields, 1994), Scylla serrata (Hudson & Lester, 1994), Trapezia 

areolata and T coerulea (Hudson et al., 1993). Hematodinium-like dinoflagellates have 

also been described from several species of pandalid shrimp (Bower et al., 1993, Meyers et 

al., 1994) and in benthic amphipods (Johnson, 1986). 

During the early 1980s, a low incidence of N. norvegicus in a moribund state, with dull 

orange colouration and a milky-white haemolymph, were captured by fishermen in the 

Firth of Clyde, western Scotland. Due to its coincidence each spring with the main 

moulting period, the condition was designated 'post-moult trauma'. By the late 1980s, the 

increasing incidence of lobsters in this poor condition began to evoke comment from 

fishermen and processors and led to a regular sampling program to define its seasonality 

and geographic incidence (Field, 1992). Further studies on these affected lobsters led to the 

discovery that the condition was in fact caused by a parasitic dinoflagellate, similar to the 

Hematodinium species described from other species of decapod. This was the first 

description of Hematodinium infection in a lobster (Field et al., 1992). 

The N. norvegicus isolate of Hematodinium has now been serially cultured at 80C for a 

number of years and a putative life cycle for the parasite has been described. The parasite 

appears to undergo a series of developmental changes which eventually lead to the 

production of the motile dinospore stages. However, successful transmission of parasites to 

uninfected hosts has not been demonstrated to date, suggesting that the life-cycle described 

from in vitro cultures may not fully explain events in the field (Appleton & Vickerman, 

1998). The presence of Hematodinium infection in the hermit crab Pagurus bernhardus in 

the Clyde fishery (Appleton & Vickerman, 1998) and the description of Hematodinium 

infection in several species of benthic amphipod (Johnson, 1986) means that the 

involvement of an intermediate/alternative host in Hematodinium transmission to N. 

norvegicus cannot be ruled out. The Hematodinium isolate from C sapidus has also been 
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serially cultured (Shields & Messick, 1997), though here, transmission to uninfected hosts 

has been demonstrated by serial passage of infected haemolymph (Shields & Squyars, 

2000). 

To date, the major field diagnostic method for the detection of Hematodinium infection in 

N. norvegicus has been the pleopod method of Field & Appleton (1995), in which a 

pleopod is assessed for the presence of agglutinated parasite and hemocyte material under 

low-power microscopy. In addition to its rapidity and adaptability to field conditions, a 

further advantage of this method is that it allows infection severity to be assessed on a four 

point scale, which allows the progression of infection to be charted. Ibis has been used to 

show that patent Hematodinium infection (present in the haemolymph) progresses from 

low haemolymph - burdens during light infections to the production of swarming spore 

masses at the termination of infection, after which the host lobster dies (Field & Appleton, 

1995; Appleton & Vickerman, 1998). However, the pleopod method fails to diagnose low- 

level (sub-patent) haemolymph infections and tissue-based (latent) Hematodinium 

infections (Field & Appleton, 1996). For this reason, a polyclonal antibody, was raised 

against the cultured Hematodinium sp. originally isolated from N. norvegicus and used in 

an indirect fluorescent antibody technique (IFAT) study to show that apparently uninfected 

lobsters (using the pleopod method) can harbour low level infections outside of the main 

season (Field & Appleton, 1996). Observations made in this IFAT study suggested that the 

epidemiology of latent and sub-patent infections can only be investigated by using 

diagnostic methods which are considerably more sensitive than the pleopod method. 

However, the pleopod method has been used to show that epizootics of Hematodinium 

infection, similar to those already described in other commercially important crustacean 

hosts from southeast Alaska, France and the eastern United States (Newman & Johnson, 

1975; Latrouite et al., 1988; Wilhelm & Boulo, 1988; Meyers et al., 1987,1990; Wilhelm 

& Mialhe, 1996) occur in N. norvegicus populations at various sites on the west coast of 
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Scotland (Field et al., 1992,1998). For this reason, the pleopod method remains a powerfiil 

field tool for the diagnosis of patent infections. 

Rationalefor the current study. 

The large fishery for N. norvegicus necessitates careful stock assessment and effort 

control (Tuck et al., 1997b). While an important feature of such assessment is the 

estimation of natural (" and fishing (F) mortalities, little information is available on the 

former (Chapman, 1980). However, a major contributor to natural mortality in any 

population is disease, with infectious organisms also affecting growth, reproduction and 

egg survival in their hosts. As such, assessment of natural mortality in fisheries models 

should make use of data on disease prevalence where available (Kuris & Lafferty, 1992). 

The prevalence of Hematodinium infection in N. norvegicus, especially during epizootic 

seasons is now being considered as an important natural mortality factor in N. norvegicus 

stock assessment models (Anon, 1997) and as such, estimation of the proportion of natural 

mortality (M attributable to Hematodinium infection requires accurate assessment of 

prevalence in natural populations. I'lie diagnostic sensitivity and reliability of the pleopod 

method therefore requires investigation, while fiirther development of the MAT method of 

Field & Appleton (1996) into a rapid, sensitive and non-subjective immunoassay will allow 

for infection prevalence data from different fisheries, at different European locations, to be 

compared with greater confidence. 

Any feature which alters the burrow emergence pattern or the escape swimming ability of 

N. norvegicus may be expected to impact upon their capture by trawlers. Due to 

pathological (Field & Appleton, 1995) and physiological (Taylor et al., 1996) deterioration 

which occurs in N. norvegicus with patent Hematodinium infections, it has been suggested 

infected lobsters may spend longer periods out of the burrow and may be less able to 

escape from predators and trawlers than their uninfected counterparts (Field et al., 1992, 
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Field & Appleton, 1995). As such, estimations of Hematodinium infection prevalence in 

lobsters from trawl-caught samples may give a false estimation of true levels of infection 

prevalence in the natural populations. In order to assess the accuracy of infection 

prevalence estimates in trawler-caught samples, an investigation into the burrow-oriented 

behaviour and the escape swimming ability of Hematodinium-infected N. norvegicus is 

required. 

Studies on Hematodinium infections of other commercially-important crustacean hosts 

species have described major pathological disruptions to the muscle and haemolymph 

(Meyers et al., 1987; Taylor & Khan, 1995; Wilhelm & Mialhe, 1996). Sin-dlar gross 

observations on pathological progression of infection (such as milky-white haemolymph, 

infiltration of tissue and organs by parasite cells and general morbidity) have also been 

made for Hematodinium-infected N. norvegicus (Field et al., 1992; Field & Appleton, 

1995), though to date, only one study has provided data on the physiological changes 

which occur in haemolymph and tissues during infection (Taylor et aL, 1996). 

Changes in the biochemical and physiological characteristics of Hematodinium-infected 

N. norvegicus tissues may have implications at several different levels. At market level, 

biochemical alterations to the meat of heavily-infected animals may render it 

unmarketable, a problem already encountered in Hematodinium-infected tanner crabs (C 

bairdi and C opilio) (Meyers et al., 1987; Taylor & Khan, 1995). At the fisheries level, 

ultrastructural and biochemical disruptions to the abdominal muscles may impinge upon 

the escape-swimming capability of infected lobsters, while the utilization of host resources 

by the parasites may lead to physiological starvation, an effect which may manifest itself as 

an increase in out-of-burrow foraging - both of which may lead to increased catchability of 

infected lobsters relative to their uninfected counterparts. Alternately, parasite-mediated 

biochemical and physiological alterations in the host could be used to map the pathological 
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progression of infection, thereby leading to a richer understanding of the ecological 

relationship between parasite and host. 

The aims of this thesis are based on the above considerations, and are: 

1. To use existing field diagnostic methods for studying the epidemiology of patent 

Hematodinium infection prevalence in natural populations of N. norvegicus and to 

investigate prevalence in relation to the size, sex, moult status and population structure of 

host animals (Chapter 2). 

2. To develop the sensitive MAT method into a multi-sample, reproducible diagnostic method 

for the detection of sub-patent and latent Hematodinium infections in field-caught samples 

of N. norvegicus (Chapter 3). 

3. To investigate the effects of Hematodinium infection on the biochemistry and physiology 

of the haemolymph and tissues of N. norvegicus (Chapters 4,5 and 6). 

4. To investigate whether Hematodinium infection renders N. norvegicus more available to 

the fishery and to predators by causing changes in the locomotory ability (Chapters 8 and 

9) and burrow-related behaviour (Chapter 10) of infected lobsters. 

5. To integrate laboratory-based and field data to provide a detailed picture of the overall 

ecological effect of Hematodinium infection on N. norvegicus (Chapter II- Conclusions 

and Prospects). 

While not being an initial aim of this thesis, chapter 7 provides the first description of a 

seasonal, post-capture necrotic muscle pathology in N. norvegicus from the west coast 

fishery. This chapter reports on a disease which is distinct in both its seasonality and its 

pathology from Hematodinium infection, and thus provides a useful reference for the 

prevention of misdiagnosis in the field. 
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Each of the data chapters in this thesis has been written as independent pieces of research 

and Chapters 2-10 inclusive have been submitted separately as scientific papers. As such, 

the chapters can be read independently without the need for cross referencing to other 

chapters, though all chapters do refer to each other by cited references, which are presented 

at the end of each chapter. Details on the status of the manuscript, co-authors, publication 

title, journal name and publication date are given on the title page of Chapters 2- 10. 
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Fig. 1. The Norway lobster, Nephrops norvegicus in typical 'guarding' position at the 
entrance to its burrow (from Erwin & Picton, 1995). 

Fig. 2. The Norway lobster, Nephrops norvegicus undergoing active escape-swimming 
following disturbance by the ground rope of a trawl net (from Newland, 1985). 
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Chapter 2 

The relationship of Hematodinium infection prevalence in a Scottish Nephrops 

norpegicus population to seasonality, moulting and sex. 

Abstract. 

The two Major field methods (body colour and pleopod index) for the diagnosis of 
infection in the Norway lobster, Nephrops norvegicus (L. ) by the dinoflagellate parasite 
Hematodinium have been compared. Using the more reliable method, the pleopod index, 

which scores infection severity on a four point scale, infection prevalence data have been 

collected from a single fishing ground in the Clyde Sea area, western Scotland over a 

continuous period of 31 months. Peak infection prevalence occurs during the spring and is 

highest in small N. norvegicus (mean carapace length 28.1 mm ± 0.67 in females and 30.9 

mm ± 0.50 in males) and in females. Mean infection severity increased from 1.05 ± 0.03 

during the low season (July - December) to 2.59 ± 0.19 by the end of the main infection 

season (May), highlighting the progressive nature of patent infection over time. Data 

collected separately for male and female lobsters show that infection prevalence is 

synchronous between the sexes in some seasons but not in others. Additionally, the 

proportion of recently moulted, infected males in the late season extends the duration of 

peak infection prevalence in certain years. Data from two adjacent fishing grounds in the 

Clyde Sea area has also shown that infection prevalence depends upon the population 

structure at a given site - the site with smaller animals showing the highest prevalence. The 

methods for monitoring Hematodinium infection for the assessment of natural mortality 

attributable to infection are evaluated. The relationships between fishing pressure, 

population structure of N. norvegicus and seasonal Hematodinium infections are also 

discussed. 

Submitted as: Stentiford, G. D.. Neil, D. M. & Atkinson, RTA. (2001). The relationship of 
Hematodinium infection prevalence in a Scottish Nephrops norvegicus population to 
seasonality, moulting and sex. ICES Journal of Marine Science. 
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Introduction. 

Populations of the Norway lobster (Nephrops norvegicus) provide one of the most 

valuable shellfish resources in the north east Atlantic, with annual landings in excess of 

60,000 tonnes (Tuck et al., 1997). A major fishery for N. norvegicus exists in waters 

surrounding the United Kingdom, with the Scottish fishery contributing over 76% of this 

(07 million in 1999 - FRS, 2000, unpublished). The majority of the landings are from 

trawler capture, with lobsters being 'tailed' for sale as 'scampi'. Larger animals, captured 

by baited creels are often exported live to continental Europe by specially-designed 'vivier' 

vehicles. The large fishery for N. norvegicus necessitates careful stock assessment and 

effort control (Tuck et al., 1997) and an important feature of such assessment is the 

estimation of natural (" and fishing (F) mortalities. While fishing mortality is directly 

related to effort (E), little information is available on the rate of natural mortality in X 

norvegicus populations (Chapman, 1980). A major contributor to natural mortality in any 

population is disease, and infectious organisms may also affect growth, reproduction and 

egg survival in their hosts. As such, assessments of natural mortality in fisheries models 

should make use of data on disease prevalence where available (Kuris & Lafferty, 1992). 

Infections by parasitic dinoflagellates of the genus Hematodinium have been reported in a 

number of commercially important crustacean hosts (Newman & Johnson, 1975; Maclean, 

1978; Messick, 1994; Meyers et al., 1987; Latrouite et al., 1988; Wilhelm & Boulo, 1988; 

Hudson & Shields, 1994; Hudson & Lester, 1994; Taylor & Khan, 1995. Wilhelm & 

Mialhe, 1996). Stocks of X norvegicus on the west coast of Scotland have been also been 

shown to harbour infections by Hematodinizim (Field et al., 1992). Since the initial 

descriptions of disease etiology, diagnosis and pathology (Field et al., 1992; Field & 

Appleton, 1995,1996), further studies have described the in vitro life-cycle of the parasite 

(Appleton & Vickerman, 1998) and have revealed that significant alterations in host 

physiology (Taylor et al., 1996), biochemistry (Stentiford et al., 1999 - Chapter 4, 
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Stentiford et al., 2000a - Chapter 5), locomotory performance (Stentiford et al., 2000b - 

Chapter 8) and behaviour (Stentiford et al. 2001a; in manuscript - Chapter 10) are 

associated with parasitism. 

A number of methods are available for the detection of Hematodinium infection in N. 

norvegicus. The simplest involves external assessment of the altered carapace coloration 

and opacity that accompanies patent infection. This assessment has the advantage that it 

can be performed rapidly in the field, but its value as a diagnostic tool has not been 

established, since no systematic study has been made of the relationship between parasite 

burden and colour change. The method that has been used most routinely is the pleopod 

infection staging technique of Field & Appleton (1995), in which a pleopod is assessed for 

the presence of parasite and hernocyte material under low-power microscopy. This method 

assigns infection severity on a four point scale, which allows the progression of infection to 

be charted. The current study has compared the sensitivity and reliability of the body 

colour and pleopod methods for the detection of patent infections. Observations on the 

prevalence of Hematodinium infection in crabs have suggested that there is a highly 

seasonal epidemiology, with peak infection occurring over a relatively narrow time period, 

followed by a longer period of undetectable or low level infection prevalence (see Shields, 

1994). Studies on Hematodinium infection in Scottish N. norvegicus populations have 

shown similar features of seasonal epidemiology, along with evidence that prevalence is 

higher in small lobsters than in large lobsters, and in female lobsters than in male lobsters 

(Field et al., 1992,199 8; Field & Appleton, 1995). Meyers et al. (1990) have reported that 

Hematodinium infection prevalence is highest in post-moult C bairdi. Moulting has also 

been suggested as the major predisposing factor for Hematodinium infection of N. 

norvegicus, though the relationship remains unclear (Field et aL. 1992,1998). 

From a general survey of Hematodinium infection in N. norvegicus captured from the 

west coast of Scotland, it has been shown that the Clyde sea area generally has the highest 
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prevalence levels (Field et al., 1998). Here we report the results of a continuous long-term 

study of infection prevalence, whereby the pleopod diagnostic technique was applied to a 

major N. norvegicus fishing ground in the Clyde Sea area. Data are discussed in relation to 

the importance of long-term Hematodinium infection monitoring in commercially 

important crustacean populations, and the requirement for accurate infection prevalence 

data for use in stock assessment models for the X norvegicus fishery. 

Methods. 

Capture qj*lobsters. 

Norway lobsters (Nephrops norvegicus) were caught from a depth of approximately 80 

in, using 90 minute tows of a standard otter-trawl (70 mm mesh size). The start of the 

towing period was always between 0900 h and 1000 h to minimise any effect of differential 

burrow emergence behaviour on catch composition (Atkinson & Naylor, 1976) and the 

effect of capture time on infection prevalence (Field et al., 1998). The main capture site 

was at a location immediately south of Little Cumbrae (LQ in the Clyde sea area (55.4 I*N, 

4.56*W) or in one instance, from the adjacent Bute-Cumbrae channel (BC) (55.46*N, 

4.591VV) in the Clyde Sea area, Scotland, UK. Both sites are fished commercially. Trawls 

were made each month over the period from February 1998 to August 2000 inclusive (n 

31). 

Following capture. all non-target species were separated from the catch and a random 5 

kg sub-sample of N. norvegicus was removed for assessment of sex, carapace length, 

approximate moult stage and infection stage. Carapace length was measured from the rim 

of the eye socket to the posterior mid-point of the carapace. Moult stage was assigned as 

either intermoult (IM - no setal withdrawal in the pleopod and a rigid carapace) or recently 

moulted (RM - no setal withdrawal in the pleopod and a flexible 'paper' campace) (see 

Aiken, 1980). Hematodinium infection diagnosis was carried out either in the laboratories 
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of the University Marine Biological Station Millport (UMBSM) or at the Division of 

Environmental & Evolutionary Biology, University of Glasgow, Scotland, UK. All sub- 

samples were stored in a cool, damp environment following capture and were generally 

alive for Hematodinium infection diagnosis. Pleopods were viewed under low-power light 

microscopy (x 40 magnification). The accumulation of agglutinated parasite and 

haemocyte material was used to assign the appropriate stage, whereby Stage 0 is apparently 

uninfected and Stages I to 4 are patently infected. The accuracy of the body colour and 

pleopod diagnosis methods was assessed by comparing the results from two different 

scorers (one naive and one experienced). Both scorers assessed each lobster in a standard 

sub-sample for Hematodinium infection using the body colour method (loss of shell 

translucency, vivid coloration) and the pleopod method (as above). Results from the two 

scorers were compared at the end of the trial to assess the inter-operator sensitivity and 

reliability of the two methods. 

Analysis of data. 

Comparisons of the mean size of infected male and female lobsters and the mean size of 

uninfected and infected lobsters from the LC and BC sites were performed either by one- 

way analysis of variance (ANOVA) for normally distributed data, or by a Mann-Whitney 

test for non-normal distributions. Tests were considered significant if p<0.05. 

Results. 

Body colour vs pleopod diagnosis. 

By comparing the scores obtained by the experienced and nal-e operators, it was possible 

to assess the sensitivity and reliability of the two major field diagnosis methods. In relation 

to the pleopod method, the body colour assessment underestimated infection prevalence by 

approximately 50 %, even when used by the experienced operator (Fig. la). Of those 
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infected lobsters thus misdiagnosed by the body colour method, the majority were of Stage 

I infection for both the naive and experienced scorer. However, no heavily infected 

lobsters were missed by the colour diagnosis method by either operator (Fig. lb). The 

pleopod scores show that the naive operator estimated infection prevalence to be 

approximately 9% higher than the experienced operator (Fig. la). Of these over-estimates, 

again the majority were lightly-infected (Stage 1) animals. 

Hematodiniumprevalence at the LC site. 

Infection prevalence data obtained using the pleopod method at the LC site over three 

consecutive fishing seasons are shown in Figure 2a. During the summer and autumn (July 

to November), the prevalence of patent infection was minimal in both male and female 

lobsters (< 5%), with the initial increase occurring during December in each of the seasons 

studied. Prevalence of patent infection showed a marked increase during the period 

between January and March, and peaked in April or May. Overall infection prevalence 

reached a maximum of 20 - 25% in each of the three seasons studied, though prevalence in 

female lobsters was as high as 35% during the 1998 and 2000 seasons. However, the 

elevated level of infection prevalence in female lobsters had a lesser effect on the overall 

infection prevalence, due to the reduced proportion of female lobsters in the catch during 

the late winter and early spring periods (Fig. 2b). Following the peak (May to July), a sharp 

reduction in the prevalence of patently infected lobsters occurred. 

Severity qfpatent Hematodinium infection. 

As well as allowing Hematodinium infection prevalence to be assessed at the population 

level, the pleopod staging method also allows the severity of the infection in lobsters (on a 

scale of Stage I to Stage 4) to be assessed The mean infection severity measured in lobsters 

displaying patent infection, captured at the LC site over the three consecutive seasons is 
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shown in Fig. 2c. Over this period, all Hematodinium infected lobsters captured during the 

'Low Season', i. e. outwith the main infection season of July - December, had very low 

parasite burdens, with a mean infection stage of 1.05 ± 0.03 (n=12). At the beginning of the 

main infection periods (February), the mean severity of infection in infected lobsters 

increased significantly to 2.04 ± 0.02 (n=3) (p < 0.05), and then to 2.59 ± 0.19 (n=3) (p = 

0.05) (heavy Hematodinium parasite burden) by the end of the main infection season 

(May). These data indicate a progressive nature of patent infection over the main infection 

period. 

Size of infected lobsters. 

The monthly data for mean carapace size of lobsters captured at the LC site are given in 

Fig. 3. In addition to a reduction in mean carapace lengths which occurred during the 

autumn (September to October) of each season studied, the mean carapace length of male 

lobsters was significantly smaller in the 1999 season (29.2 ± 0.4 mm) than in thel998 

season (32.3 ± 1.15 mm) (p < 0.05). However, no significant reduction in carapace length 

was seen in females over the same period (30.7 ± 1.4 mm in 1998; 27.8 ± 0.7 min in 1999) 

(p = 0.08 1). In the 2000 season, the mean sizes of male and female lobsters (30.7 ± 0.5 and 

28.2 ± 0.6 mm respectively) were not significantly different to those in the 1998 season (p 

> 0.05). 

The mean carapace length of Hematodinium-infected female lobsters (28.1 mm ± 0.67) 

was significantly smaller than that of infected male lobsters (30.9 nun ± 0.50) captured 

from the LC site (p < 0.001). In order to test whether the mean carapace length of the X 

norvegicus population at a particular site affects the prevalence of Hematodinium infection 

in that population, two geographically-close sites (LC and BQ were sampled on the same 

day in February 1999. Overall infection prevalence at the BC site was 15.5%, while at the 
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LC site, prevalence -was 21.6%. The mean carapace length of uninfected lobsters captured 

at the BC site (37.5 ± 0.47 mm) was significantly greater than for lobsters at the LC site 

(28.6 ± 0.26 mm) (p < 0.001). Similarly, the mean carapace length of Hematodinium- 

infected lobsters captured at the BC site (36.2 ± 0.52 mm) was significantly greater than 

those from the LC site (28.1 ± 0.42mm) (p < 0.001). When the mean carapace lengths of 

uninfected and infected lobsters from the LC site were compared, it was found that the 

difference was not significant (p = 0.239). At the BC site, the mean carapace length of 

infected lobsters was also not significantly different from that of uninfected lobsters (p = 

0.066). This suggests that the size distribution of infected lobsters capt ured at each site was 

not significantly different from the size distribution of uninfected lobsters captured at the 

same site (Fig. 4 ab). 

Hematodinium infection and the moulting period. 

'nie relative proportion of recently moulted (RM) and intermoult (IM) X norvegicus in 

the catch gives an indication of the main moulting period and allows an assessment to be 

made of the synchrony of moulting amongst individuals in the population. Moult data from 

the LC site are shown in Figure 5a. Large numbers of RM lobsters appeared in the catch 

during the spring and summer of each year, but the relative proportion of RM lobsters 

appeared to vary between seasons (with a particularly high proportion of RM females 

during the summer of 1998). The reduction in the proportion of RM lobsters in the catch 

during late summer seems to be due to the progression of moulted lobsters into the IM state 

as the season advances. The fact that there is a higher proportion of RM female lobsters 

than RM male lobsters each spring and summer is suggestive of more synchronous 

moulting period in females than males, even though RM lobsters of both sexes are found in 

the catch throughout the year. 
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By combining data for moult status and infection prevalence and comparing the 

prevalence level in RM and IM lobsters, it is possible to investigate the relationship 

between moulting the onset of disease patency in each sex. Figure 5b shows infection 

prevalence data for RM and IM female lobsters at the LC site. In the 1998 season, 

prevalence was initially high in IM female lobsters, and increased in RM female lobsters as 

the season progressed. In the 1999 season, IM prevalence also rose initially, though the 

prevalence level in RM females did not increase to the level seen in the 1998 season. 

Finally, in the 2000 season, the prevalence level in IM and RM female lobsters was similar 

for the whole season. In contrast male lobsters displayed a similar pattern of IM and RM 

infection prevalence for each of the seasons studied (Fig. 5c), with RM infection 

prevalence being consistently higher than IM infection in the late season (April-May). 

In some seasons, data for overall infection prevalence at the LC site (Fig. 2a) show an 

apparent 'plateau' of peak infection prevalence between February and April-May (e. g. the 

1999 season). When data from the 1999 season for RM and IM female lobsters are 

compared to those of RM and IM male lobsters, it can be seen that infection prevalence 

peaks later in males than in females and that the plateau of infection prevalence described 

above is caused by an increase in infection prevalence in RM males (Fig. 2a and 5c). 

During other seasons (e. g. 2000), when male and female infection prevalence peaks occur 

at the same time, a sharper peak of infection prevalence occurs (see dashed lines between 

Fig. 5b and 5c). 

Discussion. 

The body colour vs pleopod diagnostic methods. 

Tle body colour diagnostic method uses external features of infection (vivid colouration, 

opaque carapace) to estimate prevalence. It is rapid and can be carried out aboard research 

and fishing vessels. However, the current study has shown that it may underestimate 
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infection prevalence relative to that determined by the pleopod method, by approximately 

50 %. No improvement in diagnostic accuracy occurred with experience, with both the 

naive and experienced operators failing to diagnose large numbers of early-stage (Stage 1) 

infections. '11iis suggests that while this method may be useful for the selection of heavily 

infected lobsters from the catch for pathological studies, the colour changes in lobsters with 

light infections are too minor to be used for accurate diagnosis. As such, the body colour 

method probably has little use in generating accurate data for modelling the proportion of 

natural mortality (" attributable to Hematodinium infection (Field et al., 1992). 

'Me pleopod diagnosis method detected considerably more infected lobsters than the 

body colour method, but the higher prevalence estimate made by the nalve operator 

suggests that some subjectivity exists in this method, especially for the diagnosis of light 

infections. As the pleopod method determines the presence of Hematodinium parasites in 

the haemolymph, any other changes to the haemolymph which occur following capture arc 

likely to affect diagnostic accuracy. In the hours following capture, colonization of the 

haemolymph by bacteria was often observed, making visual assessment of light infections 

more difficult. Sample freshness is therefore important, especially for the diagnosis of light 

infections. However, overall, the pleopod diagnostic method provides a reliable, rapid and 

relatively transferable tool for infection assessment and is therefore useful for preliminary 

studies in N. norvegicus fisheries where the presence of Hematodinium infection is 

unconfirmed. 

Hematodinium infection epidemioloU. 

By use of the pleopod diagnostic method, the current study has highlighted the seasonal, 

epidemic nature of Hematodinium infection in a population of N. norvegicus contributing 

to the important commercial fishery in the Clyde Sea area and reinforces earlier reports of 

high Hematodinium infection prevalence at other sites on the west coast of Scotland (Field 
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et al., 1992,1998). During the study period, three discrete seasonal episodes of 

Hematodinium infection occurred (in each case, during the spring), in which overall 

prevalence reached 20-25 %. Previous data from the Clyde Sea area have shown that peak 

infection prevalence can be as high as 70 % in certain years (Field et al., 1992), 

highlighting the potential for considerable variation in the absolute level of infection 

prevalence between years. 

In the present study, infection prevalence was highest in female lobsters (especially 

during the 1998 and 2000 infection seasons), and this may be understood in terms of the 

life history of the female. In N. norvegicus, the egg-rearing period may last for up to 8 

months of the year, during which time the female lobster remains for the most part, within 

the burrow (Farmer, 1974a). Following spawning, the female lobster emerges from the 

burrow (reflected by the increase in the proportion of female lobsters in the catch during 

late spring in this study) to feed, moult and be mated by a hard-shelled male lobster 

(Farmer, 1974b). It has been proposed that mechanical disruption to the soft cuticle of the 

female lobster during copulation may lead to infection by motile spores of the 

Hematodinium parasite entering at the trauma site (Field et al., 1992). However, although 

feasible, this would not explain transmission to male lobsters and such a route of 

transmission has not been demonstrated experimentally. 

During periods of food scarcity (e. g. in the extended time period spent within the burrow 

during incubation), it has been suggested that lobsters may resort to suspension feeding in 

order to supplement their normal nutritional requirements (Loo el al., 1993). In this way, it 

is possible that lobsters may ingest motile or encysted (see John & Reid, 1983) forms of the 

Hematodinium parasite which may exist in the sediment or in the burrow water. Similarly, 

the hermit crab (Pagurus bernhardus), which also harbours infections of Hematodinium on 

the Scottish N. norvegicus fishing grounds is known to resort to filter feeding when other 

food sources are scarce (Gerlach et al., 1976). Ingested parasite forms may penetrate the 
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gut wall and lie dormant in tissues such as the hepatopancreas until development of patent 

infection at some point in the future (Appleton & Vickerman, 1998). It seems likely that 

ingestion of spores via suspension or filter feeding, or of vegetative forms and/or spores by 

predation (of hermit crabs) or cannibalism are the most likely routes of transmission to and 

from N. norvegicus. Predation on amphipods which are also known to harbour 

Hematodinium infections (Johnson, 1986) is also a possible route of transmission to N. 

norvegicus and P. bernhardus, though studies of Hematodinium infection in Scottish 

amphipod species have not been made. 

Ile pleopod diagnosis method allows some assessment to be made of the absolute 

Hematodinium parasite burden in infected N. norvegicus. Field et al. (1992) showed that 

the majority of infected lobsters captured by trawling were of Stage I or 2 infection. 

However, the current study has shown that while mean infection severity in infected N. 

norvegicus is low during the summer months (mean approximately Stage 1), this increases 

as the infection season progresses (up to a mean of Stage 3). Progression of infection 

through the main season is suggestive of a slow incubation of the parasite in the 

haemolymph, and reinforces previous data which showed that the Hematodinium parasite 

burden increased by 100-fold over a period of 100 days in the haemolymph of aquarium- 

held infected lobsters (Appleton et al., 1997). The slow incubation of patent Hematodinium 

infection in the field may increase the chance of parasite transmission via cannibalism or 

predation, and occurs concomitantly with the progressive utilization of host tissue and 

haemolymph storage products (Stentiford et al., 1999 - Chapter 4; 2000a - Chapter 5). The 

final sporolation phase of the parasite, whereby parasite forms become motile and emerge 

from the host lobster (Appleton & Vickerman, 1998) probably occurs when all available 

host resources have been depleted (Stentiford el al. 2001b. in manuscript - Chapter 6) and 

may explain why sporolation of the parasite can occur in lobsters displaying only Stage I 

or 2 infection (Appleton & Vickerman, 1998). 
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Hematodinium infection and the moult cycle. 

An association between patent Hematodinium infection and moulting has been described 

by a number of workers, though due to the inherent complexities of the moulting process, 

the details of this relationship remain unclear (Meyers et al., 1987; Field et al., 1992,1998; 

Messick, 1994). By assessment of shell condition, the current study has shown that in some 

years an extended infection season is caused by a high infection prevalence in RM male 

lobsters during the late season (April-May). In other years, where infection prevalence rises 

and falls more abruptly, prevalence in RM and IM males and RM and IM females 

coincides, creating a sharper infection peak. It is probable that in seasons of very high peak 

infection prevalence (> 70%), the infection prevalences in male and female lobsters peak at 

the same time. Ilerefore, in terms of absolute natural mortality (" attributable to 

Hematodinium infection, the length of the infection season may be as important as the 

absolute peak prevalence level 

Parasitism in relation to host condition. 

