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Abstract 

Many medical studies involve modelling the relationship between an outcome 

variable and a series of one or more continuous/interval scaled discrete explanatory 

variables. It is common practice in many of these studies for some, or indeed all, of 

the continuous/interval scaled discrete explanatory factors to be incorporated into the 

analysis in a categorised or grouped form. 

One of the main reasons for adopting this methodology is that it will simplify 

the interpretation of results for clinicians and hopefully patients. It is often easier to 

interpret conclusions based on an explanatory variable with two or three levels (i. e. 

categorisations) than from a continuous/interval scaled discrete explanatory. The 

main drawback with this technique is in identifying the categorisation points. Often 

preconceived and/or historical grounds are the determining factor used to decide the 

location of these categorisation points. However, this may not give rise to sensible or 

justifiable locations for such points for a given application. 

This thesis will consider the analysis of data from various types of medical 

study and, by applying non-parametric statistical methodology, provide alternative, 

more logical rationale for identifying categorisation points. The analysis will 

concentrate on data from three specific types of medical study -a cohort study with a 

binary outcome, a matched case/control study and survival analysis. 

In a cohort study with a binary response the standard methodology of logistic 

regression will be applied and extended using a non-parametric logistic approach to 

identify potential categorisation points. As a further extension consideration will be 

given to the more formal methodology of examining the first derivative of the 

ii 



resultant non-parametric logistic regression to provide the location of categorisation 

points. 

In matched caselcontrol studies the standard technique used for analysis is 

conditional logistic regression. The theory and application of this model will be 

discussed before considering two new, alternative, non-parametric approaches to 

analysing matched case/control studies with an interval scaled discrete explanatory 

variable. The proposed non-parametric approaches will be tested to investigate their 

usefulness in identification of categorisations for the explanatory variable. Possible 

extensions to these approaches to incorporate a single continuous explanatory variable 

will be discussed. In order to compare the two non-parametric approaches a 

simulation study will be carried out to investigate the power of these approaches. 

Finally, consideration will be given to the analysis of survival data. Initially, 

the standard methodologies of the Kaplan and Meier estimator in the absence of 

explanatory variables and Cox's Proportional Hazards model to incorporate 

explanatory variables will be discussed. A more detailed examination of three 

alternative methods for analysing survival data in the presence of a single continuous 

explanatory will be carried out. Each of the methods will be applied in turn to a 

survival analysis problem to investigate if any categorisations can be identified for a 

single continuous explanatory variable. Further simulations will be undertaken to 

compare the three methods across a variety of scenarios. 
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Chapter 1 

Introduction 

Section 1.1. Background 

In most fields of scientific research, but especially in medical research, 

observational and designed experiments often generate large data sets of quite 

complex structure. In the past the application of appropriate statistical methodology 

to the analysis of such data has often been neglected in that little or no statistical 

analysis has been carried out on the data collected in such studies. Yates and Healey 

(1964) stated "It is depressing to find how much good biological work is in danger of 

being wasted through incompetent and misleading analysis of numerical results". 

With the advent of more rigorous guidelines on the publication of results in medical 

journals (Altman et al (1983), Evans (1989)) the use of statistical techniques to 

analyse data from medical studies have become the "norm" and "incompetent" 

analyses are unlikely to be found in the current medical literature. In fact, in many 

medical journals it is now almost essential that a full statistical analysis is carried out 

before a piece of work can be published. For example, in the New England Journal of ZD 

Medicine, Shepherd et al (1995) provided a detailed statistical analysis of the results 
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from the West of Scotland Coronary Prevention Study (WOSCOPS) and in the British 

Medical Journal Harper et al (1994) carried out an in depth statistical analysis of the 

effects of the dose of bendrofluazide on the levels of hypertension present in a group 

of diabetics in Northern Ireland. However, it remains the case that some of the 

statistical techniques employed in the analysis of the data in many current medical 

publications are still not as rigorous as the statistical world would desire (see Murray 

(199 1 a) and Altman (1994)). On some occasions the presentation of results are not as 

clear as statisticians would desire and, more worryingly, the techniques employed 

would sometimes appear to be inadequate to meet the needs of the study. In a review 

article in the British Journal of Surgery, Murray (1991b) outlined the statistical 

aspects which should be considered in any study before submission to a journal. This 

article covered all aspects of a study from presentation of results through to the 

consideration of methodological issues. This thesis will focus on three particular 

medical study frameworks and initially examine the standard statistical techniques 

which should he used on data collected from these studies. It will then consider 

alternative non-standard statistical techniques which may prove even more 

appropriate in highlighting particular features of any set of data. 

The types of study under consideration here are as follows: 

(i) Cohort study with a binary response: In this type of study 

individuals are followed up over a period of time to identify 

individuals who develop the "disease of interesf' in order to ascertain 

factors which may be of prognostic significance. At a specified point 
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in time the status of each individual (e. g. developed/not developed the 

disease of interest) is established and factors which affect this 

difference in individual status can then be investigated. This allows 

factors which may be important for prognostic outcome to be 

highlighted. 

(ii) CaselControl Study: In this type of study a group of individuals 

known to be suffering from the disease of interest are identified (the 

cases) and compared to a group of disease free individuals (the 

controls). An examination of factors which differ between the cases 

and the controls makes it possible to identify factors which influence 

the risk of disease. The precision of this type of study is often 

increased by pre-matching individual cases with individual controls for 

known or established risk factors (e. g. sex, age). The case/control 

study, matched or unmatched, allows factors which may be important 

for determining the risk of a disease to be highlighted. 

(iii) Survival Analysis: Here interest is in determining factors which 

may have an effect on prognostic survival. A group of individuals 

known to be suffering from the disease of interest are followed up 

through time. Consideration is given to each individual's full survival 

profile across time. This will essentially lead to a rather complex 

analysis as the pattern across time must be considered for each 

individual. By giving consideration to the full survival profile it is 



again possible to highlight factors which may be relevant for 

prognostic survival. 

In most medical studies, the methods used to analyse the data focus on 
4, 

applying standard statistical methodology. These will often involve the use of some 

form of parametric modelling of the relationship between the outcome variable (e. g. 

alive/dead, case/control) and any potentially important prognostic factors. In the 

cohort study with a binary response the standard model used to examine any 

underlying relationship between the response and the explanatories is often the linear 

logistic model (Cox (1970)). In a study into the development of toxoplasmic 

encephalitis in AIDS patients, Raffi et al (1997) fitted a linear logistic model to the 

data from the 186 patients in the study to identify risk factors for development. With 

caselcontrol studies involving a continuous potential risk factor, the standard model is 

the conditional linear logistic model (Mantel (1973)). Schneider et al (1997) used a 

conditional linear logistic model in a study of factors influencing the incidence of 

Parkinson's disease where the cases were paired with age matched controls. Finally, 

in survival problents various models have been proposed to attempt to explain the 

underlying relationship between survival and any potential explanatory factors 

including the Cox Proportional Hazards model (dox (1972)) and the accelerated 

failure time model (Cox and Oakes (1984)). Karpf et al (1997) carried out a meta- 

analysis on factors influencing the development of osteoporosis in postmenopausal 

women. The women were followed up for a period of time and proportional hazards 

models were used to identify factors which affect the development of osteoporosis 

among these women. Accelerated failure time models were used as an alternative to 
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proportional hazards models by Deredita et al (1996) in a survival study, in order to 

highlight prognostic factors for survival from colorectal cancer. 

There is nothing inherently wrong with only giving consideration to the use of 

standard parametric statistical techniques for analysis, and it is reassuring to see the 

use of formal statistical methodology in the papers mentioned in the previous 

paragraph. However, the idea of forcing the use of a specific parametric model to 

explain any underlying relationship is rather restrictive and does not allow 

consideration to be given to the vast number of possible relationships which may 

exist. It may be that the development of sophisticated non-parametric techniques will 

offer valuable and perhaps complementary alternative forms of analysis. This thesis 

will attempt to move away from this rather constricting parametric framework and 

consider the use of non-parametric models to attempt to explain any underlying 

relationships. Non-parametric modelling of any underlying relationships will allow 

far more flexible and varied relationships to be considered. Such models are data 

driven and hence allow the data itself to indicate the nature of any existing 

relationships. The use of this wider class of non-parametric models will, by 

definition, produce far more "open ended" solutions (Simonoff (1996)) than can be 

produced using the corresponding parametric models. Therefore, care must be taken 

to ensure that both a sensible and appropriate non-parametric model is chosen to 

explain any underlying relationship between the covariate and the explanatories. 



Many medical studies involve modelling the relationship between the outcome 

variable and a series of one or more continuous or interval scaled discrete 

explanatory factors. It is common practice in many of these studies for some, or 

indeed all, of the continuous explanatory factors to be incorporated into the analysis in 

a categorised or grouped form. In a study into causes of high blood cholesterol, 

Grundy and Vega (1990) grouped the continuous explanatory factor age into 3 

categories (20-29 years, 30-39 years, >39 years) and even the response factor, 

cholesterol level, was grouped into 3 categories (desirable, borderline high, high). 

Doll et al (1994) carried out an investigation into the effect of alcohol consumption on 

mortality where alcohol consumption was grouped into 4 categories (1-14 units/week, 

15-28 units/week, 29-42 units/week, >42 units/week). In these publications 

categorisation points are therefore chosen for the continuous explanatories before any 

subsequent analysis is carried out. One of the main reasons for adopting this 

methodology is that it will simplify the interpretation of results for clinicians and 

hopefully patients. It is often easier to interpret conclusions based on an explanatory 

variable with two or three levels (i. e. categorisations) than from a continuous 

explanatory. The main drawback with this technique is in identifying appropriate 

categorisation points. If this methodology is indeed to be employed then it would 

appear logical that these categorisation points should be chosen at values of the 

explanatory at which there is a marked change in the effect that the explanatory has on 

the response. For example, in cancer studies there may be a marked change in the 

incidence of the disease at a particular value (or over a short range of values) of a 

continuous explanatory. This would therefore appear to be a sensible location for a 

categorisation point. In many studies, however, the data itself provides little 
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justification for the categorisations used. One possible explanation for this is that 

preconceived and/or historical grounds are often the detennining factor used to decide 

the location of these categorisation points. However, this may not give rise to 

sensible locations for such points from a particular data set. In a large scale study into 

the association of blood pressure with cancer incidence and mortality Grove et al 

(1991) considered two different, historically motivated, categorisations for each of 

systolic and diastolic blood pressure. Conclusions were then drawn based on hoth 

categorisations. A more sensible, alternative method for deciding upon the location of 

these categorisation points would be to allow the data itself to deteimine the location 

of the categorisation points. Areas of the data where there appears to be a change in 

the effect the explanatory has on the response would seem to imply the location of a 

categorisation point. The use of non-parametric methodology as mentioned 

previously provides a possible approach to allow the data itself to determine the 

number and location of any categorisation points. 

The major aim of this thesis is to consider the analysis of data in various 

medical contexts and, by applying non-parametric statistical methodology, to 

highlight the location of any potential categorisation points. Such a choice of 

categorisation points will surely have more credence than any which have been 

chosen without giving due consideration to the data itself. 

The next section will give a brief introduction to the use of non-parametric 

statistical techniques. 
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Section 1.2: Non-parametric statistical methodology 

The use of non-parametric statistical techniques came into prominence after 

the end of the Second World War. Wilcoxon (1945) and Tukey (1949) devised 

distribution free tests for examining a single sample location problem whilst Mann 

and Whitney (1947) derived a solution for the two sample location problem. A 

possible non-parametric solution for Analysis of Variance was proposed by Kruskal 

(1952) and Wallis (1952). Regression problems were first addressed by Thiel (1950) 

who introduced non-parametric tests and confidence intervals for the slope in a simple 

linear regression model with a continuous response and one continuous explanatory. 

Hollander (1970) considered a non-parametric test for parallelism in simple linear 

regression problems. These were developments for specific tests in linear regression 

problems but in a much more general sense the predominant emphasis of the current 

work in non-parametric statistics considers more detailed solutions to the general 

regression problem. One area which has attracted considerable research is the use of 

data smoothing techniques in both density estimation and non-parametric regression. 

Rosenblatt (1956) and Parzen (1962) produced the first fully non-parametric 

regression model (The Rosenblatt-Parzen kernel density estimator) which fits a 

smooth regression curve (not necessarily a straight line) to a set of data. The proposal 

of a smooth regression curve with no parametric constraints was totally unique at this 

time. However, since this first model was derived, many other alternative smooth 

regression models based on the kernel density approach (see later) of Rosenblatt and 
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Parzen have been suggested as a solution to this problem. Priestley and Chao (1971) 

and Gasser and Muller (1979) provided other, more complex, altemative structures for 

the form of the smooth regression curve. One of the models most in common usage 

today was independently derived by Nadaraya (1964) and Watson (1964). Similar to 

the Rosenblatt-Parzen kernel density estimator it produces an estimate of the mean 

response based on fitting a smooth regression curve across the explanatory variable. 

Formally, Nadaraya and Watson proposed the following non-parametric estimate of 

the mean response, y, based on a single continuous explanatory, z. 

n 
Yi Ah (z, 

zi) 

n 
EAh(z, 

zi) 
i=l 

where 

The weighting function, Ah (z, zi) = K(z 
h 

zi) 

n is the number of observations 

K is a smooth probability density function 

h is the smoothing parameter 

zi is the continuous explanatory value for ith observation 

yi is the continuous response value for ith observation 
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This model non-parametrically smooths across the explanatory variable in order to 

determine the estimated value of the response at each value of the explanatory. It 

allows each observation's response to have an influence in a neighbourhood of its 

explanatory value; an influence which decreases as you move away from the value of 

the explanatory. The nature and degree of the influence are determined by the form of 

the weighting, or kernel, function and the value of the smoothing parameter. 

In essence this method uses the data to produce a weighted average of the 

response at each value of the explanatory. This technique will be used extensively 

throughout the work presented in this thesis as it allows the data itself to control the 

pattern in the response across the values of the explanatory. Hence, any unusual 

patterns in the data will become immediately obvious. In the determination of 

categorisation points (as discussed in Section 1.1), this technique will clearly prove 

very useful as categorisation points should be located at areas of the explanatory 

where there is a marked change in the value of the response (i. e. an unusual pattern). 

Although the model suggested by Nadaraya and Watson in (1.1) will not be 

directly applied in this thesis, the ideas contained within it provide basic building 

blocks which will be heavily relied upon in any non-parametric models which are 

used here. In each of the three study frameworks discussed here, non-parametric 

estimators will be proposed to describe the relationship between the response variable 

and any explanatory variables. These estimators will provide smooth estimates of the 

response across the values of the explanatory variable along the lines of Nadaraya and 

Watson. By a close examination of the resulting estimates any potential 
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categorisation points can be highlighted at values of the explanatory where to be a 

dramatic change is suggested in the value of the response. 

Any smooth non-parametric estimator of the underlying relationship between 

the response and a continuous explanatory will involve the use of some form of 

weighting function; in essence similar to the function defined in (1.1). In this thesis 

the use of both kernel weighting functions (Rosenblatt (1956)) and nearest 

neighbour weighting functions (Loftsgaarden and Quesenberry (1965)) will be a 

considered where appropriate. 

A vast number of possible kernel weighting functions have been proposed. 

These range from the Epanechnikov parabolic kernel suggested by Epanechnikov 

(1969) and Barlett (1963) to the multidimensional Product kernel function (Cacoullos 

(1966)). Here a standard Gaussian kernel (Silvermann. (1986)) will be used as it has 

been shown that the choice of kernel has remarkably little effect on the estimates 

obtained (Hardle (1990)). Kernel weighting functions produce a weighted average of 

the response in afixed neighbourhood around the explanatory value. An alternative 

weighting function is to consider a weighted average of the response in a varying 

neighbourhood around the explanatory value. This type of weighting function is 

known as a nearest neighbour weightingfunction. Again, various fonns of nearest 

neighbour weighting functions have been proposed. Yang (1981) proposed a 

symmetrized nearest neighbour weighting function, whilst Stone (1977) suggested 

both triangular and quadratic nearest neighbour weighting functions. Here. an 

adapted version of the most straightforward nearest neighbour weighting function, the 
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"uniform" weight, as suggested in density estimation by Loftsgaarden and 

Quesenberry (1965) will be used. The method suggested by Loftsgaarden and 

Quesenberry will be adapted slightly to reflect the data structure(s) being considered 

in the work presented here. 

Non-parametric estimators are strongly influenced by the underlying pattern in 

the data. Estimates of the response at a value of the explanatory are calculated by 

smoothing the observed values of the response in a neighbourhood of the explanatory 

value. Both kernel and nearest neighbour weighting functions incorporate a parameter 

which determines the level of smoothing carried out on the data. On many occasions 

these estimators will be used in situations where the data itself is very sparse. This 

situation is particularly common in the analysis of data from case/control studies as 

these are often used in the study of rare diseases (i. e. relatively few observations will 

be present). In situations where data is very sparse this issue of smoothing the data 

becomes of particular importance. The less data that is present, the greater the degree 

of smoothing that is required to obtain a clear picture of any underlying relationships. 

The degree of smoothing is controlled by the smoothing parameter which is 

represented by the value h in (1.1). However there is then concern with establishing 

the "best" smoothing parameter for any given data set. If the data is undersmoothed 

(i. e. the smoothing parameter is too small) then a very jagged picture of any 

underlying relationship between the response and the explanatories will be produced. 

Conversely, if the data is oversmoothed (i. e. the smoothing parameter is too large) a 

clearer picture of the relationship will be produced, but with the possible consequence 

of smoothing out potentially important local features of the data (e. g. possible 
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categorisation points). Hence, it is crucial that the correct smoothing parameter is 

chosen on each occasion. Various methods have been suggested for obtaining the 

optimal smoothing parameter. 

The most common methods are based on cross-validation (Clark (1975)), 

penalizing functions (Shibita (1981)) and plug-in methods (Gasser et al (1991)). 

There are theoretical justifications in terms of the degree of differentiability of the 

final smoothed curve (Hardle (1990)) to prefer either the cross-validation or 

penalizing functions methods. In the work presented here, the cross-validation and 

approach to choice of smoothing parameter was given due consideration. 

Unfortunately this method tended to produce choices for the smoothing parameter 

which were too large and hence oversmoothed the results. As the main aim of this 

thesis is concerned with local features of the data it is essential not to oversmooth any 

underlying relationship. Therefore, this method was rejected and instead a simple 

subjective search method will be used to identify the optimal smoothing parameter. 

In other words, plots of the smooth estimate of the underlying relationship between 

the response and the explanatory will be produced for a range of sensible smoothing 

parameters and an appropriate value for the smoothing parameter will be chosen in 

light of these graphs. Once a final solution has been found, the graph of the results 

will be examined to investigate if any possible categorisation points can be found for 

the potential explanatory variable. 

In summary, for each of the study frameworks under consideration here, non- 

parametric methodology will be used to examine the relationship between the 
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response and explanatory variables. Use of such methodology will make it possible to 

identify categorisations, if any exist, for the explanatory variable. 

14 



Section 1.3 Summary of Chapters 

CHAPTER 2 considers the analysis of data from cohort studies with a binary 

response. In this chapter both the linear logistic model and non-parametric logistic 

model (Copas (1983)) will be applied to a problem within the field of medical 

research. Consideration is also given to the use of function derivatives in order to 

identify categorisation points. 

CHAPTER 3 examines the case/control study and initially outlines the standard 

methodology based on the conditional linear logistic approach. Two less restrictive 

non-parametric approaches to the analysis of such data are also proposed. Attention is 

given to highlighting any possible categorisations for interval scaled discrete 

explanatories. A comparison of the two non-parametric methods is presented, based 

on a simulation study. 

CHAPTER 4 gives full details of the standard analysis of data from a survival study. 

Three possible non-parametric approaches to the analysis of survival data are then 

presented. Notice is taken of any possible categorisations for continuous 

explanatories. The non-parametric methods are compared in terms of how they 

perform with both real and simulated data. 

Finally, CHAPTER 5 presents a summary of the findings of the previous three 

chapters. 
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Chapter 2 

Cohort Studies 

Section 2.1: Introduction 

Many types of observational study exist but by far the most common is the cohort 

study since it is the easiest to both design and organise. 

A cohort is basically a group of individuals who are traced over a period of time 

(Campbell and Machin (1993)). A cohort study involves following a group of individuals 

over a period of time and recording various pieces of information on them before and 

through time. Subsets of the cohort under study can be identified who have been exposed 

to various factors which may influence the probability of occurrence of the disease under 

study. This makes it possible to obtain information about the occurrence of the disease 

under study and also to identify potential risk factors for the disease. 

There are two separate and distinct classes of cohort study, these being 

(1) Historical cohort study: Analysis is carried out upon data 

obtained from historical records and then it is possible to examine how 
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certain characteristics affect the occurrence of the disease of interest. A 

major advantage of this type of cohort study is that the results are available 

almost immediately. However since the data are obtained from large 

historical databases one possible disadvantage is that a lot of superfluous 

information will also be used in the analysis. 

(2) Prospective cohort study: Here infomation is collected on 

subjects in the present and they are then followed up in to the future. Here 

a major advantage is that it is then possible to collect exactly the 

information thought to be required. The major drawback is that it may take 

years for any potential results to become available. 

This chapter will demonstrate various ways to analyse data from a cohort study initially 

outlining, in sections 2.2 and 2.3, the approach of using the linear logistic model. 

The emphasis of the work in this thesis is to develop methods of analysis which 

will allow the highlighting of potential categorisations for variables. To this end 

consideration will be given to a non-parametric method first devised by Copas(1983) 

which will be explained in section 2.4 while an example will be outlined in section 2.5. 
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Section 2.2: The Linear Logistic model 

Regression methods are one of the most important techniques when considering 

any data analysis which involves describing the relationship between a response variable 

and a set of one or more potential explanatory variables. Often, as in the case of cohort 

studies involving the identification of risk factors for a particular disease, this response is 

discrete taking two values (e. g. did/did not develop disease). The standard model used for 

analysis in this situation is the binary linear logistic model (Cox 1970) which is defined as 

follows: 

Let yi represent the response variable indicating whether (yi = 1) or not (yi=O) the 

ith individual develops the disease during the study period and let the p explanatory 

variables zil, ... zip be a set of p characteristics for each subject such as age, height, sex, 

etc. Then 

pzi = pr(yi=l/zi) 
exp (pTz, )_ 

- (2.1) 
+ exp (pTZ, ) 

where 

pT = (po p, 
... 

pp) 

gTi m (1 Zi I ... zip) 

or equivalently the log odds on having the disease is linear in the explanatories 
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logit(pzi log 
Pz` T Zi (2.2) T P3 

ýzi 

Interest is then in estimating P and hence allowing modelling of pz. 

The standard approach would be to maximise the likelihood function Lik(P; y, g) to 

produce estimates 0T for pT (Cox (1970)) and then use the logistic transformation in (2.1) 

to obtain an estimate ýz for pz. 

Further, approximate confidence bands forpz, for any ý, can be obtained by using the 

inverse of the information matrix 1(ý), , 
(i. 

e. F' (ý)), 
as an approximation to cov(ý) 

P=P 

(Kalbfleisch (1985)) to produce 100*(I-a)% confidence bands for bTP (and hence any 

component of P )of the form 

hTý Zý/ hTI F-I 
22 F 

where 

bT =(I Z, Z P) 

I" percentage point of the standard normal. /is the 100* ZM 
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The logistic transformation can then be used to produce induced approximate confidence 

bands for pz. 

Having fitted a linear logistic model some method of assessing the fit of the model 

is required. The assessment of the fit of the model could be broken into two separate 

sections, firstly to look at any individual observations which may be causing problems and 

secondly some formal test of the overall fit of the model. For simple linear regression the 

most common method used to examine model inadequacies is to look at residuals. There 

are two residuals which are commonly used to assess the fit of the linear logistic model. 

(i) The Pearson residual (McCullagh & Nelder (1990)) 

(ii) The Deviance residual (Pregibon (198 1)) 

Calculation of these residuals allows any unusual observations to be identified and X2 tests 

based on the residuals (Hosmer and Lemeshow (1989)) can be constructed to test the 

overall fit of the model. 

This section has outlined some of the simple theory involved in the use of the 

linear logistic model. More aspects of the inference involved in this type of modelling can 

be found in Breslow and Day(1980), Mike and Stanley(1982), Carter et al(1983), and 

Hosmer and Lemeshow(1989). For present purposes however the theory presented above 

will suffice as it gives sufficient background for the following examples. 
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Section 2.3: Prognostic factors for surviving stage 2 

melanoma: An Illustration of linear logistic 

regression. 

Section 2.3.1: Introduction 

A useful data set to illustrate the techniques discussed in section 2.2 can be found 

in a paper by Tillman et al (1991). In this paper interest lies in identifying potential 

prognostic factors for surviving stage 2 melanoma. The data came from a prospective 

cohort study where the outcome of 109 patients undergoing therapeutic lymphadenectomy 

for clinical stage 2 malignant melanoma was assessed. The outcome chosen was whether 

or not the patient was alive five years after being identified as a stage 2 melanoma. Note 

that this choice of five years involves a rather arbitrary cutpoint in order to simplify 

presentation. Chapter 4, which deals specifically with survival analysis, will examine 

ways of justifying such a cutpoint. However, when considering outcome after five years, 

Tilmann et al identified 2 main prognostic factors, these being 

(i) The age of the subject on being identified as a stage 2 melanoma 

(ii) The number of malignant nodes the subject had surgically removed 

Within the next section (section 2.3.2) a full univariate analysis of both of these factors 

will be carried out utilising the techniques described in section 2.2 whilst a later section 

(section 2.3.3) will give a slightly briefer outline of the multivariate analysis. 
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Section 2.3.2: Univariate analysis 

This section will consider firstly any possible effect on outcome after five years of 

the age that the subject was when diagnosed stage 2 melanoma. 

To gain an initial feel for the data consider a simple boxplot of the data and some 

summary measures. Of the 109 patients in the study only 24 were still alive five years 

after being diagnosed as stage 2 melanoma with the remaining 85 having -died at some 

point within five years of diagnosis. Figure 2.3.1 presents a boxplot of the age of each 

subject when diagnosed stage 2 melanoma against their outcome after five years. The 

Figure suggests that although there are far more subjects who did not survive five years 

those who did survive five years appear to have been diagnosed stage 2 melanoma at a 

younger age. This impression is backed up by the fact that that the mean age for those 

who did not survive five years was approximately 52 whereas for those who did survive 

the mean age was some 11 years younger at approximately 41 years of age. This seems to 

imply some difference between the two groups with the logical conclusion being that the 

younger the subject is when diagnosed stage 2 melanoma the better their prospects of 

surviving five years appear to be. 