The general condition of the host may help to establish the degree to which parasitic 

infections are successful, with hosts in the best physiological condition harbouring the 

largest parasite burdens (Schmidt and Platzer, 1980). Female crustaceans have relatively 

larger amounts of hepatopancreatic tissue than mates as a means of supplying some of the 

nutritional requirements for egg rearing and spawning (Farmer, 1974b). The association of 

moulting with patent Hematodinium infection in N. norvegicus may thus be directly related 

to the nutritional status of the host and the nutritional requirements of the parasite. In 

decapods, the highest concentration of hepatopancreatic storage products (e. g. lipids and 

glycogen) are found in the pre-moult period (Johnson, 1980). During the final stages of the 

pre-moult and in the post-moult periods, storage material is mobilized (from tissue to 

haemolymph) to sustain the animal over the non-feeding stages of the life-cycle (Icely & 
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Nott, 1992). Recently, it has been shown that the plasma concentration of the crustacean 

hyperglycaemic hormone (CHH), a hormone involved in carbohydrate homeostasis in the 

tissues and haemolymph of crustaceans (Santos & Keller, 1993), is increased by up to 100- 

fold in the hours leading up to moulting, with levels returning to normal following ecdysis 

(Chung et al., 1999). In relation to this, a study of the carbohydrate and CHH dynamics of 

Hematodinium-infected lobsters has shown that the concentration of CHH is elevated 

significantly during sub-patent infection and that the increased concentration of CHH in the 

plasma at this time may create haemolymph conditions that are suitable for rapid growth of 

the parasite population (Stentiford et al. 2001b, in manuscript - Chapter 6). This may 

explain the coincidence of peak infection prevalence with the main moulting period for N 

norvegicus. Additionally, due to larger volumes of these storage tissues, the higher 

incidence of Hematodinium infection in female lobsters may reflect some relative 

advantage of the female host to the parasite. This benefit may be enhanced in smaller 

lobsters, which contain relatively larger amounts of hepatopancreatic material per unit size, 

store larger amounts of reserve material for moulting (Heath & Barnes, 1970), and in the 

case of males, moult more frequently than larger lobsters (Sarda, 1995, GonzAlez-Gurriardn 

et al., 1998). All of these features are likely to make them a better resource for 

Hematodinium parasite growth and transmission. The consistently higher peak in RM 

infection prevalence in male lobsters also suggests that, in males at least, infection may be 

carried through the moult. As such, lobsters with latent and low-level haemolymph 

infections may survive the moult, with severe infections developing after the moult, while 

those entering the moult with severe infections may perish during ecdysis. Further research 

on this complex issue is required to determine the link between Hematodinium infection 

and the moult. 
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Hematodinium infection and thefisheryfor N. nom , 
ýcus. 

A reduction in the mean carapace length of the N. norvegicus population on a particular 

fishing ground is one symptom of stock over-exploitation (Sarda, 1998). The data 

presented in this study suggest that the mean carapace length of lobsters has reduced at the 

LC site in the Clyde Sea area over the past 3 years. This reduction may be due to high 

recruitment at the same site over the same period (Marrs et al., 2000). The significant 

difference in mean carapace length between the BC and LC sites also suggests that the 

population structure of N. norvegicus may differ between geographically-adjacent sites. 

While Field et al., (1998) showed that the mean carapace lengths of Hematodinium 

infected N. norvegicus may differ between sites, they did not compare the mean size of the 

whole catch to the mean size of infected animals. The current study has shown that for two 

grounds with infected animals of different mean sizes, the mean size of infected lobsters 

was not significantly different to that of the whole sub-sample at either the LC or BC sites. 

However, the overall prevalence at the two sites was different, suggesting that population 

structure may play a part in the overall Hematodinium infection prevalence. Large 

populations of small, size-matched, rapidly growing individuals may lead to strong 

moulting synchrony amongst individual lobsters. As described above, it may be the 

populations with such characteristics that experience the highest Hematodinium infection 

prevalence each season. Further investigations on the effect of carapace size distributions 

on infection prevalence should be carried out to determine the importance of fishing 

pressure in the generation of population structures suitable for Hematodinium epidemics to 

occur. 

Due to the severe pathological effects associated with advanced Hematodinizim 

infections, the survival of infected lobsters under aquarium conditions (Field et al., 1992, 

Field & Appleton, 1995) and the sporolation response which leads to the death of the host 

lobster (Appleton & Vickerman, 1998), it is unlikely that recovery from patent infections is 
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possible. As such, seasons of high infection prevalence have been associated with 

reductions in landing per unit effort (LPUE) and burrow density (Field et al., 1998). 

Accurate prevalence estimates should allow a Hematodinium infection mortality factor 

(MH) to be incorporated into natural mortality (M, with this factor being greater during 

seasons in which infection prevalence is highest. Previous attempts to incorporate the high 

observed prevalence of Hematodinium infection into analytical stock assessments of the 

Clyde Sea area modelled the effect as an additional loading on the natural mortality rate M 

(since animals showing symptoms of patent infection usually die) (Anon, 1997). However, 

the exercise was not entirely successful, leading, as it did, to unrealistic estimates of 

recruits entering the fishery. 

Following this, the accuracy of infection prevalence estimates from trawl caught N. 

norvegicus samples has been questioned, due to the severely reduced escape swimming 

capacity (Stentiford et al., 2000b - Chapter 8) and the increased out-of-burrow activity 

(Stentiford et al. 2001a, in manuscript - Chapter 10) of infected lobsters. Increased 

catchability of infected lobsters relative to their uninfected counterparts may lead to 

considerable overestimation of true prevalence on a particular fishing ground. Furthermore, 

if infected animals are likely to be more susceptible to predation through a reduced ability 

to escape, then the infection may not necessarily add to overall natural mortality, but rather 

replace a proportion of it. Taken together, the altered catchability of patently infected 

lobsters and the subjectivity in detecting light infections raise doubts about the accuracy of 

the pleopod method for estimating patent Hematodinium infection prevalence in natural 

populations, and about the usefulness of these data for estimating natural mortality due to 

Hematodinizim infection. Development of sensitive molecular methods for the non- 

subjective detection of latent and sub-patently infected lobsters, which are less likely to 

show behavioural changes due to parasitism, should allow these issues to be resolved. 
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Fig. IA and B. (A) Percentage Hematodinium infection prevalence detected using the 
body colour and pleopod diagnostic methods by the nalve and experienced operators. 
(B) Number of lobsters diagnosed as infected by the pleopod method but not by the 
body colour method as a function of pleopod infection stage. 
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Fig. 2A, B and C. (A) Pleopod-derived Hematodinium infection prevalence, (B) 
proportion of males and females and (C) average pleopod-derived infection stage, in 
monthly samples of N. norvegicus captured from the Little Cumbrae (LQ site 
between February 1998 and September 2000. 
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Fig. 3. Mean carapace length of monthly samples of N. norvegicus captured from the 
Little Cumbrae (LQ site between February 1998 and September 2000. 
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Fig. 4A and B. Carapace length frequency distributions of X norvegicus from the Little 
Cumbrae (A) and Bute-Cumbrae channel (B) sites. Uninfected lobsters are shown as clear 
bars and infected lobsters as black bars. 
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Fig. 5A, B and C. (A) Proportions of recently moulted (RM) and intermoult (IM) male 
and female N. norvegicus. (B) Infection prevalence in RM and IM female and (C) male 
lobsters at the Little Cumbrae site between March 1998 and September 2000. Dashed lines 
on figures B and C compare RM and IM infection prevalence seasons in female and male 
lobsters (see main text). 
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Chapter 3 

Development and application of an immunoassay diagnostic technique for studying 

Hematodinium infections in Nephrops norvegicus populations. 

Abstract 

Patent Hematodinium infections of the Norway lobster, Nephrops norvegicus can be 

detected with a morphological method (the pleopod diagnosis), but this fails to identify 

low-level haemolymph (sub-patent) and tissue-based (latent) infections. The current study 
describes the development and application of an immunoassay for the detection of antigens 

of the parasite Hematodinium in the Norway lobster, Nephrops norvegicus. Infected tissue 

and haernolymph samples were detected as multiple-band reactions to a polyclonal 
antibody (anti- Hematodinium). By comparing haernolymph and tissues samples from the 

same lobsters, it was possible to distinguish latent from sub-patent infections. The 

sensitivity limit of the method was 204 parasites. mm3 - approximately ten times more 
sensitive than the pleopod diagnosis method. Use of the immunoassay on tissue samples 
taken from catches taken in the Clyde Sea area, Scotland, U. K. showed that the pleopod 

method considerably under-diagnosed infection prevalence in the early part of the season, 

though this under-diagnosis decreased as infected lobsters in the field progressed from 

latent and sub-patent to patent infections. However, the immunoassay failed to detect any 
infected lobsters during the summer months, suggesting that infection may not be carried 

over from one season to the next. Data are discussed in relation to the epidemiology of 
latent and sub-patent Hematodinium infections, to the transmission of parasites to other 
hosts and to the use of this immunoassay for the routine assessment of Hematodinium 

infection prevalence in N. norvegicus populations. 

Submitted as: Stentiford, G. D., Neil, D. M. & Coombs, G. H. (2001). Development and 
application of an immunoassay diagnostic technique for studying Hematodinium infections 
in Nephrops norvegicus populations. Diseases of Aquatic Organisms (submitted). 
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Introduction 

The Norway lobster (Nephrops norvegicus) is the subject of an important fishery in the 

northeast Atlantic, with annual landings in excess of 60 000 t per annum making it one of 

the most valuable lobster resources in the world (Tuck et al., 1997). Populations of N. 

norvegicus range from Iceland and northern Norway to the Mediterranean sea and the 

Moroccan coast (Figueiredo & Thomas, 1967). An infection of N. norvegicus by the 

parasitic dinoflagellate Hematodinium was first described in Scottish populations by Field 

et al. (1992), and since this initial description Hematodinium infection has also been 

reported from populations in the Irish sea (McAliskey & Briggs, 1997), the German bight 

(Dr F. Redant, personal communication) and the Swedish Skaggerak and Kattegat (Mr M. 

Ulmestrand, personal communication). However, it remains to be determined whether this 

infection extends to N. norvegicus populations at more southerly locations along the 

coastline of mainland Europe and in the Mediterranean sea. 

External manifestations of Hematodinium infection of N. norvegicus include an opaque, 

vividly coloured carapace, general morbidity (Field & Appleton, 1995), a reduction in 

swimming performance (Stentiford et al. 2000a - Chapter 8) and altered burrow-related 

behaviour patterns (Stentiford et al. 2001a, in preparation - Chapter 10), while internal 

pathological effects include marked changes in host physiology (Taylor et al., 1996) and 

biochemistry (Stentiford et al., 1999 - Chapter 4,2000b - Chapter 5). These pathological 

effects are similar to those caused by Hematodinium infections of other crustacean host 

species (Meyers et al, 1987; Hudson & Shields, 1994; Messick, 1994; Hudson, 1995; Love 

et al., 1996; Shields & Squyars, 2000). A tentative life-cycle of the N. norvegicus isolate of 

Hematodinium has been described from in vitro cultivation and observations on aquarium- 

held lobsters (Appleton & Vickerman, 1998), although transmission to uninfected hosts has 

not been demonstrated to date. In addition, the seasonal nature of Hematodinium infection 

in N. norvegicus has been described in a number of studies (Field et al., 1992,1998) and 

51 



Chapter Ilree - Immunoassay Diagnosis 

has recently been examined in detail for a single fishing ground in the Clyde sea area, 

Scotland, UK (Stentiford et al. 200 1 b, in preparation - Chapter 2). 

A number of methods are available for the detection of Hematodinium infection in N. 

norvegicus. The simplest involves external assessment of the altered carapace colouration 

and opacity, which can be performed rapidly in the field. However, the insensitivity of this 

method, especially for detecting early infections, has recently been demonstrated 

(Stentiford et al., 2001b, in preparation - Chapter 2). The method which has been used 

most routinely is the pleopod staging technique of Field & Appleton (1995), whereby a 

pleopod is removed and assessed for the presence of parasites and hemocytes using low- 

power microscopy. This method assigns an infection severity score based on a four point 

scale, which allows the progression of infection to be followed over its seasonal cycle 

(Field et al., 1992,1998; Stentiford et al., 2001b, in preparation - Chapter 2) and has 

greatly facilitated laboratory studies on the pathological progression of infection 

(Stentiford et al., 1999 - Chapter 4,2000b - Chapter 5). It seemed probable, however, that 

the pleopod diagnosis method, which scores only patent infection, would fail to identify 

latent (tissue-based) and sub-patent (low level haemolymph parasitaemia) infections and so 

underestimate prevalence. 

Modem diagnostic methods based on molecular technology have increased the sensitivity 

of detection for many infective agents. Immunoassays, which detect parasite antigens, 

utilize specific antibodies produced against parasite antigens. These can be applied in 

assays based on Western blotting or the immunofluorescence antibody technique (IFAT) 

and in enzý, me-linked-immunosorbant-assays (ELISA). Such methods have facilitated the 

sensitive diagnosis of important pathogens of aquatic hosts. These include the detection of 

Taura syndrome virus (TSV) in penaeid shrimps (Poulos et al., 1999), Penaeus monodon- 

type baculovirus (MBV) in Penaeus monodon (Hsu et al., 2000), Renibacterium 

salmoninanim in Atlantic salmon (Salmo salar) (Griffiths et al., 1996), Sphaerospora 
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dicentrarchl in the European sea bass (Dicentrarchus labrax) (Mufloz et al., 2000) and 

Cryptocaryon irritans in barrimundi (Lates calcarifier) (Bryant et al., 1999). 

An IFAT, developed using antibodies raised against in vitro cultured Hematodinium 

parasites originally isolated from X norvegicus, has revealed that some apparently 

uninfectcd N. norvegicus in fact harbour latent or sub-patent infections outside of the main 

infection season (Field & Appleton, 1996). However, the epidemiology of these low-level 

infections, and their progression towards patent infections (detectable using the pleopod 

method), were not undertaken. I'lie current study aimed to develop the IFAT technique of 

Field & Appleton (1996) into an immunoblotting assay, and apply the assay developed to 

analyze infection in a major Scottish N. norvegicus fishery over a 12 month period. 

Hepatopancreatic tissue was chosen as the study tissue as this has been suggested as a 

likely location of latent Hematodinium infection in N. norvegicus (Field & Appleton, 1996) 

and is well perfused with haemolymph, and so allows detection of sub-patent as well as 

latent infections. I'lie data obtained are discussed in relation to Hematodinium infection 

epidemiology in natural populations, the non-subjective monitoring of Hematodinium 

infection in other European populations, and the provision of accurate data on infection- 

associated mortality for use in stock assessment models. 

Methods. 

Capture of lobsters. 

Norway lobsters (Nephrops norvegicus) were caught using 90 min tows of a standard 

otter-trawl (70 mm mesh size) from a depth of approximately 80 m, at a location 

immediately south of Little Cumbrae (LQ in the Clyde sea area (55.41'N, 4.56M. T'he 

start of the towing period was always between 0900 h and 1000 h to minimise any effect of 

differential burrow emergence behaviour on catch composition (Atkinson & Naylor, 1976) 

and the effect of capture time on infection prevalence (Field et al., 1998). Monthly samples 
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were taken between October 1999 and September 2000 (inclusive) for the assessment of 

Hematodinium infection prevalence using the pleopod diagnosis method of Field & 

Appleton (1995). Bi-monthly samples of lobster tissue were also taken from sub-samples 

of the catch over the same period and tested for Heniatodinium infection using an 

immunoassay based on Western blotting for parasite antigens as detailed below. Tlie 

animals used were stored alive in a cool, damp environment (usually on ice) following 

capture for transfer to the laboratory for analysis. Pleopods were viewed using low power 

light microscopy (x 40 magnification). Tle accumulation of agglutinated parasite and 

haemocyte material was used to assign the infection stage according to Field & Appleton 

(1995). Stage 0 is apparently uninfected and Stages I to 4 are stages of increasingly severe 

patent infection. 

Tissue preparation and immunoassay conditions. 

Tissue samples from a standard subset of 60 lobsters (30 each of male and fcmalc), 

diagnosed as Stage 0 by the pleopod method, were prepared for immunoassay diagnosis. 

Small blocks (c. 2 mg) of hepatopancreatic tissue were excised, placed into 200 gl SDS- 

sample buffer (62.5 mM Tris-Hcl pH 6.8,12.5 % glycerol, 1.25 % P-mercaptocthanol) and 

immediately heated in a water bath at 95-100'C for 4 min. The denatured samples were 

then frozen at -20'C until analysis (usually within I week). 

Samples were defrosted immediately before analysis and 10 RI aliquots were subjected to 

discontinuous SDS-PAGE, performed according to the method of Laemmli (1970) with a 

12.5 % acrylamide separating gel and a4% acrylamide stacking gel. Electrophoresis 

running conditions were as described by Neil et aL (1993). Following separation of 

proteins, gels were transferred to a nitrocellulose membrane (Amersham Life Science) in a 

buffer of 20 mM Tris, 150 mM glycine and 20 % (v/v) methanol at 100 V for 45 min 
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(BioRad mini-transblotter). Membranes were blocked overnight at 4*C in 5% (w/v) milk 

powder in Tris-buffered saline (TBS) (20 mM Tris base pH 7.6,137 mM sodium chloride, 

3.8 % (v/v) HC1 with 0.1 % Twccn 20 and 0.1 % gelatin). After blocking, membranes were 

rinsed in TBS (pH 7.6) with 0.1 % Twcen 20 and 0.1 % gelatin, following which the 

primary rabbit antibody (anti-Hematodinium lysate - for production protocol see Field & 

Appleton, 1996) was applied for 4h at a dilution of 1/1000 in TBS (as above). Blots were 

then washed at room temperature five times for 10 rain each, with vigorous shaking. The 

secondary antibody (anti-rabbit-HRP conjugate) was then applied at a concentration of 

1/1000 in TBS (as above) for Ih at room temperature and developed using chemi- 

luminescence reagents (Pierce Co. ) for 5 min and standard developer and fixer (Kodak Co. ) 

onto ECL film (Amcrsharn Life Science). Known Hematodinium-positive and uninfected 

haemolymph samples were used as controls. Hematodinium-positive samples were 

recognised by the presence of multiple-bands or smears due to reaction of numerous 

parasite proteins with the polyclonal primary antibody. The immunoassay-derived estimate 

of sub-patcnt/latent (SPL) infection was used to re-calculate the pleopod-derived 

prevalence estimate for Hematodinium infection in N. norvegicus, of both sexes, in the 

original sub-samples. 

To test the detection sensitivity of the western blotting method, Hemalodinium parasite 

cell density in the haemolymph of an infected lobster was determined microscopically. 

Haemolymph was withdrawn from the base of the fifth pereiopod and then transferred into 

an Improved Neubauer counting chamber viewed with a digital video camera (JVC TK- 

C 13 8 1) through a standard light microscope. Digital images were captured using Q-Video 

ImageLabTM software and a count of parasite cells was made later according to the method 

of Baker et al. (1966). Samples of the same haemolymph were diluted to 10 % in SDS- 

sample buffer, serially two-fold diluted, and subjected to SDS-PAGE and Western blotting 
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as described above. Tlie sensitivity of the method was defined as the minimal number of 

parasites that could be detected by the Western blotting technique. 

To determine whether the Western blotting method could be used to distinguish between 

latent (parasites only in tissues) and sub-patent (low level haemolymph parasitacmia) 

Hematodinium infections, haemolymph and hepatopancreas samples from a small number 

of animals scored as Stage 0 by the pleopod method were run alongside one another. 

Detection of antigens in the hcpatopancrcas material only was taken to indicate a latent 

infection, whereas detection of antigens in the hepatopancreas and in the haemolymph was 

taken to indicate a sub-patent infection. 

Results. 

Severity of infection through the year. 

As well as allowing Hematodinium infection prevalence to be assessed at the population 

level, the plcopod staging method allows assessment of infection severity within individual 

lobsters (Stages of infection I to 4). Ile data presented in Figure I show the percentage of 

infected lobsters at the different stages of infection over the whole study period. In the 

early season (October and November), all infected lobsters captured displayed only very 

light infections (Stage 1). However, as the season progressed an increasing proportion of 

the infected lobsters captured were more severely infected (Stages 2 and 34) so that by 

June and July all infected lobsters captured were severely infected. These data suggest that 

Hematodinium infection severity is progressive in individual lobsters. Peak infection 

prevalence occurred in April. 

Sensitivity of the Western blot method. 

The use of serial dilutions of infected haemolymph, containing a known density of 

parasites, allowed the sensitivity of the immunoassay to be determined. The sensitivity 
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limit was 204 parasites. mm3 of haemolymph (lane D, Fig. 2). When a greater number of 

parasites were present, numerous bands were detected with the polyclonal anti- 

Ilematodinium antibody (lancs B and Q, but with fewer parasites no bands were detected. 

There was also reaction to the 66 kDa protein (bovine serum albumin) and two other 

proteins (molecular masscs of > 200 kDa and c. 97 kDa) in the molecular weight (M, ) 

markcr protein mixture (lane A). 

By applying the same method to excised hepatopancreas samples from field caught 

lobsters, previously diagnosed as Stage 0 by the pleopod method, sub-patcnt and/or latent 

infections were detected. Here, infected samples appeared as heavy, multiple-band 

reactions (see lobster sample numbers. 29,33,36,43 and 44 in Fig. 3), while samples of 

apparcntly uninfected lobsters showed no reaction to the anti-Hematodinium antibody. 

Incorporation ofimmunoassay data into pleopodprevalence analysis. 

lmmunoassay-derivcd infection prevalence data for SPL infections were used to re- 

calculate p1copod-derivcd infection prevalence estimates for the corresponding month. The 

immunoassay allowed for much earlier detection of infection in female lobsters (October) 

than was possible with the pleopod method (first detected in December) (Fig. 4A). By 

December, the immunoassay-dcrivcd estimates showed that infection prevalence was 

dramatically greater (over 25 %) than the pleopod analysis had suggested (less than 5 %). 

A similar situation was revealed with the February samples. By April ('peak season' from 

pleopod diagnosis -> 30 % infection), there were fewer SPL infections. By June, pleopod 

prevalence had reduced to approximately 5 %, and there were no SPL infections. This 

suggests that following the peak of patent infection in April, there were either no new 

Hematodinium infections or ncwly-infected animals had parasite burdens below the limit of 

detection with the immunoassay method (Fig. 4A). 
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A similar pattern in the immunoassay and pleopod-derived infection prevalence estimates 

was also seen for male lobsters (Fig. 413), though patent infections appeared earlier 

(October) and overall prevalence at the peak of infection (April) was approximately half 

that of females. 

When the data for immunoassay and pleopod-derived infection prevalence were plotted 

separately, it was possible to examine the epidemiological nature of SPL and patent 

Hematodinium infection in N. norvegicus. In females, the SPL prevalence rose to a peak in 

February and then began to fall (suggesting that all animals showing patent infection within 

a given season were infected by February). Following this peak, SPL infections advanced 

to a patent state, with this peaking in April. As shown in Figures 4A and 413, when patent 

infection prevalence was at its highest (April) the prevalence of SPL infection had reduced 

to very low levels. The decline in SPL infection to zero in June suggests that infections 

may not have been carried over from one season to the next, but were instead acquired at 

some point after late summer (shown by the low level of sub-patent infection in October) 

(Fig. 5A). SPL and patent infection in male lobsters showed a similar epidemiological 

pattern, though here, the overall prevalence was considerably lower than in female lobsters 

(Fig. 513). The time period between a given level of SPL infection prevalence and the same 

level of patent infection prevalence (shown by the 'phase-shifted' nature of the prevalence 

peaks), may indicate the approximate incubation time of the Hematodinium parasite from 

the SPL to patent state. Data presented here suggest that this time period may be between 2 

and 4 months. It is important to note that the prevalence of SPL infection was 

approximately equal to the prevalence of patent infection that followed. 'I'llis suggests that 

lobsters carrying a sub-patent or latent infection will display the symptoms of patent 

infection within the same season (Fig. 5a and 5b). 
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Discriminating between latent and sub-patent infections. 

Detection of parasite antigens in the tissue and not in the haemolymph is suggestive of a 

latent Hematodinium infection, while presence of antigens within the tissues and 

haemolymph of Stage 0 animals (by the pleopod method) is suggestive of a sub-patent 

infection. By assaying the haemolymph and hepatopancreas of Stage 0 animals, it was 

shown that the Western blot method was able to discriminate between latently (lanes D' 

and D2, Fig. 6) and sub-patently (lanes B1 and B2, and C' and C2 , Fig. 6) infected lobsters. 

it was found that there were differences in the degree of antigen reactivity in the 

haemolymph of sub-patently infected lobsters (compare lanes B2 and C2 , Fig. 6). This is 

consistent with there being progressive colonization of the haemolymph by the parasites 

subsequent to initial invasion from the tissues. 

Discussion. 

in the current study, further development of the TAT described by Field & Appleton 

(1996) into a multi-sample immunoblotting assay has allowed for the detection of SPL 

Hematodinium infections in field-caught samples of N. norvegicus. The Western blotting 

assay detected parasite densities of 204 parasites. mm' and above. This method is therefore 

approximately ten times more sensitive than the pleopod diagnostic method, in which Stage 

I infected animals have burdens of over 2000 parasites MM3 (see Field et al., 1992. Field & 

Appleton, 1995). The technique worked well for both diluted haemolymph and for tissue 

samples, with there being no reaction of the polyclonal antibody to N. norvegicus material. 

Reactions between the anti-Hematodinium antibody and the proteins in the M, marker 

probably reflect the presence of antibody against components of the parasite's culture 

medium (which included fetal calf serum) which would have been present on the surface of 

injected Hematodinium parasites during the initial production of the antibody (see Field & 

Appleton, 1996). 
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Latent Hematodinium infections of N. norvegicus are thought to involve parasites 

residing in tissues such as the hepatopancreas and muscle (see Appleton & Vickerman, 

1998), while in low-level sub-patent infections parasites are also present in the 

haemolymph (Field & Appleton, 1996). As the main purpose of the immunoassay in the 

current studies was to detect all infections (latent and sub-patent) not detectable by the 

pleopod staging method, hepatopancreas samples were used. Immunoblotting of these did 

not distinguish between latent and sub-patent infections. Hence no distinction was made 

between sub-patent and latent infection states for immunoassay-derived prevalence 

calculations. 

'Me data showed that the pleopod diagnostic method considerably under-estimates the 

prevalence of Hematodinium infection during the early season, but also that the degree of 

under-estimation is reduced as the main infection season (February to April) progresses. 

This reduction is likely to be due to the development of latent and sub-patent and latent 

infections into pleopod-detectable patent infections. The similarity in the amplitude of the 

SPL (immunoassay-derived) and patent (pleopod-derived) infection peaks suggests that all 

animals with a SPL infection within a given season will also express a patent infection 

within the same season. In addition, data for average patent infection severity (derived 

from monthly pleopod diagnosis) showed that a steady increase in infection severity 

occurred as the season progressed. As such, most infected animals captured at the end of 

the season had considerably larger parasite burdens than those captured at the start of the 

season. Data for infection severity progression is suggestive of a relatively slow incubation 

of the parasite in the haemolymph, and reinforces previous data which showed that the 

Hematodinium parasite burden increased by 100-fold over a period of 100 days in the 

haemolymph of aquarium-held infected lobsters (Appleton et al., 1997). The slow 

incubation of patent Hematodinium infection in the field may increase the chance of 

parasite transmission via cannibalism or predation. The increase in parasite number 
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correlates well with the progressive utilization of host tissue and haemolymph storage 

products (Stentiford et al., 1999 - Chapter 4,2000b - Chapter 5). 

Most studies on Hematodinium infections of decapod crustaceans have proposed a long, 

asymptornatic latency, followed by a shorter period of parasite proliferation and spore 

release (Hudson & Shields, 1994). Colonization of a new host may either occur shortly 

after ecdysis or parasites may remain in the host through the moult (Shields, 1992). If 

infection is acquired within one season and remains in a latent state until the following 

season, it should be possible to detect the same level of latent infection prevalence out of 

season as patent infection in the following season. In the current study, the increasing SPL 

prevalence up to February, suggests that either acquisition of infection occurs within the 

same season that full patency develops, or that the immunoblotting technique failed to 

diagnose very low burdens of parasites outside of the main infection season. Similarly, the 

reduction in the prevalence of sub-patent infections to zero in June suggests that either 

Stage 0 animals at this time are completely free from infection, or that very low-level latent 

infections are undetectable using this assay. Tle comparison of tissue and haemolymph 

samples from the same lobster showed that latent infections could be distinguished from 

sub-patent infections using the immunoblotting technique. However, it may be that the 

parasite burden within the tissues of latently infected lobsters also differs significantly 

between individuals and over time. Lobsters infected with very low tissue-based parasite 

burdens (below 204 parasites MM3) would not be detectable with the current immunoassay. 

Alternatively, upon initial infection, the Hematodinium parasite may reside in different 

tissues or organs to those tested (see Field & Appleton, 1995,1996). 

If acquisition of infection does occur within the same season as patent infection is 

expressed, transmission is unlikely to be occurring via lesions in the cuticle of newly 

moulted lobsters as the main moulting season for N. norvegicus is during the spring and 

early summer (Farmer, 1974). In this case, acquisition of parasites is more likely to be 
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occurring by the direct ingestion of vegetative stages or spores of the Hematodinium 

parasite (Appleton & Vickerman, 1998; Stentiford et al., 2001b, in manuscript - Chapter 

2). Sensitive diagnosis of Hematodinium infection by the use of the polymerase chain 

reaction (PCR) has been demonstrated (Hudson & Adlard, 1994,1996). However, no 

follow-up studies over longer periods have been carried out. Utilization of a sensitive PCR 

method for the detection of very low parasite burdens is required if issues relating to the 

latency and transmission of the Hematodinium parasite in N. norvegicus are to be resolved. 

In order to make reliable comparisons of Hematodinium infection prevalence between 

different European N. norvegicus fisheries, the diagnostic method must be standardized and 

reproducible in the hands of different operators. While the pleopod diagnostic method has 

some merit for estimating Hematodinium-associated mortality in N. norvegicus. the 

insensitivity of the method, in addition to the subjectivity of assessment between different 

scorers (Stentiford et al., 2001b, in preparation - Chapter 2), suggests that the pre-season 

measurement of SPL infections (by immunoassay) may provide an alternative means of 

estimating Hematodinium infection prevalence in the field. Additionally, due to the phase- 

shifted nature of the immunoassay-derived prevalence peak from the pleopod-derived 

prevalence peak (by a period of 24 months), it is likely that immunoassay-derived 

prevalence data could be used as an early warning signal for the level of patent infection 

level that will appear in the fishery. As such, the immunoblotting technique described here 

has furthered our knowledge on the epidemiology of Hematodinium infection in N. 

norvegicus and the development of this into a rapid, non-subjective enzyme-linked- 

immunosorbant-assay (ELISA) is being pursued. 
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Fig. 1. Percentages of Hematodinium-infected N. norvegicus at each infection stage, as 
judged by the pleopod staging method, in monthly samples from the Little Cumbrae site 
between October 1999 and September 2000. Overall monthly infection prevalence (%) in the 
catch is given above each bar. 
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Fig. 2. (Top) 12.5 % SDS-PAGE gel of serially two-fold diluted-plasma from a 
Hematodinhim-infected N. norvegicus. (Bottom) Western blot of the same serial ly-di lutcd 
infected plasma showing reaction of the separated proteins with anti-Hemolodinium 
primary antibody in lanes B (815 parasites. mm), C (408 parasites. rnm) and D (204 
parasites. mm'). Lack of reaction in lanes E to H (< 204 parasites. mm') show that parasite 
proteins present were at concentrations below that detectable with the assay Procedure. 
Note the reaction of the primary antibody proteins in the molecular weight marker in lane 
A. Numbers on left of gel rcfcr to approximate relative molecular weight. Hey = plasma 
hacniocyanin sub-units. 
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Fig. 3. Western blot of hepatopancreas samples from a typical sub-sample of pleopod- 
diagnosed Stage 0 lobsters. Note the multi-band or smear reaction of parasite proteins to 
the primary antibody in lanes 29,33,36,43 and 44. Reaction of the primarv antibodv to 
proteins in the molecular weight marker mixture (HMW) also occurred (see also Fig. 2). 
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Fig. 4. Immunoassay-corrected Hematodinium infection prevalence estimates for female 
(A) and male (B) N. norvegicus from the Little Cumbrae site. Immunoassay data (grey 
bars) were collected bi-monthly (in October and December 1999 and February, April, June 
and August 2000). Pleopod data (white bars) were collected monthly. 
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Fig. 5. Immunoassay-derived (sub-patent/latent) and pleopod-derived (patent) 
Hematodinium infection prevalence for female (A) and male (B) X norvegicus. 
Immunoassay samples were taken bi-monthly (see Fig. 4A and B). Note the phase-shifted 
nature of the immunoassay-derived and pleopod-derived prevalence curves and the higher 
level of infection prevalence in female lobsters. 
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Fig. 6. Western blot of hepatopancreas (lanes B1, C' and D') and haemolymph (lanes B2, 
C2 and D 2) samples from lobsters diagnosed as Stage 0 by the pleopod method. Note the 
detection of parasite material in the haemolymph and hepatopancreas in samples B and C 
(suggesting sub-patent infections) and the detection of parasite material in only the 
hepatopancreas of sample D (suggesting a latent infection). Lane A= reaction of relative 
molecular weight marker proteins to the primary antibody (see Fig. 2). 
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Chapter 4 

Changes in the plasma free amino acid profile of the Norway Lobster, Nephrops 

norvegicus at different stages of infection by a parasitic dinonagellate (Genus 

Hematodinium). 

Abstract. 

The haemolymph free amino acid (FAA) composition of Norway lobsters, Nephrops 

norvegicus, from the Clyde estuary, Scotland UK, at different stages of infection by the 

parasitic dinoflagellate Hematodinium sp. was determined by reverse phase High 

performance liquid chromatography (HPLQ. In uninfected animals the total detected 

haemolymph FAA concentration was 3.79 pmol. ml-1. Collectively, glycine, 

histidine/glutamine, alanine, serine, taurine and asparagine constituting 80% of the total. 

The concentrations of several FAAs, notably serine, were reduced in early infections 

(Stage 1), while at later Stages (24) several FAAs were increased in concentration. The 

most significant change was in taurine, which was increased by 13 fold (from 0.22 to 2.56 

ýtmol ml-') in the final infection stage, when its relative contribution to the total FAA was 

41.6%. Possible causes of these changes in the lobster haemolymph FAAs are the 

breakdown of host tissues including the hepatopancreas and muscle, haemocýle lysis, a 

host stress response and release of FAAs from the parasite cells. These results have 

implications for the biology of Nephrops, and indicate that the taurine: serine ratio in the 

haemolymph provides a sensitive diagnostic measure of patent Hematodinium infections. 

Published as: Stentiford, G. D., Neil D. M. &Coombs, G. H. (1999). Changes in the plasma 
free amino acid profile of the Norway Lobster, Nephrops norvegicus at different stages of 
infection by a parasitic dinoflagellate (Genus Hematodinium). Diseases of Aquatic 
Organisms 38,151-157. 
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Introduction. 

One consequence of some parasitic infections of invertebrates is change to the free amino acid 

(FAA) profile in the plasma. Ibis occurs in oysters infected by Bucephalus sp. and Minchinia 

nelsoni (Feng et al., 1970), honey bees infected by the microsporidian Nosema apis (Wang & 

Moeller, 1970), and mosquitoes infected with Nosema algerae (Henn et al., 1998). 'Mere have 

been very few such studies on parasitized crustaceans, although alterations to the plasma FAA 

profile have been reported for the bacterium Acrococcus viridans infection in lobsters (Stewart, 

1980) and the microsporidia Thelohania maenadis and Ameson michaelis infections in crabs 

(Vivares et al., 1980; Findley et al., 198 1). 

Populations of the Norway lobster (Nephrops norvegicus) from the coastal waters off the west 

coast of Scotland are infected with the dinoflagellate Hematodinium sp., with overall 

prevalence levels of over 70% in some years (Field et al., 1992). The parasite is systemic, 

invading most major tissues and organs, causes considerable histological disruption (Field & 

Appleton, 1995) and has a major effect on the appearance and properties of the haemolymph, 

including extensive loss of normal haemocytes (Taylor et al., 1996). However, there are no 

reports on the biochemical consequences of the infection. Nephrops is typical of marine 

crustaceans in having a large intracellular FAA pool (Robertson, 1961, Robertson et al., 1992), 

while extracellular concentrations are low. With such high tissue: haemolymph FAA ratios, the 

extensive pathological effects of Hematodinium infection on the tissues and organs of Nephrops 

may be expected to cause increases in the haemolymph concentrations of amino acids when 

released from damaged cells There may also be compensation for the parasite-induced changes 

to the haemolymph. 

Therefore this project -was undertaken to determine the haemolymph FAA composition during 

infection of Nephrops by Hematodinium, to elucidate the extent of such changes, to chart their 

time course in relation to the onset and progress of the infection, and to determine whether the 

host undergoes compensatory changes in its plasma FAA profile. 
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Methods. 

Collection and treatment ofanimals. 

Norway lobsters (Nephrops norvegicus) were otter-trawled from a location south of Little 

Cumbrae in the Clyde Sea area, Scotland, UK, and subsequently maintained in a closed 

aquarium (IO'C, 33ppt salinity) in the Division of Environmental and Evolutionary Biology, 

University of Glasgow, Scotland, UK. Animals were fed ad libitum, once weekly on mussels 

(Mytilus edulis) but were not fed for at least five days prior to haemolymph collection. All 

animals were in the intermoult state (Aiken, 1980) and were assessed for Hematodinium 

infection by the pleopod staging method of Field & Appleton (1995). 

Sample collection. 

Haemolymph was drawn from the base of the fifth pereiopod into a sterile syringe and 

centrifuged immediately at 17,000 xg for 10 min. at IOT to remove cellular material and 

suspended debris. The clear plasma was deproteinized using ice cold methanol (four parts 

methanol to one part plasma) for 10 min. at 4'C. Protein precipitate was removed by 

centrifugation and the supernatant passed through a 0.22 m filter before storage at -70'C. 

High performance liquid chromatography (HPLQ analysis. 

HPLC grade methanol (MeOH), tetrahydrofuran (THF) and acetonitrile were obtained from 

BDH Laboratory Supplies, Leicestershire, UK. Crystalline amino acids (aspartate, glutamate, 

asparagine, serine, histidine, glutarnine, glycine, threonine, arginine, alanine, tyrosine, valine, 

methionine, tryptophan. phenylalanine, isoleucine and leucine). taurine. sodium acetate, 

mercaptoethanol (ME) and o-phthaldialdehyde (OPT) were from Sigma-Aldrich Co. (Poole, 

UK), Reagent grade Millipore-filtered water was used throughout. 

Deproteinized plasma samples were analysed by HPLC using a Rainin Dyn Microsorb C18 

4.6 x 150 mm column (with Microsorb C18 guard column), a Gilson HPLC system (model 302 

74 



Chapter 4- Plasma Amino Acids 

Pumps, model 802C manometric module, model 811 dynamic solvent mixer and model 121 

fluorometer) interfaced to a computer with 712 HPLC controller software. Amino acids were 

eluted after pre-column OPT-derivatization using the method of Zuo & Coombs (1995) by 

mixing equal volumes of plasma and OPT reagent. The method allowed for quantitation of 12 

amino acids and taurine. Co-elution of valine/methionine and histidine/glutamine occurred in all 

runs and neither cysteine nor proline were detectable. Standard curves were constructed using 

an equimolar mixture of the above amino acids and taurine and plasma concentrations were 

derived from these curves. Comparison of FAA concentrations in the plasma of uninfected and 

infected Nephrops was performed either by one-way analysis of variance (ANOVA) for 

normally distributed data, or by a Kruskal-Wallace test for non-normal distributions. Between 

stage comparisons were made with a Tukey's pairwise analysis (normal distributions) and a 

Mann-Whitney test (non-normal distributions). Significance was considered to be at p<0.05. 

Results. 

Analysis of the FAA concentrations in Nephmpsplasma. 

A total of 81 lobsters were examined for infection by Hematodinium using the pleopod staging 

method of Field & Appleton (1995). Stage 0 denotes an uninfected animal, with patent infection 

progressing from Stage I to Stage 4. Plasma FAA concentrations (ýtmol. ml-) were derived from 

peak areas on the HPLC chromatograms. The OPT-derivatized FAA compounds identified in 

Nephrops plasma under different levels of infection are shown in Table 1. In uninfected 

Mephrops (Stage 0), the total detected FAA concentration was 3.79 ýLmol. ml-, with glycine, 

histidine/glutamine, alanine, serine, taurine and asparagine collectively constituting almost 80 % 

of this total. The total identified FAA concentration was highest in the plasma of Stage 3 

animals (6.70 ptmol. ml"'), this being significantly greater than that of uninfected plasma (p < 

0.001). 
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The FAA profile of Hematodinium-infected Nephrops plasma was substantially altered 

through the course of the infection (Table 1). The concentrations of five FAA compounds were 

significantly less in the plasma of Stage I (early patent infection) animals compared with 

uninfected controls, resulting in a depression (though not significant) in the total concentration 

of detected FAA. Among the individual amino acids, the change of serine was the greatest, 

falling from 0.34 ýtmol. ml'l to 0.21 grnol. ml" (p < 0.001), while other FAA's showing reduced 

concentrations included asparagine (p < 0.05), valine-methionine (p < 0.01), tryptophan (p < 

0.01) and isoleucine (p < 0.01). 

A different trend was apparent with lobsters at Stage 2 infection, in which several FAA's 

exhibited very significant increases in concentration. However, the most prominent increase was 

with taurine which increased from 0.22 gmol. ml" in stage 0 to 1.04 pmol. ml-1 in Stage 2 (p < 

0.001). By Stage 3 of infection, taurine (at 2.20 ýtmol. ml-) was dominant in the plasma, and 

glutamate had also increased significantly from its Stage 2 concentration (p < 0.0 1). In contrast, 

serine, after its initial reduction, remained low in the later stages of infection and did not change 

significantly among successive levels of infection. Plasma arginine concentrations in Stage 3 

animals were at three times the Stage 0 levels, although the increase in total plasma FAA in 

Stage 3 infected animals was due primarily to the increased taurine concentration, 

In Stage 4 animals, most plasma FAA's had returned to concentrations not significantly 

different from those of stage 0 animals. The only exceptions to this were taurine, which had 

increased approximately 13-fold (Fig. la), glutamate, with a 10-fold increase (Fig. lb), and 

scrine, which was at approximately one half of the concentration in uninfected animals (Fig. 

I C). 

The importance ofp1asma taurine in iqfection. 

Taurine accounted for the majority of the increase in total detected FAA during infection. It 
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showed significant differences between Stages 0 and 2 (p < 0.001), 1 and 2 (p < 0.001) and 2 

and 3 (p < 0.001), but not between Stages 3 and 4 (p > 0.05) (Fig. la). However, when 

expressed relative to total detected FAA concentration, the difference in taurine amounts 

between Stage 0 (5.8% of total FAA) and Stage 1 (13.7% of total FAA) are significant (p < 

0.05) (Fig. 2). Additional to increasing absolutely from Stage 0 to Stage 4 (0.22 Wol. ml-' to 

2.56 ýLmol. ml-'), taurine also made an increasing relative contribution to total FAA, rising from 

5.8% in Stage 0 to 41.6% in Stage 4 plasma. The application of a ratiometric measure of 

increasing taurine concentration against decreasing serine concentration (Fig. 3) also revealed 

significant differences between Stages 0 and I (i. e. between animals that are apparently healthy 

and those patently infected). The taurine: serine ratio increased significantly between Stages 0 

and I (p < 0.0 1), 1 and 2 (p < 0.0 1), and 2 and 3 (p < 0.00 1), but not between Stages 3 and 4 (p 

> 0.05). It should be noted that the difference in this ratio between Stage 0 and Stage I is more 

significant (p < 0.01) than the comparison of absolute concentration (p > 0.05) or relative 

contribution of taurine to the total (p < 0.05). 

Discussion. 

Several studies on invertebrates have considered alterations in FAA profile and non-protein 

nitrogen under conditions of infection, but few have considered changes in the FAA profile at 

different stages of infection (Henn et al., 1998). The ability to estimate the infection severity by 

a simple morphological index applied to the host greatly facilitated the current study of 

Hematodinium infection in Nephrops, allowing the changing pattern of plasma amino acid 

concentrations to be tracked through the course of infection. This provides a good basis for 

understanding the biochemical disturbances that occur during Hematodinium infection. 
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Plasma FAA profile in unin ected and infected Nepbmps nonqi , s, 

Of the FAAs detected in normal plasma, glycine, histidine/glutamine, alanine, serine 

asparagine and taurine collectively constitute almost 80 % of the total concentration (3.79 

ýtmol. ml-). It should be noted however that this excludes proline, which is known to be high in 

Nephrops abdominal muscle (Robertson et al., 1992), and cysteine, both of which are not 

derivatized by OPT. The total concentration in Nephrops haemolymph may then be similar to 

the 5.8 ýLmol. ml" reported for Homanis gammanis (Camien et al., 195 1). The decrease in the 

concentrations of some amino acids early in infection (Table 1) is consistent with parasite 

utilisation of these compounds as the haemolymph is colonised. A reduction in non-protein 

nitrogen also occurs during early infection by Aerococcus viridans in Homarus americanus 

(Stewart, 1980). The significant reduction in the concentration of free serine that occurred even 

in early infection (Fig. lc) could reflect preferential utilization of this compound by 

Hematodinium, or alternatively parasitic consumption of carbohydrate precursors or a disruption 

to the biosynthetic pathway of serine. Serine is considered an intermediate in the biosynthesis of 

taurine in lobster skeletal muscle (Finney, 1978); the observed depletion of serine may be linked 

to up-regulation of the synthesis of taurine during infection. Taurine is generally not 

metabolised, and hence the increased taurine concentration relative to total FAA (Fig. 2) could 

be due to a combination of increased biosynthesis and its non-utilisation relative to the other 

FAA compounds. 

The increased total FAA concentration that occurred in later stages of infection may have 

several causes. There is widespread disruption in all major organs and tissues during infection 

of Nephrops by Hematodinium, especially at the later stages (Field & Appleton, 1995). 

Intracellular compounds liberated by cellular damage would be likely to appear in the 

haemolymph and lead to the observed increase in concentration of total FAA. However, the 

elevated total FAA concentration is not due to an increase in all component FAA's, but rather to 
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elevated levels of a few (see Table 1) which suggest either selective release or selective 

utilisation of released amino acids. The particular increase in plasma taurine may in part reflect 

the fact that its concentration is known to be high in the crustacean hepatopancreas (Van 

Marrewijk & Ravenstein, 1974) and skeletal muscle (Pochon-Masson et al., 1984), both of 

which undergo considerable disruption during Hematodinium infection (Field & Appleton, 

1995). 

Another possible source of plasma FAAs is the haemolymph itself, which contains both 

proteins such as haernocyanin and various types of haemocytes. Haemolymph proteins serve as 

stores for amino acids (Pequeux et al., 1979), and host mobilisation or parasitic degradation of 

these proteins could lead to elevated levels of some FAA in the plasma. Taylor et al. (1996) 

reported a large reduction in plasma hacmocyanin in Hematodinium-infected Nephrops. 

Taurine, however, is not a component of proteins, and so the elevated concentrations of this 

amino sulphonic acid must have a source other than the catabolism of haemocyanin. The 

dramatic decline in the concentration of haernocytes in the host haemolymph during severe 

infection (Field & Appleton, 1995) suggests that haemocytes are destroyed by the parasite 

(although inhibition of their production may be a contributory factor), and lysis of haemocytes 

would result in their cellular contents being released into the haemolymph. Since taurine is 

concentrated within the haemocytes of certain animals (Thoroed & Fugelli, 1994), this cell lysis 

could also contribute to the observed elevation of the plasma taurine levels. 

Since the large FAA pool in tissues of marine invertebrates such as Nephrops is essential in 

osmoregulation (Claybrook, 1983; Robertson et al., 1992), the increased FAA concentration in 

the haemolymph of Nephrops during late infection could, in partý reflect an attempt by the host 

to compensate for osmolytes depleted by the parasite, as reported for the oyster Crassostrea 

virginica infected by Bucephalus sp. and Minchinia nelsoni (Feng et al., 1970). Taurine is an 

important osmolyte in various animal groups, being a relatively more expendable amino 

compound as it is non-essential (Chamberlain & Strange, 1989). However, the finding that the 
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concentration of several other amino acids not thought to be principally involved in 

osmoregulation also increased during Hematodinium infection (Table 1) suggests that the 

changes in haemolymph FAA have multiple origins. 

Finally, the possibility cannot be excluded that the elevated concentrations of taurine and other 

compounds are of parasite origin. To determine this an analysis of the FAA composition of 

media from in vitro cultures of Hematodinium (Appleton & Vickerman, 1998) and of the 

parasites themselves is required. 

Implications ofp1asma FAA changes to the ecology of Mphmpx. 

A number of studies have implicated taurine as a neurotransmitter or neuro-modulator (Oja & 

Kontro, 1978; Kuriyama et al., 1978). In crustaceans, taurine mimics the inhibitory actions of 

gamma-aminobutyric acid (GABA) and affects cardiac rhythm (Zatta, 1987; Payen et al., 198 1). 

Glutamate also has pharmacological activity at low concentrations (Lin & Cohen, 1973), and is 

maintained at trace concentrations (0.04 ýimol. ml-) in the plasma of uninfected Nephrops (Fig. 

lb). However, during infection the concentration of free glutamate in Nephrops plasma 

increased to values that exceed the threshold for stimulating crayfish muscle (0.053 4mol. ml-1, 

see Lin & Cohen 1973). Due to the open nature of the crustacean circulatory system, these 

elevated concentrations of neuro-active compounds could affect the behaviour and locomotory 

ability of Hematodinium-infected Nephrops. This could significantly alter their ability to evade 

capture, both by predators and by trawlers, and so has both practical and economic 

consequences since Nephrops is currently the United Kingdom's most valuable shellfish 

resource. Animals with late stage infections are moribund. This could result from the actions of 

neuro-active compounds, although the increased respiratory demands due to the high parasitic 

burden will also contribute to this state (Taylor et al., 1996). 
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Elevated levels of FAAs in infected plasma may also have implications for predator attraction. 

Amino acids play an important part in prey detection in crustaceans (Voigt et al., 1996) and 

many species are particularly sensitive to taurine, with behavioural responses being elicited at 

concentrations as low as 10-13 M (Johnson & Atema, 1986). T'he increased plasma concentration 

of taurine together with damage to the excretory antennal gland (Field & Appleton, 1995) 

implies that the excretion of taurine and other amino compounds is increased during infection. 

This could attract benthic scavengers, which rely on chemical cues (Wong & Moore, 1995). If 

this is confirmed, then the possibility should be investigated that these scavenging species can 

act as alternative hosts for Hematodinium. This may help to elucidate the full life cycle of 

Hematodinium (Appleton & Vickerman, 1998). 

Diagnosis of Hematodinium-infection in Nephrops. 

Infection staging by observing the pleopod under low-power microscopy (Field & Appleton, 

1995) is currently the primary method for field diagnosis of patent Hematodinium infection, 

while the use of a polyclonal antibody allows for accurate detection of sub-patent and latent 

infections (Field & Appleton, 1996). The pleopod staging method requires laboratory facilities, 

is somewhat subjective and can result in mis-diagnoses of infection severity and failure to detect 

light infections. Another limitation is that it provides only a 'parasitic index', and not an 

assessment of host condition. Many studies on invertebrate responses to various stressors have 

suggested that the use of biochemical indices may provide more consistent and reproducible 

measures of host condition (Livingstone, 1982; Fossi et al., 1997). The current study has shown 

that the taurine concentration alone can diagnose infection from stage 2 onwards (Fig. I a). while 

the reduced concentration of serine (Fig. Ic), the increased percent contribution of taurine to 

the total FAA (Fig. 2), and particularly the taurine: serine ratio (Fig. 3) provide powerful 

measures of early patent infection. The ratiometric measure also demonstrates that the 

distinction between stage 3 and stage 4 infections is an artificial one. A measure based upon the 
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haemolymph taurine-serine ratio may provide a better estimate of the progression of infection 

than the pleopod method, and could be a valuable tool for surveys of disease prevalence in 

commercial Nephrops stocks. The development of a rapid, biochemical field assay using 

information gained in this study may be particularly useful in mapping Hematodinium infection 

along the Scottish coastline and would provide fisheries managers with a better insight into 

disease epidemiology in the valuable Nephrops fishery. 

'Me finding of the increased concentration of taurine during Hematodinium infection of 

Nephrops may also have relevance to other host-parasite interactions. As taurine is involved in 

stress responses and occurs at high concentrations in the tissues of many invertebrates, 

alterations in its plasma concentration may be both an important mediator and also a useful 

index in a number of infection pathologies and stress-related effects. 
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Amino acid 
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Glutamate 

Asparagine 

Serine 

Histidine/Glutamine 

Glycine 
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Arginine 

Alanine 
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Tyrosine 
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FAA 

Table 1. OPT-derivatized free amino acids from the hacmolymph of Nephrops norvegicus. 
Significant differences from Stage 0 concentrations are denoted by *(p < 0.05), * *(p < 0.0 1) and 
***(p < 0.001). 
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Figure la-c. Mean (±SE) plasma Taurine (a), Glutamate (b) and Serine (c) in the 
haemolymph of Nephrops norvegicus at different stages of infection by Hematodinizim. 
For statistical significance among groups see Table I and text. 
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Figure 2. Mean (±SE) contribution of taurine to total detected FAA in the haernolymph 
of Nephrops norvegicus at different stages of infection by Hematodinium, plus between- 
group significance table. Mean taurine % contributions are given above each bar. 
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Figure 3. Mean (±SE) taurine-serine concentration ratios in haemolymph of Nephrops 
norvegicus under different degrees of infection by Hematodinium, plus between-group 
significance table. Mean ratio ± standard error of mean given above each bar. 
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Chapter Five - Muscle Biochemistry 

Chapter 5 

Alterations in the biochemistry and ultrastructure of the deep abdominal flexor 

muscle of the Norway lobster, Nephrops norvegicus (L. ) during infection by a parasitic 

dinoflagellate of the genus Hematodinium. 

Abstract. 

Changes in various biochemical and ultrastructural characteristics of the deep abdominal 

flexor (DAF) muscles were studied in Norway lobster (Nephrops norvegicus) from the 

Clyde estuary, Scotland, UK, at different stages of infection by a parasitic dinoflagellate of 

the genus Hematodinium. Abdominal DAF muscles from infected lobsters showed slight, 

significant increases in total water content, along with greatly depleted glycogen reserves 

and an altered free amino acid profile. However, protein concentration and composition 

remained unchanged. Ultrastructurally, parasitic infection of DAF muscle fibres caused 

alterations in sarcolemmal structure, and localized disruption of myofibrillar bundles 

around the periphery, but not throughout the centre of the fibres. Overall, the reduction in 

swimming performance previously reported for N. norvegicus during Hematodinium 

infection reflect an alteration in carbohydrate supply to the active muscle and some subtle 

disruption of muscle structure. The altered carbohydrate titre could reflect the 

Hematodinium parasites acting as a carbohydrate sink in the haemolymph, a disruption of 

normal tissue glycogenesis, or some alteration in the host's hormonal regulation. These 

changes could also adversely affect the taste, texture and marketability of infected meat. 

Published as: Stentiford, G. D., Neil, D. M. & Coombs, G. H. (2000). Alterations in the 
biochemistry and ultrastructure of the deep abdominal flexor muscle of the Norway lobster, 
Nephrops norvegicus (L. ) during infection by a parasitic dinoflagellate of the genus 
Hematodinium. Diseases of Aquatic Organisms 42,133-141. 
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Introduction. 

Damage to crustacean muscle has been widely reported from various infective agents, 

including microsporidians (Findley et al., 1981; Langdon, 1991; Kabre, 1992; Dennis & 

Munday, 1994; Childers et al., 1996), ciliates (Cawthorn, 1997), bacteria (Stewart, 1980) 

and dinoflagellates (Shields, 1994). Other studies have described muscle wastage with 

unknown etiology (Lindqvist & Mikkola, 1978), while host-induced (idiopathic) muscle 

necrosis can occur with natural or artificial stress (Akiyama et al., 1982; Anderson et al. 

1990, Stentiford & Neil, unpublished data). Such changes in the biochemical composition 

of muscle tissue can have economic consequences, as in the case of Tanner crabs 

(Chionoecetes bairdi and C opilio) infected by a parasitic dinoflagellate (Hematodinium 

sp. ) which causes the so-called 'Bitter Crab disease'. In this case infected muscle tissue 

tastes bitter (Meyers et al., 1987) and is sometimes deemed to be unmarketable (Eaton et 

al., 1991; Taylor & Khan, 1995). Similar observations have also been reported for 

Hematodinium sp. infections of other commercially important crustaceans, including the 

sand crab Portunus pelagicus (Hudson, 1995) and the blue crab Callinectes sapidus 

(Messick, 1994). 

Populations of the Norway lobster (Nephrops norvegicus), from the wcst coast of 

Scotland are seasonally infected with a dinoflagellate of the genus Hematodinium, with 

prevalence levels of over 70% in some years (Field el al., 1992). Several studies have 

established the progression, diagnosis and pathology of Hematodinium infection in N. 

norvegicus (Field & Appleton, 1995,1996), and its effect on host physiology (Taylor et al., 

1996) and haemolymph biochemistry (Stentiford et al., 1999 - Chapter 4). 

During late infections the deep abdominal flexor (DAF) muscles of X norvegicus, which 

are mainly responsible for the rapid abdominal flexion in 'tail flip' swimming in these 

lobsters (Newland & Neil, 1990), are partially invaded by the Hematodinium parasite 

(Field & Appleton, 1995). The abdominal musculature may also be altered in water content 
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during Hematodinium infection in N. norvegi . cus, similar to Hematodinium sp. infections in 

other commercially important crustaceans (Meyers et al., 1987; Messick, 1994; Hudson, 

1995). Such changes in the structure and composition of DAF muscles could lead to altered 

contractile behaviour (Field et al., 1995). Deficits in the swimming performance have been 

measured in Hematodinium-infected animals (Stentiford et al., 2000 - Chapter 8). This has 

important consequences for the success of infected lobsters in escaping from predators 

(Neil & Ansell, 1995; Arnott et al., 1998) and in evading capture by trawl nets (Newland et 

al., 1992). Additionally, the texture and taste quality of the tail meat, the marketable 

product of a large Scottish fishery (07M in 1999) (FRS, 1999), may also be altered. 

Despite their potentially damaging effect, changes in the biochemistry and ultrastructure 

of the DAF muscles in Hematodinium-infected X norvegicus have never been studied 

systematically (Field et al., 1992,1995). Therefore in this study the water content, total 

protein, glycogen and free amino acids of DAF muscle fibres were measured in X 

norvegicus at different stages of Hematodinium infection, and related to changes in the 

ultrastructure of the muscle fibres. 

Materials and Methods. 

Animals. 

Norway lobsters (Nephrops norvegicus L. ) were caught by otter-trawl from a location 

south of Little Cumbrae in the Clyde Sea area, Scotland, UK, and subsequently maintained 

in a closed aquarium (IOC, 33 ppt salinity) in the Division of Environmental and 

Evolutionary Biology, University of Glasgow, Scotland, UK. Animals were fed ad libitum, 

once weekly on mussels (Mytilus edulis) but were not fed for at least five days prior to 

tissue collection. All animals were in the intermoult state (Aiken, 1980) and were assessed 

for Hematodinium infection by the pleopod staging method of Field and Appleton (1995). 

Individual pleopods were removed and viewed under low power microscopy. The 
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accumulation of agglutinated parasite and haemocyte material was used to assign the 

appropriate stage, whereby Stage 0 is apparently uninfected and Stages I to 4 are patently 

infected (stages of the parasite evident in the haemolymph). 

Tissue removal and treatment. 

The deep abdominal flexor (DAF) from each of 128 lobsters was dissected out under 

physiological saline, blotted to remove excess moisture and weighed (wet weight). Muscle 

tissue was then frozen in liquid nitrogen and freeze-dried for 36 h (Edwards Modulyo 

freeze drier). Tissue was then re-weighed (dry weight) and samples were individually 

ground using a standard mortar and pestle. Ground samples were stored at -20'C until 

analysis. For SDS-PAGE analysis of the DAF muscle, individual muscle fibres were 

dissected out in calcium-free physiological saline and placed into 200 ýtl of SDS-sample 

buffer, denatured at 95*C for 4 min and stored at -20'C until electrophoretic protein 

separation (Neil et al. 1993). 

For electron microscopy, muscles were fixed for 2h at room temperature in a solution 

containing 4% glutaraldehyde and 2% paraformaidehyde in 0.1 M phosphate buffer, pH 

7.4, with 2% sucrose and 1.5 % sodium chloride. Fixed samples were rinsed in 0.1 M 

phosphate buffer with 4% sucrose and post-fixed in I% osmiurn tetroxide in phosphate 

buffer for I h. Specimens were washed in several changes of distilled water and stained in 

0.5 % uranyl acetate for I h. Following dehydration through an ethanol series, specimens 

were embedded in Spurr resin (Spurr, 1969). Thick sections (I gm) were stained with 

toluidine blue and suitable areas were thin-sectioned and mounted on uncoated 

copper/palladium grids and stained with uranyl acetate and lead citrate. Thin sections (60- 

70 nm) were examined in a Zeiss 902 transmission electron microscope. 

Chemicals. 
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For protein and glycogen analyses, sodium hydroxide (NaOH), trichloroacetic acid 

(TCA), potassium hydroxide (KOM, ethanol (EtOH) and the anthrone and Folin- 

Ciocalteu's phenol reagents were obtained from Sigma-Aldrich Co. (Poole, UK). For high 

performance liquid chromatography (HPLQ analysis, reagent-grade methanol (MeOH), 

tetrahydrofuran (THF) and acetonitrile were obtained from BDH Laboratory Supplies 

(Leicestershire, UK). Crystalline amino acids (aspartate, glutamate, asparagine, serine, 

histidine, glutamine, glycine, threonine, arginine, alanine, tyrosine, valine, methionine, 

tryptophan, phenylalanine, isoleucine and leucine), taurine, sodium acetate, 

mercaptoethanol (ME) and o-phthaldialdehyde (OPT) were also from Sigma-Aldrich Co. 

and reagent-grade Millipore-filtered water was used throughout. For SDS-PAGE, 

acrylamide-bis acrylamide (30%), sodium dodecylsulfate (SDS), ammonium persulfate 

(APS), N, N, N', N'- tetramethylethylenediamine (TEMED), brilliant-blue R250, TCA and 

molecular weight (M,. ) standards were purchased from Sigma-Aldrich Co. 

Muscle water and totalprotein assays. 

'Me muscle water content was determined for 128 lobsters as the difference between the 

wet weight and dry weight measurements. For determination of total muscle protein, 10 mg 

of freeze-dried DAF from 117 lobsters was homogenised in 10 ml 0. IN NaOH, left for 12 

h and centriffiged at 17,000 xg for 5 min. One ml of the supernatant was added to 2 ml of 

10 % TCA and left for 12 h at 4*C to allow for complete precipitation of the protein. 

Samples were centrifuged as above and the protein pellet re-dissolved in I ml of 0.1 N 

NaOH. Aliquots of 0.5 ml were then assayed for total protein using the Folin-Ciocaltcu's 

phenol reagent (Lowry et al., 195 1). 
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Muscle glycogen assay. 

For determination of muscle glycogen, 400 RI of 30 % KOH was added to each of 45 10 

mg freeze-dried samples from lobsters at different stages of infection. The samples were 

boiled for 20 min in a water bath at 95-100*C, cooled and added to 700 ILI absolute ethanol 

before being placed on ice for 2 h. Following precipitation, samples were spun at 17,000 x 

g for 10 min and the supernatant discarded. One ml of distilled H20 was added to each 

sample before sonication, after which 50 RI was incubated at 95-100T in Iml of anthrone 

reagent before glycogen assessment (Carroll et al., 1956). 

Free amino acid (FAA) measurement ofmuscle. 

For determination of muscle FAA concentrations, each of 44 10 mg samples of freeze- 

dried DAF from lobsters at different stages of infection were sonicated in I ml McOH for I 

min (De Vooys, 1991). Sonicated samples were deproteinized for 30 min at 4T, following 

which the protein precipitate was removed by centrifugation at 17,000 xg for 10 min. The 

supernatant was passed through a 0.22 prn syringe filter before storage at -70'C until 

analysis. Reverse phase HPLC was carried out as described in Stentiford et al. (1999) using 

20 ýd of the DAF extract derivatized with 180 ýd OPT. 