A linear logistic model was then fitted, and this confirmed the subjective 

impression with age having a significant effect (p-value = 0.0006). In Figure 2.3.2 the 

continuous curve provides a plot of P. vs age with approximate 95% confidence bands for 

pz shown by the dotted lines. This plot clearly shows how the probability of surviving I 

five years decreases as the a, &, e of the sithject increases, confirming the subjective 

impression. 
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In order to assess the fit of the model the Deviance residuals were calculated. 

Consider Figure 2.3.3 which is a probability plot of the standardised Deviance residuals. 

The Figure incorporates a simulation envelope which gives appropriate values for such a 

plot based on simulating residuals from appropriate binomial distributions (Everitt 

(1994)). If any points lie outside this envelope then these may be potential outliers and, if 

a number of points lie outside the envelope then the assumptions underlying the model 

may be doubtful. 

As none of the points lie outside the envelope it would appear that the logistic 

model gives a reasonable fit to the data and also that there is little evidence of any outliers. 

As a formal test of the fit of the model the Hosmer and Lemeshow test (Hosmer and 

Lemeshow (1989)) produces a p-value of 0.232 confirming that the logistic model gives a 

good fit to the data. 

The second important prognostic factor was the number of malignant nodes the 

subject had surgically removed. It should probably be noted that this is more of an 

interval scaled discrete variable, having only II distinct categories, compared with age 

which was clearly continuous with 51 distinct ages among the 109 patients. Subjectively 

it would seem that the more nodes a subject had removed the more likely the disease was 

'widespread' in the patient. Thus it may seem realistic to expect this variable to have an 

effect with subjects still alive after 5 years likely to have had less nodes removed. 

Table 2.3.1 shows the number of nodes removed for each of the two groups. For 

those with I node removed the odds of a subject dying seem to be roughly 3 to I against 

(27 dead, 9 survivors) whereas if one considers those with more than 5 nodes removed the 

25 



odds of a subject dying appear to rise sharply to 18 to 1. This seems to imply that number 

of nodes removed does indeed have a detrimental effect on the probability of being alive 

after five years. 

Number of subjects 

Number 

of 

nodes 

removed 

Dead Survivors Total 

1 27 9 36 

2 17 7 24 

3 17 4 21 

4 4 2 6 

5 2 1 3 

6 5 0 5 

7 4 1 5 

8 3 0 3 

10 3 0 3 

13 2 0 2 

20 1 0 1 

Total 85 24 109 

Table 2.3.1 

These tentative conclusions are partially backed up by the linear logistic model with the 

number of malignant nodes having an effect, although possibly marginal (p-value = 

0.0933. The coefficient for nodes in this model was negative indicating poorer chances of 

being alive as the number of nodes increases. The continuous curve in Figure 2.3 ). 4 
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provides a plot of Dz against number of nodes with approximate 95% confidence bands 

for pz shown by the dotted lines. Notice that the confidence bands become increasingly 

wide for more than 8 nodes removed due to the lack of data in these areas suggesting that 

any inferences should be very tentative in these data-sparse areas. 

The Deviance residuals were examined and a formal Hosmer and Lemeshow test 

carried out and these both confirmed the adequacy of the fit of the logistic model. 

Section 2.3.3: Multivariate Analysis 

This section will give a brief description of a multivariate analysis of the data set. 

Figure 2.3.5 shows a plot of age against number of malignant nodes labelled by the status 

of the subject five years after being diagnosed stage 2 melanoma. Of the 109 subjects in 

the study 85 were dead after five years (those subjects marked with a D) and 24 survived 

at least five years (those subjects marked with an A). The majority of the subjects who 

survived at least five years (i. e. the A's) are located towards the bottom left of the plot. 

This plot appears to suggest that only those subjects who have had afew nodes surgically 

removed and were relatively young on being diagnosed stage 2 melanoma have any 

realistic chance of being alive afterfive years. Note that there are also only 6 subjects 

who have had 10 or more nodes removed with the majority of subjects having had between 

1 and 7 nodes removed. All subjects who had 10 or more nodes removed failed to survive 

five years suggesting very poor, if any, prospects of five year survival for subjects who 

have had many nodes surgically removed. 
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When only five year outcome was examined and a multivariate logistic model was 

fitted only age was significant and the number of nodes did not quite prove significant. 

Although number of nodes did not prove significant it will still be included with age in the 

model and a later section (Section 2.5) will return to this issue and give a discussion of the 

significance of number of nodes in terms of predicting five year outcome. If number of 

nodes is included it is then possible to produce estimates of the probability of surviving at 

least five years for this bivariate model. Using the fitied model various contours of the 

probability of surviving at least five years were constructed and are displayed in Figure 

2.3.6. 

On this plot contours are drawn at 15,25 and 35% probability of five year survival 

for the fitted bivariate model and this shows that the overall prospects for subjects are not 

particularly good especially as the subject gets older. According to the linear logistic 

model once a subject is diagnosed as a stage 2 melanoma at older than approximately 40 

years of age then they have a less than 25% chance of surviving five years regardless of 

the number of nodes. 

Although the analysis carried out in this section is useful it does not provide a very 

simple explanation of how five year survival from a stage 2 melanoma depends upon age 

and the number of nodes removed. A more easily digestible conclusion might be that 

'reasonable survival' only occurs for, say, those younger than 40 years of age and with 

fewer than 3 nodes removed. This however necessitates 'categorisation' of both variables 

and justification of such. The linear logistic model is a very restrictive model and as such 

cannot highlight any unusual patterns in the data which may suggest areas for 

categorisation. Hence the next section will introduce a data fitting method which will 

allow possible categorisations to be highlighted. 
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Section 2.4: Non-parametric logistic regression 

One of the aims of this thesis is to investigate methods for identifying potential 

categorisations for continuous explanatories in logistic regression models. In the present 

context such categories would be defined as sections / areas of the explanatory where the 

probability of response appears to be roughly constant. The problems of how many 

categories to provide and where the appropriate cut points should be are the reasons why 

non-parametric logistic (binary) regression is now considered. This technique evolved 

from the standard idea of non-parametric regression for a continuous response first 

introduced by Nadaraya (1964) and Watson (1964). The non-parametric logistic 

regression concept is an adaptation of the standard case and is defined as follows. 

Pz = pi(y=I/z) = 

where 

n 
Yi Ah(z, zi) 

n 
EAh(z, 

zi) 
i=l 

The weighting function, Ah (z, zi) = K(z 
h 

zi) 

n is the number of subjects 

K is a smooth probability density function 

h is a smoothing parameter 

- (2.3) 

zi is the continuous explanatory value for ith subject 

yi is the discrete response for ith subject (coded 0 or 1) 

31 



The general method uses the observed data to compute a smoothed value for the 

response at each possible value of the continuous explanatory variable based on creating a 

weighted average of the values of the response variable over all subjects. The weighting 

attributed to each individual subject is a continuous decreasingfunction of the distance of 

the value of the explanatory for that particular subject from the value of the explanatory 

under consideration. The degree of smoothing is controlled by a smoothing parameter 

where small values, provide minimal smoothing i. e. only subjects whose value of the 

explanatory variable(s) are close to the value of the explanatory under consideration will 

have much influence. As the smoothing parameter increases the amount of smoothing 

increases proportionally. It is common to find that the more sparse the data the greater 

the degree of smoothing required to obtain any meaningful results. 

Copas(1983) was the first to introduce this idea of non-parametric (logistic) 

regression with a binary response, yi. It has been shown (Hardle (1990)) that, in practice, 

the choice of smooth probability density function K(u) has remarkably little effect on the 

resulting estimate so, for convenience, Copas took K(u) to be proportional to the standard 

Normal density 

K(u) = exp(- 
1 

U2) 2 

Although the choice of kernel is not important the choice of smoothing parameter 

often is. As a result many methods for choosing an optimal smoothing parameter exist 

including several versions of cross-validation (Hardle (1990)) and / or the use of a penalty 

function (Rice(1984)). These methods do not always produce sensible answers and indeed 
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the work presented here suggests that the cross-validation method tended to produce 

values for the smoothing parameter which, appear to, grossly over-smooth the data. 

Therefore, in this chapter, a simple 'subjective search' method will be used to 'choose' an 

appropriate value for the smoothing parameter. A suitable value will be chosen which also 

ensures that the resulting estimates are, essentially, monotonic in nature. In practice the 

use of this technique tended to produce simple and easily interpretable results based on 

examination of data plots. 

This then gives a simple method for producing point estimates of pz when the 

response is binary. It would again be more helpful to produce interval estimates for pz. 

Copas(1983) provided the following approximate variance for 

2(z- zil) 2( 

vär@z) e Pz(I-PZ) 2- (2.4) 
(lK(z 

h 
zi. ) 

and corresponding approximate pivotal function 

Pz- Pz 
F N(0,1) 

v Výa-r(pz) 

This allows the derivation of an approximate 100 * (I -a)% confidence interval for pz of the 

form 

Px ±Z /2 
ýVär(ý 

x) 

where z, / is the 100 *(1 -cc 
") 

22 
72 percentage point of the standard normal. 
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Section 2.5: Prognostic factors for surviving stage 2 

melanoma (revisited): An application of non- 

parametric logistic regression. 

Section 2.5.1: Introduction 

In a clinical context where potentially important prognostic factors are measured 

on a continuous scale it is often desirable to categorise such factors. The primary reason 

for this is that it.. facilitates interpretation for both clinicians and patients. In the analysis of 

five year survival from stage 2 melanoma, Tillman et al were keen to provide 

categorisations for any important prognostic factors. In section 2.3 this data set was 

considered and it was concluded that, in a univariate context, there were two potentially 

important prognostic factors, age on diagnosis of stage 2 melanoma and the number of 

nodes surgically removed although the effect of nodes was of borderline significance. In 

this section an examination will be made of both these important prognostic factors with 

plausible categorisations based on the non-parametric method outlined in section 2.4. 

Section 2.5.2: Univariate analysis 

Initially, consideration will be given to how five year outcome is affected by the 

age of the patient upon diagnosis of stage 2 melanoma. Interest is primarily in identifying 

potential categorisations for this variable. In order to identify such categorisations a non- 

parametric logistic regression will be fitted to the data and categorisations will be imposed 
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at covariate values where there is a clear and definite change in the probability of 

surviving five years. 

Figure 2.5.1 provides a plot of Pz vs age for a selection of smoothing parameters. 

Point estimates Pz are represented by the continuous curve with approximate 95% 

confidence bands for pz shown by the dotted lines. 

A sensible choice of smoothing parameter should be a compromise between one 

which allows the fitted response curve to show too many dramatic (and hence spurious) 

changes in shape and one which completely smooths out any features of the data. Frames 

1 and 2 of Figure 2.5.1 show far too many 'spurious' changes in shape while frames 7 

through 9 appear to have smoothed out any features of the data. Frames 5 and 6 represent, 

in the author's opinion, a reasonably sensible choice of smoothing parameter as providing 

a nice balance between the conditions mentioned above. 

Frames 5 and 6 of Figure 2.5.1 suggest a two-step categorisation to be appropriate. 

From these plots values of the covariate can clearly be identified where there are quite 

marked changes in the probability of surviving five years. Indeed there appear to be 3 

categories :- 

Category (1) Less than 40 years of age 

Category (2) 40-60 

Category (3) More than 60 years of age 
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These categories seem sensible due to the clear dips in the fitted curve between 30 

and 40 and then later on between 60 and 70. The probability of surviving five years 

initially drops very rapidly from approximately 0.4 at age 30 to about 0.22 at age 40, it 

then remains relatively stable between 40 and 60 and then drops again, although less 

rapidly than before, after 60 years of age to effectively 0. 

Now consider the number of malignant nodes as a risk factor for five year survival. 

Tilmann. et al proposed 2 categories for this variable, these being less than or equal to 3 

nodes removed and more than 3 nodes removed. One would like to justify or indeed 

refute this categorisation by fitting an appropriate non-parametric logistic regression 

model to the data. 

It is possible to investigate possible categorisations for the number of nodes by 

again using the technique of non-parametric logistic regression. Figure 2.5.2 provides a 

plot of Pz against number of nodes for a selection of smoothing parameters. Frame 4 of 

this Figure appears to represent the most plausible choice of smoothing parameter for this 

example. On this occasion the non-Parametric logistic regression model seems to give 

some credence to the suggestion by Tillman et al that this variable should be split into two 

categories. However their choice of placing the cutpoint at 3 nodes as opposed to 4 or 5 

seems somewhat arbitrary in this instance. There is clear evidence in Figure 2.5.2 of a 

dramatic change in the probability of surviving five years at around 4 or 5 nodes. The 

probability of survival remains relatively constant at approximately 0.25 until 4 or 5 nodes 

but drops rapidly from this point onwards. 
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Section 2.5.3: Multivariate analysis 

Section 2.3.3 outlined the multivariate analysis of this data set based on a linear 

logistic model. Here the multivariate analysis fitting a non-parametric logistic model 

based on the two continuous explanatory variables, age of the patient on diagnosis of stage 

2 melanoma and the number of malignant nodes the patient had surgically removed will be 

examined. The multivariate non-parametric logistic regression model used here is an 

extension of the univariate model described in section 2.4 to incorporate a vector of 

continuous covariates z. 

When consideration is given to fitting a non-parametric logistic model with 2 

continuous explanatories the situation becomes slightly more complicated than the 

univariate case illustrated in section 2.5.2 as two smoothing parameters now have to be 

chosen. For simplicity the same technique used in section 2.5.2 of choosing these 

Parameters through a subjective search will again be used. 

Figure 2.5.3 shows the 15,25 and 35% probability contours for various 

combinations of the two smoothing parameters. A sensible combination of smoothing 

parameters is again one which removes any spurious changes in the probability of 

surviving five years without completely smoothing out the features of the data and this is 

obtained in Frame 5 of Figure 2.5.3. Figure 2.5.4 concentrates on Frame 5 of Figure 2.5.3 

and also superimposes the corresponding linear logistic contours obtained in section 2.3. 

Figure 2.5.5 gives a3 dimensional representation of this chosen non-parametric model. 
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There are various features which can be observed from these two figures. A 

comparison of the non-parametric and linear logistic models displayed in Figure 2.5.4 

reveals some clear differences in the results obtained. The linear logistic model 

overestimates five year survival compared to the non-parametric model in areas where 

more than about 8 malignant nodes have been removed. In some cases this 

overestimation is by as much as 20%. These discrepancies may be due in part to the fact 

that this overestimation tends to occur in areas where very few observations are present. 

The linear logistic regression is more rigid in how it deals with data and has difficulty in 

dealing with areas where data is very sparse. Naturally this leads to estimates of the 

probability of surviving five years which may not be very accurate. The non-parametric 

logistic regression is more flexible in how it deals with data and allows a, hopefully, truer 

(and more flexible) estimate of five year survival to be produced. 

The results obtained from the non-parametric model reveal some interesting points 

about the data. Figures 2.5.4 and 2.5.5 suggest that to have any reasonable chance of 

surviving five years after being identified as a stage 2 melanoma (say >35 %) the subj ect 

requires to be young (< 38 years of age) and have had only a few malignant nodes 

removed (< 6 nodes). Also note that once a subject has had more than 7 nodes removed 

then they have a very poor chance of surviving five years (< 15 %) regardless of their 

age. The pattern of five year survival also appears quite different across the two factors. 

The drop in the probability of surviving five years appears relatively constant across age 

upon identification of a stage 2 melanoma. 

Consideration of the number of malignant nodes reveals a completely different 

, pattern in the changes in survival however. The changes appear relatively minorfrom I to 
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5 nodes removed. However there is then a very sharp drop in survival prospectsfrom 5 to 

about 8 nodes removed. The survival prospects remain reasonably constant for more 

than 8 nodes removed but unfortunately these prospects are very poor (< 15%). 

Section 2.5.4 Formal Identification of Categorisation Points 

In section 2.4 non-parametric logistic regression was introduced and its application 

to a specific data set illustrated in section 2.5. This technique was used to highlight 

possible categorisation points. Categorisation points were chosen by examining plots of 

the probability of response and identifying points where there were marked changes in the 

pattern of the probability of response. However it is possible to construct a more formal 

approach to the identification of categorisation points. 

Section 2.5.4.1: One Explanatory - The Use of Function Derivatives 

The first derivative of a function, f '(z), is the slope of the tangent line to the 

original function, f(z) (Hunter (1972). Clearly values of z where there are dramatic 

changes in f '(z) correspond to areas where the function f(z) is changing most rapidly. 

Similarly values of z where f '(z) is relatively stable indicate areas where f(z) is relatively 

stable. Therefore plotting f '(z) against z and looking for values of z where there is a 

dramatic change in f '(z) may allow possible categorisation points to be identified. 

In the non-parametric logistic regression situation 

4.3) 
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In order to identify possible categorisations for any explanatory variable z it is reasonable 

to plot f '(z) over the range of z and look for areas of rapid change in this function as this 

will highlight areas where f(z) changes most rapidly. 

Illustration 

In section 2.5.2 separate univariate non-parametric analyses of how the probability 

of surviving 5 years after being diagnosed stage 2 dependent upon the age at diagnosis of 

stage 2 melanoma and the number of malignant nodes surgically removed were carried out 

and possible categorisations suggested for each variable. 

44 



Dealing initially with age at diagnosis of stage 2 melanoma Figure 2.5.6 gives a 

series of plots, with varying choices of smoothing parameter, of the probability of 

surviving five years against age. Superimposed on these plots with a dotted line are the 

equivalent first derivatives of pz. Note that 10% has been cut off either end of the 

derivative to attempt to remove or limit edge effects on the derivative distorting the 

picture. In the author's opinion the most 'sensible' picture was given by frames 5 and 6 of 

Figure 2.5.1 and so here the derivatives presented in frames 5 and 6 of Figure 2.5.6 will be 

concentrated upon. 

A close examination of these derivatives suggests that there is a major change 

occurring in the probability of surviving 5 years until a subject's age reaches about 40. 

The probability then gradually levels of till about the age of 60. This is followed by the 

probability dropping off again but at an apparently slower rate than the drop observed 

before 40 years of age. 

This conclusion is very reassuring in that it produces results which are the same as those 

obtained in section 2.5.2 by consideration of the non-parametric logistic regression 

estimate itself. Both methods produce results which suggest very similar pattems across 

the probability of surviving 5 years in terms of the location of any cutpoints. 

Next, consider separately the effect of the number of malignant nodes a subject had 

surgically removed has on the probability of surviving 5 years after diagnosis of stage 2 

melanoma. In section 2.5.2 plots of the probability of surviving five years after entering 

stage 2 melanoma against the number of malignant nodes removed were displayed in 

Figure 2.5.2. These suggested that the probability of surviving five years remained 

45 



Co 
m E 
m 

LL 

(D 

(D 

-0 r_ 
cu 

CM (1) E 
LL 

9*0 1? *0 
I! AlAjnS lo 

0 
(1) 

4-a 
0 

C7)- 

0 Co - F CJD 

. Co LL 

0 xo - 
(D 
E 

tu cö 
< LL 

CD 

ol S'o 9*0 Vo Z*O O'c 

sjuaA g BUIAIAinS jo Al! l! qBqOJd 

En I 0 

cz 

E 
U) 

E 
ca 
LL 

TO 0*0 

jjAjAjnS lo Al 

................ .............. 

............ 

TO Vo 

J! A! /unS lo Al 

CD 
(ID 

. vö 
m" < LL 

0 
CQ 

(0 
(0 
0, 

0, 
0 

0 

Ol 8*0 9*0 Vo a*o OT 

sjuaA 9 BUIAjmnS jo Aiil! qeqOJd 

0 ,3-;; CO 

E 
LL 

0 (D cc - 9 Lri to 9L Cý 

c (1) cl I- < =3 

.P LL 

(D 

(D 
E 

tu (Z 
LL 

Ol To TO Vo Z*o 0,0 

sieaA S BuiA! /unS jo Alil! qeqOJd 

Ol To 90 V*O Z'O 0.0 0L8090 17 0 Z*O C'o O'L so 90 vo Z'O 0,0 

S, eaA 9 6uiAi&jnS ; 0, Ql'qRqOjd s; eaA g 6UIAIIUnS jo AlilicLqojd SýLW 5 6UIAIAJnS lo AIII'qL'qcld 

46 

. cc cn " 
LL 

0 40 
- 
12 
cc 4) 

(D 
cl 



relatively constant up till about 4 or 5 nodes removed before dropping off very rapidly 

from 5 nodes onwards. Here, in each frame of Figure 2.5.7, a dotted line which indicates 

the gradient of the fitted non-parametric logistic regression curve is again superimposed 

on top of the actual fitted non-parametric logistic regression curve. The dotted line in 

frames 5 and 6 of this plot show that the probability of surviving five years does indeed 

drop off rapidly (gradient increasing very sharply) between 3 and 5 nodes before levelling 

off till about 7 nodes where the probability again appears to drop off although not as 

rapidly as observed in the earlier sharp drop. These results are again very similar to those 

obtained in section 2.5.2 when only the fitted non-parametric logistic regression curve was 

examined. 

Section 2.5.4.2: Two Explanatories - The Use of Directional Derivatives 

The theory previously discussed concerning one variable z can be extended to 

consider two variables x and z. Here if there exists a function f(x, z) x r= Rx) ze Rz which 

is at least once continuously differentiable then 
Of 

and 
Of both exist and the theory of 

ax az 
directional derivatives (Spiegel (1974)) show that the maximum value of the directional 

derivative occurs in the direction normal to the surface of f(x, z) and is given by the 

function JVJ where 

grad f 

(2.5) 
+ 
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This may prove useful in identifying possible 2 dimensional 'cutpoints'. 

Combinations of x and z where the function JVý takes markedly high values indicate areas 

where the function f(x, z) is changing most rapidly in both directions and combinations of 

x and z where JVý takes lower values indicate areas where the surface of the function 

f(x, z) is relatively stable. A surface/contour plot of JVý across the range of x and z will 

then make it possible to identify potential cutpoints. Areas of rapid change should be 

looked for as these will highlight areas of change in f(x, z) (i. e changes in the probability of 

five year survival). 

Illustration 

In section 2.5.3 a multivariate non-parametric analysis of the data set concerning 

five year survival from stage 2 melanoma was carried out displaying joint non-parametric 

contours of the probability of surviving at least 5 years for the 2 prognostically valuable 

variables age when diagnosed stage ý melanoma and number of nodes surgically removed. 

The contours shown in Figure 2.5.3 indicated that the probability of surviving at least five 

years decreased at a relatively constant rate across the age variable. However across the 

nodes variable the pattern of the probability of surviving at least five years appeared quite 

different with the probability appearing relatively constant till about 5 nodes then dropping 

off rapidly between 5 and 8 nodes before again remaining constant, although fairly poor, 

for more than 8 nodes. 

Figure 2.5.8 displays the corresponding series of 3-dimensional perspective plots 

of the grad function defined in (2.5) with 10% again cut off either end for each variable. 

As this technique is primarily looking for 'joint' categorisation points these results in 
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conjunction with the probability contours presented earlier perhaps suggest various regions 

/ areas where the probability of five year survival may be different. These areas could be 

roughly described as follows. 

(i) If a subject is less than 40 years of age when diagnosed stage 2 melanoma and has 

less titan 5 nodes removed then five year survival is best. 

(ii) If a subject is less than 40 and has between 5 and 9 nodes removed then there 

appears to be a large drop in five year survival (although only limited data is 

available in this area). 

(iii) For subjects aged between 40 and 60 with less than 4 nodes removed age 

dominates the pattern with a gradual decrease in five year survival across age, a 

decrease which becomes more marked as the number of nodes removed increases. 

Note that this is the region where most data is available and hence conclusions in 

this region should have more weight attached to them than perhaps conclusions in 

other regions. 

(iv) For subjects aged between 40 and 60 with between 4 and 9 nodes removed there 

appears to be a more marked decrease in five year survival than is present in (iii) 

although not as dramatic as in (ii). 

(v) For subjects who are more than 60 years of age five year survival prospects are 

very poor regardless of number of nodes removed and similarly for subjects with 
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more than 9 nodes removed five year survival prospects are very poor regardless 

of age. 

These results are surnmarised in the diagram below 
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Section 2.5.4.3: Relcvance of the Number of Malignant Nodes for Five Year 

Survival 

A final point to consider is the importance of number of malignant nodes as a 

prognostic factor for five year survival. In Section 2.3.3 it was observed that in a 

multivariatc linear logistic model which included both age at diagnosis of stage 2 

melanoma and number of nodes surgically removed, the latter proved to be non-significant 

In addition to age in terms of five year survival. In this section non-parametric logistic 

models have been fitted to both the univariate and bivariate data. In conjunction Aith the 

first derivatives of these models, categorisations have been suggested in both the 

univariatc and bivariatc cases. In order to investigate if the number of nodes has anything 

significant to add in terms of five year survival it is necessary to compare the categoriscd 

model involving age alone with the catcgorised model which incorporates both age and 

number of malignant nodes. In Section 2.5.4.1 the following model was suggested based 

on using a categorised version of age alone: 

Afodel, el: 

Category (1) Less than 40 years of age 

Catcgory (2) 41-60 years of age 

Category (3) More than 60 years of age 

In Section 2.5.4.2 the following model was suggested based on using categoriscd, %, ersions 

of both age and number of malignant nodes: 
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Model B: 

Category (1) Less than 40 years of age and less than 5 malignant 

nodes 

Category (2) Less than 40 years of age and 5-9 malignant nodes 

Category (3) 40-60 years of age and less than 4 malignant nodes 

Category (4) 40-60 years of age and 4-9 malignant nodes 

Category (5) More than 60 years of age or more than 9 malignant 

nodes 

These models can be formally compared to each other since model A is a sub- 

model of B. The most general form of the model will have 12 separate categories and this 

is represented graphically in Figure (c) below, whilst Figures (a) and (b) below display the 

simplifications of this general model suggested by models A and B respectively. 
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To compare the categorisations suggested by Models A and B an hypothesis test 

based on likelihood was constructed to see if the categorisation suggested by Model B 

gives a significant improvement over the categorisation suggested by Model A. Initially a 

generalised likelihood ratio test of the categorisation based on Model A against no 

categorisation was carried out and produced a test statistic of 12.3 with 2 degrees of 

freedom (p-value = 0.002). Hence there is clear evidence that the categorisation suggested 

by Model A does have an effect (i. e. There is evidence of a difference in the probability of 

surviving five years between some or all of the categories). A generalised likelihood ratio 

test of Model A within Model B produced a test statistic of 5.4 with 2 degrees of freedom 
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(p-value = 0.067). Therefore, thereds borderline evidence to suggest that Model A be 

rejected in favour of Model B. i. e. There is at least some evidence to suggest that age 

alone is not satisfactory in fully explaining the pattern of the probability of five year 

survival. When these two variables are considered in a categorised form there is evidence 

that incorporating malignant nodes in addition to age will produce a better prediction of 

the pattern of the probability of five year survival than using age alone. This allows the 

suggestion that, although number of malignant nodes was non-significant in a multivariate 

linear logistic model (Section 2.3.3), it is of prognostic value in addition to age when 

considered in a categorised form. 
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Section 2.6: Conclusions 

This chapter has examined the analysis of data from a cohort study with a binary 

outcome. Consideration has been given to two possible methods of analysis, firstly the 

standard method of fitting a (parametric) linear logistic regression model and an 

alternative non-parametric logistic regression model. The linear logistic model imposes a 

linear constraint on the log odds of the fitted model whereas the non-parametric technique 

is a purely data fitting technique which does not impose any formal constraints on the final 

model. However the non-parametric method involves some degree of subjectivity in the 

choice of an appropriate data smoothing parameter. 

The main aim of the work here is to identify possible categorisations for any 

explanatory variables in logistic regression analyses with 1 or 2 explanatory variables. 

The flexibility of the non-parametric technique in dealing with unusual data patterns 

makes it particularly appealing as a tool for allowing categorisations to be highlighted. 

The parametric technique, on the other hand, cannot highlight any potential categorisations 

as it involves a rigid assumption which cannot be influenced by unusual data patterns. 

Since a sharp change in survival prospects will clearly be identified as an unusual data 

pattern the non-parametric method becomes increasingly useful in identifying such 

features. 

In this chapter these two methods were applied firstly to a data set concerning the 

probability of being alive 5 years after entering stage 2 malignant melanoma. Some 

differences in the estimates of the probability of being alive after 5 years were observed 
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between the linear and the non-parametric logistic regression models. In the bivariate case 

it was also clear that the linear model does not cope all that well with situations where data 

is very sparse. 

The non-parametric logistic regression model allowed identification of potential 

categorisations and illustration was made of how it could be used to suggest such 

categorisations. It was proposed that categorisations should be placed at areas where there 

are marked changes in the pattern of the probability of surviving 5 years. This allowed 

various categorisations to be suggested both in the univariate and bivariate cases. 

The idea of functional derivatives was used to provide an alternative viewpoint for 

suggesting categorisations. On the whole this technique produced results which were not 

dissimilar to those obtained by looking at the plots of the fitted non-parametric logistic 

curve. In general they suggested similar patterns for the probability of surviving 5 years 

but on occasions suggested slightly different locations for any actual cutpoints. 

It may also be possible to use these techniques for more than two explanatories but 

visual representation of the results becomes increasingly complicated as the number of 

explanatories increases and hence demonstration has only been given here to results for 

two explanatories. 
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Chapter 3 

Case / Control Studies 

Section 3.1: Introduction 

Case / control studies, often effectively "retrospective" studies, provide a research 

method for investigating potential risk factors for a specific disease. In this type of study a 

group of individuals known to be suffering from a particular condition or disease are 

obtained (the cases) and then compared with another group of individuals who are 

condition / disease free (the controls). The resulting analysis involves comparing the cases 

with the controls to identify factors that may differ between the two groups and hence 

which may in some way explain the occurrence of disease among cases. The work in this 

chapter will concentrate specifically on matched case/ control studies where the cases are 

matched to specific controls by some variable(s) known to have an effect on the 

occurrence of disease; for example sex, age or social class. 

Case / control studies are often used in the context of rare diseases since although 

they can be difficult to organise, especially when matched, they require less time and effort 

than prospective studies. This is due to the fact that with a case / control study the cases 

have already been identified whereas with other types of study a large sample may be 

59 



required to obtain a sufficient number of cases. The use of cohort studies (see chapter 2) 

for rare diseases would be impractical as a large amount of time and resources would be 

concentrated on following up individuals who would remain free of the disease 

(Schlesselman(1982)). Case / control studies are relatively quick to set up and conduct 

and, as a consequence of this, tend to be reasonably inexpensive. There are however some 

disadvantages with the use of case / control studies. One of the most common 

disadvantages with case / control studies is that selection of an appropriate comparison 

group can often prove problematic. Further, due to the design of case / control studies, 

rates of disease in exposed and unexposed individuals cannot be determined. All that can 

be obtained is an estimate of the Relative Risk of disease given a potential risk factor. 

The next few sections will consider standard methods used in the analysis of data 

from case / control studies with particular emphasis on the conditional linear logistic 

model (section 3.2) and its application to the Relative Risk associated with ordinal 

explanatory risk factors in case / control studies (section 3.3). 

The main impetus of this thesis is to consider whether methods of categorising 

variables can be established within various types of study framework. Tberefore, in order 

to identify appropriate cut-points for an ordinal explanatory risk factor two non- 

parametric methods of analysis are developed and illustrated in sections 3.4 and 3.5. In 

section 3.6 consideration will be given to how to adapt these techniques to incorporate 

order restrictions on the ordinal explanatory risk factor. Finally, in section 3.7, a brief 

mention will be made of possible extensions to these non-parametric techniques to deal 

with a continuous explanatory riskfactor. 
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Section 3.2: Conditional Linear Logistic Model 

Section 3.2.1: The model 

In analysing multivariate data from a case / control study the standard model used is the 

Conditional Linear Logistic Model which is defined as follows. If the ith subject has a p- 

dimensional set of potential risk factors zi then 

Pr(subject has the disease / zi) 

where z, T 

exp(pTz, ) 

+ exp(pTz, ) 

(1 zi I Zi2 zi3 ... Zip) 

- 

PT (P*O PI P2 
... 

PP) 

P* -. `- Po + 10g(7CI/7CO) 0 

Notes: (i) The parameter 7r, is the probability that a diseased person is included in the study as 

a case and is known as the case samplingfraction. 

The parameter 7co is the probability that a non-diseased person is included in the 

study as a control and is known as the control samplingfraction. 
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In essence this model is very similar to the linear logistic model discussed in chapter 2 with 

the exception of the term 711 /7ro 
. This term is difficult to estimate due to the fact that in many 

practical contexts the sampling fraction among controls, no, is often unknown. Therefore it is 

almost impossible to be able to estimate the intercept P* from a case / control study. Fortunately 0 

this is not of major concern as interest usually lies in estimating the Relative Risk of disease which 

does not involve 711 /7r 0. (see section 3.2.3) 

Section 3.2.2: Conditional Likelihood 

In order to estimate all the unknown parameters in the Conditional Linear Logistic model it 

is necessary to maximise the appropriate Conditional Likelihood. The following definition of the 

Conditional Likelihood applies to the situation where there is a1 to I matching of I pairs of cases 

and controls. 

Let xi be the p-dimensional characteristic vector for the ith case (i = 1, ..., I) 

Let yj be the p-dimensional characteristic vector for the ith control (i = 1, ..., I) 

Let A represent the event that the case has the disease and A' its complement 

Let B represent the event that the control has the disease and B' its complement 

Then the Conditional Likelihood for this model (Hosmer & Lemeshow (1989)) is given by 
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Pr(A and B' / xj, yj and that one of the two has the disease) 

Pr(A / xi)Pr(B'/ yi) 
lPr(A/xi)Pr(B /yi))+IPr(A'/xi)Pr(B/yi)) 

which can easily be shown (Hosmer & Lemeshow (1989)) to reduce to 

exp(pTx, ) 
- (3.2) 

exp(pTX, )+ eXp(pTy, ) 

where pT (01 P2 P3 ... PP) 

and so the conditional likelihood does not involve 7r 1 
/7r 

0. 

Note that these results are for the case where there is a1-1 matching of cases and controls but 

simple extensions exist for other situations. 

Estimates of pT can be found by directly maximising the conditional likelihood or more 

commonly the logarithin of the conditional likelihood. 
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Confidence intervals for any of the individual coefficients, Pi, can be obtained based on using 

the information matrix I(P), as an approximation to cov(ý) (Kalbfleisch(l 98 5)). 
P=P 

Therefore let 

Q= = 

13=13 

This can then be used in conjunction with the approximate pivotal result 

hTp _ hTý 
N(0,1) 

bTQb 

to produce confidence bands for bTP and hence an approximate 100*(I-a)% confidence interval for 

any individual coefficient, 0i, is given by 

ýrq 
-ii 

where z, / is the 100 1-" /) percentage point of the standard nonnal. 
22 
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Section 3.2.3: Relative Risk 

In most case / control studies interest is primarily in estimating the Relative Risk of disease. 

If two groups of subjects are present who differ only in the presence or absence of exposure to some 
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study factor then the Relative Risk is a measure of how many times more (or less) likely it is that 

disease occurs in the exposed group than in the unexposed group. 

A formal definition of the Relative Risk is the ratio of the incidence rate (proportion of new 

cases) among the exposed group to the incidence rate among the unexposed group. 

One problem with the Relative Risk is that, in general, it can only be evaluated from a cohort 

study. Fortunately an approximation to the Relative Risk can be calculated for a case-control study. 

This measure is known as the odds-ratio or relative odds and for rare diseases it closely 

a roximates the Relative Risk (Schlesselman 1982)). 

The odds ratio is the ratio of the odds of disease in exposed individuals relative to the 

unexposed individuals and is one of -the most common estimators of Relative Risk. A formal 

definition of the odds ratio for z compared to Z* is as follows: 

Odds ratio Y(Z: Z*) 
Pr(diseased/ z) / Pr(not diseased/ z) 

Pr(diseased/ z*) / Pr(not diseased/ z*) 

exp 2ýpj(z* 
p- 

j=l 
j-zj 

11 exp[ßj (zj - zj)] 
j=I 

- (3.3) 
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which is the odds ratio for a subject with vector of risk factors z compared to a subject with vector 

of risk factors z*. Often these vectors will only differ with respect to one risk factor. This then 

makes it possible to see how that particular risk factor affects the risk of disease. The Pj's are 

estimated using the techniques of section 3.2.2 and the odds ratio is then estimated as 

Z y1 lexp[ýj(zj ^(? 2: 
*) 

Zi)] j=I 

With this model the effect of any particular risk factor will be multiplicative through the term 

exp 
Jýj(zj 

- zj 

As always an interval estimate for the odds ratio would be more informative than a simple point 

estimate and this can be derived (Breslow & Day(1980)) as follows: 

The variance of log( ^ (Z: Z*)) (Le the log of the odds ratio) is estimated by Y 

ppp 
Zj)2 + 

j=l r=l 
j: *r 

where the matrix ý= (40 is as defined in Section 3.2.2. 

4jr(zj - Zi)(Zr- Zr) 

An approximate 100* (1 -a)% induced confidence interval for the odds-ratio is given by 

66 



* cxp±z 
ju 

41 

2 
where z, / is the 100 * (1- 72 percentage point of the standard normal. 2 
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Section 3.3: Cutaneous Malignant melanoma: An illustration of 

a case / control study. 

In the last few years both clinicians and the general public have become concerned with the 

rapid increase in the incidence of skin cancer in the United Kingdom. This has led to increasing 

investigation of factors which may affect an individual's risk of contracting skin cancer. MacKie et 

al (1989) carried out a matched case / control study where cases and controls were matched by age 

and sex in an attempt to identify personal risk factors for cutaneous malignant melanoma, the most 

severe form of skin cancer. One important potential interval scaled discrete risk factor for cutaneous 

malignant melanoma was thought to be a subjeds number of naevi (i. e. moles). In their paper 

MacKie et al produced personal risk factor charts for cutaneous malignant melanoma for both males 

and females. Here a separate univariate analysis for males and females will be carried out on how 

the number of naevi affects the risk of melanoma. 

Figure 3.3.0 displays a bivariate plot of the number of naevi for the matched case/control pairs 

separately for males and females. These plots have been drawn on a log scale (values displayed are 

of log, (naevi+l)) with the original naevi values retained on the axes. The plots have also been 

"jittered" to separate out multiple observations. These plots clearly indicate that, in general, the 

controls appear to have less naevi than the cases, for both sexes. This is particularly noticeable when 

the control has zero naevi, as there are a vast number of matched cases who clearly have far more 

than zero naevi. Conversely when the case has zero naevi there are only a small number of matched 

controls with more than zero naevi. 

Males: The results of fitting a conditional linear logistic regression were 

0.087 

ese (ý) 0.021 
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Bivariate plot of naevi for MALES (log scale) 
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These estimates allow point estimates and confidence intervals for the Relative Risk to be 

calculated for any number of naevi using the formulas discussed in section 3.2.3. Figure 3.3.1 

shows a plot of the Relative Risk vs the number of naevi the subject had, for males only. The full 

line on the graph is the point estimate of Relative Risk whereas the dotted lines indicate approximate 

95% confidence bands. 

7"his plot shows how the Relative Risk increases on an exponential scale due to the linear 

logistic assumption and also illustrates the widening of the confidence bands as the number of naevi 

increases and the data becomes more sparse (see Figure 3.3.0). 

Now, Mackie et al suggest that this risk factor may be adequately categorised into two 

categories namely less than or equal to 20 naevi or greater than 20 naevi. Relative Risks were then 

calculated for this simple cafe, -, orisation. Ilis gave the following estimates of Relative Risk. 

Category Point estimate 

of Relative Risk 

Confidence Interval 

for Relative Risk 

:5 20 naevi 1.0 

> 20 naevi 13.9 (2.7,71) 

Notice that this categorisation, changes the baseline from being 0 naevi as used in the 

conditional linear logistic model to a baseline of less fl= or equal to 20 naevi. Using less than or 

equal to 20 naevi as the basclinc (and unknown) risk category, then, a subject with 20 or more naevi 

has an estimated Relative Risk of around 14 compared to a subject with less than or equal to 20 

naevi. Later sections within this chapter %%ill discuss methods of justifying such a choice of 

categorisation. If the linear logistic model displayed in Figure 3.3.1 is adequate then the idea of 
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having a massive "jump" in the Relative Risk of contracting the disease from 1 to 14 at around 20 

naevi seems rather dubious. However, if the model is inadequate then some form of categorisation 

might be possible. It would appear a method of producing a sensible categorisation is required. 

Females: The results of fitting a conditional linear logistic regression were 

0.073 

ese 0.013 

From these estimates Figure 3.3.2 was produced. 

Again the categorisation applied to males was also applied to females leading to the 

following estimates of Relative Risk 

Category Point estimate 

of Relative Risk 

Confidence Interval 

for Relative Risk 

* 20 naevi 1.0 

* 20 naevi 6.7 (2.9,15) 

The point esimate for the Relative Risk for a female with more than 20 naevi compared to a 

female with less than or equal to 20 naevi is about half the value obtained for males in the same 

comparison. Also the confidence interval is far narrower. The more precise confidence interval is 

due in part to the fact the there were almost twice as many females in the study as there were males. 

It is well documented that females are more likely to contract malignant melanoma than 

males (Mackie et al (1985), Holman et al (1987), Schreiber et al (1981)) with the absolute risk of 
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contracting malignant melanoma likely to be twice as high for females than males. However with 

this particular risk factor the Relative Risk of contracting the disease increases more dramatically for 

males than females (The point estimate of P is larger for males than females). In other words the 

relative difference in the risk of contracting the disease for two females, for example one with 23 

naevi and one with 7 naevi, is less noticeable than for two equivalent males. This would imply that 

although females are in general more at risk than males in terms of contracting cutaneous malignant 

melanoma the increasing presence of a particular risk factor has a more pronounced effect for 

males. 
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Section 3.4: Non-parametric approaches to analysing data from a 

matched case/control study 

Section 3.4.1: Introduction 

Sections 3.2 and 3.3 outlined a standard analysis of a matched case / control study. One of 

the aims of this thesis is to identify possible categorisations for interval scaled discrete or continuous 

risk factors in matched case/control studies. In section 3.3 categorisations employed by MacKie et 

al of an interval scaled discrete potential risk factor were illustrated but it is essential to find some 

way to justify these choices. In order to identify potential categorisations for an interval scaled 

discrete risk factor non-parametric approaches will be used to produce estimates of Relative Risk. 

Any regions in a plot of the Relative Risk against the interval scaled discrete risk factor where there 

are rapid changes in the Relative Risk will highlight potential categorisations. Here two possible 

non-parametric approaches will be discussed. 

(1) Pairwise Cells Comparison Method (Section 3.4.2) 

(2) Conditional LikelihoodMethod (Section 3.4.3) 

Section 3.4.2: Pairwise Cells Comparison 

Consider first the case of a single potential risk factor. If the linearity assumption inherent in 

(3.1) is dropped and Pz is replaced instead by an arbitrary smooth function f(z) then the model is 
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Pr(subject has the disease / zi) 
exp(f(zi)) (3.4) 

1+ exp(f(zi)) 

where zi is the value of the risk factor for the ith 

subject 

with the conditional likelihood being 

III xp(f(xi)) 
- (3.5) 

i=l exp(f(xi)) + exp(f(yi)) 

where xi and yi are the values of the risk factor for the ith case and the ith control. 

Now define the odds ratio for a subject with a value of the risk factor x compared to a subject 

with a value of the risk factor y as 

y (x: y) = exp (f(x) 
- f(y» - (3.6) 

The motivation for the first non-parametric approach comes from considering what happens 

with a single binary riskfactor in the linear logistic situation. 

Section3.4.2.1: Binary risk factor 

If one returns to the conditional linear logistic model with a single binary risk factor then the 

conditional likelihood (3.2) simplifies to 
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ýXp(pxi) 
exp(p xi) + exp(p yi) 

where 

0 if the risk factor is absent 
Xi , Yi ` 

11 
if the risk factor is present 

A frequency table of the risk factor "of pairs" would look thus 

Number of 

cases 

0 

Number of controls 0 

I 

noo njo 

nol n1l 

Now the odds-ratio (3.3) for the presence of the risk factor (i. e. x= 1) is defined to be 

exp(ß) (3.7) Y(x = 1: y= 0) =y exp(0) - exp(ß) 

From this it can be seen that for a single binary risk factor, P is the true relative log odds of 

disease for an individual in whom the risk factor is present compared to an individual in whom the 

risk factor is absent. 
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The conditional likelihood is now 

noo+nll exp(p) )nlo nol (1 

+ exp(p)) 

i. e. effectively 

njo ( nol 

which on being maximised gives 

log 2ý1 0 (3.8) 10 
n no 11 

where ý is the estimated relative log odds of disease 

and hence the odds-ratio is estimated by 

njo y 
nol 

This estimate of the odds-ratio gives a point estimate of the Relative Risk of disease caused 

by the presence of a single binary risk factor. 

77 



Section 3.4.2.2: Extension to a single interval scaled discrete risk factor. 

In a matched case/control study with a single interval scaled discrete risk factor with (k+l) 

levels the data can be easily displayed in a grid form as follows 

k 

control 

S nrs 

I 

0 

01. r 

case (x) 

Figure 3.4.1 

where 

cell (r, s) is the cell where the case has value r and the control has value s 

and 

nrs is the number of pairs of data in cell (r, s). 
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The above table now provides a complete summary of the data from a matched case/control 

study with one interval scaled discrete risk factor present since it displays the number of pairs 

present in each cell. 

If consideration is given to any 2x2 subtable of this full grid then the problem could be 

approached in exactly the same manner as in section 3.4.2.1. 

In (3.7) P was the true relative log odds of disease for an individual in whom the risk factor 

is present compared to an individual in whom the risk factor is absent. In (3.7) let P10 represent P 

then in general Pxy will be the true relative log odds of disease for an individual with risk factor 

equal to x compared to an individual with risk factor equal to y. 

From (3.8) let ý10 represent ý then for each sub-table separately (3.8) will generalise to give 

n ýxy = log xy for x>y and x, y = 0,1, ..., k 
nyx 

where P xy is now the estimated relative log odds of disease for an individual with risk factor equal 

to x compared to an individual with risk factor equal to y. 

The corresponding estimate of the odds ratio is 
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ýv (X: Y) 
212 

for x>y and x, y = 0,1, ..., k- (3.9) 
nyx 

From (3.6) and the generalised model the true odds ratio for any level x compared to any level y is 

y(x: y) = explf(x) - f(y)1 

i. e. 

log(y(x: Y)) = f(x) - f(y) - (3.10) 

Therefore in order to produce estimates of the Relative Risk of disease for any level, x, of the 

risk factor compared to another level, y, it is necessary to firstly produce estimates of 

f(x), x=0,1, ..., 

Now if the true odds ratio y(x: y) is estimated by ý(x: y) then (3.9) and (3.10) give 

n yx 
f(x) - f(y) = log 

nxy 

for x>y and x, y = 0,1, ..., k 

or, equivalently, 

Pxy = Ox) - f(y) -(3.11) 
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for x>y and x, y = 0,1, ..., 

Now, if (3.11) can be solved to produce estimates of f(x), x=0,1, ..., k then, by plugging 

these estimates into (3.6), estimates of the Relative Risk can be produced for any level, x, of the 

interval scaled discrete risk factor compared to any other level, y. 

One possible approach to solving (3.11) is to use the following least squares analogue. 

Rewriting equation (3.11) in vector notation and defining the baseline value, f(O), to be equal 

to 0 then 

P=Af 

where 

& MY 
6100.... f(2) 
A P21 

010.... 
f(3) 

P30 -1 10.... 
f(4) 

P31 
A= 001.... f- 

f(5) 

and 

is a vector of length - k(k + 1) 
2 

f is a vector of length k 

A is a matrix of dimensions 
Ik 

k+l) by k 
2 
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If 'least squares' were appropriate to such a relationship then, treating f as unknown parameters, 

one would have 

(ATA)- T 'A (3.12) 

which can be written in the form 

+K f(z) 
I+k - forz=l,..., k 

Z-1 
where ýZ+ I jZY 

Y=O 

k 

Pz- 2jyz 

Y=Z+l 

k 
'(Px+ - Px-) 

X=o 

k+1 Number of levels of risk factor 

If it is then possible to solve these equations, estimates of f(z) can be produced for any z. 
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Hence, through (3.6), estimates of the odds ratio between any two levels of the variable can 

be calculated. In particular if each level is compared to a chosen baseline (i. e. z= 0) where the risk 

is equal to I then the odds ratio 

ý(z: 0) exp(i(z»/l =- exp(i(z» 

This gives a point estimate for the Relative Risk of disease for any level of a variable compared to a 

chosen baseline. 

Section 3.4.2.3: Confidence Intervals for the Relative Risk 

To produce a confidence interval for the Relative Risk, it is necessary to first provide an 

estimate of the variance of k(z) 
. This could be done by considering a simple Taylor expansion. 

Recall the definition of Ky from section 3.4.2.2 

ýxy log 
(nxy 

x, yk X>Y 
nyx 

Conditional on the pairwise totals (i. e. n,, y + ny,, ), the counts, n,, y x>y, can be assumed independent 

,, 
O. y). An application of a lst order Taylor expansion to of each other and distributed as Bi(n,, y + ny, 

Pxy provides 

V(PXY) + 
nxy nyx 
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Also, the variance-covariance matrix of ý, ý71 (ý), is of the form 

ý'(ýIo) C6+10,6) C6+IJ21) 

C6+20,6) ý7(6) C6+2J21) 

c8v(ý21,6) C8+21,6) 'ý(ý21) 

C6+k, k-1A0) C5+k, k-1,6) C6+k, k-19ý21) 

C6+1Jk, k-l)- 

C8+20,4, k-1) 

C5+2194, k-l) 

with all off diagonal covariance terms in being equal to zero due to the independence of the 

counts n, y. 

Using these results the corresponding analogue to (3.12) gives an approximate variance matrix for 

f 

'ý, (i) = 
(A T A)-IA T, ý, (ý)+ T A)-l 

Based on the approximate normality of f one can provide an approximate 100*(I-a)% confidence 

interval for each level of the Relative Risk of the form 

f expltz 5/ ^(Z» 
2 

FVI (rf (Z» 

where z, / is the 100 * (1 ) 
percentage point of the standard normal. 

2 -ý2 
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Section 3.4.2.4: Inclusion of Covariance terms 

The use of non-parametric approaches to the analysis of small data sets often results in some 

form of data smoothing having to be used. In this chapter the data will be smoothed via a nearest 

neighbour smoothing technique (see Section 3.4.4 for a full definition). When smoothing is present 

the counts n,, y will no longer be independent. The inclusion of the covariance between the counts 

may lead to more accurate estimates of the Relative Risk being produced. The distribution of the 

counts can be adequately described as 

Mu(N, O) where n=(noo, noj, n02-..., nkk) 
kk 

N=7,1] nij 
, 4-d -d i=o j=o 

(000 
9 001 P 002, ... ý Okk) 

As before, 

(ý10, P201, ý21P 6P 6, 

with 

A nxy 
PXY log 

nyx 
X, y 

and 

X>y 
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ý010) C6+10, ý20) C6+10, ý21) 

C6+20AO) ý7(6) C6+20, 
ý21) 

ýT2 
c6+21, ý10) C6+21,6) ý'(ý21) 

C6+k, k-1A0) C6+k, k-1,6) C6+k, k-1,6) 

C6+10,4, k-1) 

C6+20,4, k-1) 

C5+21,4, k-1) 

(k_1) 

'ý2(ý) is a more complex variance-covariance matrix than ICII (0 
as, due to the covariance between 

the counts nxyp the off diagonal covariance tenns are not equal to zero. 

However, a I" order Taylor expansion can be used to obtain 

x nx*y* 
cav(AXYIAX*Y* cav log( Y 10- for x#y, x: 5x*, y: 5y* 

n yx 

) 

-(-n 
Y*X-. 

)) 

An example of calculating these covariance tenns with afirst order neighbourhood ofsmoothing is 

given in Appendix A. 