SDS-PAGE conditions. 

Samples of DAF muscle fibre were prepared as described above. Discontinuous SDS- 

PAGE was performed according to the method of Laemmli (1970) with 12.5 % acrylamide 

separating gel and a4% acrylamide stacking gel. Electrophoresis running conditions were 

as described by Neil et aL (1993), followed by overnight incubation in 10 % TCA and 

staining for 30 minutes with Coomassie-blue solution. Stained gels were later examined 

with an Appligene TMgeI imager. 
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Data analysis. 

Comparisons of the water content, protein, glycogen and FAA concentrations in the DAF 

muscle of uninfected and infected N. norvegicus were performed either by one-way 

analysis of variance (ANOVA) for normally distributed data, or by a Kruskal-Wallace test 

for non-normal distributions. Comparisons between stages were made with a Tukey's 

pairwise analysis (normal distributions) and a Mann-Whitney test (non-normal 

distributions). Significance was considered to be at p<0.05. 

Results. 

Water assay qfDAF muscle. 

Percentage of water content in DAF muscle at all stages of infection showed small, but 

consistently elevated mean values, which were significantly different from the mean value 

for Stage 0 (76.66 %) for Stage 1 (77.57 %) (p < 0.05), Stage 2 (77.46 %) (p < 0.01) and 

Stage 3 (77.77 %) (p < 0.01). At Stage 4, an increase in DAF water was also observed, but 

was not significant (77.43 %) (p = 0.095) (Fig. 1). 

DAF muscle protein assay. 

The protein concentration (mg. g" dry weight) of DAF muscle showed no significant 

difference between uninfected (632.77 mg. g*l dry weight DAF) and Hematodinium- 

infected animals (p = 0.943). When expressed as mg. g-' wet weight, the p-value was 

reduced (p = 0.443), but differences between uninfected and infected animals were still not 

significant. 

DAF muscle SDS-PA GE analysis. 

Myofibrillar proteins from DAF muscle fibres were separated using standard SDS-PAGE 

procedures. Figure 2 shows that the protein banding pattern of Hematodinium-infected 
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DAF is similar to that of the uninfected control, with no apparent qualitative differences in 

the relative content of the major myofibrillar proteins. Electrophoresis using high 

percentage acrylamide gels (20 %) confirmed this absence of extra bands in the low 

molecular weight region, while low percentage acrylarnide gels (5-7'%) revealed no loss of 

bands in the high molecular weight region (data not shown). 

DAF muscle glycogen assay. 

The glycogen concentration in the DAF muscle of uninfected N. norvegicus had a mean 

value of 13.59 mg. g-1 dry weight. This was progressively reduced in successive stages of 

Hematodinium infection to 8.36 mg. g" dry weight in Stage I (p < 0.001), 2.29 mg. g-1 dry 

weight (p < 0.00 1) in Stage 2,3.10 mg. g" dry weight (p < 0.00 1) in Stage 3 and 1.92 mg. g-' 

' dry weight (p < 0.001) in Stage 4. When different infection stages were compared, 

significant differences were found between Stage I and all other stages (p < 0.001), but not 

between Stages 2 and 3 (p = 0.273) or Stages 3 and 4 (p = 0.194) (Fig. 3). 

FAA analysis qfDAF muscle. 

Concentrations (ýLmol. gfw *') of FAA in DAF muscle of N. norvegicus were derived from 

the areas of the various peaks on the HPLC chromatograms. The OPT-derivatizcd FAA 

compounds identified in the DAF muscle of animals with different levels of infection are 

shown in Table 1. In uninfected X norvegicus (Stage 0), the total FAA concentration was 

410.64 l. Lmol. gfW-1, with glycine, arginine, alanine, taurine and histidine/glutamine 

collectively constituting over 90 %. The total FAA concentration were highest in late stage 

infections, but was significantly different from uninfected DAF muscle only for Stage 4 

animals (486.39 limol. gfiv") (P < 0.05). 
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The concentrations of several individual FAA compounds were altered significantly 

during Hematodinium-infection (Table 1). The histidine/glutamine concentration was 

reduced in early infection, while both aspartate and taurine reached their highest 

concentrations at Stage 2. Taurine is particularly noteworthy, being significantly higher 

than the control DAF at all stages of Hematodinium infection. Serine and phenylalanine 

shared a similar pattern, with increasing concentrations that peaked in Stage 3. Serine made 

the largest contribution to the increased total FAA concentration, changing from 5.99 

ýLmol. gfw-' in uninfected animals to 24.06 ýLmol. gfw-' in Stage 4 of infection. Glycine, 

which accounted for over 70 % of the total detected FAA in uninfected DAF, rose in 

concentration during infection, although the changes within stages were not significant 

(Table 1). 

Ultrastructure qfDAFmusclefibres 

When infected N. norvegicus were examined ultrastructurally, Hematodinium parasites 

were often observed in close association with fibres of the DAF muscle (Fig. 4c). 

Compared to normal muscle fibres (Fig. 4a), the sarcolemma of Hematodinium-infected 

muscle fibres was often disrupted with apparent disorganisation at the fibre periphery, 

separation of myofibrillar bundles and expansion of the tubular systems (Fig. 4b). Ilie 

majority of the myofibrillar bundles located more centrally in Hematodinium-infectcd DAF 

muscle fibres appeared normal in sarcomeric organisation, tubular systems and organelles 

(nuclei and mitochondria). 

Discussion. 

There are considerable alterations in the biochemistry and some changes in the 

ultrastructure of the abdominal musculature of Nephrops norvegicus during Hemajodinium 

infection. There is a slight (up to 1.1 %), but significant increase in water content of DAF 
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muscle during infection. The implications for this increase in DAF water for normal muscle 

function arc not known, though it is possible that the dynamics of normal muscle 

contraction are altered (Field et al. 1995). An alteration in the water content may also affect 

the cooked meat texture and nutritional quality of infected N. norvegicus muscle. 

Measurements of total DAF muscle protein (mg. g" dry weight) provide an indirect 

indication of gross alterations that may occur during Hematodinium infection in N. 

norvegicus. The data presented here show that, although there may be some association of 

the parasite with muscle bundles during heavy infections (Fig. 4c) (Field & Appleton, 

1995), the total muscle protein concentration remains unaffected. The representation of the 

data as mg. g-' wet weight cmphasises the effect of the increase in DAF water on the total 

DAF protein concentration. The similarity between the total protein in the DAF muscle of 

infected and uninfected lobsters suggests that the general structure of this muscle is 

relatively unaffected during Hematodinium infection. 

SDS-PAGE is a convenient tool for studying the expression of different contractile 

protein isoforms in crustacean muscle (Mykles, 1985; Yoshinaka et al., 1989; Youlin & 

MykIes, 1990; Neil et al., 1993; Ishimoda-Takagi et al., 1997). Fast muscle contains 

characteristic isoforms of paramyosin, troponin-C, I and T (Mykles, 1985) and a 75kDa 

protein that is cross-reactive with tropornyosin antibodies (Mykles, 1997). In the current 

study, the DAF myofibrillar protein profile is largely unaltered during patent 

Hematodinium infection of N. norvegicus (Fig. 2) and additional bands, indicative of 

breakdown fragments of muscle proteins, are also absent. These SDS-PAGE results are 

consistent with the measures of total protein, indicating that there is no significant 

alteration in muscle protein content during patent Hematodinium infection. 

Ultrastructurally, most myofibrillar bundles in the interior of muscle fibres retain their 

normal organisation, even during heavy infection (Fig. 4a-c) and the contractile machinery 

may produce normal levels of force, if activated. Alternatively, it cannot be excluded that 
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the extensive disruption of sarcolemmal membrane structure of the DAF fibres which 

occurs during infection could prevent normal activation by affecting the distribution of ions 

across the sarcolemma. Fibres with lowered membrane resting potential would have 

reduced ability to respond to synaptic transmission with membrane depolarisations, and the 

subsequent steps in excitation-contraction coupling could then be suppressed. Thus, 

infected DAF muscle fibres may fail to contract in a normal way, although their contractile 

machinery is intact. 

The presence of all major contractile proteins in Hematodinium-infected DAF fibres 

suggests that normal tail flexion (at least the part reliant on the proteins themselves) should 

still be possible. However, Stentiford et al. (2000) (Chapter 8) demonstrated that most 

parameters of the swimming performance of N. norvegicus (including number of flips to 

exhaustion, total distance travelled and flip velocity) are reduced during progressing 

Hematodinium infection. This reduction in swimming performance does not reflect gross 

change in the total amount of contractile protein present, or to the breakdown of contractile 

machinery of Hematodinium-infected DAF muscle, but is related to more subtle factors 

either within the muscle itself, or in the supply of energy to support muscle contraction. 

The most obvious change occurring in Hematodinium-infected DAF muscle is the 

reduction in the concentration of glycogen to approximately 15 % of its normal value in 

Stage 4 of infection. Similar reductions in muscle glycogen concentration have been noted 

with bacterial infection by Aerococcus viridans var. homall in the lobster, Homarus 

americanus (Stewart, 1980) and also with several nematode infections of insects; in locusts 

(Loclista migratoria and Schistocerca gregaria) (Jutsum & Goldsworthy, 1974 and 

Rutherford & Webster, 1978 respectively) and the mosquito (Cidex pipiens) (Schmidt & 

Platzer, 1980). In these cases, the parasites may become a carbohydrate sink by consuming 

haemolymph glucose (the precursor for glycogenesis). Perhaps the parasites inhibit 

glycogen synthesis in the host, thereby allowing them to consume the host's glucose 
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reserves (Rutherford & Webster, 1978). Interestingly, Schmidt & Platzer (1980) have 

suggested that the condition of the host may establish the degree to which the parasites 

develop, with the growth of the parasites proceeding as the nutritional state of the host 

deteriorates. Such a feature in Hematodinium-infection in X norvegicus would explain 

why infection prevalence is maximal during the spring, when animals are reaching their 

peak physiological condition before the onset of the main moulting season, while infection 

prevalence during the summer and autumn months is low (Field et. al., 1998). 

'Me reduction in the concentration of glycogen in DAF muscle during Hematodinium 

infection in N. norvegicus may reflect changes in normal regulatory hormone function. 

Hyperglycaemia is a response to various stresses, and in crustaceans is mediated, at least in 

part, by the crustacean hyperglycaernic hormone (CHM (Chang et al., 1999). CHH 

released by the X-organ/sinus gland complex acts on the main glycogen reserve tissues 

(hepatopancreas, abdominal muscle and possibly hemocytes) to stimulate glycogenolysis, 

which increases extracellular glucose availability (Santos & Keller, 1993). A disruption, or 

up-regulation of CHH release during Hematodinium infection may be partly responsible for 

depleting the DAF stores of muscle glycogen and liberating glucose, which is then utilized 

by the developing parasites. 

Depletion of the DAF muscle glycogen reserve may also impact upon the swimming 

performance of Hematodinium-infected N. norvegicus (Stcntiford et al., 2000 - Chapter 8), 

with the reduced carbohydrate reserve causing a shortfall in the re-supply of ATP to the 

contractile machinery. In this study, the main reduction in DAF glycogen was seen at Stage 

2 of Hematodinium infection, and Stentiford et al. (2000) (Chapter 8) reported that the 

main reduction in swimming performance also occurred at Stage 2. Ille progressive 

reduction in carbohydrate reserves during Hematodinium infection may thus be the major 

factor in the reduced swimming performance. However, other features, such as the 
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increased respiratory demand (Taylor et al., 1996) and loss of integrity of DAF muscle 

fibre membranes may also be important, especially during severe infections. 

Like many marine invertebrates, crustaceans maintain high free amino acid (FAA) 

concentrations within their cells for osmoregulation (Lange, 1963) and alterations in the 

FAA profiles of muscles occur in various parasitic infections (Vivares et al., 1980; Findley 

et al., 1981). The total FAA concentration reported in this study for the DAF muscle of 

uninfected N. norvegicus is comparable to that reported for the same species by Robertson 

et al. (1992), considering that proline, which was found by Robertson (1961) to be high in 

N. norvegicus muscle, was not derivatized using OPT in this study. During Hematodinium 

infection, the concentration of several FAA compounds was significantly altered. The 

largest changes were in serine and phenylaIanine, which increased during progressing 

infection, and in taurine, which made the largest single contribution to the increase in total 

DAF muscle FAA. We have previously reported that plasma taurine increases significantly 

with severity of Hematodinium infection in N. norvegicus (Stentiford et al., 1999 - Chapter 

4). Up-regulation of taurine in the DAF muscle or a leakage of FAA compounds via the 

damaged sarcolemma of infected N. norvegicus may be partly responsible for this plasma 

increase (Finney, 1978). If up-regulation in taurine synthesis is occurring, it may be the 

result of some form of stress reaction due to the large plasma parasite burden (Stentiford et 

al., 1999 - Chapter 4). 

Free amino acids significantly affect the taste of crustacean meat, with differences in 

extractive components between species underlying their characteristic flavours (Hayashi et 

al., 198 1; Shirai et al., 1996). Changes in the composition of FAAs and other compounds 

(nucleotides, sugars, organic acids and minerals) in the DAF may be implicated in the 

anecdotal changes in taste of Hematodinium-infected N. norvegicus meat and also in the 

characteristic taste change accompanying 'Bitter Crab' infection in Tanner crabs 

(Chionoecetes bairdi) (Meyers et al. 1987). Detailed study of the extractive components 
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from the muscles of N. norvegicus and Chionoecetes bairdi is necessary to identify the 

chemical basis of these taste alterations. 
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3.51 

0.83 

0.99 

4.56 

3.20 

34.28 

1.03 

4.65 

5.29 

Z91 

0.99 

Loo 

0.73 

0.70 

0.72 

Table 1. Summary of free amino acid concentrations in the deep abdominal flexor muscle of 
uninfected (Stage 0) and Hematodinium-infected (Stages 14) Nephrops norvegicus. Kev-. * (p < 
0.05), ** (p < 0.0 1), *** (p < 0.00 1). Full names of amino acids are given in methods scc'tion. 
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Fig. l. Percentage of water content in deep abdominal flexor muscle from uninfected (Stage 0) 
and Hematodinium-infected (Stages 14) Nephrops norvegicus. Total N= 128 (Stage 0- n24, 
Stage I- n23, Stage 2- n6 1, Stage 3-n 15 and Stage 4- n5). 

79.0- 

78.5 - 

78.0- 

77.5 - 

77.0 - 

76.5 - 

76.0- 

75.5 - 

75.04 
0234 

Infection Stage 

Fig. 2.12.5% SDS-PAGE gel showing separation of contractile proteins from DAF fibres from 
uninfected and Hematodinium-infected Nephrops norvegicus. Key; Lane A (Stage 0), B (Stage 
1), C (Stage 2), D (Stage 3), E (Stage 4), F (molecular weight marker), MHC (myosin heavy 
chain), PI/2 (paramyosin I and 2), 75kDa (unnamed fast muscle protein), TN-T (troponin-T), A 
(actin), TM (tropomyosin), TN-l (troponin-I isoforms), Ma-LC (myosin alpha light chain). 
Numbers on right indicate molecular weights in kDa. 
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Fig. 3. Concentrations of glycogen (mg. g-' dry weight) in deep abdominal flexor muscle from 
uninfected (Stage 0) and Hematodinium-infected (Stages 14) Nephrops norvegicus. Total N 
45 (Stage 0-n 10, Stage I-n 10, Stage 2-n 10, Stage 3-n 10 and Stage 4- n5). 
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Fig 4 (A-C). (A). DAF muscle fibre from uninfected X norvegicus showing an intact 
sarcolemma, tight junctions between adjacent myofibre bundles and a well-developed tubular 
system. Scale bar =I Wn. (B). DAF muscle from Hematodinium-infected N. norvegicus showing 
a disrupted sarcolemma and expansion of inter-bundle spaces in peripheral fibres. Scale bar = 
Iýtm. (C). Hematodinium parasite cell on the outer surface of a DAF muscle fibre. Note the 
disorganisation and fibrous appearance of the sarcolemma. Scale bar =I ýLrn. 
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Chapter 6 

Carbohydrate Dynamics and the Crustacean Hyperglycaemic Hormone (CHH): 

Effects of Parasitic Infection in Lobsters 

Abstract. 

The effects of a dinoflagellate parasite (Hematodinium sp. ) on carbohydrate metabolism 

were examined in the Norway lobster Nephrops norvegicus. Five stages of infection were 

observed. These included uninfected (Stage 0), sub-patently infected, lightly infected 

(Stage 1), and moderately and heavily infected (Stages 2 and 34, respectively). We 

observed that lobsters that were in Stages 14 of infection had significantly lower levels of 

hemolymph glucose compared to uninfected or sub-patently infected animals. These results 

were accompanied by significantly lower levels of hepatopancreatic glycogen in Stages 24 

compared to Stages 0-1. Due to the disruption of the normal feedback loops which control 

the release of crustacean hyperglycaernic hormone (CHH) from the sinus gland, plasma 

concentrations increase with infection severity. Ile increase in CHH concentrations occurs 

concomitantly with reduced concentrations of plasma glucose and tissue glycogen. We 

discuss these data with the perspective that the parasite places a heavy metabolic load on 

the host lobster. 

Published as: Stentiford, G. D., Chang, E. S., Chang, S. A. & Neil, D. M. (2000). 
Carbohydrate Dynamics and the Crustacean Hyperglycaernic Hormone (CHH): Effects of 
Parasitic Infection in Lobsters. General & Comparative Endocrinology (in press). 
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Introduction. 

Stress responses occur in all animals when regulated physiological systems are extended 

beyond their normal range by external stressors. Indicators of such stress responses may 

therefore be useful in assessing the short-term well-being or long-term health status of an 

animal (Fossi et al., 1997; Paterson and Spanoghe, 1997). Such indicators have received 

considerable attention in commercially important decapod crustacean species (Paterson and 

Spanoghe, 1997; Chang et al., 1999) which, following capture, often require transportation 

to market. Post-capture economic losses in the North American lobster (Homanis 

americanus) fishery are estimated to be between $50 and $75 million annually (Cawthorn, 

1997). Every step in the capture and post-capture processes has the potential to impose 

stress on captive animals, and under extreme conditions loss of the homeostatic regulation, 

by failure of all or part of the integrated response, may lead to increasing physiological 

disturbance and ultimately death (Morris and Airriess, 1998). 

Another important stressor is the infection of an animal by parasites (see Thompson, 

1983 for review). The Norway lobster (Nephrops norvegicus), which is the subject of an 

important commercial fishery in Scotland, is seasonally infected by a dinoflagellate of the 

genus Hematodinium, with prevalence levels reaching 70% in populations of N. norvegicus 

from the inshore waters off the west coast of Scotland (Field et al., 1992). A number of 

studies have established the basic characteristics of Hematodinium infection in N. 

norvegicus in terms of its progression, diagnosis and pathology (Field and Appleton, 1995, 

1996), its effect on host physiology (Taylor et al., 1996), haernolymph and tissue 

biochemistry (Stentiford et al., 1999 - Chapter 4,2000b - Chapter 5) and locomotion 

(Stentiford et al., 2000a - Chapter 8). The ability to estimate the infection's severity by a 

simple morphological index (Field and Appleton, 1995) and by an immunoassay for sub- 

patent infection (Field and Appleton, 1996) has greatly facilitated these epidemiological 

studies of Hematodinium infection in N. norvegicus (see Stentiford et al., 1999 - Chapter 
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4). It therefore offers a very useful model system in which to investigate the stresses 

imparted by parasitic infection in crustaceans. 

A number of researchers have suggested different methods for quantifying the stress 

reactions in crustaceans; these include the measurement of different hemocyte types in the 

haemolymph (Jussila et al., 1997), physiological, biochemical (Paterson and Spanoghe, 

1997; Stentiford et al., 1999 - Chapter 4), and molecular changes in tissue and 

haemolymph (Fossi et al., 1997) and the elevated transcription of heat shock proteins 

during periods of stress (Chang et al., 1999). A response that has received recent attention 

is that of the change in the plasma titre of the crustacean hyperglycaernic hormone (CHH) 

in relation to imposed stressors (see Chang et al., 1999). 

The occurrence of some 'diabetogenic' factor from the eyestalks of crustaceans has been 

known for many years (Abramowitz et al., 1944), as has evidence for the elevation of 

plasma glucose levels in crustaceans undergoing stress (Telford, 1968). The CHHs from 

several species have now been well described and in some cases, their amino acid profiles 

sequenced (see Keller et al., 1985; Kegel et al., 1989,1991; Lacombe et al., 1999 for 

review). These 8-9 kDa neuropeptides produced by perikarya in the mcdulla-terminalis X. 

organ, can be selectively released from the sinus gland into the blood stream (Santos and 

Keller, 1993b) after which they are known to target the hepatopancreatic plasma 

membranes (Kummer and Keller, 1993), the abdominal musculature (Santos and Keller, 

1993a) and the hemocytes (Santos and Stefanello, 1991), with the liberated glucose either 

moving to the extracellular fraction by diffusion, or being converted intraccliularly to 

lactate via glycolysis (Santos and Keller, 1993a). The advantage of such a system is not 

entirely understood, but due to the predictable elevation of plasma CHH during certain 

stresses (notably hNpoxia) in crustaceans (Santos and Keller, 1993a; Webster, 1996; Chang 

et al., 1999), it is envisaged that hyperglycaernia may be involved in the so-called 'flight or 

fright' response in these animals. An interesting feature of this process is that the lactate 
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resulting from enhanced glycolysis, released to the extracellular medium, could serve as a 

positive feedback mechanism for CHH release, with the increased CHH in turn stimulating 

glycogenolysis which then increases glucose availability (Santos and Keller, 1993b). 

Variations in blood glucose have been observed in crustaceans under several different 

environmental and physiological conditions (such as extremes of temperature, salinity, 

anoxia, starvation and emersion - see Hall and van Hain, 1998) and also during parasitism 

(Stewart, 1980), and it is presumed that these changes may be at least partly mediated by 

alterations in plasma CHH. It has been shown that the plasma CHH titre is consistently 

increased during emersion and hypoxia and that this leads to elevated plasma glucose 

concentration (Santos and Keller, 1993a; Webster, 1996; Chang et al., 1999). However, it 

has not yet been shown whether the plasma CHH titre is altered in relation to parasitism. 

Tberefore we have investigated the effect of progressive infection of the Norway lobster 

by Hematodinium parasites on the plasma CHH titre, as a possible sensitive indicator of 

stress, and assessed whether these changes may be implicated in the altered plasma glucose 

and tissue glycogen concentrations that often accompany these infestations. 

Materials and Methods. 

Collection and Treatment ofAnimals. 

Norway lobsters were collected with an otter trawl from a location south of Little 

Cumbrae in the Clyde Sea area, Scotland, UK. Lobsters were maintained in a closed 

aquarium (9'C, 33 ppt salinity) at the University of Glasgow. Animals were allowed to 

settle in the aquarium for one week and were fed ad libitum on squid (Loligo spp. ) and 

mussel (Mytilus spp. ) tissue. Animals were not fed for three days prior to the cxperimcnt to 

avoid any effects of differential feeding and all animals were in the intcrmoult state as 

defined by Aiken (1980). Lobsters were staged for patent Hematodinium infection using 

the pleopod staging method of Field and Appleton (1995). According to the plcopod 
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staging method, Stage I denotes a lightly infected animal, with infection progressing 

through to Stage 4 (late stage infection). Stages 3 and 4 (heavily infected) animals were 

grouped in all analyses as animals in these groups show very similar disease characteristics 

(see Stentiford et aL, 1999 - Chapter 4). For diagnosis of true Stage 0 (uninfected) and sub- 

patent/latent infection, samples of hepatopancreas from previously diagnosed Stage 0 

animals underwent western blot analysis using a polyclonal antibody against the Nephrops 

norvegicus isolate of Hematodinium sp. (see Field & Appleton, 1996 for details of antibody 

production). All animals showing a positive reaction to the anti-Hematodinium antibody in 

hepatopancreas tissue were diagnosed as sub-patent (i. e. Hematodinium-infected, but 

below the limit of detection using the pleopod staging method). Animals showing no 

reaction to the antibody were diagnosed as uninfected (Stage 0). 

Chemicals. 

For glycogen analyses, potassium hydroxide (KOH), ethanol and the anthrone and Folin- 

Ciocalteu's phenol reagents were obtained from Sigma-Aldrich Co. (Poole, UK). For 

glucose analysis, perchloric acid (PCA), sodium phosphate (dibasic), glucose and 

orthophosphoric acid (85 %) were obtained from Sigma-Aldrich Co., while the glucose 

oxidase assay kit was obtained from Boehringer-Mannheim (kit no. 124028). For CHH 

analysis, bovine serum albumin (fraction V), EDTA, glycine ethyl ester, Tween 20, and 

2,2'-azino-bis-3-ethylbenz-thiazoline-6-sulfonic acid were obtained from Sigma-Aldrich 

Co., while the streptavidin-peroxidase solution was obtained from Boehringer-Mannheim. 

Haemolymph and Tissue Preparation. 

A total of 100 haemolymph samples from uninfected and Hematodinium-infected lobsters 

were drawn from the base of the fifth perciopod into sterile syringes and centrifugcd 

immediately at 17,000 xg for 10 min at IOT to remove cellular material and suspended 
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debris. For the CHH assay, aliquots of plasma were frozen immediately in liquid nitrogen 

before freeze-drying for 24 h. Dried samples were stored at -20'C until transport to, and 

analysis at, the Bodega Marine Laboratory. For the glucose assay, the clear plasma was 

deproteinized using an equal volume of 0.6 M PCA for 10 min at 4T. Protein precipitate 

was removed by centrifugation and the supernatant was stored briefly at -20T until 

analysis at the University of Glasgow. 

The hepatopancreata, from 45 lobsters at different stages of Hematodinium infection were 

dissected out in physiological saline. Excised samples were blotted to remove excess 

moisture and weighed (wet weight) before rapid freezing in liquid nitrogen and freeze- 

drying for 36 h. Tissue was then re-weighed (dry weight) and samples were individually 

ground using a standard mortar and pestle. Ground samples were stored at -200C until 

analysis of total glycogen content at the University of Glasgow. 

Measurement ofPlasma Glucose Concentration. 

Glucose concentration in the haemolymph of uninfected and infected lobsters was 

measured using the glucose oxidase method (Bochringer-Mannheim) in a microplate 

method as described by Webster (1996). Briefly, 50 ýd samples of deproteiniscd plasma 

were added to 450 ýd of 0.2 M phosphate buffer (pH 7.4) and 100 ýd samples of this 

solution were used in the assay with 200 RI of the enzyme chromogcn reagent. 

Concentrations of plasma glucose were read from a standard curve constructed for glucose. 

Measurement ofPlasma CHH Titre. 

The production of an antibody against purified CHH-A from H. americanus has been 

described by Chang et al. (1998) and previous studies have shown that N. norvegicus CHH 

can be detected using this antibody (G. D. Stentiford and E. S. Chang, unpublished data). In 

the current study, freeze-dried plasma samples were re-suspended to their original volume 
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with ddH20 and assayed for CHH-A using the ELISA method of Chang et al. (1998). 

HPLC-purified CHH from the crayfish Orconectes limosus (Kegel et al., 1991) was used 

as the standard. Since purified N. norvegicus CHH was not available, it was not possible to 

quantify absolute concentrations of N. norvegicus CHH. The data were therefore presented 

as 0. limosus equivalents, which allow relative quantification. 

Measurement ofHepatopancreatic Glycogen Content. 

For determination of muscle and hepatopancreatic glycogen, 400 ýLl of 30 % KOH was 

added to 20 mg of the freeze-dried samples from lobsters at different stages of infection, 

following which samples were boiled for 20 min in a water bath maintained at 95-100'C. 

Samples were cooled and added to 700 ýd absolute ethanol before being placed on ice for 2 

h. Following precipitation, samples were spun at 17,000 xg for 10 min and the supernatant 

discarded. One ml of ddH20 was added to each sample before sonication. Fifty ýd of each 

sonicated sample were incubated at 95-100T in I ml of anthrone reagent before 

measurement of total glycogen (see Carroll et al., 1956). 

Data Analysis. 

Comparisons of plasma glucose concentration, plasma CHH titre and hepatopancrcatic 

glycogen content of uninfected and infected X norvegicus were performed either by one- 

way analysis of variance (ANOVA) for normally distributed data, or by a Kruskal-Wal lacc 

test for non-normal distributions. Comparisons between stages were made with a Tukey's 

pairwise analysis (normal distributions) and a Mann-Whitney test (non-normal 

distributions). Significance was considered to be at p<0.05. 
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Results. 

Plasma Glucose Concentrations. 

The mean concentration of glucose in the plasma of uninfected N. norvegicus was 180.0 

ýtg. ml" plasma. Ilie glucose concentration in sub-patently infected lobsters (180.1 gg. ml" 

plasma) was not significantly different to that of Stage 0 animals (p = 0.979), but patently 

infected animals of all stages showed significantly lower concentrations of plasma glucose 

than Stage 0; in Stage 1 (41.4 gg. ml-1 plasma) (p < 0.001), Stage 2 (47.8 gg. ml" plasma) (p 

< 0.001) and Stage 3-4 (25.3 gg. ml" plasma) (p < 0.001). All patently infected animals 

also showed significantly lower concentrations of plasma glucose than sub-patently 

infected lobsters (all p<0.00 1), but different stages of patently infected lobsters showed no 

significant difference in glucose concentration (all p>0.05) (Fig. 1). 

Hepatopancreatic Glycogen Concentrations. 

The mean glycogen concentration of the hepatopancreas of uninfected N. norvegicus at 

16.19 mg. g" dry weight was slightly higher than that of the deep abdominal flexor muscle 

(Stentiford et al., 2000b - Chapter 5). Hepatopancreatic glycogen concentration was 

reduced during patent Hematodinium infection. The reduction was not significant in Stage 

I lobsters (14.71 mg. g" dry weight, p=0.574), but was highly significant in both Stage 2 

(2.01 mg. g" dry weight, p<0.001) and Stage 3-4 (0.84 mg. g" dry weight, p<0.001) 

Hematodinium infection. When different stages of infection were compared, significant 

reductions in hepatopancreatic glycogen were found between Stage I and Stage 2 (p < 

0.001) and Stage I and Stage 3-4 (p < 0.01), but not between Stage 2 and Stage 3-4 (p 

0.098) (Fig. 2). 

Plasma CHH concentrations. 
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The mean concentration of CHH in the plasma of uninfected N. norvegicus was 32.2 

finol. ml". The mean concentration of CHH in the plasma of sub-patently infected lobsters 

(107.65 fmol. ml-') was significantly higher than that of Stage 0 animals (p < 0.05), while at 

Stage I (light patent infection), the mean concentration was higher (though not 

significantly, p=0.057) than Stage 0, and lower (though not significantly, p=0.070) than 

sub-patently infected lobsters. In later stages of patent Hematodinium infection, the plasma 

CHH concentration was significantly higher than that of uninfected animals; in Stage 2 

(77.2 finol. ml", p<0.001) and Stage 34 (106.6 fmol. ml-1, p<0.001). The significant 

increase in plasma CHH concentration between Stage I and Stage 34 animals (p < 0.05) 

and almost between Stage I and Stage 2 animals (p = 0.080) suggests that the titre of CHH 

increases with severity of patent infection. It is interesting to note however that the mean 

plasma CHH titre of sub-patently infected lobsters is not significantly different to that of 

Stage 34 lobsters (p = 0.997) (Fig. 3). 

Discussion. 

Carbohydrate Dynamics in HemaloShium-infected N. nomegiats. 

The current study has identified large alterations in the carbohydrate profile in the plasma 

and tissues, and in the crustacean hyperglycaemic hormone (CW titrc in the plasma, of N. 

norvegicus infected by the parasitic dinoflagellate Hematodinium sp. The concentration of 

glucose in the plasma remains relatively unchanged in sub-patcntly infected lobsters, but is 

significantly reduced during all stages of patent infection. In Stage I infected lobsters tile 

plasma glucose is already reduced to approximately 30 % of its normal value, and this 

reduction in early infection suggests that glucose provides a readily usable substrate for the 

growth of the Hematodinium parasite in the haemolymph of N. norvegicus. Similar 

reductions in the concentrations of simple carbohydrates in the host tissues have been 

reported for other parasitic infestations in crustaceans (Stewart, 1980, Camilorn, 1997) and 
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insects (Schmidt and Platzer, 1980), and in these cases it has been suggested that the 

parasites may be acting as a 'carbohydrate sink', absorbing haemolymph glucose and 

thereby forcing the host to re-supply glucose to the haemolymph to maintain carbohydrate 

homeostasis. Ile re-supply of glucose to the plasma occurs mainly via tissue-based 

glycogenolysis, and the main storage tissues for such polysaccharides in crustaceans are the 

hepatopancreas (Dall and Moriarty, 1983), the muscle (Scwoch, 1972) and the hemocytcs 

(Johnson et al., 1971). The dramatic decrease in the concentration of glycogen in the 

hepatopancreas that occurs between Stage I and Stage 2 of infection (Fig. 2) and the 

similar depletion found to occur in the deep abdominal flexor muscle of Hematodinium- 

infected N. norvegicus (Stentiford et al., 2000b - Chapter 5) are consistent with a response 

to an elevated burden of circulating parasites (Field et al., 1992). 

The control of carbohydrate dynamics in the haemolymph and tissues of crustaceans is 

known to be exerted mainly by circulating levels of CHH (Sedlmeier, 1985). The cellular 

reception of CHH neuropeptide molecules elicits the mobilization of glucose from 

intracellular glycogen stores via glycogenolysis (Santos and Keller, 1993b), with the 

liberated glucose either moving to the extracellular fraction by diff-usion, or being 

converted intracellularly to lactate via glycolysis (Santos and Keller, 1993a). 

in patently infected lobsters, the plasma CHH concentration shows a steady and 

significant increase in relation to infection severity (Fig. 3), which is mirrored by a 

progressive decrease in the concentration of plasma glucose (Fig. 1). The co-cxistence of a 

high plasma CHH concentration and a low plasma glucose concentration, together with the 

significant reduction in tissue glycogen stores noted both in this study (Fig 2) and a 

previous study (Stentiford et al., 2000b - Chapter 5), is the opposite of what may be 

expected in a normally-operating feedback systern and is probably due to a disruption of 

the normal carbohydrate feedback control loop by the parasites. As infection progresses, 

the developing parasites will consume the glucose being liberated from the tissue glycogen 
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reserves, lowering circulating glucose concentrations and thereby reducing the negative 

feedback on CHH release from the sinus glands (see step (1) in Fig. 4 and Santos and 

Keller, 1993a). This, in turn, will initiate an increased release of CHH (step (2) in Fig. 4), 

inducing progressive glycogen depletion of the tissues (step (3) in Fig. 4). As the parasite 

burden increases, a steadily-reducing plasma glucose concentration, a progressive depletion 

of tissue glycogen stores and an increasingly elevated plasma CHH titre are all to be 

expected. 

In addition to this change in negative-feedback control of CHH release by plasma 

glucose, the increased plasma lactate levels that are known to occur during Hematodinium 

infection (Taylor et al., 1996) may also stimulate CHH release, with consequent effects on 

glycogenolysis (Santos and Keller, 1993b). The most likely cause of these elevated plasma 

lactate levels is a switch to anaerobic metabolism, which Taylor et al. (1996) have recorded 

in terms of increased lactate and a lowered haemolymph pH, a situation which is 

exacerbated by a reduction in the oxygen carrying capacity of the haemolymph. At the 

cellular level, pyruvate, the end product of glycolysis, is converted under anaerobic 

conditions to lactate, which either accumulates within the cell or is moved to the 

extracellular medium (step (4) in Fig. 4). 

Potentially, tissue glycogen reserves could be replenished from the lactate by the process 

of gluconeogencsis, but this is unlikely to be significant since in invertebrates, these 

pathways are thought to be relatively inefficient compared with the Cori cycle in mammals 

(Schulman and Landau, 1992), and probably operate under aerobic conditions (Ellington, 

1983). Moreover, gluconeogenesis is antagonized by CHH itself, which is known to 

activate cyclic nucleotide-dependent protein kinases, leading to a phosphorylation and 

therefore inhibition of glycogen synthase (Sedimeier, 1985; Santos and Keller, 1993a), and 

is also inhibited by hyperosmolarity (Li et al., 1992), which is known to occur in 

Hematodinium infection (Stentiford et al., 1999 - Chapter 4). It is most likely, therefore, 
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that the elevated plasma CHH concentration in patent infection is due primarily to a 

'functional hypoxia' in the infected lobster, which elicits a cascade response similar to that 

seen during the 'environmental hypoxia' caused by emersion (Santos and Keller, 1993a; 

Webster, 1996; Chang et al., 1999). 

Implications of Altered Carbokydrate Dynamics during Hefflatodinium Infection. 

Studies on the physiological condition of crustaceans over the entire moulting cycle have 

shown that the carbohydrate reserves are generally highest in the late intermoult period 

(Icely and Nott, 1992) and are also dependent upon the reproductive cycle (Tuck et al., 

1997). In terms of parasitic infection, Schmidt and Platzer (1980) note that the condition of 

the host may establish the degree to which the parasite develops, with hosts in the best 

physiological condition harbouring the largest parasite burdens. 

The prevalence of Hematodinium infection is known to be highest in N. norvegicus 

during the spring (Field and Appleton, 1995) and in females (G. D. Stentiford, unpublished 

data). Female crustaceans have relatively larger amounts of hepatopancreatic tissue than 

males as a means of supplying the nutritional requirements for egg rearing and spawning 

(Farmer, 1974a). In N. norvegicus, this egg-rearing period may last for up to 8 months of 

the year, during which time the female lobster remains for the most part, within the burrow 

(Farmer, 1974b). The higher incidence of Hematodinium infection in female lobsters may 

reflect some relative advantage of the female host to the parasite. 

Recently, it has been shown that the concentration of CHH in the plasma is increased by 

up to 100-fold in the hours leading up to moulting, with levels returning to normal 

following ecdysis (Chung et al., 1999). The spring peak of Hematodinium infection in 

Scottish N. norvegicus coincides with the onset of the main moulting period for this species 

(Field et al., 1998) and it is tempting to suggest that a greatly increased concentration of 

CHH in the plasma at this time may create haemolymph conditions that are suitable for 
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rapid growth of the parasite population. The significantly elevated concentration of CHH in 

the plasma of sub-patently infected lobsters found in this study could either be responsible 

for, or caused by, the appearance of Hematodinium parasites in the haemolymph following 

latent infection. Further studies on the effect of elevated CHH concentration on latently 

infected lobsters are necessary to investigate the role of this hormone in initiation of 

haemolymph infection in N. norvegicus. An increase in plasma CHH titre due to other 

stressors (such as seasonal hypoxia, temperature changes or pollution) could also be 

implicated in infection progression. 

As the main carbohydrate resources become exhausted, parasites may switch to 

alternative, and less cfficient forms of energy such as fatty acids, proteins and free amino 

acids (Schmidt and Platzer, 1980; Thompson and Dahlman, 1998). Studies of plasma and 

tissue free amino acid and protein dynamics during Hematodinium infection of N. 

norvegicus have shown that the normal profile of these compounds is considerably altered 

as infection severity increases (Taylor et al., 1996; Stentiford et al., 1999 - Chapter 4, 

2000b - Chapter 5). It is likely that such changes occur following exhaustion of the most 

accessible and high-yielding forms of nutrition: the plasma and tissue carbohydrates. Under 

such conditions, the host will reach a state of physiological starvation from which it cannot 

recover, and at this stage the post-parasitic forms emerge and the host will die (Schmidt 

and Platzer, 1980). Aquarium observations of Hematodinium-infected N. norvegicus have 

identified an apparently similar response, where swarming stages of the parasite are 

extruded via the integumental membranes, gills and the mouth. Ibis leaves the host 

moribund and then dead within 24 h (Field and Appleton, 1995; Appleton and Vickerman, 

1998). It may be suggested that sporulation of the Hematodinium parasite within, and exit 

from the host occurs when the parasite has exhausted the host's nutrient reserves. Host 

condition may then also play an important role in determining the timing of sporulation of 

Hematodinium in N. norvegicus and may explain why sporulation has been observed in 

123 



Chapter Six - Carbohydrate dynamics 

some lobsters displaying only Stage I and 2 infection (Appleton and Vickerman, 1998). 

During the terminal stages of Hematodinium infection, the arthrodial membranes appear 

swollen and the haemolymph volume is apparently increased (Appleton and Vickerman, 

1998). Increased water uptake has been associated with high concentrations of CHH in the 

plasma of Carcinus maenas preceding ecdysis (Chung et al., 1999). It is possible to suggest 

therefore, that elevated levels of plasma CHH within, or preceding, the final stages of 

Hematodinium infection in N. norvegicus could be involved with the observed swelling of 

arthrodial membranes and may facilitate the exit of motile dinospores (sporulation) from 

the host lobster. 

Tle current study has, for the first time, identified a link between the disruption of 

carbohydrate handling during parasitic infection of crustaceans and alterations in the 

expression of the crustacean hyperglycemic hormone. Whether the increase in the plasma 

CHH titre is caused directly by parasitic disruption of the lobster's endocrine system, or 

indirectly, by interfering with the positive and negative feedback loops in the plasma, 

requires further investigation. However, future studies which consider plasma and tissue 

carbohydrate dynamics in crustaceans should take into account that the relatively large 

variations often seen in the hyperglycemic response (Hall and van Ham, 1998), while being 

related to the moult stage of the test animal, may also be due to its overall health status. 
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Fig. 1. Concentration of glucose (ýtg. ml_) in the plasma of uninfected (Stage 0) and 
Hematodinium-infected (sub-patent and Stages 1,2.34) N norvegicus. 
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Fig. 2. Concentration of glycogen (mg. g-1 dry weight) in the hepatopancreas of uninfected 
(Stage 0) and Hematodinium-infected (Stages 1,2 34) X norvegicus. 
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Fig. 3. Concentration of the crustacean hyperglycaernic hormone (CF" (frnol. ml") in the plasma 
of uninfected (Stage 0) and Hematodinium-infected (sub-patent and Stages 1,2,34) N. 
norvegicus. 
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Fig. 4. Schematic diagram of the changing relationship between tissue glycogen, plasma 
glucose and CHH release in the presence of Hematodinium parasites in the plasma of N. 
norvegicus (adapted from Santos & Keller, 1993a). For description see discussion text. 
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Chapter 7 

A rapid onset, post-capture muscle necrosis in the Norway lobster, Nephrops 

norvegicus (L. ) from the west coast of Scotland, United Kingdom. 

Abstract. 

A post-capture, abdominal muscle necrosis of rapid onset has been identified in Norway 

lobsters (Nephrops norvegicus) captured off the west coast of Scotland, United Kingdom. 

Economic losses, due to mortality of these animals in transport, were encountered by Scottish 

wholesalers during the summer and autumn of 1999. Affected animals show a chamcteristic 

whitening of individual muscle fibres and fibre bundles of the abdomen within hours of capture, 

with a progression towards complete opacity of the abdominal musculature within a number of 
days. The pathology causes a loss of the normal function of the abdomen, thus preventing the 

normal 'tail flip' swimming. Electron microscopy failed to reveal any obvious causative agent 
but showed that affected tissue displayed a progressive disruption of sarcomere organization, 

loss of Z-Iine material, condensation of myofibrils and infiltration of necrotic regions by 

granulocytes. SDS-PAGE of affected muscle tissue showed that there was a great reduction of 

most of the major contractile proteins. The condition most closely resembles idiopathic or 

spontaneous muscle necrosis, a pathology previously reported from both wild and cultured 

crustaceans. Damage to the integument in conjunction with exposure to various stressors during 

and immediately following capture is the most likely cause of the pathology. The rapid onset of 

the pathology has implications for the post-capture handling procedure for N. norvegicus and 

their subsequent vivier transport to market. It may also be partially responsible for the high 

mortality rate of undersized N. norvegicus returned to the sea after capture and aerial emersion. 

Published as: Stentiford, G. D. & Neil, D. M. (2000). A rapid onset, post-capture muscle 
necrosis in the Norway lobster, Nephrops norvegicus (L. ) from the wcst coast of Scotland, 
United Kingdom. Journal of Fish Diseases (in press). 
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Introduction. 

Pathological damage to crustacean muscle has been widely reported and is known to have 

various causative agents, including microsporidians (Findley et al., 198 1; Langdon, 199 1; 

Kabre, 1992; Dennis & Munday, 1994; Childers et al., 1996), ciliates (Cawthorn, 1997), 

bacteria (Stewart, 1980), dinoflageflates (Shields, 1994; Stentiford et al., 2000 - Chapter 5) 

and viruses (Arcier et al., 1999). A number of other studies have described muscle wastage 

with unknown etiology (Lindqvist & Mikkola, 1978), while host-induced (idiopathic) 

muscle necrosis has been reported to occur in conditions of natural or artificial stress, both 

in the wild and under aquaculture situations (Akiyama et al., 1982; Momoyama & 

Matsuzato, 1987; Nash et al., 1987; Anderson et al., 1990; Evans et al. 1999). Idiopathic 

muscle necrosis (also known as 4tail rot', muscle opacity, muscle necrosis, and spontaneous 

muscle necrosis) is characterized by focal to gross opaque lesions in the striated 

musculature of the abdomen. The lesions are composed of necrotic muscle cells with 

disorganized myofibrils, loss of sarcomeres, loss and atrophy of mitochondria and damage 

to the sarcoplasmic reticulum (Akiyama et al. 1982). Late stage necrosis is characterized 

by fragmentation and condensation of myofibrillar bundles (Nash et al., 1987). Hemocýlic 

infiltration of the damaged musculature is also commonly observed, these participating in 

aggregation, encapsulation and, in the late stages of necrosis, myophagia (Momoyama & 

Matsuzato, 1987, Nash et al., 1987 and Anderson et al., 1990). 

Nephrops norvegicus supports a major fishery in the United Kingdom, with the Scottish 

fishery contributing over 76% of this (07 million in 1999 - FRS, 1999). The majority of 

the landings are from trawler capture, with the animals being 'tailed' for sale as 'scampi'. 

Larger animals are also captured by baited creels and are often exported to continental 

Europe by special ly-designed 'vivier' vehicles. In order to ensure sale, exported live 

lobsters must be in good condition on arrival at market. 
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During the summer and autumn of 1999, creel-caught lobsters from the Sound of Jura 

(west Scotland) and other west coast sites were reported to be dying or moribund during 

vivier transport, with some catches being refused at market due to the opaque appearance 

of their tail meat (Mr. G. Goldsworthy, personal communication). Signs of this condition 

were also noted in animals taken directly from creels, and in trawl-caught animals from the 

Clyde sea area (west Scotland) which were subsequently maintained in aquaria at the 

University of Glasgow. 

This study was carried out to establish the epidemiology of this condition in the Scottish 

west coast Nephrops norvegicus fishery and to describe its pathology and progression by 

using histological and biochemical techniques. 

Methods. 

Norway lobsters showing symptoms of the described condition (opaque abdominal 

musculature and inability to flex the abdomen) when caught in creels in the Sound of Jura 

(see Fig. 1) were collected from Loch Fyne Fisheries Co., Tarbert, west Scotland, UK. 

Trawl-caught lobsters from the Clyde sea area (Fig. 1), were maintained post-capture in the 

aquarium at the Division of Environmental and Evolutionary Biology, University of 

Glasgow, Scotland, UK. Clyde lobsters were fed ad libitum on mussels (Mytilus edulis) 

until preparation of abdominal muscle for histology and SDS-PAGE, while muscle tissue 

from the Sound of Jura lobsters was immediately prepared for histology. 

In order to establish the rate of progression of this condition, 200 lobsters captured in the 

Clyde sea area in January 2000 by standard otter trawling (Fig. 1) were selected randomly 

from a sub-sample and assessed for signs of muscle opacity immediately following capture, 

and again four hours post-capture, after holding them on the deck in a standard fish box 

covered with a damp sack. In those showing symptoms of the condition, individual 

segments of the abdomen were visually assessed for the location of muscle opacity. In 
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order to investigate possible reasons for the onset of the condition within the abdomen, any 

damage to the integument in the vicinity of the necrosis was recorded by probing the area 

with a blunt dissection needle. All lobsters were also staged for infection by the 

dinoflagellate parasite Hematodinium sp., which is known to affect N. norvegicus in these 

regions (Field & Appleton, 1995). All lobsters were diagnosed as Stage 0 (uninfected). 

Histological samples from these animals were compared to previously collected muscle 

samples from Hematodinium-infected lobsters. 

Histology 

The deep flexor and medial superficial flexor muscles from the abdomen of N. 

norvegicus were exposed by removal of the abdominal cuticle and underlying extensor 

muscles. Small blocks of opaque muscle and muscle fibre bundles showing opacity along 

part of their length were removed under a dissecting microscope. Muscle tissue samples 

were also taken from animals diagnosed with Hematodinjum infection. Muscles were fixed 

for two hours in a solution containing 4% glutaraldehyde and 2% paraformaldchyde in 0.1 

M phosphate buffer, pH 7.4, with 2% sucrose and 1.5 % sodium chloride for 2 hours at 

room temperature. Fixed samples were then rinsed in 0.1 M phosphate buffer with 4% 

sucrose and post-fixed in I% osmiurn tetroxide in phosphate buffer for I hour. Specimens 

were washed in several changes of distilled water and block stained in 0.5 % u=yl acetate 

for I hour. Following dehydration through an ethanol series, specimens were embedded in 

Spurr resin (Spurr, 1969). Thick sections (I ýim) were stained with toluidine blue for 

viewing with a light microscope and suitable areas were cut and mounted on uncoated 

copper/palladium grids and stained with uranyl acetate and lead citrate. Thin sections (60- 

70 nm) were examined in a Zeiss 902 transmission electron microscope. 
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SDS-PAGE 

For SDS-PAGE analysis of deep abdominal flexor muscle from lobsters showing symptoms of 

muscle opacity, individual muscle fibres were dissected out under calcium-free Nephrops 

physiological saline and placed into 200 ýtl of SDS-sample buffer, denatured at 95C for 4 

minutes and stored at -20'C until electrophoretic protein separation (see Neil el al. 1993). 

Discontinuous SDS-PAGE was performed according to the method of Laemmli (1970) with 

gels containing 12.5 % acrylamide separating gel and 4% acrylamide stacking gel. 

Electrophoresis running conditions were as for those described by Neil et al, (1993), followed 

by overnight incubation in 10% TCA and staining for 30 minutes in Coomassie-blue solution. 

Stained gels were later imaged using an Appligene TM gel imager. Opaque muscle fibres were 

compared to fibres from lobsters showing no symptoms of muscle opacity. 

Results. 

In the early stages of the condition in Nephrops norvegicus, individual muscle fibres of 

the abdomen appeared opaque when viewed through the ventral membrane, with the 

opacity progressing to whole muscle fibre bundles and eventually the whole abdomen. In 

advanced cases, the abdomen did not respond to normal physical stimuli and thus affected 

lobsters could not initiate a normal 'tail-flip' response, while the thoracic limb system 

appeared to function normally. Progression of the condition was rapid, leading to death of 

affected lobsters within days. 

Light microscopy revealed that in the abdominal superficial flexor muscles of animals 

showing early stages of the pathology (individual opaque muscle fibres), the peripheral 

areas of the muscle appeared damaged, with disruption to the sarcolemma and infiltration 

of the damaged regions by granulocytes (Fig. 2a). However, other areas contained intact 

myofibrillar structure, with regular sarcomere arrangements. The deep abdominal flexor 
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muscles, which form the major muscle mass within the abdomen, were also progressively 

affected by the necrosis, and in severe cases there was a complete loss of sarcomeric 

structure and a condensation of myofibrillar bundles (Fig. 2b). In some instances, the 

pathology was clearly progressing along individual myofibrillar bundles, with areas of 

semi-intact muscle being found immediately adjacent to areas of complete muscle 

degeneration, the latter being heavily infiltrated by granulocytes (Fig. 2c). 

Examination of the necrotic tissue using electron microcopy revealed that the normal 

sarcomcric structure observed in unaffected animals (Fig. 3a) was initially altered by 

expansion of the space occupied by the tubular system and the appearance of granular 

material in the cytoplasm (Fig. 3b). Regions of the muscle with a fairly intact myofibrillar 

structure also displayed some erosion of the sarcomcrcs, with degeneration originating in 

the vicinity of the Z-line (Fig. 3c). Penetrating between the myofibre interstices of relatively 

unaffected bundles were sinuous structures, containing filaments (Fig. 2d and 4a). In 

regions of pathological progression, the junctions between intact and degenerated muscle 

(see also Fig. 2b) were characterized by a dissolution of myofibrillar bundles into granular 

material (Fig. 4b). 

In areas of severe muscle necrosis in N. norvegicus, there was a partial to complete loss 

of myofibrillar and sarcolemmal structure, with components of the myofibrillar membrane 

system often the only recognizable feature in the granular cytoplasm separating islands of 

densely-staining, condensed myofibrillar bundles (Fig. 5a). Necrotic regions of muscle were 

also characterized by aggregations of atrophied mitochondria within the granular 

cytoplasm (Fig. 5b), the appearance of myelin figures (Fig. 5c) and the infiltration of the 

damaged tissue by granulocytes (Fig. 2c and 5d). Such areas occasionally contained 

unidentified inclusions measuring 100-150nm in diameter (Fig. 6). 

A certain degree of muscle breakdown was also found to occur in the abdominal muscles 

of N. norvegicus heavily infected by the dinoflagellatc parasite Hematodinium (Fig. 3d). 
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However, in contrast to the effects of necrosis, this mainly involved erosion of groups of 

myofilaments within the sarcomeres, with the Z-Iine region remaining relatively 

unaffected. 

SDS-PAGE analysis of the necrotic condition revealed a major loss of contractile 

proteins from opaque deep abdominal flexor muscle fibres compared with their amounts in 

unaffected fibres (Fig. 7). 'I'lie myosin heavy chain was completely absent, while 

paramyosin, troponin-T, actin, tropomyosin, troponin-I isoforms and the myosin (x-light 

chain were significantly reduced in quantity. 

in a study of trawled N. norvegicus, immediately following capture the onset of the 

necrotic pathology was seen in at least one abdominal muscle fibre bundle in 8% of the 

200 lobsters. When these animals were re-examined 4 hours later, after holding them in a 

covered fish box on deck, this prevalence had increased to 29 % (Fig. 8a). In the affected 

lobsters, opacity was found in various abdominal segments, with those adjacent to the 

ccphalothorax being the most commonly affected (Fig. 8b). It is perhaps significant that 

visible damage to the abdominal integument (tearing or puncturing) was observed in the 

vicinity of opaque lesions in 46.5 % of the lobsters with symptoms of muscle necrosis. 

Small, undetectable lesions or minor damage to the main carapace may have been present 

in other animals, though this was not investigated. 

Discussion. 

Lack ofcausative agent 

The current study has identified a post-capture, abdominal muscle necrosis of rapid onset in 

the Norway lobster, Nephrops norvegicus captured from the west coast of Scotland, Externally, 

the condition resembles that of a microspordian infection. These arc common pathogens of 

crustacean tissue, often causing severe softening, opacity and general degeneration of the 

musculature (Breed & Olson, 1977; Findley et al., 1981; Olson & Laman, 1984; Langdon, 
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1991; Dennis & Munday, 1994; Childers et al., 1996). However, a number of features of the 

observed necrosis are counter-indicative of microsporidian involvement. Firstly, progression of 

microsporidiosis tends to be much slower than that observed for the condition in N. norvegicus. 

Breed & Olson (1977) report that progression from a light to a heavy microsporidian infection 

takes approximately 120 days in crangonid shrimps. The condition observed in N. norvegi . cus in 

this study had a much shorter time course, progressing significantly over a period of 4 hours 

following trawl capture, and leading to death within a further 34 days (a feature also noted for 

spontaneous muscle necrosis in P. aztecus - Rigdon & Baxter, 1970). Secondly, no 

microsporidian life stages were visible in any of the histological sections of abdominal muscle 

tissue, examined by either the light- or electron-microscopy. 

Indeed, no other pathogenic agents were detected within the abdominal musculature, although 

in certain specimens some unidentified bodies of approximately 150nm in diameter were 

detected within severely damaged regions of muscle (see Fig. 6). The possibility that these 

bodies are viruses cannot be ruled out at present, especially as viruses are known to cause a 

similar necrosis condition in post-larval stages of the freshwater prawn, M rosenbergil (Arcicr 

et al., 1999). The identity of these bodies and their possible involvement in the muscle necrosis 

in N. norvegicus requires ftirther investigation. There is also no evidence for any bacterial 

involvement in the pathology seen in N. norvegicus, though bacteria have also been implicated 

in a similar muscle necrosis and rapid death syndrome in M rosenbergii (Chcng & Chen, 1998) 

and may also be a secondary consequence of necrosis in the same species (Nash et al., 1987). 

The pathology ofnecrosis 

Due to absence of any obvious causative agent, the seasonal nature of the condition in crcel- 

caught animals (appearing in the summer and autumn) and the propcnsity for trawled animals to 

become affected even during the winter months, the opaque muscle condition noted in N. 

norvegicus resembles the spontaneous, idiopathic muscle necrosis notcd in a number of 
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crustacean species; in Cherax terminatus (Evans eral, 1999), Mrosenbergii (Delves-Broughton 

& Poupard, 1976; Akiyama et al., 1982; Nash et al., 1987; Anderson et al., 1990), Penaeus 

aztecus (Rigdon & Baxter, 1970, Lakshmi et al. 1978), Penaeus Japonicus (Momoyama & 

Matsuzato, 1987), Procambarus clarkii (Linqvist & Mikkola, 1978) and also in the fish 

Stizostedion vitreum (Holloway & Smith, 1982). 

Indeed, histological features of the condition in X norvegicus, including a general loss of 

myofibrillar and sarcomeric structure, coupled with differential reaction of necrotic muscle 

tissue to histological staining, are similar to those reported in muscle necrosis of P. Japonicus 

(Momoyama & Matsuzato, 1987) and P. aztecus (Rigdon & Baxter, 1970). Ilie appearance of 

sinuous filaments with a fibrous structure is similar to that noted during muscle necrosis in P. 

japonicus, where the production of collagenous fibres was extensive in mid to late progression 

of the condition (Momoyama & Matsuzato, 1987). The presence of myelin figures and 

atrophied mitochondria in conjunction with infiltration of degenerated areas of tissue by 

granulocytes is consistent with the features ascribed to idiopathic muscle necrosis in M. 

rosenbergii (Nash et al. 1987). 

Loss of Z-Iine material, which is a prominent feature of necrosis in N. norvegicus, is reported 

to occur in a number of pathological and physiological conditions (Kumudavalli Reddy el al., 

1975) and also represents an early step in pre-moult muscle atrophy in crustaceans (Mykies & 

Skinner, 1990a). The calcium-dependent proteases involved in pre-moult atrophy are localized 

in the sarcoplasm (Mykles & Skinner, 1990b) and it is conceivable that the necrotic condition 

observed in N. norvegicus involves activation of these proteascs, leading to the initial 

breakdown of Z-Iine material. Interestingly, the breakdown of abdominal muscle fibres induced 

by Hematodinium infection in N. norvegicus does not disrupt the Z-line, but rather involves the 

erosion of groups of myofilaments within the sarcomeres. This suggests that the protcolytic 

processes that occur in this parasitic infection are different to those occurring in necrosis. 
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Factors which induce the onset ofnecrosis. 

This study has shown that muscle opacity can be observed in all segments of the abdomen, but 

with a tendency for the condition to occur in the segments adjacent to the cephalothorax. A 

similar feature was noted in idiopathic muscle necrosis in Penaeus Japonicus (Momoyama & 

Matsuzato, 1987) and C tenuimanus (Evans et al., 1999), while others have reported the 

necrotic condition to be associated with the more distal abdominal segments in P. aztecus 

(Rjgdon & Baxter, 1970, Lakshmi et al., 1978) and M rosenbergii (Akiyama et al., 1982, Nash 

et al., 1987). The mechanism underlying the location of lesions is not known, but it is possible 

that breaches in the integument (seen in almost half of those lobsters exhibiting symptoms of the 

pathology) may provide foci for initiation of necrosis, the progression of which is exacerbated 

by subsequently imposed stressors. 

it is well known that crustaceans are exposed to a considerable array of stressors during and 

after capture (including crowding, air exposure, light exposure, heat exposure and mechanical 

damage) and a number of studies have considered the expression of biochemical and molecular 

stress indicators during commercial handling of crustaceans (see Jussila et al., 1997, Paterson & 

Spanoghe, 1997 and Chang et al., 1999). N. norvegicus will certainly be exposed to such 

stresses during trawl capture. Most studies of spontaneous muscle necrosis in crustaceans also 

report an induction of hyperactivity in animals prior to the onset of necrosis. Such hyperactivity 

in animals which are habitually sedentary is a common response to a number of stressors, and is 

followed by exhaustion and elevated levels in hacmolymph L-lactatc, which can remain 

elevated for 24 to 48 hours after the stressor has been removed (see Nash et OL, 1987). Extreme 

exertion in strongly glycolytic muscles such as the deep abdominal flexor muscle also causes 

rapid utilization of glycogen, generating local heat and lactic acid. both of which arc known to 

have degenerative effects on the affected and the surrounding muscle fibres (Hulland. 1985). It 

is therefore conceivable that during capture and handling of N. norvegicus. the repetitive 'tail 

flipping' that is commonly induced could be causing these types of effect. Initiation of the 
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condition, possibly caused by damage to the abdominal integument, may then be exacerbated by 

further stressful post-capture holding conditions. 

Once the condition in N. norvegicus muscle is established and begins to progress, it does so 

extremely rapidly, with complete necrosis of the tail muscle and death within days. It has been 

suggested that rapid progression of necrosis may be linked to the infiltration of the muscle by 

activated granulocytes and their subsequent production of superoxide radicals, which induce 

lipid peroxidation, damage membranes and kill cells (Fridovich, 1978; Di Giulio et al., 1989. 

Nash et al., 1987). However, the role of 02- and other reactive oxygen intermediates in the 

necrosis of N. norvegicus muscle remains to be established. 