From here one can obtain 

TIý2(ý)-l A)-IA Týr 
2 

The approximation also results 

Q (ý 
-: - 

(A 
T ýT2 (ý)-IA)-IA T ý12 (ý)-, ý12 (qý12 ]T (ATýr (ý)-'A)-l V2 

-) 
A2 
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Now, since 
ý72@) is symmetric, then[ý' 2 

(0-1 ]T= 
'ý2 

(ý) -I 

Therefore the above simplifies to give 

'C'2 (i) = 
Tiý 

2 
(ý)-'A)-l 

Based on the approximate normality of ? one can provide an approximate 100*(I-a)% confidence 

interval for each level of the Relative Risk of the fonn 

Nz)) exp[±z ý/2 
J2 ( F(Z-)) 

where z, / is the 100 1- ry percentage point of the standard normal. 
2 

'72 
2 

Section 3.4.3: Conditional Likelihood Method 

The conditional likelihood based on the conditional linear logistic model was defined in 

(3.2). If the linear assumption inherent in this model is dropped then (3.5) gave the conditional 

likelihood as 

exp(f(xi)) 
exp(f(xi)) + exp(f(yi)) 
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In general let pi = exp(f(zi)) and consider all possible case / control pairs. For a single 

interval scaled discrete variable with (k+l) levels the conditional likelihood then becomes a product 

over (k+1)2 cells and is of the forin 

kknj 
rifl 

- (3.13) 
i=o j=o 

where 

pi = Relative Risk of category i compared to the baseline, (Le. 0) 

for i=1,.., k 

(ie. pi = e-xp(f(zd) ) 

nij = number of case/control pairs in cell (ij) 

k+1 = Number of levels of risk factor 

Then maximise (3.13) to obtain estimates of pi and hence directly obtain estimates of the 

Relative Risk. Unfortunately this problem cannot always be solved analytically and numerical 

methods are often required to solve it. 

The use of the Newton-Raphson method to solve this not only provides point estimates for 

the Relative Risk but also allows one to construct interval estimates by producing an estimate of the 

variance of the Relative Risk through the information matrix. 
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Let T= Itij I be the k by k information matrix with 

nij + nji 
for 

(p, + pj)2 

t, j 
Lkk 

4i4j (ni + nmi) Lniw + im for i 1: 
(pi + PM)2 W=o M=o 

W*i 

Then i-1 is the asymptotic variance-covariance matrix of D. 

A marginal approximate 100 *(1 -a)% confidence interval for pi is then given by 

7/ 
jw 

'52 
ýi -ý ii 

where 

ývii is the i'th diagonal element of W 

z, / is the 100 * (1-5/2) 
percentage point of the standard normal. 

22 

- (3.14) 

However pi = exp(f(zi)) which implies that Pi will be constrained to take only positive values 

on the real line. Therefore, instead of assuming Di to be asymptotically normal, it seems more 

logical to produce confidence intervals for pi based on using the function log(pi) as a pivotal 

function. This leads to the following approximate 100*(I-ct)% interval for pi. 
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exp z, / 
22 

Pi, 
T 

Illustration for a risk factor with (a) 2 levels and (b) 3 levels 

- (3.15) 

(a) If a risk factor is present with 2 levels then (3.13) gives the conditional likelihood to be 

Conditional likelihood 
i=O j-0 

cc 
(( 

=1 

Pt +i) 

Maximise this by taking logarithms and then solving the first derivative equal to zero 

log(Conditional Likelihood)= -(nOj+njO)log(pj+l)+njOlog(pj) 

Tberefore 

dL 
= 

njo 
(no, + n1o) 

dpl P, P, +1 

giving as an estimate of the Relative Risk for the presence of the risk factor compared to the 

absence of the risk factor as 
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njo 
Pi =' 

no, 

As expected this produces the standard result for a binary risk factor (i. e. one with 2 levels) given in 

section 3.4.2.1. 

(b) If a risk factor is present with 3 levels then (3.13) gives the conditional likelihood to be 

22( 
pi 

nij 
Pi Conditional likelihood = 

firl 

pi +pj) 
m j=0 

T, -I+ 
nol I) n02 (; 

lp +1 1) 

njo n12 
P2 

n20 ( P2 ) n2l (2+ 
ýPl +P2) 1) T2 

+1 

(T2 

nol+nlo n02+n2O nl2+n2l (; 

I 

L+1 ) (T21+ 

1) Pi nlo+nl2 P2 n20+n2l 
( 

Maximise this by taking logarithms and then solving the relevant partial derivatives equal to zero 

log(Conditional Likelihood)= -(nol+nlo)log(pl+l)-(n02+n2O)log(P2+1)+(nlo+nl2)10"(PI) 
+(n20+n2l)log(P2)-(nl2+n2l)10t. ', (PI+P2) 

Therefore 

aL (no, + njo) ( njo + n12) (n12 + n2l) 
+ i5ý, P, Ti Pi PI +P2 

aL (n02 + n20) (n20 + n2l) (n12 + n2l) 
+ 

CP2 P2 +1 P2 PI +P2 

To obtain estimates ýI 
9 P2 for PI ý P2 it is necessary to solve these equations simultaneously . 

No simple analytical solution exists and hence numerical methods such as Newton Raphson are 

required to solve this problem. 
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Section 3.4.4: Nearest Neighbour Smoothing 

The techniques described in sections 3.4.2 and 3.4.3 both require use of the 

observed number of case/control pairs, nij, in cell (ij). If the sample size were large then 

there would always be a reasonable number of case/control pairs in each cell. However, 

since case control studies are primarily used in the study of rare diseases (Section 3.1) it is 

often the case that the data will be very sparse. For example even in a relatively large 

case/control study with, say, 200 subjects if a risk factor is being studied which has more 

than 15 levels it will be impossible to have even one observation in each of the 225 

possible case/control cells. 

In order to try and get a clearer picture of the pattern across cells where there is 

little or no data it is potentially useful to introduce some form of smoothing across 

neighbouring cells. This allows more information to be gleaned about any cell by 

considering what is occurring in a neighbourhood of the cell. When smoothing the data 

each case/control pair has an influence on all possible cells which decreases as one moves 

away from their particular cell. 

Instead of using the raw count nxy in each cell define the neighbourhood count, 

nxy, of a cell as follows 
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Yn 
if X<y xy 

L(x, y): x<y 

Y nxy if X=Y n+ xy L(x, y) 

nxy if x>y 
L(x, y): x>y 

The neighbourhood count n+ is the count obtained by summing the count obtained xy 

from all the cells in a local neighbourhood L(x, y) of the cell (x, y). Note that the whole 

area of interest is divided into two regions by the line x=y and only cells in the same 

re, -, ion as the cell (x, y) are used in calculating the neighbourhood count for cell (x, y). 

This will produce a set of neighbourhood counts rather than raw counts which will 

hopefully give a clearer picture of what is happening in the neighbourhood of a cell than 

can be obtained purely from the raw cell count. Various sizes of neighbourhoods are 

possible and Figure 3.4.2 illustrates three of these. 

I 

" . . I 

" . I " . . I 

I " I 

I 

No smoothing First order neighbourhood Second order neighbourhood 

Figure 3.4.2 
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The larger the neighbourhood the more the data is smoothed. In general the more 

sparse a data set is the larger the degree of smoothing required to obtain a useful and 

hopefully still informative picture of the underlying data pattern. In the specific examples 

here an appropriate size of neighbourhood is chosen on the basis of a compromise between 

producing estimates of Relative Risk which did not fluctuate wildly but also trying to 

avoid completely smoothing out any underlying patterns / trends in the Relative Risk. 

94 



Section 3.5: Cutaneous malignant melanoma revisited: An 

application of non-parametric methods to analysing 

data from a case/control study. 

Section 3.5.1: Introduction 

This section will illustrate both of the non-parametric methods discussed in Section 3.4. A 

comparison of the two methods will be made in the context of whether they highlight similar cut- 

points for a particular interval scaled discrete risk factor. Once again the cutaneous malignant 

melanoma data set from section 3.3 will be examined and the Relative Risk associated with number 

of naevi will be discussed. MacKie et al suggested that this risk factor be split into two categories 

by choosing a somewhat arbritary cut-point at 20 naevi. This section will attempt to justify such a 

choice of cut-point by the techniques introduced in Section 3.4. 

Section 3.5.2: Pairwise Cells Comparison 

Figures 3.5.1 and 3.5.2 provide plots of the estimates of Relative Risk based on the Pairwise 

cells approach plotted against the number of naevi separately for males and females. Both of these 

figures are based on a first order neighbourhood of smoothing. The full line on these plots 

represents the best point estimate of Relative Risk while the dotted lines represent confidence bands 

for the Relative Risk. The point estimates and confidence intervals are based on the formulae given 

in Section 3.4.2.3 and do not include any covariance terms. 
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The main point of using this technique is to attempt to identify potential cutpoints for the 

interval scaled discrete risk factor of number of naevi. In order to discover if any cut-points are 

appropriate it is necessary to examine these plots in greater detail. Figures 3.5.3 and 3.5.4 show 

separately for males and females, plots of the point estimates of Relative Risk. These are indicated 

by the dots on the Figures. In order to give a clearer picture of any patterns in the Relative Risk the 

bold line is the estimate obtained after running a simple kernel regression smoother (Nadaraya 

(1964) and Watson (1964)) through these original values. This technique is in essence similar to the 

method discussed in section 4 of chapter 2, the difference being that the response here is 

continuous/interval scaled discrete compared with binary in chapter 2. 

With respect to any possible categorisations, Figure 3.5.3 seems to suggest that if cutpoints 

are desired for males then perhaps only one is necessary and that it should be somewhere around 17 

or 18 naevi since this is where the change in Relative Risk appears most dramatic. 

For females Figure 3.5.4 would again suggest a cutpoint around about 17 naevi but notice 

here that something unusual appears to be happening after 17 naevi as the risk appears to drop back 

down. This is something which one would not expect but may be a quirk of this particular data set 

perhaps due to a lack of data in this area. 

The application of the conditional linear logistic model in section 3.3 to this data set resulted 

in the conclusion that the Relative Risk of contracting malignant melanoma increased more 

dramatically among males than among females as the number of naevi increased. This was shown 

by the higher parameter estimate in the fitted model for males leading to a steeper gradient on the 

Relative Risk curve. The graphs of Relative Risk presented in this section are not in agreement with 

these results as they give a different picture of the pattern in the Relative Risk. Figures 3.5.3 and 
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3.5.4 do not give the impression that the Relative Risk increases more dramatically among males. In 

fact it appears as if the gradient of the female curve is, if anything, steeper than that of the male 

curve suggesting that the risk increases more dramatically among females. This is particularly the 

case between 10 and 20 naevi although the "fall-back7' for females for higher numbers of naevi is 

probably the reason why the linear logistic model appears flatter for females. 

Section 3.5.3: Conditional Likelihood Method 

Figure 3.5.5 shows a plot of the non-parametric estimate of Relative Risk against number of 

naevi for males based on the Conditional Likelihood approach of Section 3.4.3 while Figure 3.5.6 

shows a similar plot for females. Both of these figures are again based on a first order 

neighbourhood of smoothing. 

As in section 3.5.2 a kernel smoother was again run through these original point estimates to 

obtain Figures 3.5.7 and 3.5.8. These two plots are similar in shape and scale to those obtained by 

the pairwise cells comparison method which is reassuring. Again they seem to imply a 

categorisation taking place around about 17 naevi for both males and females, with something 

strange appearing to occur later on in females. 

Figures 3.5.7 and 3.5.8 are again in disagreement with the results given by the conditional 

linear logistic model in section 3.3 as they also do not give the impression that the Relative Risk 

increases more for males than females as the number of naevi increases. As with the pairwise cells 

method in section 3.5.2 the estimates of Relative Risk obtained by the conditional likelihood method 

perhaps suggest that the risk increases more for females between 10 and 20 naevi. This lack of 

agreement between the parametric and nonparametric approaches would imply that the use of the 

conditional linear logistic model for this particular data set is somewhat dubious. 
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Section 3.5.4: Summary 

Both of these methods have made it possible to identify possible categorisations and have 

tended to agree on categorisations. They also suggest that the categorisation employed by MacKie 

et al was reasonably accurate. 

The estimates of Relative Risk obtained by the nonparametric approaches and those obtained 

by the parametric approach were shown to be quite different perhaps bringing into doubt the use of 

the conditional linear logistic model for this particular data set. 

102 



f 

Section 3.6: Isotonic regression 

Section 3.6.1: Introduction 

The non-parametric analyses presented in sections 3.5.2 and 3.5.3 are both useful in 

identifying potential categorisations of an interval scaled discrete risk factor in a matched 

case/control study. Unfortmately they ignore one important constraint implicit in this type of study, 

namely that the Relative Risk is a monotonically increasing or decreasing function of the potential 

risk factor. Both methods described earlier have allowed the Relative Risk to fluctuate both up and 

down as the level of the risk factor increases. The effect of these fluctuations was dampened by 

running a kernel smoother through the original values, but this still did not require the final estimate 

to be monotonic in nature. This section will use isotonic regression in order to produce monotonic 

estimates of the Relative Risk which satisfy the above monotonic restriction. 

Section 3.6.2: Isotonic regression 

Isotonic regression (Barlow et al(1972)) is used to produce sensible estimates of a function 

which is constrained to be monotically increasing or decreasing. The following definitions briefly 

describe an isotonic function and formally outline the constraints which would be present when 

isotonic regression is used and also give an outline of the methodology involved in applying this 

technique. 

Derinitions 

Let X be the finite ordered set [xl, x2 ... Xkj. A real valuedfunction f on x is monotonic 

increasing if x, yr=X and x<y=: > f(x): 5 f(y). 
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Let g be a given function on X and wa given positive function on X. An isotonic function 

g* on X is an isotonic regression of g with weights w with respect to the simple ordering xl< x2 < 

`ý Xk if it minimises the sum of squares 

I [g(x) 
- f(xT W(X) 

xex 

over all possible functions f on X. 

- (3.16) 

Isotonic regression therefore provides a method of producing an estimator which minimises 

the sum of squares function (3.16) under an order restriction. This chapter is concerned with 

producing estimates of Relative Risk under the constraint that these estimates are monotonic across 

the levels of a single riskfactor. 

Various algorithms exist for finding the relevant g* to minimise (3.16) and the one which 

will be used in this chapter is the "pool adjacent violators" algorithm. This is essentially a very 

simple algorithm and is as follows: 

Assume one has function values 9(xl), g(x2), ... g(xk) at points xl, x2, ... qxk. 

It is necessary to satisfy the constraint g(xl) -5 9(x2) :ý... :5 9(xk)- 

Initially if g(xl) :5 g(x2) :ý... :5 g(xk) then the initial partition is final partition, and 

9* (xi) = g(xi) i=1, ... 
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If not, however, select any of the pairs that violate the ordering i. e. select an i such that 

g(xi) > g(xi+i) 

Join the two points xi and xi+l in a "new block" (xi, xi+l) with associated average value 

w(xi)g(xi) + w(xi+l)g(xi+i) 
[W(Xi) + W(Xi+l) ] 

and associated weight (w(xi) + w(xi+l)). 

After each step in the algorithm, the new, average, values g*(xi) i=1, ..., k, associated with 

the blocks are examined to see whether they are in the required order. If so the final partition has 

been reached and the value of g* at each point of block is the "pooled" value associated with the 

block. If not, a pair of adjacent violating blocks is selected, and pooled to fonn a single block, with 

associated weight the sum of their weights and associated average value the weighted average of 

their average values, completing another step of the algorithm. The algorithm continues in this 

manner until the initial constraints are satisfied giving the final solution g*. 

Section 3.6.3: Isotonic regression in practice 

In the cutaneous malignant melanoma example the number of naevi had 30 distinct levels 

with associated estimated Relative Risks k(zl), k(z2), 
---, 

k(Z30) 
- Initially no constraint was placed 

on these function values but now it seems logical that 4ZI): 5 4Z2): 5 ... :5 ý(Z30). This places us 
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within the framework of isotonic regression. Hence isotonic regression will be used to find new 

estimates f* (zi), i=1 30. Both non-parametric approaches to estimation of the relative risk 

will be considered and the weighting function used in both situations will be taken to be 

W(Zi) =I/ 'ý(ý(Zj)) 

The sum of squares (3.16) will then be minimised, using the "pool adjacent violators" algorithm to 

obtain a set of monotonic estimates i* (zi), i=1, ... 3 0. 

(a) Pairwise cells comparison 

For the malignant melanoma example the estimates of Relative Risk for the number of naevi 

should be constrained to be monotonically increasing. Figures 3.6.1 and 3.6.2 display the 

monotonic estimates of Relative Risk separately for males and females. 

For both data sets a categorisation around about 17 naevi is once again suggested. However 

this approach seems to perhaps highlight another potential point for males at somewhere around 10 

or II naevi which was not detected with the use of the kernel sripother alone. 

(b) Conditional Likelihood Method 

An isotonic regression of the results obtained from the conditional likelihood method was 

carried out producing Figure 3.6.3 for males and Figure 3.6.4 for females. 
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Isotonic Regression of Relative Risk for MALES 
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There is strong evidence for males of a cutpoint at around 18 naevi with perhaps slightly 

weaker evidence of another potential cutpoint slightly later at about 23 naevi. It is harder to pinpoint 

a clear cutpoint for females as there appears little evidence of any dramatic changes in the estimates 

of Relative Risk across number of naevi. The only area where there is a marginal change in the risk 

is around 12 naevi. 

Section 3.6.4: Summary 

The use of isotonic regression can remove potentially unreasonable fluctuations in Relative 

Risk and produces a clearer impression of where categorisation points, if any, exist. However a 

consequence of using isotonic regression is to produce "flatter" estimates of Relative Risk than were 

obtained previously. On some occasions this technique produces a slightly different picture than is 

obtained with kernel smoothing alone. This was noticeable for the pairwise cells method where 

isotonic regression seems to suggest two potential categorisation points in comparison to the single 

point highlighted by kernel smoothing. When the two non-parametric methods of estimation are 

compared there is some evidence that isotonic regression produces different conclusions. This is 

particularly noticeable for females where the pairwise cells method (Figure 3.6.2) suggested a clear 

jump at around 15 naevi whereas a far "flatter" estimate of Relative Risk is produced by the 

conditional likelihood approach (Figure 3.6.4). 
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Section 3.7: Extension to a continuous risk factor 

Section 3.7.1: Introduction, 

In the last 3 sections, methods for producing non-parametric estimates of Relative 

Risk from an interval scaled discrete risk factor have been introduced. In this section a 

possible extension of these methods to a continuous risk factor will be examined. The 

non-parametric techniques discussed earlier for an interval scaled discrete risk factor 

cannot be directly applied to a continuous risk factor. The primary reason for this is that 

with a continuous variable there are a potentially infinite number of levels of the risk 

factor to be considered. There does not appear to be a straightforward adaptation of the 

techniques discussed in section 3.4 to deal with this. The following section examines a 

possible method to adapt the techniques introduced previously to cater for the case of a 

continuous risk factor. 

Section 3.7.2: Extension to a continuous risk factor 

In order to produce estimates of Relative Risk for a continuous risk factor one 

possible technique is simply to initially categorise the continuous risk factor to create a 

"pseudo" interval scaled discrete risk factor. Then the technique of pairwise cells 

comparison (section 3.4.2) or indeed the conditional likelihood method (section 3.4.3) 

could be applied to the categorised data. The technique used here to initially categorise a 

continuous risk factor creates "bins" into which observations are placed dependent upon 

their value. The table below illustrates the idea 

Value of risk factor [m, m+k) [m+k, m+2k) [m+2k, m+3k) ..... [m+nk, -) 

"bin" / category number 0 1 2 ..... n 
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Usually m will be the minimum value of the continuous risk factor under 

consideration. The values of k and n will be specific to each particular continuous risk 

factor and will depend upon the range of the risk factor and also the size of the sample. 

Since one of the aims of the work in this thesis is to look for possible cutpoints for 

risk factors this technique of arbitrarily categorising a continuous risk factor may seem 

somewhat self defeating. However if it is bome in mind that this technique of creating 

"bins" for the observations only provides rough initial categorisations then applying the 

pairwise cells method or conditional likelihood method will hopefully improve on these 

rough categorisations and produce a clearer picture of where any potential points for such 

categorisations lie. 

, 
From here the method proceeds in a similar fashion to the techniques discussed for 

an interval scaled discrete variable to produce estimates of Relative Risk for each category 

compared to the baseline category. It must however be remembered that each estimate of 

Relative Risk is comparing two ranges of values as opposed to two specific values. In this 

situation the baseline category will always be values of the continuous risk factor between 

the minimum possible value, m, and the value m+k. The next section will look at the 

application of this technique to an example from the medical field. 

Section 3.7.3: Sun exposure and cancer risk 

McHenry et al (1994) carried out a large-scale study of malignant melanoma in the 

West of Scotland. They collected information on a large number of cases and their 

age/sex matched controls. One of the potential risk factors considered was the average 

number of hours of exposure to United Kingdom sun per year. Many studies have shown 

that for British subjects the risk of contracting malignant melanoma increases with 
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number of hours of exposiire to United Kingdom sun per year. Many studies have shown I 

that for British subjects the risk of contracting malignant melanoma increases with 

exposure to foreign sun. Less work has been done to examine whether these same types of 

subjects are more at risk if they have been exposed to larger amounts of United Kingdom 

sun. Here the relationship between contracting malignant melanoma and exposure to 

United Kingdom sun will be examined. 

Parametric analysis 

Figure 3.7.1 displays boxplots of the average number of hours of exposure to sun 

per year for both the cases and controls. Since there are large areas of overlap between 

these two boxplots there appears little evidence to suggest that those subjects who contract 

malignant melanoma have experienced higher levels of United Kingdom sun exposure 

than those subjects who do not contract the disease. Since this is a matched case/control 

study, a bivariate plot of the case/control pair values may help to reveal a clearer pattern. 

The bivariate plot is displayed in Figure 3.7.2 with the line of equality superimposed. 

Again there seems little evidence to distinguish between the cases and controls. 

However, before any conclusions can be drawn, a formal analysis should be carried 

out. The results of fitting a univariate, conditional linear logistic model were 

0288 

e94) = 0.764 

Therefore 

0377 
e9efl - 
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Since this is quite clearly a non-significant ratio confirmation, this confirms the 

subjective impression that the average number of hours of exposure to United Kingdom 

sun for these subjects has little effect on their chances of contracting malignant melanoma. 

Non-parametric analysis 

One way of examining whether the method discussed in section 3.7.2 appears to 

produce sensible estimates of Relative Risk is to apply the technique to a data set and 

compare the results to those obtained from a corresponding parametric analysis. If the 

conclusions produced by the non-parametric analysis are overall not markedly different 

from the parametric analysis then it seems reasonable to assume that the non-parametric 

technique will in general produce plausible estimates of Relative Risk. 

The first step in using the non-parametric method is to choose an appropriate "bin" 

width or category size. For this particular data set the average nunýber of hours of 

exposure to the sun range from 0 hours to approximately 250 hours. This quite large range 

of values in conjunction with a relatively small number of 114 case/control pairs suggest 

that the category sizes considered should be reasonably large. Therefore two specific 

category sizes of width 5 hours and 10 hours respectively will be studied. 

Pairwise cells comparison: 

Figure 3.7.3 displays plots of estimates of Relative Risk versus average number of 

hours of United Kingdom sun exposure per year for a category size of 5 hours exposure 
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for the method of pairwise cells comparison. Superimposed on these plots are confidence 

bands for the Relative Risk. The individual frames of the figure represent differing levels 

of data smoothing as discussed in section 3.4.4. Figure 3.7.4 displays a similar plot for a 

category size of 10 hours exposure. Both of these figures suggest very similar 

conclusions. These results appear to be in very good agreement with those obtained from 

the parametric analysis as they show little if any effect of the number of hours of exposure 

on contracting malignant melanoma. This can be seen since, without exception, each 

frame clearly shows the Relative Risk fluctuating reasonably randomly around the value I 

(i. e. No effect). It would also appear that a "bin" width of 5 hours is more relevant for this 

data set than 10 hours as any possible features of the data appear to be rapidly smoothed 

out for the larger "bin" size. 

Likelihood Method: 

Figures 3.7.5 and 3.7.6 show the corresponding plots to Figures 3.7.3 and 3.7.4 for 

the likelihood method. These figures permit the same conclusion that exposure to United 

Kingdom sun has little effect on chances of contracting malignant melanoma. They do 

however produce confidence bands for the Relative Risk which are more precise than 

those obtained by the pairwise cells comparison methods perhaps suggesting that in 

general the likelihood method may produce slightly more reliable results then the pairwise 

cells comparison method. 
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Section 3.7.4: Summarv 

This idea of producing "bins" for a continuous risk factor has allowed non- 

parametric estimates of Relative Risk to be produced for a continuous risk factor. For the 

specific example under consideration in this section the estimates of Relative Risk 

obtained by using the technique of "binning" the continuous risk factor produced estimates 

which in general agreed with those obtained from a parametric model. In both cases there 

was little evidence to suggest that exposure to United Kingdom sun has any effect on the 

chances of contracting malignant melanoma. In conjunction with this the non-parametric 

analyses did not highlight any potential cut-points in terms of changes in Relative Risk. 

One interesting aim would be to attempt to create some automatic procedure for choosing 

the "bin" width which took account of both the sample size and the range of possible 

values for the risk factor. 
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Section 3.8: Simulation Study 

Section 3.8.1: Introduction and examples 

Section 3.4 introduced two non-parametric methods for producing estimates of 

Relative Risk for an interval scaled discrete risk factor in a matched case/control study; 

the "pairwise cells" method and the "conditional likelihood" method. It is essential to 

examine if either of these proposed methods of estimation produces "better" estimates of 

Relative Risk. This can be investigated by simulating data from a known, underlying, 

situation and investigating which method performs better in terms of precision, bias and 

coverage. 

Numerous studies (Neuhauser and Becher (1997), Aickin et al (1994), Commenges 

and Moreau (1991)) have carried out simulations from an unmatched case/control study 

but the literature on simulating from a matched case/control study is fairly limited. The 

crucial difference between the unmatched and matched scenario is that in the matched 

scenario the distribution of the risk factor is dependent upon the distribution of the 

matching variable (Schlesselman (1982)), a dependency which is not present in the 

unmatched situation. In matched case/control studies this dependency must be 

incorporated into in any simulations which are carried out. It has also been shown 

Cox(1970) and Egijuo & McHugh(1977) that in a matched case/control study the pattern 

of Relative Risk is assumed constant across the levels of the matching variable. Hence the 

Relative Risk will be "independenf 'of the matching variable. In this section data will be 

simulated from a matched case/control study based on specifying 
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An underlying distribution for the risk factor among the non- 

diseased (control) population which will be dependent on the value 

of the matching variable. 

A known Relative Risk function which will be independent of the 

matching variable. 

The specification of (i) and (ii) make it possible to obtain the distribution of the risk factor 

among the diseased (case) population as follows: 

Let zj represent the risk factor under consideration and z2 represent the factor on which 

the cases and controls have been matched. 