It has been noted in P. aztecus that the appearance of muscle necrosis can be reversed if the 

environmental stressors; are removed soon after onset of the condition (Rigdon & Baxter, 1970, 

Lakshmi et al., 1978). The data presented in this study for the prevalence of muscle opacity 

immediately after trawl capture. and 4 hours later (Fig. 8a) reinforce the theorv that the holding 

conditions of the animals in the period immediately following capture are crucial in determining 

whether the necrotic condition develops or regresses. This has important consequences both for 

the vivier transport of live N. norvegicus, and the quality of the meat in 'tailed' lobsters. It may 

also contribute to the high mortality of discarded N. norvegicus which arc returned to the sea 

after trawl capture and several hours of cmersion (Ulmestrand et al., 1998). The apparent effect 

of damage to the integument and the reported reversal of the similar necrotic condition in A 

aztecus requires further investigation in N. norvegicus and may lead to advisory measures for 

the post-capture handling of this commercially important species. 
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Fig. l. Map of western Scotland showing the capture sites in the Sound of Jura (A) and the 
Clyde sea area (B). The University Marine Biological Station Millport is situated on the Isle of 
Cumbrae in the Clyde estuary. 
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Fig. 2 (A-D). (A) Superficial flexor muscle from lobster showing early symptoms of pathology. 
Note the intact sarcomeres; and adjacent region of necrotic muscle showing infiltration by 
granulocytes. Scale bar = 40 ýLin (B). Deep flexor muscle from lobster showing late stage 
necrosis. Note the junction between relatively intact and disorganized muscle (arrow), 
condensed myofibre bundles and granulocyte infiltration Scale bar = 80 ýLm (see also Fig. 21)). 
(C) Fibrous processes at the junction between intact and disorganized muscle (arrow) Scale bar 
= 30 ýtm (D). Infiltration of granulocytes into necrotic regions of DAF muscle. Scale bar = 20 
ýLm. 
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Fig. 3 (A-D). (A). Electron micrograph of normal DAF muscle showing regular sarcomeric 
structure, clear Z-line (arrow) and well-developed tubular system (T). Scale bar =I pm (B). 
Electron micrograph of DAF muscle from lobster showing early symptoms of muscle necrosis, Note the expansion of the spaces between adjacent fibre bundles, disruption of the tubular 
system and appearance of granular material in the cytoplasm (arrow). Scale bar =I pm (Q. 
Electron micrograph from lobster showing progressing signs of necrosis. Note the disorganized 
appearance of myofibre bundles, expansion of the inter-bundle spaces and degeneration 
originating at the Z-line (arrows). Scale bar =I pm (D). Electron micrograph of superficial 
flexor muscle from Hematodinium-infected lobster. Note the clear erosion of material from 
within the sarcomere (E) and the intact Z-lines (arrows) Scale bar =I pm. 
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Fig. 4 (A, B) (A). Electron micrograph showing fibrous protrusion in DAF musclc of lobster 

showing early symptoms of necrosis. Scale bar =I ýtrn. (B). Electron micrograph of junction 
between relativeiN, intact and severelv necrotic DAF muscle. Note tile loss of normal sarconicric 
organization and appearance of granular material in the region of the Junction (arrows). Scale 
bar =I [tm. 
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Fig. 5 (A-D). (A). Electron micrograph of densely staining DAF muscle fi-orn lobsters shoxving 
severe symptoms of necrosis. Note the erosion of bundles (E) and the presence of granular 
material (arroxv). Scale bar =I ýtm (B). Electron micrograph of atrophied 1111tocliondria \\ ithin 
the granular cNloplasm of heavily necrotic DAF muscle. Scale bar =I ýuii (C) Electron 
micrograph of myelin figures within the granular cytoplasm of licavily necrotic DAF 11111scic 
Scale bar =I ýtm. (D). Electron micrograph of a large (L) and a small (S) granulocyte ill the 
cytoplasm of heavily necrotic DAF muscle. Scale bar =I ýim. 
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Fig. 6. Electron micrograph of unidentified bodies in the cytoplasm of heaviIN nccrotic DAF 
muscle. Scale bar =I ýtm. 
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Fig. 7.12.5% SDS-PAGE gel of contractile 
proteins from an unaffected muscle fibre (lane B) 
and a necrotic muscle fibre (lane Q from N. 
norvegicus. Lane C contains a molecular weight 
marker (weights in kDa given on left of gel). 
Kev: MHC (nivosin heavv chain). P (paramyosin 
1 2), HP (liacmolyniph proteins), TN-T 
(troponin-T), A (Actin), TM (tropornyosin), TN- 
I (troponin-1) and Ma-LC (myosin ct-light 
chain). 
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Fig. 8 (A, B). (A). Chart showing the prevalence of muscle opacity symptoms in the abdomens qf 
N. norvegicus immediately following (0 hour) and 4 hours following trawl capture. (B). Chart 
showing the percentage of N. norvegicus exhibiting muscle opacity in different abdominal 
segments 4 hours following trawl capture. Addition of percentages to above 100% indicates that 
lobsters regularly showed muscle opacity in more than one abdominal segment. 
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Chapter 8 

An analysis of swimming performance in the Norway lobster, Nephrops norvegicus L. 

infected by a parasitic dinoflagellate of the genus Hematodinium. ' 

Abstract. 

Various components of swimming performance were measured in uninfected Norway 

lobsters (Nephrops norvegicus) and compared to animals at different stages of infection by 

a parasitic dinoflagellate (Hematodinium sp. ). Animals showed a progressive decline in 

overall swimming performance as infection severity increased, with reductions in the 

number of tail-flips performed, the number of swimming bouts and the total distance 

travelled by swimming. The velocity of the first (giant-fibre mediated) tail flip and average 

velocity over the swimming bout were also significantly reduced in infected lobsters. 

Possible reasons for this decreased swimming performance are suggested and the 

implications of this for predator avoidance of infected lobsters in the benthic habitat, and 

for capture by Nephrops by trawl rigs are discussed. 

Published as: Stentiford, G. D., Neil, D. M., Atkinson, R. J. A. & Bailey, N. (2000). An 
analysis of swimming performance in the Norway lobster, Nephrops norvegicus L. infected 
by a parasitic dinoflagellate of the genus Hematodinium. Journal of Experimental Marine 
Biology & Ecology 247,169-18 1. 
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Introduction. 

7ne Norway lobster Nephrops norvegicus, hereafter referred to by genus alone, like other 

species of lobster and like crayfish, can react to a visual or tactile stimulus by undertaking a 

series of 'tail flips' which propel the animal backwards through the water (Neil & Ansell, 

1995). The main function of such a response is to remove the animal from a threatening 

situation, such as a predator. However, in the case of Nephrops, the response may facilitate 

avoidance of capture by trawlers (Newland & Chapman, 1989). 'Me general 'tail flip' 

response of Nephrops has been well studied: upon abrupt mechanical stimulation of the 

rostrum or telson, Nephrops performs a series of tail flips, the first of which is preceded by 

giant fibre activity in the abdominal nerve cord (Newland & Neil, 1990a, 1990b). This 

provides one of the best known examples of a stereotyped motor act (Newland et al., 

1992). Such information has been used to show that the ability of Nephrops to evade 

trawler capture depends strongly on its ability to initiate a successful 'tail flip' response, 

although other factors such as its orientation to the trawl gear, proximity to the burrow and 

its ability to endure prolonged swimming are also important (Newland & Chapman, 1989). 

Nephrops supports a major fishery in the United Kingdom, with the Scottish fishery 

contributing over 76 % of this (07 million in 1999 - FRS, 1999). Recently, stocks of 

Nephrops off the west coast of Scotland have been shown to harbour a seasonal infection 

by a parasitic dinoflagellate of the genus Hematodinium (Field et al., 1992) which is 

responsible for a disease syndrome resembling the 'Bitter Crab disease' (BCD) reported in 

Alaskan tanner crabs (Chionoeceles bairdi) (Meycrs et al., 1987,1990) and also 

Hematodinium infections in other decapod hosts (Newman & Johnson, 1975. Wilhelm & 

Boulo, 1988; Latrouite et al., 1988; Shields, 1992; Hudson et al., 1993). Nephrops showing 

symptoms of patent infection are seen in catches taken in spring and early summer (Field & 

Appleton, 1995). 

A number of studies have established the basic characteristics of Hematodinium-infection 
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(Field et al. 1992), its progression, diagnosis and pathology (Field & Appleton, 1995, 

1996) and its effect on host physiology (Taylor et al., 1996). It has been noted that the 

parasite partially invades the main flexor muscles of the abdomen (Field & Appleton, 

1995), suggesting that there may be some reduction in its ability to produce tail flips, which 

could in turn lead to altered swimming performance during patent infection. Reduced 

swimming performance during infection may alter the ability of Nephrops to evade capture 

by trawlers and predators and thus has obvious commercial and ecological implications for 

affected populations. Resultant adjustment of catchability, expressed as fishing mortality 

(F) per unit of fishing effort (E) (i. e. F/E) also has implications for the quantitative 

assessment of populations exhibiting significant disease prevalence. The present study was 

therefore carried out to determine whether changes can be observed in the swimming 

performance of Nephrops when infected by Hematodinium. Data are discussed in relation 

to the capture of infected animals. 

Methods. 

Collection and treatment ofanimals. 

Norway lobsters were collected with an otter trawl from a location south of Little Cumbrae in 

the Clyde Sea area, Scotland, UK. Lobsters were maintained in a closed aquarium (90C. 33 ppt 

salinity) in the Division of Environmental and Evolutionary Biology, University of Glasgow, 

before transportation to holding tanks (9"C, 33 ppt salinity) in the Fish Behaviour Unit (FBU) at 

the Fisheries Research Services Marine Laboratory Aberdeen (MLA), Scotland, UK. Animals 

were fed ad libitum on squid (Loligo spp. ) on arrival at MLA and again three days later. The 

carapace length of animals used was between 25 and 30 mm, to avoid known sizc-specific 

differences in swimming performance (Newland et al., 1988). Nephrops of both sexes were 

used as sex-specific differences in swimming performance are not seen unless the female is 

ovigerous (Newland et al., 1988). Animals were not fed for three days prior to the experiment to 
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avoid any effects of differential feeding. All animals Nvere in the intermoult state as defined by 

Aiken (1980). 

Experimental set-up. 

Experiments designed to examine the effect of Hematodinium infection on various parameters 

of swimming performance were carried out in a 12m dumbbell-shaped tank housed in the FBU 

of MLA (see Fig. 1). A frame carrying three video cameras (D 1, D2 and D3) (Panasonic WV- 

CL350) fitted with 6.5mm auto-iris lenses was constructed along the length of tank area D 

(Fig. 1). A hand-held integrator switch (Primebridge PVS-I) allowed for switching between the 

different cameras, thereby keeping the animal in the field of view. The integrator output was 

linked to a time and date generator (Mitsibushi TDG-IOB) before being recorded on a standard 

VHS video recorder. A distance marker (10cm intervals) was placed along the length of tank 

area D and the tank was illuminated with standard halogen lighting fitted with dimmer switches. 

Experimental protocoL 

Animals were housed in tank area B (Fig. 1) prior to being individually removed in a net 

and placed into tank area C (settlement area) for 10 minutes. After settlement, each animal 

was admitted to tank area D (recording run) and subjected to front-end stimulation (rostrum 

taps) using a plastic rod. The three video cameras and switching box allowed the entire 

swimming sequence to be recorded. At the end of a trial, as determined by a failure to 

respond to three successive taps to the rostrum, each animal was removed from the run, 

measured, sexed and staged for Hematodinium infection using the pleopod staging method 

of Field & Appleton (1995). According to this method, Stage 0 denotes an apparently 

uninfected animal, with patent infection progressing from Stage I through to Stage 4. Stage 

3 and 4 (heavily infected) animals were grouped in all analyses as animals in these groups 

show very similar disease characteristics (see Stentiford et al., 1999- Chapter 4). A 'bout' 
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of swimming is defined as the series of full flexions and extensions between tactile 

stimulation and rest and a 'flip' as one cycle of flexion and extension of the abdominal 

segments (Newland el al., 1988) 

Video Analysis. 

Recordings of Nephrops swimming performance (73 animals) were analyzed at the 

Division of Environmental and Evolutionary Biology at the University of Glasgow. The 

total number of tail flips, total number of bouts, number of flips per bout, total distance 

covered, overall swimming velocity, velocity of the giant and subsequent flip and flip 

frequency (Hz) were measured using a Panasonic AG-5700 VCR linked to a Panasonic 

AG-570 single-frame editing facility controller and a Panasonic WV-CM1000 colour 

monitor. 

Measurements of tail-flip velocity and flip frequency were made on a total of 46 animals 

with different stages of Hematodinium infection. An acetate overlay was placed on tile 

monitor screen and the position of the rostrum at the start position and at the initiation 

points of subsequent tail flips (tail extension following full flexion) were marked (see 

Amott et al., 1998). The number of frames (20 milliseconds) between each rc-extension 

was recorded and the distance covered between marked points was calculated from the 

distance marker on the tank floor. Overall velocity was measured over one complete bout 

within the first three bouts of the swimming sequence and from this, the velocity of the first 

flip (giant-fibre mediated) and subsequent flip (non-giant fibre mediated) was calculated. 

Tail flip frequency (Hz) was calculated by dividing the number of flips in one bout by the 

time taken up to the initiation of the final flip of a given bout. 

Data Anaývsis. 

Comparisons of swimming parameters from uninfected and infected Nephrops were 
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performed either by one-way analysis of variance (ANOVA) followed by between stage 

comparisons with a Tukey's pairwise analysis (for normal distributed data), or by a Mann- 

Whitney test (for non-normal distributions). Tests were considered significant if p<0.05. 

Results. 

Video recordings from a total of 73 uninfected and infected lobsters were analysed for 

total number of tail flips, total number of bouts, number of tail flips per bout and total 

distance travelled, while swims by 46 animals were analysed for overall mean vclocit%-. 

velocity of the giant flip, number of non-giant flips per bout and flip frequency. 

The mean number of flips performed by animals in response to the standard stimulus 

regime was reduced in relation to the severity of infection (Fig. 2). Uninfected animals 

flipped a mean of 140.2 times, with a reduction to 26.2 times in Stage 3-4 infection (p < 

0.001). There were significant differences between all stages of infection: Stage I and 2 (p 

< 0.001) and Stage 2 and 3-4 (p < 0.05). 

The mean number of bouts was also reduced in relation to the severity of infection (Fig, 

3), from 57.9 in uninfected animals to 12.2 in Stage 3-4 infection (p < 0.001). Differences 

in this measure were significant between Stage 1 (43.9) and 2 (27.9) (p < 0.01) and Stage 2 

and 3-4 (p < 0.01). 

Owing to these similar trends. the number of flips per bout changed less, although there 

was still a significant difference between uninfected (2.6 flips. bout*') and Stage 3-4 animals 

(1.8 flips. bout")(p > 0.05) and between Stage I animals (2.7 flips. bout"') and Stage 3-4 (p 

< 0.05). The total distance travelled in the tail flip sequences also reduced with infection 

(Fig. 4), from 24.05m in uninfected animals to 3.24m in heavily infected (Stage 3-4) 

animals (p < 0.001). The distance travelled was not significantly reduced in Stage I 

infection (20.56m) when compared with uninfected animals (p = 0.065), but was 

significantly reduced in Stage 2 (10.13m) (p < 0.00 1) and in Stage 34 (3.24m) (p < 0.00 1). 
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There was also a highly significant reduction in distance travelled between Stage I and 2 (p 

< 0.001) and between Stage 2 and 34 (p < 0.01). 

Figure 5 shows a typical bout velocity profile from an uninfected (Stage 0) and a heavilv 

infected (Stage 34) Nephrops. From the start position, both animals reach peak velocity 

with the first (giant-fibre mediated) flip. This velocity is then maintained, albeit slightly 

reduced, until the final flip, following which the animal glides to rest (one bout). The bout 

duration and velocity profile of infected animals is almost identical to that of uninfected 

animals, but the flip velocity of both the giant and subsequent flips, is greatly reduced b% 

the infection. 

The overall mean velocity of a swimming bout (Fig. 6) was not significantly reduced in 

Stage I infection (0.48 m. sec"') when compared with uninfected animals (0.56 m. sec") (p > 

0.05). However, in Stage 2 (0.35 m. sec") and 34 (0.24 m. sec"'), overall velocity of the 

bout was reduced significantly (both p<0.001). There was also a significant decrease in 

overall velocity between Stage I and 2 (p < 0.0 1) and between Stage 2 and 34 (p < 0.05). 

Figure 7 shows the mean velocities of the giant flip and second (non-giant) flip for 

uninfected and infected animals. The mean giant flip velocity shows similar trends to that 

for overall mean velocity, with no significant differences between Stage I velocity (0.66 

m. sec") and Stage 0 velocity (0.75 m. sec*') (p > 0.05) but highly significant differences 

between Stage 0 and Stage 2 (0.52 m. scc") (p < 0.01) and Stage 34 (0.32 m. scc*') (p < 

o. 001). Tile velocity of the subsequent flip, which is less than that of the giant flip in all 

cases, is also progressively reduced with the severity of infection, so that the relationship 

between the giant flip velocity and subsequent flip velocity remains unchanged (data not 

shown). 

Any change in the ratio of the number of non-giant (NG) flips to giant (G) flips is likely 

to influence the overall velocity (Fig. 6) since the NG velocity has been shown to be less 

than that of G flip velocity (Fig. 7). However, the number of NG flips per bout is not 
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significantly different, even in heavily infected animals (1.76 versus 1.59 in uninfectcd 

animals) (p > 0.05). 

The frequency of tail flips measures the rate at which repeated full tail flexions can be 

performed. When single bouts were analyzed, flip frequency was approximately 3 Hz in all 

stages of infection (Fig. 8) and no significant differences in flip frequency (Hz) were found 

between uninfected and infected Nephrops. 

Discussion. 

. 
fe Swimming performance in relation to Hematodinium in ction. 

The mean swimming speed of uninfected Nephrops measured in the present stud), (0.56 

m. sec-1) is in good agreement with previously published measures made both in the 

laboratory and in the field (Newland & Chapman, 1989, Newland et al., 1988; Newland & 

Neil, 1990ab). However, Hematodinium infection causes significant reductions in the 

overall swimming capacity of Nephrops, which is most clearly expressed in a reduction in 

the total distance travelled before animals cease to respond. This progressive decline in 

swimming performance with increasing parasite burden involves a reduction in both the 

velocity of individual tail flips and the total number of flips performed, and may reflect 

damage to the muscle contractile proteins, a reduced ability to use available energy or a 

depletion of energy reserves. However, infected lobsters are still capable of initiating a 

giant tail flip at the start of each bout, and of performing as many subsequent non-giant 

flips as uninfected animals at an equivalent frequency, which suggests that the ricuronal 

circuitry controlling both giant fibre activation and non-giant pattern generation is 

unaffected by the infection. 

An alteration in normal muscle contraction could arise as a consequence of the parasite- 

induced damage of muscle fibres, as described by Field el al. (1992) and Field and 

Appleton (1995), with parasites penetrating the fibre interstices in late infection (Stage 3 
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and 4) and possibly lysing the peripheral regions of the fibres. A reduced swimming 

performance would be expected as a result of such loss of contractile machinery, since 

giant-fibre mediated tail flipping maximally excites these muscles, causing them to operate 

close to their maximum isometric condition, with little or no reserve capacity. Muscle 

damage of a similar nature has also been reported as a symptom of Hematodinium. 

infections of other decapods (Meyers et al., 1987, Hudson & Shields, 1994 and Wilhelm & 

Mialhe, 1996). Muscle fibre damage could also affect the rate of muscle contraction bv 

disrupting the steps in excitation-contraction coupling. Although tail-flip frequency 

remained unchanged in infection, no separate measures of flexion duration were made, and 

therefore it cannot be excluded that a decrease in the contraction rate of abdominal flexor 

muscles also contributed to the decrease in propulsive swimming thrusts. Combined 

measurements of the movements of the abdomen during tail flipping and the propulsive 

forces that are produced, as performed in the studies of Newland and Neil (1990a, b) and 

Baden and Neil (1998), are required to resolve these issues. 

The lower number of tail flips may represent a reduced swimming endurance with 

progressing Hematodinium infection, since it has been shown that this infection is 

accompanied by changes in blood composition (Field and Appleton, 1995) and an 

increased respiratory demand on the host imposed by the large burden of Hematodinium 

parasites (Taylor et al., 1996). Infected animals may therefore be in a state of persistent 

partial exhaustion, which would restrict their capacity to respond to the increased 

respiratory demands of swimming. 

Elevated levels of muscle and plasma L-lactate are also known to cause a cessation of tail 

flipping in spiny lobsters (Vermeer, 1987), and in Nephrops recovery of full swimming 

ability is linked to recovery of near normal haemolymph L-lactate concentrations (Field et 

al., 1991; Newland et al., 1992). Heavily infected Nephrops have considerably elevated 

plasma L-lactate concentrations (Taylor et al., 1996), but apparently unaltered muscle L- 
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lactate concentrations (Field, 1992), and it is therefore possible that this increased plasma 

L-lactate is a factor in reducing the swimming endurance of infected animals. Depletion of 

the metabolic reserves used for active swimming may also play a part in the reduced 

swimming endurance during Hematodinium infection. Although the concentration and re- 

synthesis of ATP in abdominal muscle appear not to limit escape swimming endurance in 

uninfected Nephrops (Field et al., 199 1) in the manner reported for the scallop (Grieshaber, 

1978), it is possible that the reduced muscle glycogen concentrations measured during 

Hematodinium infection (unpublished observations) cause a shortfall in the re-supply of 

ATP to the contractile machinery, thereby degrading swimming performance. 

The observed decline in the number of tail flips performed by Nephrops infected by 

Hematodinium is consistent with an increased rate of habituation in the giant fibre systems. 

Habituation of giant-fibre systems is a common feature of tail flip swimming in many 

crustacean species (Neil & Ansell, 1995; Arnott et al., 1998; reviewed by Edwards et al., 

1999) including Nephrops (Newland et al., 1988), and is known to be mediated by the 

neurotransmitter GABA (Krasne & Roberts, 1967; Vu & Krasnc, 1993; Krasne & Tcshiba, 

1995). One observation that may link Hematodinium infection to an alteration in the action 

of a neuronal pathway for habituation mediated by GABA is that free amino acid 

concentrations in the plasma of Nephrops are changed during infection (Stcntiford et aL. 

1999- Chapter 4). Of these changes, an approximately 12-fold increase in the circulating 

taurine concentration is the most significant, and since taurine is known to have a 

neuromodulatory action (Oja & Kontro, 1978. Kuriyama et al., 1978), and in crustaceans is 

known to mimic the inhibitory actions of GABA (Zatta, 1987; Payen et al., 1981), it may 

contribute to a greater suppression of repeated giant fibre activation, and thus the reduction 

of tail flipping. 
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Reduced swimming performance in relation to trawl capture. 

Commercial Nephrops trawls are normally towed at speeds of between I and 1.6 m see*' 

(2-3 knots) and it is suggested that a high proportion of animals directly in line with the 

mouth of the net will be captured. Due to the observed reduction in swimming 

performance, it may be suggested that Hematodinium-infected Nephrops at the net 

periphery and within the net itself may be less likely to escape capture, while some of 

those directly in-line with the ground gear may evade capture by not swimming up and 

over the ground gear. Differences in the swimming performance of Nephrops at different 

stages of infection may also lead to stage-specific alterations in the probability of trawl 

capture. Most infected animals captured in trawls are either Stage I or 2 (unpublished 

observations). It is therefore possible that the behaviour of animals in more advanced 

stages of infection reduces their vulnerability to capture. The use of creel sampling for 

Hematodinium-infection assessment has shown that infected animals are rarely found 

within the creels (Pers. Obs. Dr. R. J. A. Atkinson). However, in the Clyde sea area, only 

shallow waters (with larger Nephrops) can be fished with creels, while the deeper grounds, 

which tend to contain Nephrops within the size range commonly infected by 

Hematodinium (30-35mm carapace) are fished by trawlers. As a result, a direct comparison 

of trawl and creel prevalence (see Wilhelm & Mialhe, 1996) would be misleading. 

However, both the present work and other studies of Nephrops swimming performance 

(Newland et al., 1992), suggest that infected animals are more likely to be captured by 

standard Nephrops trawling rigs than their non-infected counterparts. Tlius, the prevalence 

of Hematodinium reported for sites off the west coast of Scotland (Field et al., 1998) may 

be an overestimate of the true level of infection in these populations. The same decrease in 

swimming performance may also make infected animals more prone to predation, causing 

further imbalance in proportions of uninfected and infected animals. 

Early attempts to incorporate the high observed prevalence of Hematodinium infection 
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into analytical stock assessments of the Clyde sea area (ICES, 1997), modelled the effect as 

an additional loading on the natural mortality rate (since animals showing symptoms of 

patent infection usually die). However, the exercise was not entirely successful, leading, as 

it did, to unrealistic estimates of recruits entering the fishery. The observations above 

suggest that a more subtle approach is necessary when examining the cffect of the disease 

on the population. Reduced swimming performance implies increased catchability (F/E); in 

other words, a given unit of fishing effort would result in a higher increased mortality rate 

in populations with high prevalence of the disease. Furthermore, if infected animals are 

likely to be more susceptible to predation through reduced ability to escape, then the 

disease may not necessarily add to overall natural mortality but rather, replace a proportion 

of it. 
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Fig. 1. Plan view of dumbbell tank at Marine Laboratory Aberdeen. Key : Area A (post-run 
animals), Area B (pre-run animals), Area C (pre-run settlement area) and Area D (rccordcd 
swimming run), divided into DI (camera I field), D2 (camera 2 field) and D3 (camera 3 field). 
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Figs. 2,3 and 4. (2). Mean total number of tail-flips performed over entire swimming sequence (± 
standard error) by infection stage. (3). Mean total number of swimming bouts performed over the 
entire swimming sequence (± standard error) by infection stage. (4). Mean total distance travelled 
(m) by swimming, over the entire sequence (± standard error) by infection stage. Stage 0 denotes 
uninfected animals, while Stage 1,2 and 3-4 denote patent Hematodinium infection. 
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Fig. 5. Typical bout velocity profile for an uninfectcd (Stage 0) and heavily infected (Stage 
34) Nephrops. Key: S (start point - zero velocity), S to G (point of tail extension at end of 
giant flip), G to 1 (tail extension at end of flip following giant flip), 1 to 2 (tail extension of 
2'd flip after giant), 2 to 3 (tail extension of Yd flip after giant), 3 to 4 (tail extension of 4h 
flip after giant), 4+ Glide (velocity of glide following fourth flip after giant). 
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Fig. 6. Mean overall velocity (m. sec") of an individual swimming bout (± standard error) 
by infection stage. Stage 0 denotes uninfected animals, while Stage 1,2 and 3-4 denote 
patent Hematodinium infection. 
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Fig. 7. Mean giant tail-flip and second tail-flip velocity comparisons (m. scc") (± standard error) by 
infection stage. Stage 0 denotes uninfectcd animals. while Stage 1.2 and 3-4 denote patent 
Hematodinium infection. 
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Fig. 8. Mean tail flip frequency (Hz) over a swimming bout (± standard error) by infection 
stage. Stage 0 denotes uninfected animals, while Stage 1,2 and 34 denote patent 
Hematodinium infection. 
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Chapter 9 

Cessation of swimming and subsequent recovery in the Norway lobster, Nephrops 

norvegicus (L. ), and changes associated with infection by a parasitic dinoflagellate 

(genus Hematodinium). 

Abstract. 

The current study describes the pattern of tail flipping in the Norway lobster, Nephrops 

norvegicus (L. ) over a complete swimming sequence, and the subsequent performance 

following 4h of recovery. Data is compared to Hematedinium-infected N. norvegicus. The 

escape swimming response of uninfected N. norvegicus appears to be divided into two 

contiguous phases with distinct characteristics. The first phase comprises 80 to 100 

relatively consistent, high power tail flips, while the variable number of second phase flips 

are less powerful and precede complete cessation of swimming. Lightly infected IV 

norvegicus appeared to show the same two-phase pattern, though the number of flips 

comprising the second phase was much less, leading to shorter swimming sequences. 

Heavily infected X norvegicus did not show this pattern but instead produced a smallcr 

number of weaker flips before cessation of swimming. Following 4h recovery, uninfcctcd 

N. norvegicus produced 84.3 % of the flips produced in the initial trial, this reduction being 

due to a smaller number of Phase 2 tail flips. Infected N. norvegicus showed a lower 

recovery rate than uninfected animals, this being proportional to the severity of infcction. 

The metabolic basis of the two phase swimming pattern and the reason for Icss Phase 2 tail 

flips being produced during Hematodinium infection is discussed in relation to the 

catchability of the weakest uninfected and of infected N. norvegicus by trawlers and 

predators, especially on fishing grounds where the trawling frequency is high. 

Submitted as: Stcritiford, G. D.. Neil. D. M. & Bailey. N. (2001). Cessation of swimming and 
subsequent recovery in the Nonvay lobster. Nephrops nonegicus (L. ), and changes associated %%-ith 
infection by a parasitic dinoflagellatc (genus Heinalodinium). Journal of Experimental Marine 
Biology & Ecology (submitted). 
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Introduction. 

The ability of many crustacean species to perform both sustainable and exhaustive 

locomotion has been well studied (for reviews see Hartnoll, 1971, Hargreaves, 1980). 

Aerobic respiration typically supplies the energy needed for prolonged exercise, as seen in 

crustacean species undergoing extensive locomotion (Full & Herreid, 1983) and long. 

distance migrations (Houlihan et al, 1985). Anaerobic metabolism may also supplement 

the energy required during the migration of certain species (Booth et al., 1984), although 

these pathways are more generally associated with escape responses (Phillips et al., 1977). 

Exercise of this type is usually rapidly exhaustive, leading to increased tissue and 

haemolymph lactate titres, lowered tissue glycogen concentrations, reduced muscle ATP 

stores, alterations to acid-base status and a profound disturbance of ionic, osmotic and fluid 

volume homeostasis (Wood, 1991). The mechanisms involved in recovery from exhaustive 

exercise in crustaceans have also received considerable attention. Tley include the 

restoration of tissue phosphagen and ATP pools, the clearance of lactate and other 

anaerobic end products from active tissues, the recovery of intracellular and cxtraccllular 

pH to pre-exercise values and the replenishment of tissue glycogen (for review see 

Ellington, 1983). Recovery from exhaustion in crustaceans is generally slow (up to 24 hr) 

(Gade et al., 1986) and it is only when energy reserves have been replenished that 

locomotory performance recovers to its normal level. 

The Norway lobster (Nephrops norvegicus) is the subject of an important commercial 

fishery in Scotland and typifies a normally sedentary crustacean species which utilizes 

anaerobically-driven muscle contraction in order to elicit a rapid escape reaction in 

response to impending danger (Field et al., 199 1). This escape reaction in Nephrops. which 

comprises a series of rapid tail flexions, has been shown to be important in the avoidance 

of capture by trawlers (Newland & Chapman, 1989) and may also be used during 

aggressive conflict and escape from predators (see Amott et al., 1998). 
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Stocks of Nephrops off the west coast of Scotland have been shown to harbour a seasonal 

infection by a parasitic dinoflagellate of the genus Hematodinium (Field et al., 1992), with 

animals displaying the symptoms of patent infection in catches taken during spring and 

early summer (Field & Appleton, 1995). Recently, it has been shown that many of the 

major features of swimming in Nephrops are altered during patent infection, and that this 

reduced swimming performance may alter the ability of infected lobsters to evade capture 

by trawlers and predators (Stentiford et aL, 2000a - Chapter 8). Any change in catchability 

also has implications for the quantitative assessment of populations exhibiting significant 

infection prevalence. 

I'he current study was carried out to establish if Hematodinium infection, as well as 

reducing the escape swimming performance in Nephrops (Stentiford et al., 2000a - 

Chapter 8) also affects its endurance and recovery rate. Data are discussed in relation to the 

factors that may limit the recovery of escape swimming, and to the consequences of 

recurrent challenge for the catchability of infected lobsters by trawlers and predators on 

heavily fished grounds. 

Materials and Methods. 

Collection and treatment ofanimals. 

Nephrops were collected with an otter trawl from a location south of Little Cumbrac in the 

Clyde Sea area (55.41'N, 4.56W), Scotland and were maintained in a closed aquarium at the 

University of Glasgow, before transportation to holding tanks in the Fish Behaviour Unit at the 

Marine Laboratory Aberdeen. Conditions in both systems were the same (9"C, 33 ppt salinity) 

and squid (Loligo spp. ) was provided ad libitum as food on arrival at MLA and again three days 

later. The carapace length of animals used was between 25 and 30 mm, to avoid known size. 

specific differences in swimming performance (Newland et al., 1988). Nephrops of both sexes 

were used since sex-specific differences in swimming performance are not sccn unless the 
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female is ovigerous (Newland el al., 1988). Animals were not fed for three days prior to the 

experiment to avoid any effects of differential feeding. All animals were in the intermoult state 

as defined by Aiken (1980). 

Experimental set-zip. 

All experiments were carried out in a 12m dumbbell-shaped tank as described by Stentiford et 

al. (2000a) (Chapter 8). Briefly, a frame carrying three video cameras (Panasonic WV-CL350) 

fitted with 6.5mm auto-iris lenses was constructed along the length of the tank. A hand-held 

integrator switch (Primebridge PVS-I) allowed for switching between the different cameras, 

thereby keeping the animal in the field of view. The integrator output was linked to a time and 

date generator (Mitsibushi TDG- I OB) before being recorded on a standard VHS video recorder. 

A distance marker (10cm intervals) was placed along the length of the tank floor, which was 

illuminated with standard halogen lighting fitted with dimmer switches. 

Experimental protocoL 

For the first swimming sequence, Nephrops were removed individually from the holding 

end of the tank with a net and placed into a settlement area for 10 min. After settlement, the 

animal was admitted to the main tank and subjected to mechanical stimulation (rostrum 

taps) using a plastic rod. The three video cameras and switching box allowcd the entire 

swimming sequence to be recorded. At the end of the swimming sequence, as detcrmincd 

by a failure to respond to three successive taps to the rostrum, the animal was removed 

from the main tank. measured. sexed, numbered with permanent ink and returned to the 

holding area (see Stentiford et a/. 2000a - Chapter 8). It was then allowed to recover for 4 

h, after which time it was again removed from the holding area, and subjected to the same 

stimulus protocol as in the first session. Assessment for Hematodinium infection followed 

termination of this second swimming sequence using the pleopod staging method of Field 
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& Appleton (1995), according to which, Stage 0 denotes an apparently uninfectcd animal, 

with patent infection progressing from Stage I through to Stage 4. Stage 3 and 4 (heavily 

infected) animals were grouped in all analyses since animals at these stages show very 

similar pathologies (see Stentiford et aL, 1999 - Chapter 4). The swimming performance of 

a total of 73 Nephrops, both uninfected and Hematodinium-infected, was recorded in this 

way. 

Video Analysis. 

The recordings of Nephrops swimming performance were analyzed at the Division of 

Environmental and Evolutionary Biology at the University of Glasgow. The total number 

of tail flips and total distance covered were measured using a Panasonic AG-5700 VCR 

linked to a Panasonic AG-570 single-frame editing facility controller and a Panasonic WV- 

CM 1000 colour monitor. In the current study, a tail 'flip' is defined as one cycle of flexion 

and extension of the abdominal segments (Newland et al., 1988). Mean distance per flip 

was calculated by dividing the total number of flips by the total distance travelled during 

active swimming. Individual flip distances over an entire swimming sequence were 

recorded for a representative range of uninfected lobsters. For this, an acetate overlay was 

placed on the monitor screen and the position of the rostrum at the start position and at the 

initiation points of subsequent tail flips (tail extension following full flexion) were marked 

(see Arnott et al., 1998). Data were compared to that from Nephrops at each stage of 

infection. These data were used to determine any changes in the swimming performance 

over the course of a whole swimming sequence. 

Data Analysis. 

Comparisons of distance per flip in rested Nephrops were made bct%vccn uninfectcd and 

infected individuals by using a general linear regression model, followed by comparisons of 
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the slope and elevation of regression curves using analysis of covariance (ANCOVA). Tliese 

data were then compared to those obtained after 4h of recovery following the initial 

swimming sequence, using a Mest to analyze the paired differences between observations 

from individual animals. Comparisons between the mean percentage recovery in the number 

of tail flips in different stages of infection were performed using paired t-tests. All tests were 

considered significant if p<0.05. 

Results. 

The swimming pattern of rested Mphrops. 

The swimming sequences of uninfected Nephrops in the rested state ranged from 90 to 180 

tail flips, and were composed of two distinct phases. During Phase 1, which comprised the 

first 80 to 100 flips, the distance travelled in successive flips was relatively constant, with a 

mean of 18.97 ± 0.42 cm (n=6 individuals). After this, animals produced a variable number 

of less powerful flips (Phase 2), before the swimming sequence terminated. Figure la-f 

shows this two-phase pattern of swimming for the range of six uninfected animals, and 

illustrates the variation in the overall length of the swimming sequence, but the relative 

constancy of the number of flips comprising Phase I (indicated by the dashed line), 

When swimming sequences of representative individual Hematodinium-infectcd Nephrops 

were assessed, those with Stage 1 infection displayed a similar two phase pattern of 

swimming, but there was a reduction in the total number of tail flips performed (Fig. 2b). 

This was due almost entirely to a reduction in the number of Phase 2 flips, whcreas the 

number of Phase I flips (80 - 90) remained similar to that of Stage 0 animals. Stage 2 

Hematodinium infection resulted in a ffirther reduction in the number of tail flips in a 

swimming sequence, and most individuals failed to reach the number representing the Phase 

I/ Phase 2 transition of uninfected animals (Fig. 2c and Fig. 3). However, comparing the 
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first 50 flips performed in each case, the mean distance per flip in Stage 2 Nephrops (18.86± 

0.56 cm; n=6) was not significantly different to that of Stage 0 lobsters (18.97 ± 0.42; n=6) 

(p, > 0.05), indicating that these flips were equally powerful. This suggests that light 

infections primarily affect the number of flips performed, but have virtually no affect on 

either the transition between Phase I and Phase 2 swimming, or on the thrust produced by 

Phase I flips. 

In the advanced stages of infection (Stage 34) the swimming response of Nephrops 

differed more substantially from that of uninfected animals (Fig. 2d). The total number of 

flips in a swimming sequence was further reduced to less than 40, and in addition the 

distance covered in a swimming sequence was also considerably lower, yielding a mean 

value for distance per flip of 9.4 ± 1.7 cm. (n=1 1). 71"his indicates that all of the tail flips 

made by heavily infected animals are reduced in power, compared to both uninfected or 

lightly-infected animals. 

In uninfected animals the total distance travelled in a swimming sequence was proportional 

to the number of flips performed (Fig. 3 Stage 0), and the spread of values reflects the 

underlying variability seen in Fig. 1. This variability in the length of swimming sequences 

was also a feature of the data obtained from animals at different stages of infection (Fig. 3, 

Stages 14). 

For animals that performed only Phase I swimming (Stage 2& Stage 34), regression lines 

through their data sets have slopes approximately equal to their Phase I mean values (Stage 

2-y=0.2103x - 1.8773; Stage 34 -y=0.182x - 0.2729) (Fig. 3). However, for animals 

that exhibited both Phase I and Phase 2 swimming (Stage 0 and Stage 1), the distance 

covered over the whole swimming sequence is the average of the Phase I and Phase 2 

contributions, which is lower than for Phase I alone. Since this average decreases as the 

number of Phase 2 flips performed increases, the regression lines for these data sets have 
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progressively lower slopes as the length of the swimming sequence increases (i. e. from Stage 

2 to Stage I to Stage 0) (Fig. 3). The lower elevation of the regression line for Stage 34 

animals (y = 0.1388 - 0.3882), however, reflects the reduced distance travelled per flip 

achieved in the later stages of infection. 

The swimming pattern during recovery. 

The stimulation regime applied to rested animals was repeated after 4 hours recovery 

from the initial swimming sequence. The major change, compared with rested animals, was 

in the total number of flips performed, which reduced from mean values of 140.2 to 117.9 

(p < 0.01) for uninfected animals, from 114.5 to 79.3 flips (p < 0.01) for Stage I animals, 

from 57.1 to 38.3 flips (p < 0.05) for Stage 2 animals and from 26.2 to 15.0 flips (p < 0,01) 

for stage 3-4 animals. This represents a partial recovery of the number of flips performed 

towards the values obtained in the rested state: 84.3 % recovery for Stage 0 animals, and 

significantly lower values of 69.8 %, (p < 0.0 1) for Stage 1,66.2 %, (P < 0.0 1) for Stage 2 

and 36.8 % (p < 0.001) for Stage 34 infections (Fig. 4). These changes caused proportional 

reductions in the overall length of the swimming sequences (Fig. 5). 

In contrast, the power of the flips performed by the recovering animals. reflected in a plot 

of distance travelled vs number of flips (Fig. 6), showed little change from that of the rested 

animals. This can be seen in the regression curves, which follow the predicted trends as the 

swimming sequences shorten: i. e. increasing in slope in uninfected and Stage I animals (due 

to the smaller number of Phase 2 flips being performed during recovery), but remaining 

virtually the same in Stages 2 and Stage 34 animals (which performed only Stage I flips), 

Discussion. 

The current study has described the pattern of tail flipping in Nephrops over a complete 

swimming sequence, and the subsequent performance following 4h of recovery. it has also 
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shown that infection by Hematodinium leads to a reduction in the recovery rate of normal 

swimming ability and that this reduction is proportional to the plasma parasite burden. 

The exhaustion response and subsequent recovery. 

The escape swimming response of uninfected Nephrops appears to be divided into two 

contiguous phases with distinct characteristics. The first phase comprises 80 to 100 

relatively consistent, high power tail flips, while the variable number of second phase flips 

are less powerful and precede complete cessation of swimming. A very similar escape 

response with two distinct phases has been observed in the Australian yabby Cherax 

destructor (Edwards & Baldwin, 1983). 

Compared to Stage I and to ý Stage 2 Hematodinium-infected Nephrops, uninfected 

animals had a relatively higher proportion of their swimming sequences contained within 

the Phase 2 period of swimming, where distance travelled per flip is less. The incorporation 

of a higher number of weaker tail flips into the overall swimming sequence of uninfected 

animals leads to a decreased regression curve slope relative to Stage I and 2 infected 

animals (which made fewer Phase 2 tail flips). Stage 34 Nephrops showed a reduced 

distance per flip, which is consistent with data presented by Stentiford et al. (2000a) 

(Chapter 8) which showed a significant reduction in flip velocity during the later stages of 

Hematodinium infection. 

The tail flip in crayfish and nephropid lobsters is essentially a 'single oar' propulsion 

system, whereby the inertial forces generated are largely attributed to movements of the tai I 

fan (Webb, 1979, Neil & Ansell, 1995). It is also known that an additional and significant 

thrust is created by 'squeeze forces' at the end of the tail flexion as the abdomen is pressed 

against the cephalothorax. ejecting trapped water (Daniel & Mcyh6fer, 1989). In the 

current study, the tail flips of Nephrops at late stage infection appeared to involve flexion 

of the tail fan alone, with little or no movement of the main abdomen. The reduccd velocity 
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reported by Stentiford et al. (2000a) (Chapter 8) therefore seems due to both a reduction in 

initial contraction power (see Stentiford el al., 2000b - Chapter 5) and an absence of the 

final 'squeeze forces' described by Daniel & Meyh6fer (1989). 

Metabolic energetics ofswimming. 

The rapid tail flexions involved in escape swimming in Nephrops are produced by the 

deep abdominal muscles, which are phasic in type (Neil et al., 1993), with high ATPase 

activity and little capacity for oxidative phosphorylation (Field et al., 199 1). These muscles 

are provided with high levels of phosphagen and a high glycogenolytic capacity 

(Gruschczyk & Kamp, 1990). It has been reported that glycogen is the principal fuel for 

exercise in crustaceans, with arginine phosphate being an important fuel for burst 

swimming (Onnen & Zebe, 1983; Raffin et al., 1988; Adamczewska & Morris, 1994). In 

crustaceans, the main end product of glycolysis, formed from the anaerobic reduction of 

pyruvate, is lactate (Phillips et al., 1977; Gdde et al., 1986; Lallier & Walsh, 1992. Henr%- 

et al., 1994; de Wachter et al., 1997), which accounts for most of the tissue acidosis 

associated with exhaustive swimming (Booth et al., 1984; Adamczewska & Morris, 1994; 

Kinsey & Ellington, 1996). Elevated levels of haemolymph and tissue lactate (Vermccr, 

1987), depletion of the main tissue energy supplies (Henry et al., 1994) and habituation of 

the neuronal system (Neil & Ansell, 1995; Arnott et al., 1998; Edwards et al., 1999) have 

all been implicated in the cessation of exercise in crustaceans, and Field et al. (1991) 

showed that the absolute cessation of swimming, or 'functional exhaustion' in Nephrops is 

probably influenced by both. metabolic and neuronal factors. Due to the importance of 

lactate in the cessation of tail flipping (Vermeer, 1987, Field et al., 1991), the slow 

clearance of lactate from the haemolymph and tissue (Phillips et al., 1977; Forster et al., 

1989. Booth et al., 1984; Henry et al., 1994) and the fact that muscle contraction function 

has also been shown to recover from a fatigued state more slowly in an acidic extracellular 
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environment (Renaud & Mainwood, 1985), it is probable that lactate accumulation is a 

major feature underlying the cessation of the swimming response in uninfected Nephrops. 

The elevated concentrations of haemolymph lactate which accompany Hematodinium 

infection of this species (Taylor et. aL, 1996) may ftirther reduce the swimming 

performance of Hematodinium-infected animals. 

In addition to the absolute cessation of tail flip swimming, the two-phase swimming 

pattern recorded in uninfected animal in the current study is suggestive of a subtle shift in 

energy substrate being utilized by the active muscle before complete cessation occurs. In 

the escape swimming in Cherax destructor, which demonstrates a similar two-phase 

swimming pattern, arginine phosphate-derived ATP was found to fiiel the initial burst of 

swimming (c. 30 flips), while anaerobic glycolysis was not used until the second phase of 

less powerful flips (England & Baldwin, 1983). It is conceivable that the onset of second 

phase swimming observed in Nephrops is controlled by similar mechanisms and that the 

transition point between Phase I and 2 swimming represents a depletion of muscle 

phospho-arginine reserves. It also suggests that the response to functional exhaustion in 

Arephrops is a progressive, stepwise process. 

The concentration of glycogen in the deep abdominal flexor muscle of Nephrops is 

known to be reduced in proportion to the severity of Hematodinium infection (Stentiford et 

al., 2000b - Chapter 5). As Stage I and Stage 2 Hemalodinium-infectCd individuals 

performed progressively fewer Phase 2 tail flips than their uninfected counterparts, it is 

likely that it is the energy substrate fiielling anaerobic glycolysis (principally glycogen) 

that limits the duration of the swimming response, rather than a depletion in the 

concentration of muscle phospho-arginine. Further studies on the concentrations of 

phospho-arginine in the abdominal flexor muscles of Hematodinium-infectcd animals 

would resolve this issue. 
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. 
In Stage 34 Hematodinium-infected Nephrops, additional physical and biochemical 

disturbances to the abdominal flexor muscles may be superimposed upon these more subtle 

alterations in energy metabolism, degrading the swimming response further (Stentiford el 

al., 2000b - Chapter 5). 

Repletion of muscle metabolites during recovery. 

Although recovery in the muscles powering escape responses might be expected to be 

relatively rapid (Ellington, 1983), a number of studies have shown that in crustaceans, 

removal of tissue and haemolymph lactate following exhaustive swimming is rather slow, 

with clearance times of between 3 and 24 h (Phillips et al., 1977; Forster et al., 1989; 

Booth et al., 1984; Henry et al., 1994). Although crustaceans do appear to possess the 

capacity for gluconeogenesis from lactate (Gdde et al., 1986, Lallier & Walsh, 1992, Henry 

et al., 1994), the system is regarded to be considerably less efficient than the Cori cycle 

described in mammals (see Schulman & Landau, 1992). 

Replenishment of glycogen reserves in the abdominal muscles of tail flipping crustaceans 

is important for the restoration of normal muscle fiinction, since it allows phosphagcn 

repletion (Ellington, 1983; Gruschczyk & Kamp, 1990; Shulman & Landau, 1992). The 

importance of glycogen in this tissue is probably a consequence of the relatively poor 

blood supply, which prevents regeneration of arginine phosphate by aerobic mechanisms 

(Gruschczyk & Kamp, 1990, Milligan & Girard, 1993). However, the recover%, of muscle 

from active exercise in invertebrates occurs in conjunction with a period of supranormal 01 

consumption, indicating that at least some elements of recovery arc aerobic processes 

(Ellington, 1983). 

During recovery from exhaustive sivimming. replenishment of abdominal muscle 

phospho-arginine from intracellular glycogen stores is probably very efficient in uninfected 

and lightly-infectcd Nephrops. However, as phospho-arginine is replenished at the expense 
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of glycogen, less glycogen will be available at this time as a substrate for Phase 2 

swimming (which relies on glycolytic production of ATP). Such a response would explain 

why uninfected and lightly-infected animals do not perform as many Phase 2 flips during 

the recovery period. 

Stentiford et al. (2000a) (Chapter 8) have noted that during Hematodinium infection, 

animals may be in a state of persistent partial exhaustion, which restricts their capacity to 

respond to the increased respiratory demands of swimming. In heavily infected animals a 

50% reduction in the 02 carrying capacity of the haemolymph leads to an internal hypoxia. 

with some tissues resorting to anaerobic metabolism, even when the animal is at rest 

(Taylor et al., 1996). A shift towards anaerobic metabolism (Baden et al., 1994), coupled 

with the increasing metabolic demands of the parasite is responsible for the reduction the 

tissue glycogen stores reported in Hematodinium-infectcd lobsters (Stcntiford el OL, 2000b 

- Chapter 5). A combination of reduced tissue glycogen and parasitc-induccd oxygen 

depiction make it unlikely that sufficient energy will be available for prolonged escape 

swimming in heavily-infectcd Nephrops. Under such conditions, the cfficicnt repletion of 

muscle phospho-argi nine and glycogen following periods of exertion, is doubtful. 

Additionally, the replenishment of tissue glycogen is significantly reduced during periods 

of starvation (Wood, 199 1) and under conditions of hypcr-osmolarity. due to mitochondrial 

shrinkage and a reduction in fatty acid oxidation (leading to increased glycolysis and a 

reduction in glycogen) (Li el al., 1992). 'Me large changes in the free amino acid 

composition of the hacmolymph and muscle reported to occur during Ilematodinium 

infection (Stentiford et al., 1999 - Chapter 4,2000b - Chapter 3) may be causing similar 

effects on the accumulation of glycogen in abdominal muscle of Nephrops. 
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The swimming response in relation to catchability. 

Swimming data presented for Hematodinizim-infectcd Nephrops in the current study, in 

conjunction with that previously reported by Stentiford et al. (2000a) (Chapter 8) and other 

studies on the swimming performance of Nephrops (Newland et al., 1992), suggest that 

infected animals are more likely to be captured by standard trawling rigs than their non. 

infected counterparts. The variation in swimming endurance (number of flips performed) 

and the two-phase swimming pattern seen in the absence of infection also suggests that 

capture by trawlers may not only be dependent on the position of the individual in relation 

to the net mouth (Newland & Chapman, 1989), but also on physiological status - with 

those Nephrops performing the least flips being the most likely to be overtaken and 

captured by the trawl net. Furthermore, the reduced swimming performance may make 

Hematodinium-infected (and those uninfcctcd individuals with the lowest swimming 

endurance) most prone to predation. The lower swimming performance in uninfcctcd 

Nephrops after 4h recovery suggests that this period was not sufficient to allow complete 

restoration of the normal swimming response. Recovery from exhaustion in crustaceans is 

generally slow (up to 24 hr) (Gadc et al., 1986) and it is only when energy reserves have 

been replenished that locomotory performance recovers. To some extent, the slow recovery 

time in Nephrops may be mitigated by the fact that the species constructs a burrow and is 

able to retreat to this when threatened by using the escape response. Once within the 

burrow, recovery from the swimming burst could take place with rclatively little 

interruption. In areas %%-here Nephrops exhibits crcpuscular emergence. a period in excess 

of four hours would be available bct%%-ccn forays from the burrow. The ability to remain 

within shelter. however, would depend on energy intake requirements being met and 

eventually animals have to emerge. On heavily fishcd grounds therefore, whcrc trawl 

frcqucncies = be as high as once every 24 h (Marrs et al.. 2000), animals which have 

recently evaded trawl capture may be more likely to be captured by subsequent trawls. 71is 
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effect may be enhanced in Hematodinium-infected Arephrops, which showed impaired 

recovery in the 4h period and are also known to have higher energy requirements owing to 

the parasite loading (Taylor et al., 1996); which may necessitate more frequent feeding 

activity. A detailed study of the metabolic limitations of escape swimming in uninfcctcd 

and Hematodinium infected Nephrops is required to resolve these issues. 
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Fig. la-E Distance travelled by individual tails flips, up to cessation of Swimming in a 
range of uninfectcd (Stage 0) N. norvegicus. T'he suggested point of transition to the 
4 second phase' of swimming (see text) is represented by a dashed line. 
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Fig. 2a-d. Distance travelled by individual tail flips, up to cessation of swimming in typical 
uninfcctcd (Stage 0) and Hematodinium-infected (Stages 1,2 and 34) lobsters The 
suggested point of transition to the 'second phase' of swimming (see text) is represented by 
a dashcd line. 
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Fig. 3. Correlation plot of distance travelled against number of flips performed until 
cessation of swimming in uninfectcd (Stage 0) and Hematodinium-infected (Stages 1,2 and 
34) N. norvegicus. 
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Fig. 4. Mean percentage recovery in the total number of tail flips performed by uninfected 
(Stage 0) and Hemalodinium-infected (Stages 1,2 and 34) N. norvegicus in the 4h run. 
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Fig. 5. Derived means of distance travelled and number of flips performed by uninfected 
(Stage 0) and Hematodinium-infectcd (Stages 1,2 and 34) N. norvegicus. Týe data for 0h 
(solid symbols) and 4h (open symbols) are plotted in relation to the lines of best fit for the 
0h data set (see Fig. 2). 
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Fig. 6. Correlation plots of distance travelled against number of flips performed until 
cessation of swimming in uninfected (Stage 0) and Hematodinium-infected (Stages 1,2 and 
34) N norvegicus. Lines of best fit are dashed (0 h run) or solid (4 h run). 
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Chapter 10 

Alteration of burrow-related behaviour of the Norway lobster, Nephrops norvegicus 

(L. ) during infection by the parasitic dinoflagellate Hematodinium. 

Abstract 

The current study has used time-lapse video recordings to analyze the burrow-related 

behaviour of N. norvegicus under a 12 h light : dark regime in aquarium conditions, and 

compared this to the behaviour of lobsters infected by the parasitic dinoflagellate 

Hematodinium. Uninfected lobsters performed more burrow departures, of longer duration, 

during the hours of darkness while infected lobsters performed a relatively constant 

number of similar-duration departures in the light and dark periods. However, the absolute 

number of departures performed by infected lobsters (70 day") was more than double that 

of uninfected lobsters (30.1 day"), while the duration of burrow departures performed by 

infected lobsters (258.5 s. departure-1) was more than six times greater than in uninfected 

lobsters (38.7 s. departure-'). This led to a more than ten-times increase (from L7 to 19.4 %) 

in the percentage of the day spent out of the burrow by infected lobsters. The altered 

burrow-related behaviour could be due to the nutritional demands of the parasites on 

infected lobsters, causing an increased requirement to forage, or alternatively to a 

'functional hypoxia', due to the additional respiratory demands of the parasite, causing the 

host to emerge from the burrow onto the sediment surface to seek oxygen. Implications for 

the increased time spent out of the burrow are discussed in relation to availability of 

infected lobsters to trawlers and predators, and to the use of infection prevalence data from 

trawl-caught samples in stock assessment models for X norvegicus. 

Submitted as: Stentiford, G. D., Neil, D. M. & Atkinson, RTA. (2001). Alteration of 
burrow-related behaviour of the Norway lobster, Nephrops norvegicus (L. ) during infection 
by the parasitic dinoflagellatc Hematodinium. Marine & Freshwater Behaviour & 
Physiology (submitted). 
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Introduction. 

Infection by parasites is known to have significant effects on the behaviour and life 

history of host organisms. Behavioural changes may bring the host to a more suitable site 

for the direct transmission of the parasite, or make intermediate hosts more susceptible to 

predation (Holmes & Bethel, 1972; Poulin, 1994). At the community level, parasites and 

pathogens are recognized as important factors in determining the density and long-term 

population dynamics of many animal populations (Dobson, 1988. Kuris & Lafferty, 1992). 

The discovery of a dinoflagellate parasitic infection in populations of the Norway lobster 

(Nephrops norvegicus) (Field et al., 1992) provides an opportunity to study the effects of a 

parasitic infection on some well-studied aspects of the burrow-related behaviour of a 

scavenging crustacean, and to consider the practical consequences of such changes for the 

large fishery which exists for this commercially important shellfish species. 

The Norway lobster (Nephrops norvegicus) is widely distributed on the continental shelf 

of the northeast Atlantic and in the Mediterranean sea, and inhabits burrows constructed in 

fine, cohesive mud substrata (Chapman, 1980). The general form of N. norvegicus burrows 

and the method of burrow construction have been well described (Rice & Chapman, 197 1, 

Fanner, 1974a). The burrows provide protection against predatory attacks (Rice & 

Chapman, 1971) and are important for the incubation of eggs by females (Farmer, 1974b). 

Studies on the burrow-emergence behaviour of N. norvegicus have shown that its pattern is 

dependent on depth, with shallow water animals most active during darkness, deep water 

animals during the light and animals from intermediate depth showing a crcpuscular 

activity pattern (Chapman, 1980). The basis for this emergence pattern may be associated 

with the reception of light by the eye and subsequent movement of the retinal shielding 

pigments (Ar6chiga & Atkinson. 1975. Shelton & Gaten, 1986). As such, the relatively 

higher light intensity experienced in the middle of the day may inhibit out-of-burrow 

activity (Ar6chiga & Atkinson, 1975). However, recent studies have shown that light- 
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induced eye damage has little effect on various aspects of N. norvegicus behaviour 

(including burrow-emergence) (see Chapman el al,. 2000), suggesting that activity rhythms 

may be entrained, at least in part, by light detection by other receptors, such as 

photosensitive neurones in the brain (Page & Larimer, 1976) and the caudal photoreceptor 

(Wilkens, 1988). In addition to the direct effects of light intensity, food availability and 

tidal strength may also be implicated in the observed burrow-emergence pattern (Atkinson 

& Naylor, 1976; Newland el aL, 1988), as may be some unknown endogenous determinant 

(Ardchiga and Rodriguez-Sosa, 1997). 

N. norvegicus supports a major fishery in the United Kingdom, with the main method of 

capture being otter trawling, which relies upon lobsters being out of their burrows 

(Atkinson & Naylor, 1976; Newland & Chapman, 1989). It follows that any factor that 

increases the amount of time spent out of the burrow may be expected to lead to larger 

catches by trawling, and that such changes in behaviour provide the most likely 

explanation for the observed short term variation in catches (Atkinson & Naylor. 1976. 

Fanner, 1974c). 

Stocks of N. norvegicus off the west coast of Scotland have been shown to harbour a 

seasonal infection by a parasitic dinoflagellate of the genus Hematodinium (Field et a/., 

1992) which is responsible for a disease syndrome resembling the 'Bitter Crab disease' 

(BCD) reported in Alaskan tanner crabs (Chionoecetes bairdi and Copilio) (Meyers et a/., 

1987. Taylor & Khan, 1995) and also Hematodinium infections in other decapod hosts 

(Newman & Johnson, 1975; Wilhelm & Boulo, 1988; Latrouite et al., 1988; Shields, 1992. 

Hudson et al., 1993). A number of studies have established the basic characteristics of 

Hematodinium infection in N. norvegicus in terms of its progression, diagnosis and 

pathology (Field and Appleton, 1995,1996), its effect on host physiology (Taylor et al., 

1996). on haemolymph and tissue biochemistry (Stentiford et al.. 1999 - Chapter 4,2000a 

- Chapter 5) and on locomotion (Stentiford et al., 2000b - Chapter 8). 
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Animals showing symptoms of patent infection (moribund, cloudy haemolymph, bright 

shell coloration) are seen in catches taken during the spring and early summer (Field el al., 

1992), and it was suggested by these authors that infected lobsters may be more prone to 

capture by trawlers than uninfected lobsters. Some evidence for a behavioural component 

to this susceptibility was obtained in a study which repeatedly sampled one fishing ground 

over a 24 h period (Field et al., 1998), and found diurnal changes in the percentage of 

infected lobsters making up the catch. However, no systematic study has yet been 

performed to identify the behavioural changes induced by Hematodinium infection. The 

present study was therefore carried out to characterise any changes that may occur in the 

burrow-related behaviour of aquarium-held N. norvegicus infected by Hematodinizim, and 

to consider these changes in relation to the catchability of infected lobsters. 

Methods. 

Collection and treatment ofanimals. 

Norway lobsters were collected with an otter trawl from depths of approximately 80 m at a 

location south of Little Cumbrae in the Clyde Sea area, Scotland, UK (55.410N, 4.56OW). 

Before being placed into experimental tanks, lobsters were maintained for approximately one 

week in a closed aquarium (90C, 33 ppt salinity) at the University Marine Biological Station 

Millport, Isle of Cumbrae, Scotland. Animals were fed ad libitum upon capture on squid (Loligo 

spp. ) and mussels (Mytilus sp. ) but were not fed thereafter. Only male N. norvegicus. which are 

known to have the same endogenous emergence rh5thms year round (Atkinson & Naylor, 1976) 

were used in experimental runs. Individuals with a carapace length of around 30 min were 

chosen, as Hematodinium infection is most common in animals of this size (Stentiford et al., 

2000a - Chapter 5). All animals were in the intermoult state as defined by Aiken (1980). Since 

animals were to be held in the experimental tanks for five days, and patent infection would 

progress over this time, assessment of Hematodinium infection was performed at the end of 
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each trial. For this, the pleopod staging method of Field & Appleton (1995) was used, according 

to which Stage 0 denotes an apparently uninfected animal, with patent infection progressing 

from Stage I through to Stage 4. All animals used were of Stage 2 or Stage 3 infection (medium 

to heavy parasite burden). 

Experimental set-up. 

Experiments designed to examine the effect of Hematodinium infection on the burrow-related 

activity of N. norvegicus were carried out in a circular tank (0 1.5 in, depth 0.75 in - see Fig. 

IA-F) containing well-settled sediment (0.35 m depth) obtained from the Clyde Sea area. The 

tank was placed in a light-controlled room and exposed to a 12 h: 12 h light-dark cycle 

(illumination from 0700 h to 1900 h). During the illuminated period, diffuse green lighting was 

used (c. 1.0 tiE. s-1 M-2), while red lamps provided sufficient light for video recording for the 

whole light-dark period. A video camera (Panasonic WV-CL350) fitted with a 6.5mm wide- 

angle lens was mounted above the tank, providing a view of the whole sediment surface. Tile 

signal from the camera was fed to a time lapse video recorder (Panasonic AG-6730) set to a 

framing rate of I per second. Animals were placed individually in the tank, and their behaviour 

was recorded for a period of 5 days. In total 10 uninfected and 10 Hematodinium-infected 

lobsters were monitored in this way. 

Video Analysis. 

The video recordings were analyzed using a Panasonic AG-5700 VCR linked to a 

Panasonic AG-570 single-frame editing facility controller and a Panasonic WV-CMIOOO 

colour monitor. The whole recording was reviewed, in order to assess the behaviour 

performed, but the first 24 h of the video recording was not used for the quantitative 

analysis of burrow-related behaviour. Thereafter, measurements were made over the next 3 
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consecutive days of the total time spent within and outside of the burrow, the number of 

burrow departures and the duration of individual excursions from the burrow. Thus data for 

a total of 30 animal-days were obtained for each of the two experimental groups. 

Lobsters were scored as 'in-burrow' when part or all of their bodies were within the 

confines of the burrow (Fig. IA, B and F) and 'out-of-burrow' when the whole body 

(including telson and uropods) were outwith the confines of the burrow (Fig. I C, D and E). 

Data obtained from the three days of filming was averaged for each hour and pooled with 

other animals from the group (uninfected or Hematodinium-infected) to allow assessment 

of the effect of parasitic infection on burrow-related behaviour. 

Data Analysis. 

Comparisons of behavioural data from uninfectcd and infected lobsters were performed 

either by one-way analysis of variance (ANOVA) or a Kruskal-Wallace test followed by 

between stage comparisons with a Tukey's pairwise analysis (for normal distributed data), 

or by a Mann-Whitney test (for non-normal distributions). Tests were considered 

significant if p<0.05. 

Results. 

Observations on burrow-related behaviour. 

When a lobster was placed into the experimental tank, it took up occupancy of an existing 

burrow, or in some cases excavated a new burrow. T'hereafter it extended and repaired the 

burrowl and evidence of this was obtained even when the animal was inside the burrow 

from the appearance of sediment plumes emerging from one or more openings. The lobster 

often occupied the main burrow opening (Fig. IB), with only its claws visible, and from 

this position it would periodically either retreat into the burrow (Fig. IA), or emerge onto 

the surface for an excursion (Fig. IC, D and E). Both uninfected and infected animals 
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showed these patterns of behaviour, although their duration and timing were different in 

the two groups (see below). 

Another observation was made that was unique to the Hematodinium-infected lobsters. In 

two cases, in the video recording beyond the 3 day period of measurement, the animals 

produced a series of relatively uncoordinated tail flexions ('spasms'), and between these 

spasms they lay in a quiescent state on the sediment surface. The frequency of these 

spasms increased over a 34 hour period, and after the final one of these the animals 

showed no further movement, and were found to be dead at the end of the trial. 

Quantitative analysis ofburrow-related behaviour. 