Under the assumption of a multivariate conditional linear logistic model with only 

additive main effects the odds of being diseased (i. e. a case) given specified levels of zl 

and z2 are then 

p(diseased/zi, Z2) 
p(not diseased/z, , Z2) 

= exp(cc + Oz, + yz2) - (3.17) 

Based on the above model the Relative Risk for any level, zl, of the risk factor compared 

to an arbitrary baseline, 0, is given by 

Relative Risk(zl: o) = 
p(diseased/zI, Z2)/p(not diseased/z, 9 Z2) 

= exp(pzl) - (3.18) 
p(diseased/0, Z2)/p(not diseased/0, Z2) 
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A simple application of Bayes' Theorem produces 

Relative Risk(z,: O) = 
p(z, /diseased, Z2)/P(ZI /not diseased, Z2) 

- (3.19) 
p(O/diseased, Z2)/p(O/not diseased, Z2) 

Using (3.19) in conjunction with (3.17) and (3.18) gives 

p(z, /diseased, Z2) = p(z, /not diseased, Z2) * exp(pzl) * 
p(O/diseased, z2) (3.20) 

p(O/not diseased, Z2 

Therefore, if the distribution of the risk factor among the controls given a level of 

the matching variable (i. e. p(zi /not diseased, Z2) )is specified along with a known Relative 

Risk function, then (3.20) shows it is possible to obtain the distribution of the risk factor 

among the cases given a level of the matching variable (i. e. p(z, /diseased, Z2) ) 

One problem with simulating data from a matched case/control study is that the 

assumption of a known, underlying, Relative Risk function is based on comparing the risk 

for any level of the risk factor with the risk at the baseline. This suggests it is essential 

that in any simulation enough data is generated at the baseline to allow adequate 

estimation of the Relative Risk. Therefore in the simulations presented in this section a 

proportion of controls will be generated at the baseline level to guarantee that enough 

information will be available at the baseline. 

In the example concerning number of naevi as a potential risk factor for malignant 

melanoma discussed in Sections 3.3 and 3.5, approximately 35% of the controls were at 

the baseline (i. e. 35% of the controls had zero naevi). In an attempt to miffor a real 
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situation as closely as possible the scenarios in this section will also be generated on the 

basis of a population with 35% of the controls at the baseline. 

In the simulations discussed here two possible underlying interval scaled discrete 

distributions for the risk factor among the controls will be considered; a Poisson 

distribution and a discrete uniform distribution. In conjunction with these, two known 

Relative Risk functions will be incorporated into the simulations; a linear Relative Risk 

function and a Relative Risk function with a single, large step in the Relative Risk at a 

pre-assigned value of the interval scaled discrete risk factor. 

As each simulation is from a matched case/control study an underlying distribution 

must be assumed for the matching variable. In the scenarios presented here the matching 

variable will be generated from a Uniform distribution. 

Table (3.8.1) details the sample sizes and levels of smoothing which will be used 

in each scenario and table (3.8.2) presents a summary of the scenarios which will be 

considered in the simulations. 

Sample Sizes 25,50,75,100,150,200,250,300 

Levels of smoothing No smoothing, first order neighbourhood, second order neighbourhood 

Number of simulations 1000 of each sample size with each level of smoothing 

Table (3.8.1) 
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Distribution of the 

matching variable, p(z)) 

Distribution of the risk factor among 

the controls, p(zl / not diseased, z2) 

Relative Risk 

function 

Scenario I Un(l, 12) PO(z2) exp(p*zl) 

Scenario 2 Un(l, 12) PO(z2) Step function 

Scenario 3 Un(1,20) Un(O, z2) exp(p*zl) 

Scenario 4 Un(1,20) Un(O, z2) Step function 

Table (3.8.2) 

Notes: (i) The distribution of the matching variable has been chosen to 

produce a distribution of the risk factor among the controls which will 

have, in each scenario, approximately 20 levels. 

(ii) In column 4 of Table (3.8.2) the underlying linear and step Relative 

Risk functions have been chosen to produce values of the Relative Risk 

which are in the same "ball-park" as one another to allow direct 

comparisons to be made across the four scenarios. In order to achieve this 

the value selected for 0 was 0.15 and the step function was chosen as 

Relative Risk(z, : 0) =ý 
1 1: 9 Z, :9 10 

10 10: 5z1: 920 

The graphs of Relative Risk and log(Relative Risk) for these two choices 

are shown in Figure 3.8.1. 
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To assess how well the two non-parametric estimators perform under each 

underlying, known, situation the comparison criteria will be mean square error (a 

measure of precision), hias and coverage defined as follows: 

number of levels 
51, 

- log(RR i ))2 
4_j 

(15g(RR 
j) 

Mean square error i=1 
number of levels 

where RR = Relative Risk 

This measures the precision of the estimates, with smaller values of the 

measure indicating a greater precision in the resultant estimates. The average 

mean square error (MSE) and empirical standard deviation (ESD) of the mean 

square error across all 1000 simulations for each scenario will be used as an 

objective measure of precision. 

number of levels 
y 

, 
(16g(RRj)-log(RRj)) 

Bias i=1 
number of levels 

where RR = Relative Risk 

This measures the bias present in the estimates, with smaller values 

indicating the presence of less bias in the resultant estimates. The average bias 

and empirical standard deviation of the bias across all 1000 simulations for each 

scenario will be used as an objective measure of bias. 
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(iii) Coverage = Proportion of intervals containing the true value of the 

Relative Risk. The intervals will be constructed based 

on a nominal coverage of 95%. The coverage will be 

evaluated separately at each level of the risk factor. 

Scenario 1: Poisson distribution for p(zl / not diseased, z2), linear 

Relative Risk function. 

Figures 3.8.2 - 3.8.7 show the results for this set of simulations for both the 

proposed non-parametric methods of estimating Relative Risk. Figure 3.8.2 displays plots 

of the average mean square error and empirical standard deviation of the mean square 

error across all simulations against sample size for both methods of estimation. Each 

frame in the figure refers to the simulation results for a different level of smoothing. 

Frames I to 3 of Figure 3.8.2 suggest that, regardless of sample size and level of 

smoothing, the conditional likelihood method will produce slightly more precise estimates 

than the method based on pairwise cells whilst frames 4 to 6 indicate that there is, in 

general, marginally more variability in the average precision based on the conditional 

likelihood method. Under this scenario the values for the log of the true Relative Risk 

range, on average, from 0 to approximately 3 (see Figure 3.8.1). The values obtained for 

the average mean square error in frame 1 of Figure 3.8.2 suggest that, for sample sizes of 

100 pairs or more, both methods of estimation perform reasonably well in the absence of 

smoothing. It is only with smaller sample sizes (25 to 75 pairs) that the methods appear to 

have some difficulty in producing precise estimates of Relative Risk. This is perhaps to be 
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expected as the methods are attempting to produce non-parametric estimates over a 20 by 

20 grid, on average. With a total of 400 cells available it is clearly impractical to expect 

good estimation with smaller sample sizes. In these circumstances it is clear that some 

degree of data smoothing will be required before sensible estimates can be produced. This 

is confirmed by frames 2 and 3 of Figure 3.8.2 which clearly demonstrate that once 

smoothing is introduced both methods produce precise estimates of the Relative Risk even 

for small sample sizes. 

Figure 3.8.3 displays plots of the average bias and empirical standard error of the 

bias across all simulations against sample size for both methods of estimation. Frames 1 

to 3 suggest that the method based on pairwise cells will produce less biased estimates. 

The sole exception is with small sample sizes and no smoothing when both methods 

appear almost identical in terms of bias. Frames 4 to 6 of Figure 3.8.3 reveal that there is 

slightly more variability in the average bias based on the pairwise cells method. Given the 

range of true values of the log Relative Risk in this scenario it is clear that in the absence 

of smoothing both methods appear to substantially underestimate the Relative Risk 

particularly for smaller sample sizes. However, even with large sample sizes (i. e. at least 

250 pairs of observations) there is still evidence of a significant presence of bias. The 

introduction of smoothing has the effect of reducing the degree of this underestimation, 

particularly for small sample sizes. However, even the introduction of smoothing never 

entirely removes the bias. 
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For the conditional likelihood method Figures 3.8.4 and 3.8.5 display plots of the 

coverage and average width of each nominal 95% interval against each level of the risk 

factor separately for the different levels of smoothing. Figures 3.8.6 and 3.8.7 display the 

corresponding plots for the pairwise cells method. In each figure the individual frames 

represent the results for a different sample size. Figures 3.8.4 and 3.8.6 reveal that both 

methods appear to exhibit similar patterns in terms of coverage. With each method the 

coverage reduces as the level of the risk factor increases and as the level of smoothing 

increases. The coverage appears unrealistically high when no smoothing is present 

(more than 99%) especially for smaller sample sizes. This is particularly evident for the 

pairwise cells method. The explanation for this can be seen from Figures 3.8.5 and 3.8.7 

where, in general, with no smoothing, the widths of the confidence intervals are larger 

than are obtained when smoothing is introduced resulting in intervals which will, 

necessarily, have very high, unrealistic, levels of coverage. Regardless of the level of the 

ý. risk factor the confidence intervals produced by the pairwise cells method are invariably 

wider than those produced by the conditional likelihood method. The introduction of 

1, ý smoothing, particularly a first order neighbourhood, produces far more acceptable levels 

of coverage. In general, with reasonable sample sizes , say 75 - 200 observations, and a 

first or second order neighbourhood of smoothing, both methods of estimation produce 

plausible/realistic levels of coverage of between about 85 and 95%. With the exception of 

some of the higher values of the risk factor, Figures 3.8.5 and 3.8.7 illustrate that, in 

general, the width of the confidence intervals will decrease as the level of smoothing is 

increased. This in turn leads to more realistic levels of coverage being attained (i. e. closer 

to the nominal value of 95%). A final interesting point to observe is that, with both 

methods, the coverage is higher and the width of the confidence intervals narrower for 

smaller values of the risk factor. This is to be expected, as, with a Relative Risk of a 
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linear nature and a reasonable amount of data at the baseline, it is clear that more precise 

estimation will be available closer to the baseline (i. e. at smaller values of the risk factor). 

In general the coverage is quite poor and the confidence intervals relatively wide for 

larger values of the risk factor. One explanation for this is that since these values of the 

risk factor are quite far removed from the baseline and in data sparse areas, then it is 

inevitable that there will be less precise estimation at these values. 

In summary it appears as though both methods perform reasonably well under this 

scenario, in terms of precision, bias and coverage. There is evidence that the conditional 

likelihood method produces slightly more precise estimates particularly for smaller sample 

sizes whilst the pairwise cells method results in estimates which display marginally less 

bias. In the absence of smoothing both methods require relatively large sample sizes 

before estimates can be produced which are both precise and display little bias. However 

once smoothing is introduced both methods quickly become more precise and display 

much less bias even for small sample sizes. There is little to choose between the two 

methods in terms of coverage, although it should be noted that both methods, particularly 

the pairwise cells method, produce unrealistic levels of coverage with no smoothing and 

smaller sample sizes. 

Scenario 2: Poisson distribution for p(zl / not diseased, Z2), a step 

Relative Risk function. 

Here the same underlying distribution has been used for the control population as 

in scenario 1. In this scenario, however, a Relative Risk function has been incorporated 
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which exhibits only one large step in the Relative Risk compared to scenario 1 where the 

Relative Risk changed at every level of the risk factor, albeit by a smaller amount. 

Therefore it is perhaps sensible to think that the non-parametric methods should find this 

scenario easier to reproduce than the situation where the Relative Risk was of a linear 

nature. 

Figures 3.8.8 - 3.8.13 show the results for this simulation study. A comparison of 

Figures 3.8.8 and 3.8.9 with Figures 3.8.2 and 3.8.3 backs up the suggestion that this 

scenario is easier to reproduce both in terms of precision and bias. Both non-parametric 

methods produce estimates which are, in general, moderately more precise and exhibit 

slightly less bias when the Relative Risk function is of a step nature. This is particularly 

evident when no smoothing has been used. However, although slight differences exist 

between the two scenarios in terms of the degree of precision and bias, the actual patterns 

produced across both scenarios are very similar. Here, as in scenario 1, there is evidence 

that the conditional likelihood method produces slightly more precise estimates (frames I- 

3 of Figure 3.8.8) while the pairwise cells method produces estimates which are 

marginally less biased (frames 1-3 of Figure 3.8.9). There is again evidence that both 

methods are less precise and more biased with smaller sample sizes, particularly when no 

smoothing has been used. The introduction of smoothing produces a marked 

improvement in the precision and bias of the resultant estimates, especially for smaller 

sample sizes. 

In this scenario, the true value for the log of the relative Risk for values of the risk 

factor between 0 and 9 is 1 and jumps to approximately 2.3 for values of the risk factor 

between 10 and 19 (See Figure 3.8.1). Given this range of values Figures 3.8.8 and 3.8.9 
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suggest that, in the absence of smoothing, a sample size of at least 100 pairs is required 

before the magnitudes of the average mean square error and average bias reduce to a 

reasonable level. Regardless of sample size, when a first order neighbourhood of 

smoothing is used, the average mean square error ranges from approximately 0.4 to 

approximately 0.6 with average bias between -0.05 and -0.25 suggesting that both 

methods are reasonably precise and exhibit only minor levels of bias once smoothing is 

introduced. With a second order neighbourhood of smoothing, a ftulher, smaller, 

improvement is observed in both the average mean square error and the average bias. 

However, as in scenario 1, it is clear that both methods again underestimate the true log 

Relative Risk regardless of sample size and level of smoothing. 

in terms of coverage and the average width of the nominal 95% confidence 

intervals, Figures 3.8.10 - 3.8.13 display the results for the two methods. As with scenario 

I it is clear that for both methods, the coverage is unrealistically high for small sample 

sizes and no smoothing. This is particularly noticeable for values of the risk factor at the 

baseline, where the true Relative Risk is equal to I (i. e. values of the risk factor of 0 to 9). 

The primary reason for this is that, at the baseline, there is less potential for the estimates 

to deviate from their true Relative Risk. Since the width of the intervals at the baseline are 

of a reasonable magnitude when no smoothing is present, particularly for the pairwise 

cells method (see Figures 3.8.11 and 3.8.13), then it becomes increasingly likely that, 

regardless of the point estimate of Relative Risk, a very high percentage of intervals will 

contain the true value (i. e. a Relative Risk of I). For both methods the coverage drops 

dramatically and the width of the interval increases in the vicinity of the cut-point, 

suggesting that this is the area where it is most difficult to obtain accurate estimates of the 

true Relative Risk. This is not unexpected as, at this point, there is a marked change in 
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the true Relative Risk suggesting that this will be the most difficult point at which to 

obtain good estimation. After the cut-point the average width of the intervals gradually 

levels off leading to the coverage again increasing. This suggests that estimation is more 

precise as the value of the risk factor moves away from the location of the cut-point since 

there is no further change in the true Relative Risk. Comparing Figures 3.8.10 and 3.8.12 

it is clear that, in general, the pairwise cells method appears to produce values which are 

closer to the nominal levels of coverage. With the conditional likelihood method the 

pattern of coverage is often erratic in the vicinity of the cut-point whereas the pairwise 

cells method produces a far more stable pattern. On the other hand Figures 3.8.11 and 

3.8.13 reveal that the 95% confidence intervals are clearly wider, on average, with the 

pairwise cells method regardless of the value of the risk factor. For both methods of 

estimation, the levels of coverage would appear to be closest to the nominal value oJ95% 

when a neighbourhood of size I is used. For reasonable sample sizes (i. e. 75 pairs or 

more) and a neighbourhood of size 1, the pairwise cells method results, on average, in a 

coverage of between 90% and 98% whilst the conditional likelihood method results, on 

average, in a coverage of between 85% and 95%. With a neighbourhood of size 2 there is 

evidence that for larger sample sizes of 200 pairs or more, both methods produce levels of 

coverage which are very low at the cut-point. This is due to a large amount of smoothing 

being carried out across the location of the cut-point resulting in the estimation of the 

Relative Risk being very imprecise at this point. This, in conjunction with the larger 

sample sizes producing intervals with smaller widths leads to a larger percentage of 

intervals not containing the true value. For both methods these results suggest that, 

regardless of sample size, a first order neighbourhood will produce the best combination 

of the most acceptable levels of coverage in conjunction with intervals which are not 

excessively wide. Further, the pairwise cells method appears, in general, to produce 
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higher levels of coverage but this may be due, at least in part, to the wider intervals which 

are generally produced by this method. However, one genuine advantage with the 

pairwise cells method is that it clearly produces less erratic patters of coverage around the 

true location of the cutpoint. 

In summary, it appears that both methods of estimation produce good estimates in 

this scenario in terms of both precision and bias. The conditional likelihood method 

appears to be marginally more precise but the pairwise cells method appears to exhibit less 

bias. In terms of coverage the results are not as promising and there is clear evidence that 

the choice of smoothing parameter may have a dramatic effect on the levels of coverage, 

particularly for the conditional likelihood method. It is also worrying that, regardless of 

the method of estimation, the coverage drops considerably at the location of the cut-point. 

Scenario 3: Uniform distribution for p(zl / not diseased, Z2), 

linear Relative Risk function 

Here the Relative Risk function is of a linear nature and the underlying distribution 

of the risk factor among the controls is based on a Uniform distribution. 

Figures 3.8.14 - 3.8.19 show the results of this set of simulations. The first major 

point to observe is that if Figures 3.8.14 and 3.8.15 are compared with Figures 3.8.2 and 

3.8.3 it can be seen that the underlying distribution of the caseslcontrols appears to have 

very little effect on the resultant values of precision and bias. Regardless of the underlying 
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distribution very similar results are produced both in terms of precision and bias. In this 

scenario frames I to 3 of Figure 3.8.14 reveal that the conditional likelihood method, in 

general, produces slightly more precise estimates than the pairwise cells method across the 

three levels of smoothing. In terms of the spread of the estimates of mean square error, 

there is little to choose between the two methods in terms of the values for the empirical 

standard deviation of the mean square error displayed in frames 4 to 6 of Figure 3.8.14. 

Regardless of the method used the estimates are less precise when small sample sizes are 

used in conjunction with no smoothing. There is, in general, an improvement in precision 

as the sample size increases although the degree of improvement appears more noticeable 

when there is no smoothing. In terms of bias, an examination of Figure 3.8.15 reveals that 

the pairwise cells method appears to be less biased than the conditional likelihood method. 

The only exception to this appears to be with no smoothing and sample sizes of 75 

observations or less, where the bias is almost identical for both methods. For sample sizes 

of more than 75 observations and no smoothing there is quite a large difference in bias 

between the two methods of estimation, a difference which, to a certain extent, reduces 

with the introduction of smoothing. The presence of bias is, again, greatest when the 

combination of small sample sizes and no smoothing is used. There is a marked decrease 

in bias with increasing sample size and when moving from no smoothing to a 

neighbourhood of size 1. As in scenarios 1 and 2, one worrying point to observe is the 

nature of the bias. Regardless of sample size and level of smoothing the resultant 

estimates are always underestimates of the true Relative Risk. However with large data 

sets and/or smoothing the degree of underestimation is not especially large. 

Moving on to consider coverage and average width of the nominal 95% confidence 

intervals Figures 3.8.16 to 3.8.19 reveal a very similar pattern in terms of coverage and 
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average width to that observed in scenario 1. Again the coverage seems to be 

unrealistically high when no smoothing is present, particularly for smaller sample sizes. 

The use of smoothing, particularly a neighbourhood of size 1, leads, on the whole, to more 

reasonable levels of coverage and slightly narrower confidence intervals. This is 

particularly evident for larger sample sizes. Regardless of the method used, when 

consideration is given to values of the risk factor between 0 and approximately 10 then, 

with smoothing, the coverage is better for lower values of the risk factor. For these values 

the average width of the confidence intervals also increases as the value of the risk factor 

moves away from the baseline and into areas where less data is present. However, with 

smoothing and larger values of the risk factor (i. e. between 11 and 19) there is evidence 

that the coverage increases as the value of the risk factor increases. This is particularly 

noticeable for larger sample sizes. This is possibly due to the sharp increase in the 

corresponding width of the confidence intervals over the range 11 to 19 (see Figures 

3.1.17 and 3.1.19) again leading to, perhaps, unrealistic levels of coverage. One, perhaps 

surprising, observation from these figures is the pattern of the width of the confidence 

intervals for the pairwise cells method (Figure 3.8.19). Here there is evidence of 

something unusual happening when no smoothing is used in combination with smaller 

sample sizes (i. e. 75 observations or less). With these smaller sample sizes, it appears 

that, on average, the width of the confidence intervals increases as the level of smoothing 

increases. One possible explanation for this may be that these sample sizes are simply too 

small to obtain a true representation of this scenario, as, when larger sample sizes are used 

the plots begin to exhibit similar patterns to those observed elsewhere in this section. 
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In summary, there is very little to choose between the two methods in terms of 

precision and bias in this- scenario. With smaller sample sizes and no smoothing both 

methods do not appear very precise and exhibit some bias. However it can be seen that 

both methods produce reasonable estimates of the Relative Risk when larger sample sizes 

are used and/or smoothing is introduced. Examination of the coverage and corresponding 

width of the confidence intervals reveals that reasonable sample sizes or smoothing must 

be used before sensible estimates of Relative Risk can be obtained in this scenario. This is 

particularly evident when the pairwise cells method is used. 

Scenario 4: Uniform distribution for p(zl / not diseased, z2), a 

step Relative Risk function. 

The final scenario under consideration is again based on an underlying Uniform 

distribution for the controls, as in scenario 3, but on this occasion, instead of a being of a 

linear nature, the Relative Risk function exhibits one large step. 

Figures 3.8.20 - 3.8.25 show the resultant plots for this set of simulations. A 

comparison of these with Figures 3.8.8 - 3.8.13 which were obtained in scenario 2 suggest 

that the underlying distribution of the cases/controls again has little effect on the results 

which are produced confirming the observation made during scenario 3. There is again 

evidence however that the nature of the Relative Risk (i. e. a linear Relative Risk or a step 

Relative Risk) has some effect on the results which are produced. In scenarios I and 2 

when the underlying distributions of the cases/controls were based on a Poisson 

distribution there was some evidence that the estimates produced were moderately more 
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precise and slightly less biased when the Relative Risk had a single, large, step compared 

to a Relative Risk of a linear nature. A comparison of Figures 3.8.20 and 3.8.21 with 

Figures 3.8.14 and 3.8.15 reveals that when the underlying distribution of the 

cases/controls is based on a Uniform distribution the estimates are again more precise/less 

biased when the relative risk function is of a step nature. In teims of this specific scenario, 

Figure 3.8.20 reveals that both methods produce reasonably precise estimates with 

precision increasing with both sample size and neighbourhood size. In this scenario, the 

change in precision as the sample sizes increase is not as dramatic as the change observed 

in the first three scenarios. This is possibly due to estimation being, in general, more 

precise in this scenario, regardless of sample size. For all sample sizes and all levels of 

smoothing, the conditional likelihood method appears marginally more precise with little 

difference between the two methods in terms of the empirical standard deviation of the 

mean square error. The levels of bias present in Figure 3.8.21 suggest that, with 

smoothing, both methods exhibit relatively small amounts of bias in this scenario. In the 

absence of smoothing the bias is slightly higher and decreases with increasing sample size 

but the introduction of smoothing leads to the sample size having little effect on the level 

of bias. Also the pairwise cells method appears, in general, to be less biased particularly 

when there is no smoothing and larger sample sizes. 

An examination of the coverage and average width of the nominal 95% confidence 

intervals for both methods (Figures 3.8.22 - 3.8.25) suggests that the levels of coverage 

are, once more, unrealistically high when no smoothing is used. This conclusion is 

especially evident for smaller sample sizes. For both methods, the levels of coverage 

reduce to values which are closer to the nominal value once a neighbourhood of size I is 

considered with a corresponding decrease in the average width of the 95% confidence 
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intervals. The coverage is again higher at values of the risk factor where the 

Relative Risk is equal to the baseline value and drops by quite a large amount at the 

location of the cut-point. The coverage gradually rises again as the level of the risk factor 

moves away from the location of the cut-point. In scenario 2 there was a suggestion that 

the pairwise cells method produced a more stable pattern of coverage around the cut-point 

compared to the rather erratic pattern displayed with the conditional likelihood method. 

There is little evidence to suggest that this is the case in this scenario, as, hoth methods 

actually appear quite erratic around the cut-point. Since the average width of the 

corresponding intervals are clearly narrower with the conditional likelihood method, it 

seems logical to suggest that the conditional likelihood method performs better in this 

scenario, in terms of the combination of coverage and width of interval. Finally, 

regardless of method, sample size or neighbourhood size, Figures 3.8.23 and 3.8.25 

illustrate quite clearly that estimation will be better at lower values of the risk factor since 

the width of the 95% confidence intervals clearly increase as the level of the risk factor 

increases. 

In summary, in this scenario, both methods produce very precise estimates which 

exhibit very little bias. This is particularly the case when larger sample sizes and/or 

smoothing are used. The conditional likelihood method produces estimates which are 

more precise whereas the pairwise comparisons method produces estimates which are 

slightly less biased. The results also suggest that the conditional likelihood method 

produces superior results in terms of the coverage and the average width of the 

corresponding 95% confidence intervals. 
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Section 3.8.2: Summary of the Results from the Simulation Study 

The simulations carried out here suggest that both the conditional likelihood 

method and the pairwise cells method would be plausible methods to use to produce non- 

parametric estimates of Relative Risk in the presence of an interval scaled discrete risk 

factor. Although neither method produced "perfecf' results in terms of precision, bias or 

coverage they did produce results which were reasonably promising. It is clear from 

considering these four scenarios that if sample sizes of a practical nature are being used 

(i. e. less than 300 pairs of observations) then some form of data smoothing will be 

required before acceptable solutions can be obtained. In the absence of smoothing both of 

the non-parametric methods under consideration here struggled to obtain "good" estimates 

of the true, underlying, pattern of Relative Risk. However when smoothing was 

introduced there was a clear improvement in precision, bias and coverage. There was also 

evidence that if the sample sizes are reasonably large (i. e. more than 200 pairs of 

observations) then care must be taken not to oversmooth the data particularly if the aim of 

the work is to identify cutpoints. In terms of the scenarios here the underlying distribution 

of the cases/controls had little effect on the precision, bias or coverage present with either 

method. The factor which appears most to influence the results is the underlying Relative 

Risk function. In this section two possible Relative Risk functions were considered; a 

linear and a step Relative Risk function. These were chosen in such a manner as to allow 

a direct comparison between the two functions. Both methods produced slightly more 

precise and marginally less biased estimates when attempting to reproduce the scenarios 

involving the step Relative Risk function. This is perhaps to be expected as the non- 

parametric methods of estimation proposed here are data fitting techniques and should 

therefore find it easier to identify only one major change in the Relative Risk function as 

opposed to a Relative Risk which changes, albeit linearly, at each level of the risk factor. 
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It is also somewhat reassuring that these methods perform reasonably well when dealing 

with a situation which involves a step in the Relative Risk: i. e. a categorisation point. The 

main reason for developing these techniques is to deal primarily with the scenario of 

identifying categorisation points for risk factors. It is encouraging to see that the methods 

can clearly identify such a point, if one does exist. 