Burrow departures. Measures of the number of burrow departures, expressed in terms of 

the mean hourly values over a 24 hour period, are shown in Figure 2. Uninfected lobsters 

performed a greater number of burrow departures during the hours of darkness than during 

the hours of light, the mean value for the complete periods of dark (1.72 departures h") and 

light (0.79 departures W) being significantly different (p < 0.001) (Fig. 2). In contrast, 

Hematodinium-infected lobsters displayed a pattern of burrow departures that was 

relatively constant over the 24 h period (Fig. 2), and the number of departures performed in 

the complete dark period (3.08 departures W) and the complete light period (2.75 

departures W) (Fig. 3) are not significantly different (p = 0.086). However, both these 

values for infected lobsters are significantly greater than those for the uninfected lobster in 

their more active period, the dark (p < 0.00 1 in each case). Over the whole 24 hour period, 

the mean total number of burrow departures performed by infected lobsters (70 departures 

day") was more than double the number performed by uninfected lobsters (30.1 departures 

day-) (p < 0.01) (Fig. 4). 
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Duration of excursions. Measures of the duration of individual excursions from the burrow 

onto the sediment surface, expressed in terms of the mean hourly values over a 24 hour 

period, are shown in Figure 5.717his shows that uninfected lobsters made longer excursions 

from the burrow during the hours of darkness than during the hours of light, and the mean 

values calculated for the complete periods of dark and light (49.84 s departure' and 27.65 s 

departure"' respectively) (Fig. 6) are significantly different (p < 0.001). 

The excursion duration's of Hematodinium-infected lobsters also showed some variation 

throughout the 24 hour period, though the difference in the mean excursion duration 

between the light (212.9 s departure-) and the dark (304.2 s departure-) was not significant 

(p = 0.06 1). This was probably due to the large variation in the dark data set (see Fig, 5). 

However, a more important feature of the excursions made by infected lobsters was their 

greatly increased duration, and values for both the dark and light periods are significantly 

greater than those for the uninfected lobster in their more active period, the dark (p < 0.00 1 

in each case). Over the whole 24 hour period, therefore, the mean excursion duration for 

infected lobsters (258.5 s departure") was more than six times the duration of the 

excursions performed by uninfected lobsters (3 8.7 s departure") (p < 0.00 1) (Fig. 7). 

Total time spent out qf the burrow. By combining the data for the number of burrow 

departures and the duration of individual excursions, values were derived for the total time 

spent out of the burrow by uninfected and infected lobsters. Data expressed in terms of the 

mean hourly values over a 24 hour period are shown in Figure 8, and reflect the trends 

observed in the separate measures of burrow departures and excursion duration's. Thus 

uninfected lobsters spent significantly longer on the sediment surface during the period of 

darkness (mean for complete period 90.3 s h") than during the period of light (mean for 

complete period 30.4 s h") (p < 0.001) (Fig. 9). 
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Infected animals also spent a longer time out of the burrow during the period of darkness 

(mean for complete period 787.3 s h-) than during the period of light (mean for complete 

period 610.9 s h") (p < 0.05). In this case, therefore, the combined measure reveals a 

significant difference between dark and light activity, despite the separate measures of 

burrow departures and excursion times not being significantly different (see Figs. 3& 6). 

However, the most important feature of the data is again the large and significant 

difference between the measures for the uninfected and infected animals (Figs 8,9). 

Considered as the % time spent out of the burrow over the whole 24 hour period (Fig. 10), 

the value for infected lobsters (19.4 % of day out-of-the-burrow) is more than ten times 

greater than that for uninfected lobsters (1.7 % of day) (p < 0.00 1). 

Discussion. 

Burrow-related behaviour in uninfected lobsters. 

Data presented for the burrow-related behaviour of male N. norvegicus show that under 

the conditions provided, lobsters were most active during the hours of darkness, with 

reduced out-of-burrow activity during illuminated periods. A prominent feature of 

emergence behaviour in uninfected male N. norvegicus was the relatively small proportion 

of the whole day spent on the sediment surface (mean 1.7%). This degree of activity fits 

well with field observations of emergence (Chapman & Rice, 1971; Chapman, 1980) and 

catch profiles for lobsters living at depths of 75-90 m (Atkinson & Naylor, 1976). 

Uninfected male N. norvegicus make a greater number of burrow departures, of longer 

duration during the hours of darkness than during the hours of light. The burrows of N. 

norvegicus are principally for refuge from predators (Rice & Chapman, 1971) and 

emergence is probably governed by the availability of suitable food (Farmer, 1974c; Cristo, 

1998) and the level of illumination (Atkinson & Naylor, 1976). The increased number and 

duration of departures made by uninfected lobsters during the hours of darkness probably 
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reflect a combination of a lowered perceived risk of predation and a physiological 

requirement to feed. Similar variations in diurnal activity are seen in crayfish: Pacifastacus 

leniusculis reduces the success of visual predators by remaining in shelter during the day 

(Blake & Hart, 1995), while Procambarus clarkii exhibits activity patterns which are 

strongly influenced by food availability (De Miguel & Ardchiga, 1994). 

As the lobsters in this study were not captured in light-controlled conditions, there is 

likely to have been some damage to the retinal shielding system of the eyes (Ar6chiga & 

Atkinson, 1975; Shelton & Gaten, 1986). However, the appearance of a light-dark rhythm, 

even in these visually compromised animals suggests that activity patterns in N. norvegicus 

from these depths may not be totally reliant on light reception by the eyes. Ilis reinforces 

data presented by Atkinson & Naylor (1976) which showed that an endogenous activity 

rhythm occurs even when lobsters are held in constant darkness, and that this activity may 

be entrained by photosensitivity other than through the eye, possibly via the caudal 

photoreceptor (Wilkens, 1988; Simon & Edwards, 1990). Furthermore, Richardson (in 

Chapman et al., 2000) has reported that light-induced damage has little effect on the 

burrow-emergence rhythm, feeding, agonistic behaviour or predator avoidance behaviour 

of N. norvegicus. The maximum absorbance of the retina of N. norvegicus is around 498 

nm and the absorbency in the red end of the spectrum is known to be minimal (Loew, 

1974). As constant red light was provided throughout the current experiments and 

reception of green light by the eyes during the illuminated period may have been 

compromised, the changes in burrow-cmergence activity recorded in uninfected N. 

norvegicus may be a remnant of an endogenous activity rhythm (Atkinson & Naylor, 1976; 

Ar6chiga and Rodriguez-Sosa, 1997). However, the current study was not designed to 

investigate the factors controlling burrow-related activity. 
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Burrow-related behaviour in Hematodinium-infected lobsters. 

Male Hematodinium-infected lobsters were found to spend significantly more time on the 

sediment surface (mean 19.4 %) than their uninfected counterparts. This increase in the 

total time spent out of the burrow was due to the significantly increased number and 

duration of burrow departures. The lack of any significant difference between the number 

and duration of burrow departures performed in the light and dark periods suggests that 

infected male lobsters do not show the same degree of rhythmicity seen in uninfected male 

lobsters. However, when the number and duration of burrow departures were combined to 

give total time out of the burrow, the difference in activity between the light and dark 

periods was significant. This suggests that although the absolute level of activity is greatly 

increased in infected male lobsters, they may still retain some degree of emergence 

rhythmicity. Infected male lobsters were also significantly more active during the 

illuminated period than uninfected male lobsters were during darkness. This suggests that 

the motivation of infected lobsters to leave the relatively safe confines of the burrow 

exceeds the perceived risk of predation associated with emergence during the illuminated 

period. 

Parasites are known to indirectly affect host behaviour through the depletion of the hosts 

energy reserves and by impinging upon their respiratory requirements (Barber et al., 2000), 

The increase in foraging time necessary to provide the nutritional requirements of the host 

(and the parasite) appear to be made at the expense of predator avoidance behaviour 

(Millinski, 1985). In such cases, altered behaviour may make parasitized hosts more prone 

to predation by non-specific and definitive hosts for the parasite (Brassard et al., 1982; 

Levri, 1999). The increased number and duration of burrow departures (especially during 

the illuminated period) observed in the current studv is consistent with an increase of 'risk- 

prone' behaviour in male Hematodinium-infected lobsters. The basis for this increase in 

risk prone behaviour could be purely nutritional, as Hematodinium-infected N. norvegicus 
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are known to have severely depleted plasma and tissue carbohydrate reserves (Stentiford et 

al., 2001, in manuscript - Chapter 6; Stentiford et al., 2000a - Chapter 5, respectively), 

reduced concentrations of plasma protein (Taylor et al., 1996) and a disrupted plasma and 

tissue amino acid profile (Stentiford et al., 1999 - Chapter 4,2000a - Chapter 5). It has 

therefore been suggested that Hematodinium-infected lobsters are undergoing 

'physiological starvation' caused by the large burden of parasites in the haemolymph 

(Stentiford et al., 2000a - Chapter 5). Such nutritional stresses have been related to 

increased foraging activity in parasitically infected hosts (Cunningham et al., 1994). 

The parasitic utilization of oxygen in the host plasma has also been implicated in the 

alteration of host behaviour during infection (Lester, 1971). During Hematodinijim 

infection of N. norvegicus, a reduction in haemocyanin concentration leads to a deficit in 

the oxygen carrying capacity of the haemolymph. This coincides with an elevated oxygen 

demand from the developing parasites, leading to severe respiratory stress in the lobster 

(Taylor et al., 1996). During conditions of moderate environmental hypoxia, N. norvegicus 

is known to exit the burrow, which is relatively more hypoxic than the water, in favour of 

the sediment surface (Baden et al., 1990). 'Me increased out of burrow activity observed in 

male Hematodinium-infected lobsters may thus represent the expression of such a 

respiratory stress response. 

Is Hematodinium acliveýy manipulatin, 9 its host? 

A well-known paradigm in host-parasite interactions is the ability of parasites to actively 

manipulate the host, in order to facilitate their own transmission (Levri, 1999). TIlus 

alterations of host behaviour during parasitism may not simply be non-adaptive by- 

products of infection, but may represent a manipulation of host behavioral responses by the 

parasite (Poulin, 1994). However it is difficult to show unequivocally that manipulation of 

host behavioral responses by the parasite is occurring (Poulin, 2000), as this requires 
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evidence for a fitness gain by either the parasite or the host (Poulin, 1995). In the case of 

Hematodinium infection of N. norvegicus, incomplete knowledge of the life cycle of the 

parasite and the mode of transmission between hosts (Appleton & Vickerman, 1998) 

preclude conclusions about the 'motivational' basis for the altered behaviour observed in 

the present study. The component of behaviour in infected lobsters that is the strongest 

candidate for active manipulation by the parasite is the spasmodic tail flipping that was 

observed in two infected lobsters in the last hours before death. It certainly conforms to the 

precept that an 'active manipulation' by a parasite is most likely to occur when the 

intensity of infection is maximal Poulin (1994). Previous aquarium observations of 

Hematodinium-infected N. norvegicus have identified a terminal stage of infection (parasite 

sporolation), where swarming stages of the parasite are extruded via the integumental 

membranes, gills and the mouth, leaving the host moribund (Field and Appleton, 1995. 

Appleton and Vickerman, 1998). It is possible that spasmodic tail flipping is a behavioral 

manifestation of this sporolation event, causing rupture of integumental membranes, and 

allowing the motile dinospores to emerge. This behaviour will also bring the infected 

lobster to the sediment surface where broadcasting of the spores would be more effective. 

Implications ofaltered behaviourfor the N. nonvgiatspopulation andfishery. 

Previous studies on Hematodinizim-infected N. norvegicus have shown that infected 

lobsters exhibit severely reduced tail-flip swimming performance, which is likely to 

increase their likelihood of capture by predators and trawl nets (Stentiford et al., 2000b - 

Chapter 8). Longer periods spent out of the burrow will exacerbate this effect by making 

the animals more susceptible to predation. However, increased predation is only likely to 

sustain infection in a population if infected hosts are consumed by other hosts for the 

parasite (Barber et al., 2000). Hematodinium infection has been discovered in the hermit 

crab (Tagurus bernhardus) captured from the X norvegicus fishing grounds in the Firth of 
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Clyde, Scotland, and it is possible that this species acts as an alternative host for this 

parasite on these grounds. Scavenging on moribund or recently dead Hematodinizim- 

infected N. norvegicus by P. bernhardus may perpetuate the infection from one season to 

another. Further studies on the epidemiology of Hematodinium infection in P. bernhardus 

are necessary to resolve this issue. 

Changes in the behaviour and locomotion of Hematodinium-infected N. norvegicus 

should also be considered when calculating infection prevalence from trawl-caught 

samples (see Stentiford et aL, 2000b - Chapter 8). Increased time spent out of the burrow 

when coupled with a reduced swimming performance, should increase the likelihood of 

infected lobsters being captured by trawl nets, thus leading to an overestimation of the true 

level of prevalence in the population sampled. Previous attempts to incorporate the 

observed high prevalence of Hematodinium infection into analytical stock assessments of 

the Clyde Sea area have modeled the effect of infection as an additional loading on the 

natural mortality rate (since animals showing symptoms of patent infection usually die) 

(ICES, 1997). However, this has led to unrealistic estimates of recruits entering the fishery, 

due in part to the fact that the infection may not necessarily add to overall natural mortality, 

but rather replace a proportion of it, since infected animals will also be more susceptible to 

predation through a reduced ability to escape. As such, it is suggested that tile 

incorporation of infection prevalence data into stock assessment models for populations of 

N. norvegicus exhibiting significant infection prevalence, should take into account the 

effect of behavioural and locomotory modifications in the alteration of catchability. Also, 

changes in behaviour have to be considered in relation to lobsters at different stages of 

infection, and to the more complex burrow-rclated behavioural pattern of female lobsters. 
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Fig. 1A-F. Still images from video recordings of X norvegicus burrow-oriented activity; 
(A) completely within burrow (burrow entrances shown by arrows), (B) guarding main 
burrow entrance, (C) emerging for surface excursion, (1), E) on the surface of the sediment 
during an excursion and (F), guarding second burrow entrance. Scale bar = 50 cm. 
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Fig. 2. Number of burrow departures by hour made by uninfected and Hematodinium- 
infected lobsters. Header bar indicates the illuminated and dark periods. 
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Fig. 3. Mean number of burrow departures per hour made by uninfected and 
Hematodinium-infected lobsters in the light and dark periods. 

Unh*cted 

I 

Fig. 4. Mean number of burrow departures per day by uninfected and Hematodinhim- 
infected lobsters. 

90 

80 

70 
10 60 

50 

40 

30 

20 

Io 

0-' 

I 

Anfiiml swo 
Infected 

I 

Uninfected 
Anýmal status 

Infected 

217 



Chapter Ten - Buffow-Related Bchaviour 

Fig. 5. Burrow excursion duration by hour for uninfected and Hematodinium-infected 
lobsters. Header bar indicates the illuminated and dark periods. 
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Fig. 6. Mean duration of burrow excursions made by uninfected and Hematodinium- 
infected lobsters in the light and dark periods. 
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Fig. 8. Number of seconds per hour spent out of the burrow, by hour, for uninfected and 
Hematodinium-infected lobsters. Header bar indicates the illuminated and dark periods. 
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Fig. 9. Mean time spent out of the burrow per hour by uninfected and Hematodinium- 
infected lobsters in the light and dark periods. 
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Chapter 11 

Conclusions and Prospects. 

This study has ftifthered our understanding of the complex relationship between the 

protozoan parasite Hematodinium and its host, the Norway lobster, Nephrops norvegicus. 

A diverse range of experimental approaches and analytical techniques have been used to 

investigate the epidemiology, etiology and pathology of the infection, and its effect on the 

biochemistry, physiology and behaviour of the host. In the previous chapters the 

significance of these various findings has been considered in relation to the literature 

relevant to the particular aspects. In this final chapter, therefore, consideration is restricted 

to the wider relationships between these findings, and emphasis is placed on unresolved 

issues, and on suggestions for fiinher studies. 

Description qf the parasite infecting N. non-egims. 

While still not described to species level, the dinoflagellate parasite found in N. 

norvegicus is now accepted to be a species of the genus Hematodinium (Appleton & 

Vickerman, 1998), and recent molecular studies have shown that the N. norvegicus isolate 

of Hematodinium is probably distinct from those infecting the other crustacean species that 

have been studied (Hudson & Adlard, 1996, Appleton & Vickcrman, 1998; Coats 1999), 

However, attainment of species status for the N. norvegi . cits isolate of Hematodinium is an 

important and urgent aim for future taxonomic studies. 

Field epidemiology. 

Data describing the diagnosis and epidemiology of Hematodinium infection in 

populations of N. norvegicus from the Clyde Sea area, Scotland (Chapters 2 and 3) have 

provided a new appreciation of the cycling of the parasite in the field in relation to the 
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complex life history of the host, and add considerably to the work already reported by Field 

et al. (1992,1998). Chapter 2 described how a simple morphometric diagnostic method 

(the pleopod method) could be used to study the epidemiology of Hemalodinium infection 

in the field. It was shown that mean carapace length (the standard measure of animal size) 

of the population appears to be important in determining the absolute level of infection 

prevalence within a given year. Since an increased fishing effort has been implicated in the 

reduction of mean carapace length of N. norvegicus on certain fishing grounds (Sardi, 

1998), studies are now required to determine whether increased fishing effort leads to the 

formation of a population that is particularly susceptible to disease epizootics. 

Chapter 2 also showed how the synchrony of the moulting seasons of male and fernale 

lobsters may play an important role in the pattern of infection seen within a particular year. 

In some years, a sharp peak of infection is seen, while in others a plateau of infection 

occurs (see below). As such, the length of the infection season may be as important as the 

absolute infection prevalence in determining the natural mortality attributable to 

Hematodinium infection in any given year. 

As a result of the finding that the pleopod method was ineffective in detecting sub-patent 

and latent Hematodinium infections (Field & Appleton, 1996), Chapter 3 described the 

further development and application of an diagnostic test for infection, based on detection 

of Hematodinium antigens in the haemolymph and tissues qf X norvegicus using 

immunoassay procedures. The data presented suggest that the p1copod method 

considerably under-diagnoses infection prevalence in trawl-caught samples, and that 

detection of parasite antigens by an immunoassay test may provide a more sensitive 

method for infection diagnosis. Further development of the immunoassay into a multi. 

sample, enzyme-linked immunosorbant assay (ELISA) is now being pursued. Such 

methods should allow for the routine assessment of Hematodinium infection prevalcricc in 

geographically-distinct N. norvegicus populations. In addition to antibody-antigen bascd 
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detection methods, diagnosis of Hematodinium infection has also been achieved using 

molecular techniques based on the polymerase chain reaction (PCR) (Hudson & Adlard, 

1994,1996). This technique utilizes nucleotide sequences that are specific to the parasite 

genome in order to amplify extremely small quantities of parasite DNA present in host 

tissue. The method is highly sensitive and is likely to be invaluable in future studies of 

Hematodinium parasite latency in N. norvegicus. Development of nucleotide primers 

specific to the N. norvegicus isolate of Hematodinium is being pursued. 

Linking patholoýy to ecoloSy. 

Due to the severe pathological effects associated with advanced Hematodinium infections 

(Meyers et al., 1987; Hudson & Shields, 1994; Field & Appleton, 1995; Wilhelm & 

Mialhe, 1996 and Chapters 4,5 and 6 of this thesis), the survival of infected lobsters under 

aquarium conditions (Field et al., 1992, Field & Appleton, 1995) and the sporolation 

response which leads to the death of the host lobster (Appleton & Vickerman, 1998), it is 

unlikely that recovery from patent infection is possible. TIlis would explain why seasons of 

high infection prevalence have been associated with lower burrow densities on the fishing 

grounds, and with reductions in landings per unit effort from trawling (Field el al,, 1998). 

However, infection with Hematodinjum may also contribute to determining the availability 

of N. norvegicus for capture, and an important aim of the present study was to identify the 

extent to which changes in the physiology, biochemistry and behaviour of the host upon 

infection determine the catchability of the infected lobsters. 

Chapter 6 reported the reduction in hepatopancreatic glycogen and plasma glucose 

reserves during patent infection. This reinforced the data presented in Chapter 5 which 

showed that muscle glycogen was also greatly depicted during infection, Taken together 

with changes measured in the concentration of the crustacean hypcrglycacmic hormone 

(CHH) in the plasma, these findings suggest that Hemalodinium parasites act as a 
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'carbohydrate sink' in the haernolymph of N. norvegicus, by consuming free glucose and 

preventing repletion of tissue glycogen. It is thus envisaged that infected lobsters are in a 

state of 'physiological starvation' -a condition that may be compounded by 'functional 

hypoxia', due to the parasites consuming oxygen in the blood (Taylor et al., 1996). 

Schmidt and Platzer (1980) note that the condition of the host may determine the degree 

to which a parasitic infection develops, with hosts in the best physiological condition 

harbouring the largest parasite burdens. The prevalence of Hematodinium infection was 

seen to be highest in N. norvegicus during the spring, and in females (Chapter 2 and 3). 

Female crustaceans have relatively larger amounts of hepatopancreatic tissue than males as 

a means of supplying the nutritional requirements for egg rearing and spawning (Farmer, 

1974). The higher incidence of Hematodinium infection in female lobsters may reflect 

some relative advantage of the female host to the parasite. Coincidence of peak infection 

with the onset of the main moulting period of N. norvegicus (Chapter 2) may reflect the 

fact that crustaceans are in their best physiological condition during the late intermoult and 

the premoult (Johnson, 1980), allowing Hematodinhim parasites to develop and multiply 

under optimal conditions in the haemolymph. Data presented in Chapters 4,5 and 6 have 

suggested that simple carbohydrate reserves may provide the initial energy source for 

developing parasites. This is followed by progressive depletion of more complex 

carbohydrates (such as glycogen) and then consumption of amino acids and proteins (see 

Taylor et al., 1996). Ile sporolation phase of the parasite, in which motile parasite forms 

emerge from the host lobster, may occur when all available host resources have bccn 

depleted. This may explain why sporolation of the parasite can even occur in lobsters 

displaying only Stage I or 2 infection (Appleton & Vickcrman, 1998). Further studies on 

the nutritional requirements of the parasite during different stages of development may 

reveal the nature of these more complex nutritional relationships between Hemalodinium 

and its host. 
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The concepts of physiological starvation and functional hypoxia are also relevant to the 

interpretation of data presented in Chapters 8 and 9 on the swimming performance of 

Hematodinium-infected lobsters. These chapters described the progressive reduction in 

swimming performance during patent infection, and associated this mainly with the 

reduced glycogen reserves reported in infected muscle (Chapter 5). However, it was also 

suggested that the increased haemolymph and tissue lactate concentrations previously 

reported to occur in Hematodinium-infected lobsters (Taylor et al., 1996), when coupled 

with alterations in water content and damage to the sarcolemmal membranes of infected 

muscle (Chapter 5), may also play a role in reducing swimming performance. Furthermore, 

the two-phase swimming pattern reported in Chapter 9 has highlighted how different 

metabolic substrates may be utilized throughout the normal swimming sequence of N. 

norvegicus. Further studies of the disruptions to metabolic processes in muscle that may 

affect the swimming capabilities of infected lobsters are required. 

Alterations in tissue (Chdpter 5) and haemolymph (Chapter 4) biochemistry provide 

further evidence for the severe pathological disruption that occurs in Hematodinium 

infection of N. norvegicus. While FAAs in the plasma of crustaceans are generally present 

at very low concentrations, during Hematodinium infection the plasma concentration of 

several FAAs increased considerably. The increase of taurine was the most marked, 

increasing 12-fold. Taurine is known to mimic the inhibitory effects of X-aminobutyric acid 

(GABA) in crustaceans (Zatta, 1987) and glutamate, which also increases considerably 

during infection, is known to have pharmacological activity at low concentrations (Lin & 

Cohen, 1973). During infection, the concentration of free glutamate in the plasma increased 

to values that exceed the threshold for stimulating crayfish muscle. Due to open nature of 

the crustacean circulatory system, these elevated concentrations of ncuro-activc 

compounds could be at least partly responsible for the reduced swimming ability of 

Hematodinium-infected lobsters reported in Chapters 8 and 9. Additionally, high plasma 
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concentrations of these compounds may be involved in the unusual tail flipping spasms 

seen in heavily-infected lobsters shortly before death (Chapter 10). 

Taurine and other FAAs (such as glutamate) have been identified as potent chemo- 

attractants in the marine environment. Altered excretion of chemo-attractive compounds 

from the antennal glands of N. norvegicus, which are known to be damaged during 

Hematodinium infection (Field & Appleton, 1995), and the subsequent predation of 

infected lobsters by other hosts, may provide an interesting link to parasite transmission in 

the field. This interaction between Hematodinium-infected lobsters and predators may be 

compounded by the increased amounts of time spent out of the burrow (Chapter 10) and 

the reduced swimming performance (Chapters 8 and 9) noted in Hematodinium-infected N. 

norvegicus. 

The changes in FAA concentrations in the deep abdominal flexor muscle of patently 

infected lobsters suggest that the normal biochemistry of the muscle cells may also be 

considerably disrupted. An up-regulation in the production of taurine in the deep 

abdominal flexor muscle, as shown in Chapter 5, may explain the increased plasma 

concentration of this compound reported in Chapter 4. Additionally, as this muscle 

provides the majority of the commercially useful meat of N. norvegicus, changes to its 

composition may impact upon the marketability or edibility of infected lobsters (see Shirai 

et al. 1996). Alterations in the taste of Hematodinium-infectcd meat have already been 

described in the aptly-named 'Bitter Crab disease' of Alaskan tanner crabs Chionoccetes 

opilio and C bairdi, though in this case it was assumed to be due to some exudate from the 

parasite itself (Meyers et al., 1987; Taylor & Khan, 1996). As FAAs and other low 

molecular weight compounds are important components of the 'taste profile' of crustacean 

meat, future studies on the biochemical composition of Hemalodinium-infectcd lobster 

meat are recommended. 
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Hematobdum infection as a stressor. 

Evidence presented in the current study has suggested that Hematodinium infection may 

cause biochemical and physiological changes in host lobsters which are similar to those 

occurring under a range of other stresses (see Paterson & Spanoghe, 1997). In particular, a 

reduction in tissue glycogen and an elevation of plasma CHH are both common responses 

to hypoxia (see Baden et al., 1990 and Santos & Keller, 1993, respectively). Additionally, 

changes in the concentration of plasma and tissue taurine (especially in respect to its 

ratiometric association with the amino acid glycine) are also known to be sensitive 

indicators of acute and chronic stress in marine invertebrates (Livingstone, 1982). 

An interesting link was made in Chapter 6 between the onset of infection patency and the 

moult (itself a period of considerable physiological stress). Here, it was shown that CHH, 

the plasma concentration of which changes when animals are exposed to a number of 

different stressors (see Chung et al., 1999), is significantly increased in sub-patently 

infected lobsters. Other recent studies have shown that the concentration of CHH is also 

increased significantly in the hours preceding ecdysis. This presumably leads to 

mobilization of the host's carbohydrate reserves, thereby providing the necessary energy 

for moulting (Chung et al., 1999). The results of Chapter 6 suggest that the increased CIIH 

titre in sub-patently infected lobsters may cause a similar response, producing conditions in 

the haemolymph that are suitable for the development of patent infection (i. e. colonization 

of the haemolymph by latent tissue forms). Elevated plasma CHH concentrations have also 

been implicated in the uptake of water by crustaceans immediately before the moult 

(Chung et al. 1999). The high concentration of CHH observed during the later stages of 

Hematodinium infection may therefore be responsible for the bloated appearance of heavily 

infectcd lobsters. This may eventually cause integumental membranes to break, allowing 

extrusion of the motile dinospores. Such swarming stages have been noted on several 

occasions under aquarium conditions (Appleton & Vickerman, 1998). As such, Chapter 6 
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provides the first description of parasite-induced hormonal disruption in a crustacean host. 

Furthermore, it suggests that Hematodinium infection in N. norvegicus may provide an 

excellent model for studying general stress responses in marine invertebrates, especially 

those involving hormonal and immunological mechanisms. 

Effects ofother stressors. 

Although not an initial objective of the current study, in the course of routine 

examination of catches, an unusual pathology was noted in the abdominal muscle of 

trawler and creel-caught N. norvegicus. Chapter 7 provides the first description of this 

pathology, and showed that the condition is similar to the idiopathic or spontaneous muscle 

necrosis previously reported to occur in several other crustacean species (see Evans et al. 

1999). The pathology described in N. norvegicus involves a rapid degeneration of the 

muscles of the abdomen, which renders the lobster immobile and then dead within 34 

days. The economic impact of this condition has already been felt by wholesalers on the 

west coast of Scotland. This resulted from the mass mortality of X norvegicus during 

vivier transport to the continent in the summer and autumn of 1999. The data presented in 

Chapter 7 for the prevalence of muscle necrosis immediately after trawl capture, and 4 

hours later, reinforce the theory that the holding conditions of the animals in the period 

immediately following capture are crucial in determining whether the necrotic condition 

develops or regresses. This has important consequences both for the transport of live N. 

norvegicus, and for the quality of the meat of lobsters 'tailed' at sea. As sorting of 

undersized lobsters may take up to 4h (see Chapman et al., 2000), the pathology may also 

contribute to the high mortality of discarded N. norvegicus which are returned to the sea 

after trawl capture and several hours of cmersion (Ulmcstrand el al.. 1998). The pathology 

of muscle necrosis described in Chapter 7 was shown to be different from that occurring 

during Hematodinium infection (Chapter 5). As the protein composition of the deep 
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abdominal flexor muscles of the abdomen were largely unchanged during Hematodinium 

infection, it could be suggested that anecdotal reports of 'watery' and unstructured meat 

from the tails of apparently Hematodinium-infected lobsters may have in fact been 

describing the tail pathology noted in Chapter 7. Further studies on the conditions which 

lead to expression of this pathology and to the structure, biochemical composition and taste 

of cooked tail muscle from lobsters showing symptoms of necrosis would allow such issues 

to be addressed. 

Hematodinium and the catchability of infected lobsters. 

In terms of burrow-related behaviour, infected male N. norvegicus were shown to spend 

significantly longer periods out of the burrow, and appeared not to show the diel 

emergence rhythm seen in uninfected lobsters (Chapter 10). These changes in behaviour 

may be driven by the increased nutritional and/or respiratory requirements of 

Hematodinium-infected lobsters as mentioned above. As such, changes in burrow-related 

behaviour are likely to be implicated in an increased catchability of infected lobsters by 

trawl nets, especially when coupled with the reduced swimming performance noted in 

Chapters 8 and 9. Increased catchability may lead to overestimation of infection prevalence 

in the field, and may impact upon the accurate assessment of natural mortality attributable 

to Hematodinium infection (Anon, 1997). These findings suggest why previous attempts to 

incorporate the high observed prevalence of Hematodinium infection into anahlical stock 

assessments of the Clyde Sea area, which modelled the effect as an additional loading on 

the natural mortality rate (since animals showing symptoms of patent infection usually die), 

led to unrealistic estimates of the number of recruits entering the fishery (Anon, 1997). 

Infected animals, while being more prone to capture by trawlers, may also be more 

susceptible to predation through both a reduced ability to escape and an increase in 'risk 

prone' behaviour (Chapter 10), 
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Current fisheries independent methods for N. norvegicus stock assessment are based on 

the estimation of larval production, the use of underwater television for making burrow 

density counts, and the use of trawl surveys. Comparisons between the number of lobsters 

present on the sediment surface and the burrow density suggest that only around 10 % of 

lobsters are out of their burrows at any given time (Tuck et al., 1997). At higher burrow 

densities, proportional emergence may be greater than this, as individuals in such 

populations may have to spend longer foraging for food. However, while analytical models 

assume equal capture availability throughout the distribution of the stock (Tuck et al., 

1997), stocks exhibiting significant Hematodinium infection prevalence may also be 

showing greater proportional emergence than stocks with lower infection prevalence. As 

such, estimates of N. norvegicus abundance from trawler capture may overestimate true 

infection prevalence on these grounds. Further studies on the infection prevalence of trawl- 

caught populations in relation to the density of burrows and the proportional emergence of 

lobsters on the same grounds would represent a field test of the theories of increased 

burrow emergence presented in Chapter 10. 
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it is not stonn or cahn, butyesterdav 
The wild winds leapt in sudden thunder down; 

Shook the dark waters into a starry sprqv, 
And thrilled the soul ofmany a seaside town. 

'The Sorrow of the Sea', John Hogben. 
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