Perhaps the only, slightly worrying conclusion is in terms of the bias which is 

clearly present. There is evidence that the estimates of Relative Risk produced are 

invariably underestimates of the true Relative Risk. The use of larger sample sizes and/or 

the introduction of smoothing reduces the level of this underestimation but never entirely 

removes it. 

In summary, both methods appear reasonahly satisfactory in dealing with the 

scenarios considered here. It must be bome in mind that many more scenarios could have 

been considered but those observed here are fairly representative of the scenarios which 

may be of interest in a practical context. There is little evidence to suggest that one 

method is vastly superior to the other in terms of precision and bias as any differences 

which exist between the two appear relatively minor. The conditional likelihood method 

performs slightly better in terms of precision but the pairwise cells method performs better 

in terms of bias. The deciding factor between the two methods may come in terms of 

coverage and the width of the corresponding 95% confidence intervals. Here there is a 

clear suggestion that the conditional likelihood method is superior as, in general, this 

method produced more acceptable levels of coverage. More importantly, the conditional 

likelihood approach clearly produced narrower intervals regardless of sample size and 

level of smoothing. A final point to observe is that the methods do not perform especially 
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well with small sample sizes and no smoothing, suggesting that when the methods are 

applied to real data examples smoothing will invariably have to be used with smaller 

sample sizes. For example, the results presented in Section 3.5 concerning the Relative 

Risk of malignant melanoma associated with the presence of naevi were all based on data 

which had to be smoothed to a lesser or greater degree. 
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Section 3.9: Conclusions 

In this chapter consideration has been given to both the theory and application of techniques 

for analysing data from a matched case-control study. The standard conditional linear logistic 

model and two possible non-parametric approaches were considered. Both of the non-parametric 

methods produced estimates of the Relative Risk in the presence of an interval scaled discrete risk 

factor and helped to identify potential categorisations for such a risk factor. 

An adaptation of both these non-parametric approaches involved "smoothing" these raw 

estimates of Relative Risk by either using a kernel smoother or carrying out an isotonic regression. 

The two methods of "smoothing" the estimates of Relative Risk occasionally produced different 

conclusions as to where potential categorisations may exist. The use of isotonic regression will, 

necessarily, produce flatter estimates of Relative Risk whilst the kernel smoother is likely to produce 

estimates which exhibit greater degrees of fluctuation. These differences in approach may lead to 

slightly different conclusions being obtained at points where any changes in the estimates of 

Relative Risk are of a relatively small nature. With the exception of these minor disparities there is 

however general agreement between the two smoothing techniques. 

A simulation study was carried out and this revealed that both non-parametric approaches 

performed reasonably well across a number of scenarios. The methods were compared for three 

criteria; precision, bias and coverage. For moderate sample sizes, both methods appear reasonably 

precise and display levels of bias which are not particularly excessive. There is some evidence to 

prefer the likelihood based method as it produced better levels of precision and coverage whilst the 

pairwise cells method appeared slightly better only in terms of bias. 
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Future work should give consideration to extending this problem to investigate if a suitable 

non-parametric approach can be found to incorporate a continuous risk factor. Section 3.7 touched 

briefly on this problem by roughly categorising the continuous risk factor and then using the 

estimators discussed in Section 3.4 to produce estimates of Relative Risk. Further work on this 

method may allow some simple adaptation of the existing techniques for an interval scaled discrete 

risk factor to be used for the continuous case. Future work should also include extensions to deal 

with multiple risk factors as opposed to the univariate problem investigated here. 
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Chapter 4 

Non-parametric Approaches to the Analysis of 

Survival Data 

Section 4.1: Introduction 

Survival data usually consists of observations on individuals for each of 

whom there is a well-defined point event of interest (e. g. failure/death) which occurs 

after a period of time. The unique ingredient of survival data is that it will typically 

contain some censored data (i. e. observation on some individuals in the study having 

had to cease before the event of interest (Le failure/death) has occurred). This 

censoring of data will necessarily complicate any analysis but cannot just be ignored 

as this throws away information and will lead to the introduction of bias in 

conclusions on the distribution of failure/death times. In a survival data problem 

each individual subject will have both a failure/death time and possibly a censored 

time but only one of these will have been observed. 
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In the analysis of survival data interest is primarily in modelling the 

distribution of failure/death times (referred to as the failure time distribution from 

now on) possibly in the presence of important covariates. When the distribution of 

failure times is being modelled there are two related functions which are of 

particular interest. 

(1) The SURVIVOR function, S(t), which is defined to be the 

probability that a randomly selected individual survives 

beyond the time point, t. 

(2) The HAZARD function, h(t), which is defined as the 

probability that a randomly selected individual dies at time t, 

conditional on the individual having survived up till the time, 

The hnza d function is also known as the instantaneous rate 

of failure at the time, t. 

Kaplan and Meier (1958) introduced a simple non-parametric method of 

estimating the survivor function when no covariates are present using a maximum 

likelihood estimator. The problem of estimating the survivor function becomes 

more complicated when covariates are introduced and various methods of modelling 

the effect of covariates on the distribution of failure times have been suggested. One 
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common method is to use the Cox proportional hazards model (Everitt (1989)). This 

method models the hazard function with a non-parametric baseline hazard and 

incorporates a log-linear function to introduce the covariates. From this estimate of 

the hazard function an estimate of the survivor function is produced. Models such as 

exponential (Elandt-Johnson & Johnson (1980)) and Weibull (Cox & Oakes (1984)) 

regression models along with the accelerated failure time, models (Cox & 

Oakes(I 9 84)) are also in common usage. 

Within some survival data problems where covariates are present interest is 

not specifically in modelling the full failure time distribution but instead an 

appropriate summary of survival is considered. Relevant summaries which are often 

used are to consider the probability of surviving a specified length of time given a 

covariate value (e. g. What is the probability of an individual surviving 5 years after a 

heart operation given their age on having the operation? ). This would lead to 

modelling a binary response (does / does not survive 5 years). The common 

approach to modelling a binary response in the presence of covariates is to use the 

linear logistic model (Breslow & Day (1980)). One drawback to this technique 

when analysing survival data is that it may ignore the presence of censored 

observations and this often leads to an underestimate of the true probability of , say, 

5 year survival. This particular problem of the bias incurred in survival analysis if 

censored observations are ignored is discussed in detail by Watt et al. (1996). 
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Survival data occurs in many fields of study ranging from the analysis of 

failure times of components fitted in jet engines to the study of mortality intensities 

in animal experiments but is particularly prevalent in the area of medical research. 

The nature of medical research often leads to the production of survival data as 

many medical studies involve following up patients until they die of the disease of 

interest or are censored. Patients become censored through either dying of some 

cause other than the disease of interest or simply being lost to follow up. Many 

studies take place over an extended time period resulting in large amounts of 

censored data. In a study of Peripherial Arterial Disease, Criqui et al (1992) 

attempted to follow up patients for 10 years leading to large amounts of censored 

data. Of the 67 patients identified approximately 52% of them remained alive (i. e. 

censored) after the 10 year study period. Similarly in a study of survival from 

Hepatitis Seeff et al (1992) looked at 18 year survival again creating the potential for 

a large presence of censoring with an overall average of 49% censoring for 

mortality. 

The work presented in this chapter will consider the analysis of survival data 

in the presence of a covariate and examine various non-parametric alternatives to the 

log-linear component in the survivor function. These techniques will be used to 

assist in identifying possible categorisation points for a single continuous covariate. 

These categorisations should be chosen at points where there appear to be marked 

changes in the prognosis of survival. 
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An examination of recent medical literature reveals that in the analysis of 

survival data in the presence of covariates/prognostic factors the proportional 

ha7a ds model is the model most commonly used. For example in analysing 

survival from melanoma, Soong et al (1992) used a proportional hazards model to 

predict 5 and 10 year survival while the Intemational Non-Hodgkirýs Lymphorna 

Prognostic Factors Project (1993) carried out their analysis of 5 year survival from 

the disease by incorporating covariates/prognostic factors via the proportional 

hazards model. However although this model is often a sensible model to use in the 

analysis of survival data it is not particularly useful in identifying potential 

categorisation points for any important prognostic factors. The proportional hazards 

model incorporates parametric constraints on the relationship between the survival 

time distribution and the covariate(s) of interest. This rigid parametric framework 

often proves insufficient to deal with survival problems as it is inflexible in 

modelling this relationship. A wider range of relationships can be considered if the 

log-linear constraint is relaxed/removed and some form of non-parametric 

component is incorporated. Any non-parametric technique used will be essentially 

data-driven and hence will allow a very flexible development of the relationship 

between the failure time distribution and the covariate(s). Non-parametric 

techniques may not only illustrate any such important relationship but, due to their 

flexibility, allow any unusual features of the data to be highlighted. This latter point 

demonstrates that non-parametric techniques may prove useful in the identification 

of possible categorisation points. 
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Section 4.2 will consider the theory behind the standard methods of 

estimating failure time distributions and these will be applied to a set of data from 

the field of medical research in section 4.3. Section 4.4 will introduce non- 

parametric approaches to the analysis of survival data in the presence of a covariate 

and these approaches will be demonstrated in section 4.5. Section 4.6 will present 

some simulation studies discussing the results obtained by using the non-parametric 

approaches to reproduce a known situation. 

175 



Section 4.2: Standard approaches to the analysis of 

survival data 

The survival time, t, of a randomly selected individual can be defined by 

some, unknown, underlying distribution function, F(t). The distribution function of 

the associated random variable, T, is given by 

F(t) = Prob(T < t) 

However when censoring is present, it is often more relevant to consider the survivor 

function at the time, t, denoted by S(t). If no covariates are present the survivor 

function at the time, t, is defined by 

S(t) =1- F(t) = P(T ý: t) 

(i. e. Probability of surviving beyond time t) 

Interest here is often in estimating this function in the presence of censoring. 

In 1958 Kaplan and Meier devised an essentially non-parametric method of 

estimating the survivor function (when no covariates are present) based on data 
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including censored observations. This estimator is commonly known as the product- 

limit estimator and a brief description of it is as follows. 

Let the data consist of observations on n subjects and assume that each 

subj ect has a failure time Iti; i=1, ... nj and a censored time Ici; i=1, ..., nj . 

However, for each subject only one of these times will actually be observed and 

hence the data could be surnmarised as 

Xi = min(ti, ci); i=n 

Further, denote by rj the number of items at risk throughout the period 

(tj-,, tj (i. e. between the O-lp and O)th failure times) and by sj the number who 

survive beyond tj. 

Now the survivor function, S(t), is defined to be the probability of surviving 

beyond time t. Therefore for any particular failure time, tj 

S(ti) = P{T>ti) 

P{T > ti /T> ti-I)P{T > ti-1) 

etc. 

i 
IIPIT>tj / T>tj-, } 
i=l 
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Kaplan and Meier estimated each of these conditional probabilities separately 

by 
Yri 

to give 

S(ti) Ari j=l 

and 

§(t) = §(ti) for ti <t< ti+l 

- 

This is a simple, logical estimate of the survival function when no covariates 

are present. Note that the estimate of survival, §(t), only changes at the observed 

failure times. Hence this estimator will be a step function which changes at each 

observed failure time. Further, techniques originally devised by Greenwood (1926) 

allowed confidence bands for S(t) at any value of t to be derived and these are given 

by 

1s exp[±196ji; (ý(t))] ^ (01 

where 
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V(t) = 10ge I- 10ge (S(t))l 

and 

I ir(log, (§(t))) 
,,, 

V, 

FOge(§(t))f [10ge(§(t)) 

' rj - sj 
V&(10ge 

j=l 

j 
sjrj 

j 

With the introduction of covariates the problem becomes more complicated 

and section 4.1 mentioned various methods of modelling the relationship between 

the failure time distribution and covariates. The key method in common usage is the 

Cox Proportional Hazards model which is defined as follows. 

Let h(t; g) be the hazard fimction at any time t for an item with p- 

dimensional covariate vector z -ý (ZIP Z2, ---9z P)T . The proportional hazards model 

is then defined as 

h(t; Z) = ho(t)exp(pTZ) (4.3) 
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for an arbitrary baseline hazard function ho(t) (i. e. hazard at z= 0) where 

ý ý-- 
(PI, P2ý ---, Pp) is a set of unknown parameters. This model is essentially serni- 

parametric as it contains both a non-parametric component via the distribution free 

baseline hazard and a parametric component through the exponential function. From 

this definition the survival function can be estimated in the presence of covariates 

since a simple relationship exists between the hazard and survivor functions of the 

following form 

t 

S(t) = exp -f h(u)du 
0 

Under the Cox Proportional Hazards model the following relationship 

between the survivor function and the hazard function at any value of the covariate z 

can readily be observed (Cox and Oakes (1984)) 

exp{ßTz) S(t / Z) = [SO (t)] -- 

where 

t 

SO(t) = exp - 
fho(u)du 

0 
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This model can then be fitted to an appropriate set of data, parameter 

estimates ý= (ýI, ý2, 
..., 

ýP)T for PP)T found and hence an 

estimate of the survival function using the relationship in (4.4) to give 

-T exp Z S(t / Z) = [So M] 

In order to assess whether the resultant fitted Cox Proportional Hazards 

model is appropriate residual plots can be carried out. Various residuals have been 

proposed in the analysis of survival data. These include the Cox-Snell residuals 

(Cox and Snell (1968)), Score residuals (Schoenfeld (1982)) and Martingale 

residuals (Fleming and Harrington (1991)). Here the deviance residuals (Therneau, 

Granbsch and Fleming (1990)) will be plotted against the corresponding follow-up 

time in order to assess if the fitted proportional haza ds model is appropriate and to 

highlight potential outliers. 

Another situation which may be of interest is to take af"ed point in time and 

examine the probability of surviving beyond that time. If a fixed point in time is 

chosen then the problem essentially becomes one of modelling a binary response 

(does / does not survive past the fixed time point). Hence this situation is sometimes 

analysed via the use of the linear logistic model. Section 2.2 of this thesis examined 

the linear logistic model in great detail and (2.1) gave a formula for relating the 

probability of a success (e. g. alive or survival) to a series of covariates. Here, a 
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linear logistic model would be fitted to the data in order, to identify factors which 

may be -of prognostic significance in terms of predicting survival past the specified, 

fixed, point in time. One point to observe is that this method will ignore any 

observations who are alive but have not been followed up for at least the specified 

time. The importance of this issue will be discussed later in this chapter. 
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Section 4.3: Analysis of a subset of the Scottish 

Melanoma Group database. 

The Scottish Melanoma Group has collected data on 4399 patients first 

presenting in Scotland with cutaneous melanoma (i. e. stage I melanoma) between 

1979 and 1990. This database contains detailed clinical, pathological, surgical and 

follow-up data on all these patients. The data has already been analysed by MacKie 

et al (1995) to identify important prognostic factors for survival from this severe 

form of skin cancer. MacKie et al used both the technique of Kaplan and Meier and 

the proportional hazards model in their analysis in order to predict survival for 

various subgroups of patients. 

In order to simplify the illustrations which follow, a small representative 

subset of the full database will be considered. Therefore, consideration will here be 

given tojemales with ulcerated lesions on an axial site who have been followed up 

for a minimum of 5 years. This leaves a total of 108 subjects for study of whom 63 

had a complete follow-up time (i. e. failure time) and 45 had an incomplete follow-up 

time (i. e. censored time). 

From these data the Kaplan-Meier estimate of survival was calculated and is 

displayed in Figure 4.3.1. This shows that overall survival for these females is 

relatively poor with a probability of surviving at least 2 years of about 80% (95% 
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confidence interval of 75% to 85%) and a probability of surviving at least 5 years of 

50% (95% confidence interval of 42% to 62%). This drops below 40% when the 

probability of surviving at least 10 years (not on Figure) is considered (95% 

confidence interval of 33% to 58%). 

Numerous studies (Szymik and Woosley (1993), Rigel et al (1991) & Ronan 

et al (1988)) have shown that possibly the most important factor in survival from 

stage I melanoma is the tumour/Breslow thickness on diagnosis. In order to 

incorporate this factor into any analysis it is necessary to use a model which relates 

the failure time distribution to a covariate. 

MacKie et al fitted proportional hazards models to show that for the Scottish 

Melanoma Group database tumour thickness has a significant effect on survival. To 

illustrate the effect tumour thickness has on survival for the small subset of the 

database under examination here firstly consider Figure 4.3.2 which shows a plot of 

the distribution of the turnour thickness by status (i. e. censored or dead) for this 

group of females. From Figure 4.3.2 it can be seen that among the subjects who 

have complete observations (i. e. a clearly defined endpoint; death due to melanoma) 

there appears to be a higher proportion with thicker turnours. The subjects who have 

died due to melanoma also appear to exhibit a larger amount of variability in their 

turnour thickness than is present among the censored observations. 
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Figure 4.3.3 shows a graph of the fitted proportional hazards model for this 

data with tumour thickness incorporated as a covariate. It shows estimated survival 

curves at a selection of the possible tumour thicknesses and demonstrates that under 

this model, as expected, survival prospects decrease both through time and as the 

thickness of the tumour increases. Given the severity of the disease present in these 

subjects (Le. subjects with ulcerated lesions) survival prospects appear reasonably 

good for those subjects with a tumour thickness of less than 3 mm. More 

specifically subjects with a tumour thickness of 1 nim have 5 year survival of 

approximately 75% and even 7 year survival of over 60%. However the survival 

prospects are very poor for subjects who have a turnour thickness of greater than 

about 7 mm and in particular those with a turnour thickness of 9 mm only have 

about a 32% chance of surviving 5 years dropping to just over 20% by the time 7 

year survival is considered. 

In order to assess the fit of the model the Deviance residuals were calculated. 

Figure 4.3.4 displays a plot of the standardised Deviance residuals against both the 

follow up time and the included explanatory, tumour thickness. As neither of these 

plots display any suggestion of a trend, or, indeed evidence of any outliers, it is 

reasonable to assume that the fitted proportional haza ds model gives an adequate fit 

to the data. 

One drawback with using the proportional haza ds model is that it cannot be 

used to highlight potential categorisations for the covariate under study. The 
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proportional hazards model forces a "parallel lines pattern" across the different 

levels of the covariate (illustrated in Figure 4.3.3) through the use of the exponential 

power function in (4.3). In order to look for possible categorisations for a 

potentially important covariate it is necessary to adopt a method which is less rigid 

in how it models the relationship between survival and the covariate. This leads to 

the idea of using a non-parametric approach which drops the log-linear assumption 

inherent in the proportional hazards model. In the next section some consideration 

will be given to non-parametric techniques to hopefully give a more flexible but still 

sensible solution to the problem. 
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Section 4.4: Non-parametric approaches to the analysis 

of Survival Data 

One of the main aims of this study is to examine possible ways of producing 

non-parametric estimators of survival in the presence of a continuous covariate as 

this will allow a "flexible" relationship between survival and the covariate to be 

examined. The use of these estimators will hopefully allow possible categorisations 

for the covariate, if any exist, to be highlighted. Section 4.2 outlined various 

approaches to survival analysis, with or without a covariate, but none of these meet 

the criterion required. This section attempts to extend each of the standard 

approaches described in Section 4.2 to allow one to attempt to identify meaningful 

categorisations of a single explanatory variable. 

Section 4.4.1: Kaplan-Meier based approach 

The Kaplan Meier approach (Section 4.3) is a non-parametric approach to 

survival analysis but it does not incorporate a covariate. If an extension to this 

method can be found which incorporates a covariate it may produce sensible non- 

parametric estimates of survival in the presence of a covariate. If the sample size 

were 'infinite' the natural extension to the Kaplan Meier estimate of Survival 

incorporating a covariate would be to produce as an estimator of survival 
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i 
(4.5) 

j=I 

where 

tj represents the i'th failure time; i=m; 

m is the number of distinct failure times; 

sj-(z) are the number of subjects with covariate value z who survive past tj; 

j=1,..., i; 

r (z) are the number of subjects with covariate value z who are at risk at tj; 

j 

This estimator is simply a separate Kaplan Meier estimate of survival for each level 

of the covariate. In order to use this estimator large amounts of data would have to 

be present at each level of the covariate. In practice however it is extremely unlikely 

that large enough data sets will be available. A natural and practical solution 

therefore is to 'smooth' the data across the covariate space and consider the 

following estimator 

r* (Z) (4.6) 
j=I 
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where 

sj (Z) = 
Z(I 

- xk(tj»Rk(tj)Ah(Z, Zk) 
k=I 

n 
rj (z) ERk(tj)wk(Z) 

k=l 

and 

Rk(t) 
I if tk ý"' t ýO 

else 

Ik(t) 
1 if person k is dead at time t 10 

else 

n= number of observations 

Ah(z, zk) =q 
Z-zk 
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Here, '6h(ZýZk) is a smooth kernel function with the parameter h controlling the 

amount of smoothing. This kernel function will put more weight on the k'th 

subject's covariate value which is close to the value, z, of the covariate of immediate 

interest and exponentially less on those whose values are finther away. 

Point estimates, §(t / z), for S(t / z) for any value of t can then be provided by 

linearly interpolating between failure times as follows 

ý(t /' Z) = (ti - t) * §(ti-, / Z) + (t - ti-, ) * §(ti / Z) for ti., <t< ti 
ti - ti-i 

Confidence bands for S(t / z) can also be produced by using results analagous to 

those for the simple Kaplan Meier (i. e. without a covariate). In the absence of a 

covariate (4.2) gave confidence bands for S(t) of the form 

1§01 expl±1.96jiý( 
ý(t))] 

(See section 4.2 for definitions of ý(t)) 

In the presence of a covariate, confidence bands can be produced in a similar fashion 

except that S(t) is replaced by S(t / z) as follows: - 
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- 7. - 
p(t / Z)] 

exp[±1.96; vär(ý(t/z»] 
- (4.7) 

where 

v(t / Z) -' lOge 1- lOge (S(t / ZA 

and 

vär(e(t / Z» Vär(109 e Z») 
[109e(§(t / Z»] 

2 

with 

rj (z) - sj z 
vär(109e(§(t / Z») =Z'* 

,., si(Z)rj*(Z) 

In essence, this estimator of survival in the presence of a covariate 

incorporates the covariate by basically smoothing the Kaplan Meier estimate of 

survival across the values of the covariate. Therefore, in general, §(t / z) will 

exhibit a "Kaplan Meier type of profile" but, at values of the covariate where 

survival is poorer, §(t / z) will exhibit a sharper rate of descent than at values where 

survival is better. Further, by linearly interpolating between failure times a smoother 
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estimate of survival will be produced across time than is produced with the standard 

Kaplan Meier. 

Section 4.4.2: Non-parametric Hazard based approach 

A second approach to producing a non-parametric estimate for the survivor 

function is to produce a non-parametric estimate for the hazard function and hence 

for the survivor function. The proportional hazards model (section 4.3) incorporates 

a semi-parametric estimator of the hazard function h(t; z) into the estimator of the 

survivor function. Tanner and Wong (1983) suggested the following completely 

non-parametric estimator of the hazard function when no covariates are present. 

n 8(j) 
fi(t) =E -"' - t(j)) - (4.8) 

,j 11 _j+ jKh 
(t 

j=l 

where 

t(I), ... t(n) are the ordered tj's (i. e includes both censored times 

and failure times); 

are the corresponding indicators of whether a failure 

time or censored time has been observed; 
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and Kh(t - t(j)) is a symmetric non-negative kernel usually taken to be 

a Normal Kemel. 

I(t- to)) Kh(t - X(j)) =h Ký-h ) 

with K(x) =1 =e ) 
(_ 1 

x2) 72 =, x, 2 

Hence the estimate of S(t) based on this is 

t 
§(t) = exp fkOdt 

1-0 1 

, Bo 
t 

=exp E-fKh(u-X(j))du 
, n-j+l 

(4.9) 
j. = 10 

n 5(j) t- x(j) 
exp j: -(D 

I- 

j=l n-j+l 

( 

where (D(. ) is the cdf of the standard Normal distribution 

Tanner and Wong derived the following formula for the variance of fi(t): 
- 

var(fi(t)) =2 (t _ y) dy fIn(F(y)) h(y) Kh 
y 
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2 ff (F(x)) n- (F(y)) n (F(X)) nI- F(Y) [(F(X)) n- (F(y)) n 

ysx 
F(X) - F(Y) 

11 

h(y) h(x) Kh (t - y) Kh (t - x) dy dx 

where 

F(. )j (1 
- F(. »n 

h(t) = 'true, unknown, hazard' 

and 

the cumulative distribution function of the observed times 

(i. e. of both the censored and failure times) 

By using a dominated convergence argument, Tanner and Wong showed that 

var(fi(t)) simplifies to 

var(fi(t)) = -1 
f K2 (y) dy h(t) (I - F(t))-' + o((nh)-') 

nh 

I 
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Finally, Tanner and Wong used the projection method (HaJek (1968)) to justify 

asymptotic non-nality of fi(t) and hence asymptotic confidence for the hazard 

function. From these induced confidence intervals can be provided for the survivor 

function by using the standard relationship between hazard and survivor functions. 

More recent papers within this field have considered various properties of the 

estimator proposed by Tanner and Wong. Muller and Wang (1990) discussed the 

use of the first derivative of the hazard in (4.8) to identify points of most rapid 

change in the hazard. Also, Muller and Wang (1994) considered a modified version 

of (4.8) which incorporated variable degrees of smoothing to assist with boundary 

effects. Various papers (Marron and Padgett (1987), Sarda and Vieu (1990), Patil 

(1990)) have examined methods for choosing the optimal smoothing parameter in 

the hazard in (4.8). However, very little work has been done on incorporating a 

covariate into the problem. In their book on local polynomial modelling, Fan and 

Gijbels (1996) briefly discussed the idea of considering neighbourhoods of covariate 

values and, within these neighbourhoods, fitting local proportional haza ds models. 

The parameter estimates will be different within each local proportional hazards 

model and, when the models are all joined together, a smooth estimate of the hazard 

will be produced across both time and the covariate. 

However, by extending the method of Tanner and Wang, a simple alternative 

method exists to incorporate a single covariate z into the hazard function. Consider 
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the following non-parametric estimator of the hazard function allowing for a single 

covariate 

(4.12) fi(t; z) = 
2: 

-1(1. 
j'-)-Kh, 

h: ý 
(Z - z(i) ) 

,., n-j+l 
(t - X(j»K 

where 

is the covariate value corresponding to to) 

and 

Kh 
2 
(Z 

- Z(j)) is a symmetric non-negative kernel as defined earlier in 

the section. 

The corresponding estimated survivor function is 

t 
§(t / Z) = exp ffi(t; Z) ' 

10 

-] 
n SO t 

(4.13) fKh, (u e 2: -ý- - X(j»d� Kh, (Z - zw) Xpl-j=I 
01 

= exp 1: (i) (Dý Khý (Z - Z(i) )] 

j=I 

The variance of ý(t; Z) is as follows: 
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va#(t; z)) = 
[E(fi(t; 

Z)2 
)] 

- 
[E(fi(t; 

Z))]2 

with 

E(fi(t; z)) = fG, (y/z)h(y)Kh, (t-y)dy 

y 

and 

E(fi2 (t; z)) = fG2 (y / z) h(y) K2h. (t - y) dy 
y 

ff E 
Kh2 

(Z 

-Z(r) 
) Kh2 

(Z 

- Z(S) 
) 

n! +2 
., 

En-r+ 
1) (n -s+ (r - 1)! (s -r- 1)! (n - s)! Y<x 1", CS 

F(Y)r-l[l - F(y)] [F(x) 
- F(y)]'-r-I [I - F(x)] n-s+l 

h(y) h(x) Khl (t 
- y)Khl (t - x) dydx 

where 

n nt (y))n-j+l GI(Y/Z) =I Kh, Z-Z(j))F(Y)j-'(I-F 
j=l (j (n j+ 1)! 
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K2 n! hý 
(Z 

- Z(j) 
) 

G2(Y/Z) 
2. 

(Y)j- [l 
- F(y) 

(n-j+1) 

See Appendix 2 for full derivation of these results. 

Unlike the variance of the hazard fimction derived by Tanner and Wong in (4.10) 

there appears to be no obvious simplification of the variance here. 

These results give the exact mean and variance for the hazard function. In order to 

provide confidence intervals for the hazard function it may be possible to adapt the 

results on the asymptotic normality of the hazard function to produce approximate 

confidence intervals for the hazard function and hence the survivor function. 

However, in practice, due to the complexity of computing the variance term, 

calculation of any confidence intervals is impractical for larger sample sizes. In 

practice therefore confidence intervals for S(t/z) will be produced using the 

following approximate pivotal result based on the proportional odds model (Collett 

(1991)) 

( s(t Z) Z) loge 
s(t 

loge ýT- -s(t /, Z» 

var log, 
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with the asymptotic variance of loge being 
Z) (t Z) 

II 
§(t/z) 

- 
§(t/z)) 

giving an approximate 95% confidence interval for log 
( S(t / Z) ) 

of the form 

log 
§(t/Z) 

+ 196*sqrt -I+-1 (4.14) 
(I- 

§(t/Z)l n* §(t/z) n* (I - 
§(t/z)). - 

= [a , 

Hence an induced approximate 95% confidence interval for S(t/z) is of the form 

[ exp(a) exp(b) (4.15) 
I+exp(a)'I+exp(b)] 
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One final point to observe here is that, in practice, this estimator may prove rather 

problematic to implement due to the presence of two levels of smoothing; one 

across the covariate and one across time. 

Section 4.4.3: Non-parametric logistic based approach 

The technique of Logistic regression (Breslow & Day (1980)) is used to 

examine the relationship of a binary response (e. g. dead/alive etc. ) on one or more 

potentially important covariates. The major difference of logistic regression with 

survival analysis is that data is being modelled through time rather than at afixed 

point in time. Hence the binary response for an individual will change at some 

point in time (e. g. from alive to dead). Copas (1983) suggested a non-parametric 

logistic approach to relating a binary response, y, to a single covariate, z. Chapter 2 

of this thesis and in particular section 2.3 gave a detailed discussion of this 

methodology with (2.3) giving the following formula for relating y to z. 

Y, äh(Z, zj)Yj 

. zý P(Y =1/ Z) j=I PZ n 
1 Ah (Z, Zj) 
j=I 

where 
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zj is the continuous explanatory variable for the j th subject 

yj is the discrete. outcome with 2 levels (e. g. response/non-response, 

dead/alive), for thejth subject. 

i. e. yj =0 
for a 'non - response' ýl 

for a 'respc 

Ah(Z, Zj) is a smooth kernel function as defined in section 4.4.1. 

The asymptotic variance of this estimator was given in (2.4) as 

n zj) 2: K 

(Z 

vär(bz) - bz(1 - Pz) 

n 
Y, K( 
j=I 

This estimator deals with afixed point in time and hence does not allow for the fact 

that in survival problems the status (i. e. the binary outcome) of each subject will 

change through time. Therefore the effective difference in a survival problem is that 

the probability of a response (i. e. y= 1) depends on both the covariate, z, and time, 

t. The following approach attempts to derive time dependent estimates of survival 

based on the idea devised by Copas. Let the probability of a subject with covariate 

value z having a response (i. e. y= 1) at time t be estimated as follows 
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A P(Y=I/Z, t) 

where 

n 
I: Ah(z, zj)Yj(t) 
i=l 

n 
I: Ah(z, zj) 
j=l 

- (4.16) 

yj(t)= 
I if subjectj has a response at time t 
0 if subjectj has anon- response at time t 

(i. e. yj (t) is the status of the j'th subject at time t) 

In this section the aim has been the provision of non-parametric estimates of 

the survivor function in the presence of a continuous covariate, i. e. estimates of 

S(t/z). In (4.16) a non-parametric estimate of the probability of being alive at a 

particular point in time given a covariate value is proposed. However, it seems 

logical that the probability of being alive at a particular point in time should be 

equivalent to the probability of surviving past that point in time which, by (4.0), is 

the definition of the survivor function. Therefore (4.16) may present a sensible 

alternative method of estimating S(t/z) as follows: - 

P(Y =1/ t) = 

1 Ah (Z, Zj)Yj(t) 
j=I 

Zäh(Z, 
zj) 

j=I 
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The asymptotic variance of this estimator can be obtained by direct comparison with 

the asymptotic variance of the estimator derived by Copas giving 

2(z - zj)j 

vär(ý(t / z» = g(t / z)(1 - 
ý(t / z) 

j=' 

n Zj 

Y K( -Z. 
j=i h) 

, 
(S(t/z))) to be To produce confidence intervals for S(t/z/), assume logj-loge 

asymptotically normal. A Taylor expansion then produces the following 

approximate variance for log, {-Ioge(S(t/z))) 

värlloge(-lOge(§(t/Z»» '-- 
F 
-- 

1* 
vär(§(t / z» LIOge g(t / Z) * §(t / Z) 

- 

, 
{-Iog, (S(t/z))) of the form giving an approximate interval for log, 

log, loge 6* 1.9 

-log, 
ý(t / Z) ' Z)] 

*ý 

= [a , 
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Hence an induced approximate 95% confidence interval for S(t/z) is of the form 

[exp(- exp(b)) , exp(- exp(a))] 

This non-parametric logistic survival approach will therefore produce an estimate of 

survival based on extending the non-parametric logistic model to allow for the 

pattem of survival through time. 
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Section 4.5: Illustration of the Non-Parametric 

Approaches to Survival Analysis. 

In this section further analysis will be carried out on the subgroup of data from the 

Scottish Melanoma Group database described in section 4.3. Here interest is 

primarily in examining the data to see if sensible simplifying categorisations can be 

found for any continuous covariates which have a significant effect on survival 

prognosis. Initially the three non-parametric methods of estimating survival in the 

presence of a covariate outlined in section 4.4 will be produced for this data set. 

When examining each of the three suggested methods of producing non-parametric 

estimates of survival in the presence of a covariate consideration will be given to the 

effect that tumour thickness has on survival prospects. In studies into survival from 

stage I melanoma the continuous covariate, turnour thickness, is sometimes 

categorised before any analysis. This is only sensible if the categorisation employed 

had meaningful implications for prognosis. However the discrepancies between 

studies as to the actual location of these categorisation point(s) suggest some 

problems with the reasoning used to locate sensible choices for such point(s). For 

example Szymik and Woolley (1992) categorised turnour thickness into two groups 

(<1.70 nim and 'cýtl. 70 mm) whereas Rigel et al (1991) had 4 groups (0-0.85mm, 

0.85-1.69 mm, 1.7 -3.59 mm and >3.6 mm) whilst Keefe and MacKie (1991) went 

as far as to discuss 8 different groupings. The three techniques for analysing 
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survival data presented here will use purely data fitting techniques to allow any such 

categorisations to be highlighted. These methods will hopefully allow sensible 

choices for categorisation point(s) by relying on the data itself to highlight any areas 

where there are marked changes in survival indicating the location of a potential 

categorisation point. 

Section 4.5.1: Melanoma Example: Kaplan-Meier based approach 

Recall that the data set being considered consists offemales with ulcerated 

lesions on an axial site. In Section 4.3 a Cox proportional hazards model was fitted 

to incorporate the effect of tumour thickness on survival prospects. Figure 4.3.3 

presented a graphical display of the fitted model at the selected tumour thicknesses 

of 1,3,5,7 and 9 mm. Here the Kaplan Meier based approach incorporating a 

covariate will be a lied to the data set. PP, 

Figure 4.5.1 displays estimates of the survivor function based on a selection 

of values for the smoothing parameter in (4.6). This figure iflustrates the effect the 

clýoice of smoothing parameter can have on the interpretation of the results. In 

frame 1 of Figure 4.5.1 there is gross undersmoothing of the data leading to a very 

confused picture of what is happening across the levels of the covariate. Conversely 

frarric 9 demonstrates what happens if the data is oversmoothed. A comparison of 

frame 9 of Figure 4.5.1 with Figure 4.3.3 leads to the conclusion that if this 'Kaplan 
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Meier style' estimator is oversmoothed it will produce estimates of survival which 

are similar to those produced by the proportional hazards model. A 'sensible' choice 

of smoothing parameter appears to be around 1.5 to 2 (i. e. frame 4 or frame 5 of 

Figure 4.5.1). This choice of smoothing parameter leads to the conclusion that the 

proportionality assumption inherent in the proportional hazards model fitted in 

section 4.4 may not be reasonable given the representation of the underlying trend in 

this data set. It appears that instead of a steady decrease in survival prospects across 

the tumour thickness as implied by the proportional hazards model there is in fact a 

sharp drop in survival between thicknesses of 3 and 7 mm. Estimates of survival 

obtained from the proportional hazards model seem reasonable up to about 3 mm. but 

greater than 3 mm. the proportional hazards model appears to be overestimating the 

probability of survival. 

Figure 4.5.2 displays a contour plot for the survivor function given by 

choosing a value for the smoothing parameter of 2 as suggested by Figure 4.5.1. 

This allows a clearer picture of the pattern of survival to be obtained. The contour 

plot suggests that for turnour thicknesses less than about 3 mm survival prospects 

drop off at a relatively slow rate through time and, in general, survival is reasonably 

good for these values of tumour thickness. However, for turnour thicknesses 

between 3 nim and, about 7 mm there is evidence that survival drops off more 

rapidly in the earlier months before levelling off. Finally, for tumour thicknesses 

greater than 7 mm survival drops off very rapidly in the early months and, overall, 

survival is relatively poor for these values of tumour thickness. In terms of 
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producing categorisations for this variable these results would perhaps suggest that 

two categorisation points exist; firstly at a tumour thickness of approximately 3 nun 

and then later at around 7 mm. 

Confidence bands can also be produced for the individual values of turnour 

thickness for a specified smoothing parameter. Figure 4.5.3 shows separate 

confidence bands for each of the 5 important values of tumour thickness for the 

chosen smoothing parameter of 2. These confidence bands indicate the precision in 

the estimates of survival and they demonstrate that the most precise estimates of 

survival are obtained within the first two to three years of follow up and for turnour 

thicknesses of up to about 5 nun. This corresponds to the five-year follow-up 

pattern of the SMG and the sad fact that few patients with "thick" tumours survive 

long after diagnosis. 

Section 4.5.2 Melanoma example: Non-parametric Hazard approac 

Here the approach based on the hazard function (Section 4.4.2) is applied to 

the melanoma data set. One important point to notice with this technique is that 

there are two distinct levels of smoothing present: one across time and one across 

the covariate. This leads to the diagrammatic representation of results being 

somewhat complicated. However Figures 4.5.4 (a) and (b) illustrate the effect of 

both levels of smoothing on estimates of survival. 
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The smoothing across time does not seem to have a major effect on the 

estimate of survival as a reasonably similar picture for the pattern of survival is 

obtained regardless of the "time" smoothing parameter. However the level of 

smoothing across the covariate has a more marked effect on the estimates of 

survival. As the level of smoothing across the covariate increases the estimates of 

survival become much flatter. The undersmoothing present in frame 1 of Figure 

4.5.4(a) shows estimates of survival which appear to exhibit a step pattern in nature 

but by the time frame 9 of Figure 4.5.4(b) is considered the curves representing the 

different levels of the covariate have all become very flat in nature. In general for 

larger values of the covariate, this method of estimating survival produces estimates 

which appear slightly higher than those obtained by the method discussed in section 

4.5.1. In particular it produces estimates of survival at a Breslow thickness of 9 mm 

which appear remarkably high. A closer examination of the data plot in Figure 4.3.2 

demonstrates that this may be due to a couple of observations which have large 

values of Breslow thickness (12 mm and 13mm) and have both a long follow-up 

time and are still alive. These observations may be having undue influence on the 

estimate of survival. This unusual pattern can be removed but at the expense of 

smoothing out other features of the data. This would suggest that this technique is 

quite sensitive to the presence of unusual observations in areas where there is little 

data present. However, the method appears reasonably satisfactory in areas where 

the majority of the data is found. 

A logical combination of smoothing parameters appears to be around frame 

4 of Figure 4.5.4(b) (i. e. a time smoothing value of 3 in conjunction with a covariate 
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smoothing value of 0.9). Figure 4.5.5 shows a contour plot for this chosen 

combination whilst Figure 4.5.6 displays the corresponding approximate confidence 

bands for the survivor function at the five previously selected turnour thicknesses. 

These plots back up the impression given in section 4.5.1 that the proportionality 

assumption may not be sufficient to describe the underlying pattern in this data set. 

This method does however give a slightly different pattern to survival than that 

observed in section 4.5.1. There is again evidence that survival drops off relatively 

slowly for smaller values of tumour thickness. However, here there is evidence that 

for turnour thicknesses between 2.5 mm and 5 mm the drop in survival is steeper 

than was suggested by the Kaplan Meier method. Between 5 and 8 mm the two 

methods again suggest similar patterns of survival. Finally, for turnour thicknesses 

greater than 8 mm the Haza d based approach suggests that survival prospects drop 

off at a much slower rate and are, in fact, similar to those for tumour thickesses less 

than about 2.5 mm. Apart from the unexpectedly slow rate of the drop in survival 

for greater than 8 nun which may be explained by a few "unexpected" observations a 

comparison of the estimates of survival with the data plot in Figure 4.3.2 does give 

some credence to these results. Figure 4.3.2 shows few deaths and a large presence 

of high censored values up to 2 mm suggesting survival prospects will be reasonably 

good for such patients. This is followed by a number of early deaths among subjects 

whose turnours are between 2 and 5 mm thick suggesting a steeper decline in 

survival prospects. The existence of some reasonably high death and censored times 
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around 7-8 mm may also suggest that the levelling off of survival prospects is also 

plausible here. 

In terms of categorisation points these results would suggest that three 

categories perhaps exist; the first category being from 0-2.5 mm, the second from 

2.5-8mm. and the third being >8mm. In the first and third categories estimates of 

survival exist which suggest little change in survival across the values of the 

covariate whereas in the second category the estimates of survival appear to drop 

quite markedly. 

Section 4.5.3: Melanoma Example: Non-parametric logistic survival 

approach 

A third non-parametric method of estimating survival was described in 

section 4.4.3. This method adapted the standard non-Parametric logistic approach to 

incorporate the time-dependent survival. This method also involves the use of one 

smoothing parameter and a subjective search will again be used to choose an 

appropriate smoothing value. Figure 4.5.7 shows survival estimates obtained for a 

range of smoothing values while Figures 4.5.8 and 4.5.9 display, respectively, a 

contour plot and confidence bands for the resulting 'optimal' choice of smoothing 

parameter. This method again highlights the slower drop in survival prospects that 

is present for smaller tumour thicknesses. It also shows that survival prospects drop 
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off far more rapidly for patients with larger tumour thicknesses. However there is an 

inherent problem with this method which can clearly be seen by comparing each 

frame of Figure 4.5.7 with either Figure 4.3.3 or indeed Figures 4.5.1 and 4.5.4. 

This method of estimating survival produces biased estimates of survival regardless 

of the tumour thickness or the smoothing parameter. The method produces 

underestimates of the probability of survival. Comparison of frame 9 of Figure 

4.5.7 with the proportional hazards estimates shown in Figure 4.3.3 show that on 

average the estimates of survival produced by this method are approximately 20% 

lower than the proportional hazards estimates and can even be as much as 40% 

lower. In the absence of a covariate Watt et al (1996) compared the estimates of 

survival produced by the method of Kaplan and Meier to a simple estimator which 

ignored the presence of censored observations. Their findings suggested that, by 

ignoring the censored observations, the simple estimator will underestimate survival 

compared to the Kaplan Meier with the degree of underestimation increasing both 

through time and as the proportion of censoring increases. Similarly, here, at any 

specific point in time, the logistic regression based approach to survival analysis 

also ignores any censored observations, again producing biased underestimates of 

survival. By definition, the proportion of censored observations increases through 

time and hence there will be a corresponding increase through time in the degree of 

underestimation present with this method. 
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Section 4.6: Simulation Study 

Three possible non-parametric approaches for producing estimates of 

survival in the presence of a single, continuous covariate were introduced in Section 

4.4 and illustrated in Section 4.5. To consider and compare the results of these three 

approaches it is advisable to carry out a simulation study across a variety of contexts 

and models likely to be similar to those met in practice. Here, survival data will be 

simulated from known situations and the estimates of survival obtained using the 

different approaches will be compared with the underlying, known survival. Clearly 

there are a multitude of possible survival scenarios which could be simulated and 

ideally all these scenarios should be given the relevant deliberation. However the 

practicalities involved in caffying out lengthy simulations make it inevitable that 

only a small subset of such can be considered. In this section three appropriate 

scenarios will be concentrated on; firstly the situation where the potential covariate 

has no effect on survival, secondly where the proportional haza ds model is a 

suitable model to explain the effect of the covariate and thirdly the situation where a 

single categorisation point is present in the covariate. The first two scenarios are 

relatively self explanatory but the third perhaps requires some explanation. The 

third scenario corresponds to there being two specific, different hazard rates present. 

These two hazard rates will lead to 2 separate survival curves, one survival curve for 

covariate values less than the categorisation point and a different survival curve for 

covariate values greater than the categorisation point. 
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Various measures exist to quantify how reliable an estimator is at 

reproducing an underlying, known situation. In the context of a survival problem 

where interest lies in producing estimates of survival across both time and a 

covariate, each method of estimation will produce an estimate of the true surface. In 

this situation there are three obvious questions which may be asked about any 

particular method of producing an estimate of the true surface; firstly there is the 

question of the precision of the estimated surface when compared to the true surface, 

secondly the issue of whether the estimated surface exhibits any inherent bias and 

thirdly what levels of coverage are attained by the method of estimation (i. e. how 

often do the confidence bands capture the true surface). 

It is difficult to describe a complete surface so here summary measures will 

be used to invetigate precision, bias and coverage. One such summary measure to 

quantify the precision of the estimated surface compared to the true surface would be 

to consider the difference in total squared area beneath the two surfaces. In this 

section the average of this difference in total squared area across all simulations 

will be used as an objective measure ofprecision. 

Gasser and Muller (1979) and Hardle (1990) showed that -many of the 

standard smooth non-parametric estimators exhibit inherent bias. The aim in this 

section is to discover which, if any, of these non-pararnetric approaches to survival 

analysis here show bias. Again summary measures are required and hence, in order 

to examine aspects of bias the difference in total area averaged across all 
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simulations will be used as a measure of how much bias is present with each of the 

approaches. The closer this value is to zero, the less bias that is present. 

Finally, for each method of estimation, rather than considering the overall 

coverage function across time and the covariate, the summary measure of coverage 

used here will consider specified points across both time and the covariate. In the 

simulations which follow confidence intervals for the true survival will be calculated 

at three time points; the lower quartile, the median and the upper quartile of the 

observed times (i. e. includes both failure and censoring times), and at two covariate 

values; the lower quartile and the upper quartile. This allows the coverage to be 

evaluated at six time/covariate combinations. The confidence intervals will be 

constructed based on a nominal coverage of 95%. One point to notice is that the 

specific values for the aforementioned lower quartile, median and upper quartile 

time values will change as the proportion of censoring changes. 

In the simulations which follow survival data have been simulated with three 

levels of censoring; approximately 15%, 30% and 45%. A range of sample sizes 

have been considered as follows; 25,50,75,100,250 and 500 observations. The 

results presented are based on carrying out 500 simulations of each sample size with 

each proportion of censoring. 
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It is of interest to compare the three methods of estimation both within and 

across scenarios in terms of precision, bias and coverage. To allow direct 

comparison across scenarios follow-up times have been generated in each scenario 

to produce, on average, with 30% of censoring, a lower quartile follow up time of 2 

years, a median of 5 years and an upper quartile of 10 years. These values will 

hopefully correspond to follow-up times which are similar to those met in practice. 

Section 4.6.1: Scenario 1: Simulated data with no covariate effect 

The simplest model of interest is where the survival time is unaffected by a 

measured covariate. One way to simulate data of this form is to generate covariate 

values from a distribution which is independent of both the survival and censoring 

times. Survival times are simulated from an Ex(O) distribution and censoring times 

from an Ex(ý) distribution where ý can be varied to alter the proportion of censoring. 

The actual observed time is taken to be the minimum of the survival and censored 

times. Generating the survival times from an exponential distribution implies that 

the hazard rate will be uniform. The covariate values are simulated independently 

from a simple Un(0,1) distribution. This will produce data from a model where the 

_% covariate has no effect on survival prospects. Figure 4.6.1 displays a three 

dimensional perspective plot of the true underlying surface for this scenario. Table 

4.6.1 details the parameter values used in the simulations to produce the required 

proportion of censoring. Table 4.6.2 provides a summary of the corresponding 
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observed follow-up times. In this scenario the coverage function will be displayed at 

the time values specified in table 4.6.2. 

Survival times: 0 0.0909 

Censoring times: 0.0185,0.0435,0.0820 

corresponding to 15%, 30%, 45% censoring 

Table 4.6.1 

Censoring Proportion Observed follow-up 

times 

Lower quartile Median Upper quartile 

15% 2.5 years 5.9 years 11.9 years 

30% 2 years 5 years 10 years 

45% 
I 

1.6 years 
I 

3.8 years 
I 

7.6 years 
I 

Table 4.6.2 

For each non-parametric approach the resultant estimates of survival will 

depend on a suitable choice of smoothing parameter(s). Under scenario 1, Figure 
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4.6.2 shows the patterns of precision and bias across different choices of smoothing 

parameter for the Kaplan Meier based approach based on 500 simulations of 50 

observations. Similar patterns were obtained across all sample sizes for each of the 

three different non-parametric methods of estimation. Therefore, in the rest of this 

section, rather than considering a range of smoothing parameters, the results will be 

based on an "optimal" choice of smoothing parameter. The smoothing parameter is 

optimal in the sense that in a particular simulation the "average difference in total 

squared area" is minimised with this value of the smoothing parameter. 

Figure 4.6.3 allows a comparison to be made across the three approaches in 

terms of the degree of precision produced (Note that the scale in frame I of Figure 

4.6.3 is massively different from the scale in frames 2 and 3). These results clearly 

suggest that, regardless of sample size and proportion of censoring, the Kaplan 

Meier based approach produces the lowest values for the "average difference in total 

squared area". This would suggest that the Kaplan Meier based approach is the 

most precise of the three methods of estimation. 

With the Kaplan Meier based approach (frame I of Figure 4.6.3) there is 

I evidence that both the sample size and the proportion of censoring have an effect on 

precision for sample sizes of less titan 100 with greater precision being achieved 

with smaller proportions of censoring. Once a sample size of 100 is reached there is 

little effect of either the sample size or the proportion of censoring on precision. 
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The hazard based approach (frame 2 of Figure 4.6.3) produces estimates 

which arc less precise than those produced by the Kaplan Meier approach but clearly 

more precise than those obtained by the logistic based approach. An increase in the 

sample size initially leads to a small increase in the precision of the estimates. 

However, once a sample of about 75 observations is reached any increase in the 

sample size appears to have little effect on the precision of the estimates. Regardless 

of sample size, there is a clear decline in precision when a 45% proportion of 

censoring is present but very little difference between 15% and 30% censoring. 

The estimates produced by the logistic based approach exhibit levels of 

precision which are clearly poorer than those of the other two methods. The results 

displayed in frame 3 of Figure 4.6.3 also show a slightly different pattern than those 

obtained with both the Kaplan Meier and hazard based approaches. A similar 

pattern is observed with regard to sample size where an initial increase in precision 

is obtained as the sample size increases before this improvement levels off. 

However the proportion of censoring appears to have a far more marked effect on 

the levels of precision. An increase in censoring here leads to afar more marked 

decrease in precision than was observed with the other two methods of estimation. 

In terms of bias, Figure 4.6.4 illustrates quite clearly that the Kaplan Meier 

based approach shows the least bias (Note that the scales in each of the three frames 

in Figure 4.6.4 are different). The hazard based approach produces estimates which 

exhibit greater levels of bias than the Kaplan Meier based approach but much less 
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than the logistic based approach. The logistic based approach clearly produces 

estimates which exhibit very high levels of bias, and this method clearly 

underestimates the true survival. 

The Kaplan Meier based approach (frame I of Figure 4.6.4) actually exhibits 

very little bias irrespective of sample size or proportion of censoring. In general the 

method produces slight underestimates of the true survival, an underestimation 

which increases, slightly, as the proportion of censoring increases. This is 

particularly true for smaller sample sizes, but, once larger sample sizes are used (> 

250 observations), the degree of bias is almost negligible, regardless of the 

proportion of censoring. 

The hazard based approach (frame 2 of Figure 4.6.4) shows more bias than 

the Kaplan Meier approach, a bias which increases as the proportion of censoring 

increases. Regardless of sample size, the method appears to produce underestimates 

of the true surface with 30% and 45% censoring. However, with 15% censoring, the 

method produces overestimates for smaller sample sizes but exhibits very little bias, 

if any, for larger sample sizes. The levels of bias displayed here, although not as 

good as with the Kaplan Meier based approach, still, do not appear particularly 

excessive. 
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The logistic based approach (frame 3 of Figure 4.6.4) produces levels of bias 

which would appear to be unacceptably high, particularly for higher proportions of 

censoring. Regardless of sample size this method produces estimates which 

underestimate the true survival by a reasonably large margin. The degree of bias is 

influenced heavily by the proportion of censoring with an increase in the amount of 

censoring leading to a corresponding increase in bias. 

In terms of coverage, Figures 4.6.5 to 4.6.7 display the results for the three 

methods of estimation respectively. In each figure there are six frames representing 

the six combinations of the time and covariate values discussed in Section 4.6.1. 

The covariate lower quartile value equals 0.25 with the covariate upper quartile 

value being 0.75. These figures clearly demonstrate that the coverage achieved by 

the Kaplan Meier based approach is superior to the coverage with either of the other 

two methods. In turn, the hazard based approach displays levels of coverage which 

are superior to those achieved with the logistic based approach. The Kaplan Meier 

based approach is actually the only method which appears to achieve the nominal 

levels of 95% coverage. 

With the Kaplan Meier based approach (Figure 4.6.5) the coverage increases 

through time but appears very similar at each of the two covariate, values. This is 

perhaps as expected since the width of the intervals will, in general, increase through 

time leading to higher levels of coverage being achieved. Also, in this scenario, the 

covariate has no effect on the pattern of survival and, therefore, the levels of 
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coverage should not depend on the value of the covariate. For the lower quartile of 

the observed times (i. e. frames I and 4) there is evidence that the coverage increases 

with increasing sample size and decreases as the proportion of censoring increases. 

However, for the median and lower quartile of the observed times, neither the 

sample size or proportion of censoring appear to have any effect on the levels of 

coverage. The main reason for this is that, regardless of sample size and proportion 

of censoring, the coverage is invariably very good at these observed times. 

With the hazard based approach (Figure 4.6.6), far lower levels of coverage 

are, in general, achieved than with the Kaplan Meier based approach. Here, neither 

the value of the observed time or the value of the covariate seem to have any effect 

on the coverage, as the same picture is essentially observed in each frame of Figure 

4.6.6. Regardless of the observed time or the value of the covariate the coverage 

decreases both with sample size and proportion of censoring. As an increase in 

censoring indicates the presence of less "complete" information it is Perhaps sensible 

to expect the coverage to decrease as the proportion of censoring increases. 

However, it is less obvious why the coverage should decrease as the sample size 

increases. There appear to be two factors which may be contributing to this decrease 

in coverage with increasing sample size. Firstly, the levels of precision and bias 

(Figures 4.6.3 and 4.6.4) show little change with sample size, particularly when 

larger sample sizes are being considered. As the width of the confidence intervals 

will decrease with increasing sample size, it is clear that if the bias does not show a 

corresponding decrease, then, for larger sample sizes, less intervals are likely to 

contain the true value. This will invariably lead to poorer coverage with larger 
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sample sizes. Secondly, these intervals are approximate intervals based on the log 

odds (see Section 4.4.2) and are heavily dependent on the sample size (see 4.15). 

Therefore, these intervals may, in general, be too narrow for larger sample sizes 

leading to lower levels of coverage being achieved. These conclusions are 

confirmed, to a certain extent, by Figure 4.6.8 which shows the results for three 

specific simulations of sample sizes 25,100 and 250 observations respectively and 

15% censoring. The figure displays the estimated survival curve with the solid line 

(confidence bands as dotted lines) and the true survival curve with the thicker solid 

line. Figure 4.6.8 clearly shows that sample size has a large effect on the width of 

the confidence intervals with the intervals becoming increasingly narrow as the 

sample size increases. However the sample size does not appear to have much, if 

any, effect on either precision or bias. Although these conclusions are only based on 

only one simulation of each sample size they do give some back-up to the somewhat 

unexpected results obtained from Figure 4.6.6. An examination of results from 

further simulations suggests that, as in Figure 4.6.8 and particularly for larger 

sample sizes, these approximate intervals, based on the hazard approach, regularly 

just fail to capture the true survival curve. In future work it may therefore be 

necessary to give further consideration to using the exact form of the variance 

detailed in Section 4.4.2 as the approximate intervals used here clearly appear to be 

too narrow for larger sample sizes. 

Finally, the logistic based approach shows very poor levels of coverage, 
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particularly for 30% and 45% censoring and larger sample sizes. Here the main 

reason for the poor levels of coverage is that this method produces biased 

underestimates of the true survival (see frame 3 of Figure 4.6.4) with the level of 

underestimation increasing as the proportion of censoring increases. Again the 

decrease in coverage with larger sample sizes is due to a combination of similar 

levels of bias being present, regardless of sample size, and narrower intervals being 

produced with larger sample sizes. 

In summary, the Kaplan Meier approach can fairly confidently be used to 

produce estimates of survival in the situation where the covariate of interest has no 

effect on survival. The Kaplan Meier based approach has been shown to be clearly 

superior to both the other methods in terms of precision, bias and coverage. The 

hazard based approach produced reasonable estimates in terms of the levels of 

precision and bias. However, it is clear that the approximate confidence intervals 

based on the hazard approach should be used with caution, particularly if larger 

sample sizes are being considered. Finally the logistic based approach does not 

appear satisfactory as it produces far poorer levels of precision in the estimates 

coupled with unacceptable amounts of bias and low levels of coverage. 

Section 4.6.2: Scenario 2: Simulated data from a proportional hazards model. 

In this example, the data are generated from a proportional hazards model. 

This allows comparison of the three proposed non-parametric methods by comparing 

them to the true, underlying, proportional hazards curve. Here, the data are 
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generated from a proportional hazards model with regression coefficient, P, equal to 

-1. For a given covariate z generated under a Un(0,1) distribution, to generate 

observed follow-up times from the above model, survival times are simulated from 

an Ex(Oe') distribution and censoring times from an Ex(ýe-) distribution where ý 

can again be varied to alter the proportion of censoring. Figure 4.6.9 displays a three 

dimensional perspective plot of the true underlying surface. Under this scenario, 

table 4.6.3 details the parameter values used in the simulations whilst table 4.6.4 

summarises the corresponding observed follow-up times. 

Survival times: 0=0.1602 

Censoring times: ý=0.0281,0.0711,0.1321 

corresponding to 15%, 30%, 45% censoring 

Table 4.6.3 

Censoring Proportion Observed follow-up 

times 

Lower quartile Median Upper quartile 

15% 2.4 years 6.1 years 12.7 years 

30% 2 years 5 years 10 years 

45% 1.6 years 3.9 years 8.2 years 

Table 4.6.4 
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Figures 4.6.10 to 4.6.14 show the results for this simulation study based on the use 

of an "optimal" smoothing parameter as outlined in Section 4.6.1. Figure 4.6.10 

displays plots of the average difference in total squared area across all simulations 

against sample size separately for each proportion of censoring. Again each frame 

of the figure refers to the simulation results for a different approach. Figure4.6.11 

shows equivalent plots for the average difference in total area. Figures 4.6.12 to 

4.6.14 display plots of the coverage against sample size for each of the three non- 

parametric approaches respectively. 

In terms of precision a comparison of the three frames of Figure 4.6.10 

shows that the non-parametric Kaplan Meier based approach app-ears to produce the 

most precise results regardless of sample size and proportion of censoring (Note that 

the scale in frame I is different to the scales in frames 2 and 3). The levels of 

precision based on the Kaplan Meier approach appear to improve as the sample size 

increases and as the proportion of censoring decreases. Any changes which occur in 

the levels of precision are more noticeable for smaller sample sizes. The hazard 

based approach appears to produce estimates which are less precise than those 

produced by the Kaplan Meier based approach, with the levels of precision again 

decreasing as the proportion of censoring increases. The effect of increasing sample 

size is less noticeable with the hazard based approach than with the Kaplan Meier 

based approach. The logistic based approach produces estimates which clearly 

display the poorest levels of precision. As in scenario I there is clear evidence with 

the logistic approach that the proportion of censoring has the most noticeable effect 
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on the levels of precision. A large decrease in precision is observed as the 

proportion of censoring increases. A general point about the effect of the sample 

size is that it is interesting to observe that there is an initial increase in the precision 

of the estimates with sample size for each of the approaches but this precision does 

not appear to change after a sample of about 75 observations is obtained. This is 

reassuring as it implies that the estimators will be reasonably stable even for 

moderate sample sizes. A comparison of the levels of precision obtained in scenario 

I (Figure 4.6.3) with the levels of precision obtained in scenario 2 reveals that the 

Kaplan Meier based approach perfonns slightly better in the scenario where the 

covariate has no effect on survival rather than when the proportional hazards model 

is a suitable model to explain the underlying relationship. In contrast, the hazard 

based approach shows little difference across the two scenarios whilst the logistic 

based approach perform better when the proportional hazards model is an 

appropriate underlying model. 

In terms of bias Figure 4.6.11 demonstrates that overall the Kaplan Meier 

based approach exhibits the least bias followed by the hazard based approach whilst 

the logistic based approach shows quite large bias in the estimates of survival (Note 

that the scales are different in each of the three frames). There is evidence from 

frame I of Figure 4.6.11 that for the Kaplan Meier based approach an increase in 

sample size will lead to a corresponding slight drop in the presence of bias and, for 

large sample sizes (greater than or equal to 250), the bias present with the Kap! an 

Meier approach appears negligible. However frame 2 of Figure 4.6.11 suggests that 

251 



- (z 
0 
CL 
Q. 

co 
ýo 
2 

co 
CL 
co 

Y- 

Cl) -W 
cm 

N it 
cm C75 

r 
000 I W.. 

222 

rr 000 C. C. Q. 

, Z.. 

Z5 U) 

0 
0 

CD C: ) 
c9 

(0 
0 

Ci. 

(n -0 
0 a) 
CL (0 

cm 

0 

0 

"1 

"I 
"I 

"I 

:1 
:1 

:1 

:I 

6 
in 

a 0 

. 

m u) 
CL (n E Co lu (n M 

m 

E cli 

0 
0 

0 

"I 

"I 

I 

0-0 Z'0- 17,0- 9,0- 01 S'0 o*O so- o't. s. t. 0. Z- 0 z- * c- e 
eaiv 113101 Ul aDuaiellic) BeeiaAv eaJV 12101 Uf ODUaJalltC1 GßelOAV eaiv jeloj. ul eDuajall! (] eßeigtv 

2 52) 



an increase in sample size will not necessarily lead to a decrease in bias for the 

hazard based approach and may in fact lead to a slight increase in bias for higher 

proportions of censoring (i. e. 30% and 45% censoring). The sample size has 

relatively little cffect on the bias present with the logistic based approach. Also, for 

all three approaches, there is evidence to suggest that a change in the proportion of 

censoring will lead to a change in the amount of bias. For each method there is a 

larger presence of bias with the higher proportions of censoring. In general, the 

Kaplan Meier based approach produces results which show only a relatively small 

level of bias to be present. However, the bias present with the hazard based 

approach is more noticeable, particularly for 30% and 45% censoring. Finally the 

logistic approach produces very poor results in terms of bias. It clearly produces 

estimates of survival which are always less than the true survival regardless of 

sample size and proportion of censoring. It is also heavily influenced by the 

proportion of censoring with, in general, an increase in censoring leading to a 

corresponding increase in bias. Comparing the bias from scenario I (Figure 4.6.4) 

with scenario 2 it can be seen that the Kaplan Meier based approach exhibits 

marginally more bias when the proportional hazards model is appropriate. The 

hazard approach shows no difference across the two scenarios in terms of bias and 

the logistic based approach displays slightly less bias when the proportional hazards 

model is appropriate. 

Figures 4.6.12 to 4.6.14 display plots of the coverage for each of the three 

methods of cstimation. As in scenario 1, the covariate lower quartile value equals 

253 



0.25 with the covariatc upper quartilc value being 0.75. Tbcse indicate that the 

Kaplan Meier based approach produces the "best" coverage, followed by the hazard 

based approach with the logistic based approach again exhibiting poor levels of 

coverage. Regardless of the method used, the patterns of coverage are very similar 

to those observed in scenario I with the slight indication that, in general, the 

coverage is marginally better under scenario 1. Again, the Kaplan Meier based 

approach appears to be the only method which achieves the nominal, 95% level, of 

coverage. 

I'he Kaplan Meier based approach (Figure 4.6.12) exhibits relatively high 

levels of coverage particularly for the later time values. The coverage is again 

higher with smaller proportions of censoring and the sample size has little, if any, 

Cffect on the coverage. With the hun d based approach (Figure 4.6.13) the coverage 

is, generally, not as high as would be anticipated. This is particularly the case for 

larger sample sizes and larger proportions of censoring. Again, the use of 

approximate intervals is possibly the main contributory factor to the poor levels of 

coverage. As in scenario I the logistic based approach (Figure 4.6.14) produces 

very poor levels of coverage, and when a combination of a large sample size and a 

large proportion of censoring are present it is doubtful if the true surface will be 

captured at any combination of time/covariate values. 

7liese results would suggest that the Kaplan Meier based approach is a 

reasonably satisfactory method at reproducing estimates of survival from an 
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underlying, known, proportional hazards model. This method exhibited levels of 

precision and bias which were not excessive coupled with reasonable levels of 

coverage suggesting that this method would be the best method to use in practice. 

Although it is clearly not as good as the Kaplan Meier based approach, the haza d 

based approach performs reasonably well under this scenario in terms of precision 

and bias. However it must be pointed out that it produces levels of coverage which 

are lower than would be anticipated. Future work with the hazard based approach 

should again consider the use of an exact variance term in order to improve the 

levels of coverage. Finally reservations must be held about the logistic approach. It 

clearly produces estimates of survival which are less precise than those produced by 

either of the other two methods. On a more worrying note the estimates produced by 

the logistic based approach were clearly biased, producing underestimates of 

survival, with the degree of underestimation increasing as the proportion of 

censoring increases. 

Section 4.6.3: Scenario 3: Simulated data with a single categoriSation point 

Here data have been simulated from a model where there is a single change 

in the hazard rate at a specified covariate point. Initially, in order to simulate data 

from this model where two distinct hazard rates are present, the covariate values are 

simulated from a simple Un(0,1) distribution. Then, for values of the covariate less 

than 0.5, survival times are simulated from an Ex(O) distribution and censoring times 

from an Ex(ý) distribution. For values of the covariatc greater than or equal to 0.5, 
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survival times are simulated from an Ex(kO) distribution and censored times from an 

Ex(ký) distribution. In the simulations presented here k was chosen as 2.7. The 

parameter ý can then be varied to alter the proportion of censoring. Here, generating 

the survival times from two different exponential distributions implies that the two 

hazard rates will be from two different uniform distributions. Under this sC'enario, 

table 4.6.5 details the parameter values used in the simulations whilst table 4.6.6 

summarises the corresponding observed follow-up times. 

Survival times: 0 0.1551 

Censoring times: 0.0275,0.0713,0.1251 

corresponding to 15%, 30%, 45% censoring 

Table 4.6.5 

Censoring Proportion Observed follow-up 
times 

Lower quartile Median Upper quartile 

15% 2.4 years 6.0 years 13.0 years 
30% 2 years 5 years 10 years 
45% 1.6 years 4.0 years 8.7 years 

Table 4.6.6 

Figures 4.6.15 to 4.6.19 show the results for this simulation study based on 

the use of an "optimal" smoothing parameter as outlined in Section 4.6.1. In terms 
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of precision Figure 4.6.15 indicates that the Kaplan Meier based approach again 

produces the most precise estimates (Note that the scale in frame 1 is different to the 

scales in frames 2 and 3). Comparing the hazard based approach and the logistic 

based approach, it appears that the hazard based approach produces more precise 

estimates although any difference between the two methods appears to only be 

present for smaller sample sizes. Regardless of the metbod used, the precision 

increases, in general, with increasing sample size. However, in contrast with 

scenarios I and 2, the precision does not necessarily decrease as the proportion of 

censoring increases. Also, unlike in scenarios I and 2, the effect of sample size on 

precision is more marked for both the hazard and logistic based approaches. In 

scenarios I and 2 increasing the sample size only led to a minor improvement in 

precision with the hazard and logistic based approaches. Here, increasing the 

sample size produces a clear improvement in the levels of precision with all 3 non- 

parametric approaches. Finally, regardless of method used, the precision achieved in 

this scenario is slightly poorer than obtained under scenarios I and 2. 

Figure 4.6.16 displays plots of the bias against sample size for each of the 

three methods of estimation (Note that the scales are different in each of the three 

frames). The Kaplan Meier based approach exhibits the least bias followed by the 

hazard based approach then the logistic based approach. In general, the Kaplan 

Meier based approach displays relatively minor levels of bias which tend to decrease 

with increasing sample size. However, there is one exception to this, where the bias 

actually appears to increase when moving from 75 to 100 observations. For smaller 
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sample sizes the bias appears to increase as the proportion of censoring increases. 

However, for larger sample sizes the bias seems to decrease as the proportion of 

censoring increases although any apparent differences are almost negligible. In this 

scenario, the levels of bias displayed by the Kaplan Meier based approach are 

similar to those displayed in scenarios I and 2. When consideration is given to the 

hazard based approach it is evident that it produces relatively minor levels of bias 

with 15% censoring. However with 30% and 45% censoring the hazard based 

approach will clearly underestimate the true survival, with the degree of 

underestimation appearing to be greater for larger sample sizes. Compared with 

scenarios I and 2, the levels of bias for the hazard based approach are slightly higher 

under this scenario, particularly for 30% and 45% censoring. Finally, the logistic 

based approach shows very little effect of the sample size on the levels of bias with 

the proportion of censoring dominating the pattern of bias. The bias is clearly 

greater with larger proportions of censoring. Regardless of the proportion of 

censoring or sample size, the logistic based method displays slightly less bias in this 

scenario compared to scenarios 1 and 2. 

Figures 4.6.17 to 4.6.19 display plots of the coverage for each of the three 

methods of estimation. Notice that, in this scenario, the coverage has been evaluated 

at a third covariate value; at the actual location of the single categorisation point. 

Therefore the three chosen covariate values were as follows: 0.25 (the lower 

quartile), 0.5 (the median - location of the cutpoint) and 0.75 (the upper quartile) 

These figures indicate that the Kaplan Meier based approach produces the "best" 
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coverage, with both the hazard based approach and the logistic based approach 

exhibiting poor levels of coverage. The Kaplan Meier based approach is again the 

only method which comes close to achieving the nominal 95% level of coverage. 

Compared to scenarios I and 2, the levels of coverage displayed by the Kaplan 

Meier and particularly the hazard based approach are poorer in this scenario whereas 

the logistic based approach actually performs better in this scenario. In general, for 

each of the three methods of estimation, the coverage appears to drop at the location 

of the categorisation point (i. e. at the median covariate value), regardless of the'time 

value. This is perhaps to be expected as this is the point where a distinct change in 

the pattern of survival exists and, as such, should prove the most difficult point at 

which to obtain "good" estimation. Each of the three methods show a decrease in 

coverage as the proportion of censoring increases and both the hazard and logistic 

based approaches again show a decrease in coverage as the sample size increases. 

These results suggest that the Kaplan Meier based approach will produce the 

"best" results in terms of precision, bias and coverage under this scenario. An 

important point to make is that the hazard based approach does not perform 

particularly well in this scenario. A possible explanation for this may be obtained by 

comparison with the data example in section 4.5. During the analysis in section 

4.5.2 it was observed that the hazard based approach was sensitive to unusual 

observations/data patterns. In this simulated scenario data has been generated which 

exhibits a rather unusual/unexpected pattern -a single , clear categorisation point. 

The hazard based approach may therefore have some difficulty in identifying this 
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"unusual" pattern. Perhaps, if the change in the pattern of survival were not as 

marked, the hazard based approach may perform better. Finally, the logistic based 

approach again produces clear underestimates of the true survival. 

Section 4.6.4: Summary of the Results from the Simulation Study 

The results of the simulations carried out here suggest that the Kaplan Meier 

based approach would be the best method to use to produce non-parametric 

estimates of survival in the presence of a single covariate. In each of the simulated 

scenarios this method produced estimates of survival which were, on average, 

reasonably precise when compared to the true survival, displayed only minimal bias 

and provided the target 95% levels of coverage. Although not perfonning as well as 

the Kaplan Meier based approach, the hazard based approach did produce reasonable 

estimates under the first two scenarios. However, the haza d based approach did not 

perform well for the case of a single categorisation point. This may be due, in part. 

to a lack of robustness with the hazard based approach as demonstrated in section 

4.5.2. 

'Me simulations also suggest that the logistic based approach is not 

satisfactory as it clearly underestimates survival regardless of sample size and 

scenario simulated with the bias present in these estimates increasing as the 

proportion of censoring increases. Regardless of the scenario under consideration 
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the logistic based approach also produces estimates which are, in general, not very 

precise. Finally this approach produces confidence intervals which provide very 

poor levels of coverage. 
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Section 4.7: Conclusions 

In this chapter a selection of non-parametric methods for analysing survival 

data in the presence of a covariate have been introduced. The standard methodology 

was considered briefly and three fully non-parametric estimation methods proposed 

in an attempt to fit survival models which do not impose specific patterns (i. e. 

Proportional Hazards model) across the covariate. A major aim is also to fit models 

which allow possible categorisation points across the covariate to be detected. These 

categorisation points should be chosen at points where there are clear changes in the 

pattern of survival. 

Three non-parametric methods were considered here; firstly a method which 

adapted the technique originally devised by Kaplan and Meier to incorporate a 

covariate (KNIA); secondly an extension of the fully non-parametric haza d function 

due to Tanner and Wong to incorporate a covariate (TWA); thirdly an approach 

based on adapting the standard non-parametric logistic regression methodology with 

a fixed time point to consider time dependent survival (LRA). 

The work presented here suggests that the (KMA) approach will produce the 

most sensible estimates of survival and will also produce results which allow issues 

of categorisation to be examined. The (TWA) approach also produces reasonably 

sensible estimates of survival but is likely to have difficulty in areas where unusual 
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observations are found, particularly if little data is available in these areas. This may 

imply that the (TWA) approach is likely to be of less use when examining issues of 

categorisation. Finally, there appear to be inherent problems with the (LRA) 

approach. The (LRA) approach produces a clear bias in terms of underestimating 

survival prospects regardless of the level of smoothing across the covariate. 

In conclusion, it seems reasonable to use either the (KMA) or the (TWA) 

approach as the most sensible fully non-parametric estimators of survival in the 

presence of a covariate. However it should be borne in mind that the (TWA) 

approach does appear to be more sensitive to the presence of unusual observations 

particularly with small data sets. 
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Chapter 5 

Conclusions and Future Work 

Section 5.1: Conclusions 

This thesis has considered the analysis of data within three basic medical 

contexts: a cohort study, a case/control study and a survival analysis. In each of these 

contexts the main aim has been to consider new, non-parametric methods of 

modelling the relationship between the response and explanatory variables. The 

primary reason for developing these new methods of analysis has been to allow 

"categorisations" for any explanatory variables to be highlighted. Categorisations for 

explanatory variables should be chosen at locations where there is a change in the 

effect the explanatory variable has on the response. Non-parametric methods of 

analysis are particularly appealing as they allow data to indicate the nature of any 

underlying relationship and hence highlight any potential categorisation points. 

Chapter 2 considered the cohort study with a binary response. Firstly, the 

standard methodology of using a linear logistic model to explain any underlying 

relationship between the binary response and the explanatory was outlined. In order 
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to consider more general models, use was made of existing work on non-parametric 

modelling of the relationship between a binary response and one or more continuous 

explanatories (Copas (1983)). This methodology was applied in the context of a 

cohort study with a binary response to examine issues of categorisation both with one 

and two continuous explanatories. Here, the main innovation was to apply function 

derivatives as a more formal method for highlighting possible categorisations. T. he 

main finding from this chapter was that the use of function derivatives in conjunction 

with the non-parametric logistic model gave a clearer picture of the location of 

categorisation points than could be obtained by only giving consideration to the non- 

parametric logistic model. 

Chapter 3 considered the risk associated with an interval scaled discrete risk 

factor in caselcontrol studies. Initially the standard methodology of using the 

conditional linear logistic model as a method for analysis of such data was outlined. 

Two new non-parametric methods of analysing data from case/control studies with 

an interval scaled discrete risk factor were presented; one based on a "pairwise cells" 

approach and the other based on considering the conditional likelihood. Both 

methods were applied to a case study in order to highlight potential categorisations for 

an interval scaled discrete explanatory variable. In the case study the methods 

identified similar, although not identical, locations for any categorisation points. 

They were also in general agreement as to the number of categorisation points that 

should be imposed. The two methods were then compared through a simulation 

study. In terms of degree of precision and level of bias both methods were found to 

provide reasonable estimation in each of the scenarios in the simulation study. In the 
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simulation study, the conditional likelihood method appeared to be superior both in 

terms of precision and coverage whilst the pairwise cells method appeared slightly 

superior in terms of bias. Possible extensions of both methods to model the 

relationship between the response variable and a continuous explanatory variable 

were presented. In a brief case study these extensions to incorporate a continuous 

explanatory appeared to produce logical estimates of the relationship between the 

response and the explanatory. 

Finally, Chapter 4 examined the analysis ofsurvival data with one continuous 

explanatory variable. It considered the standard analysis which uses the proportional 

hazards model to describe the effect of a single continuous explanatory variable on 

survival. Tluee non-parametric approaches for modelling the underlying relationship 

between a continuous explanatory and survival were proposed: an extension of the 

method of Kaplan and Meier (1958) to incorporate a continuous explanatory, a 

method based on extending the idea of Tanner and Wong (1983) of non- 

parametrically estimating the haza d function to include a continuous explanatory and 

an attempt to adapt non-parametric logistic modelling to incorporate a time dependent 

binary response. Each of the methods was applied to an example from the medical 

field and both the Kaplan Meier approach and the haza d based approach produced 

reasonable solutions. The two methods were also used to highlight potential 

categorisations for a continuous explanatory. However, the logistic based approach 

produced estimates of survival which appeared to underestimate the pattern of 

survival. These findings were confirmed by a simulation study which suggested that 

both the Kaplan Meier and hazard based approaches were plausible methods of 
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estimation. Both of the methods were able to reproduce given scenarios with 

reasonable precision and acceptable levels of bias. However, the Kaplan Meier based 

approach proved superior to the hazard based approach in terms of both precision and 

bias. It also proved far superior in terms of coverage. Therefore, there was clear 

evidence from both the "real data7 example and, particularly, the simulation study to 

favour the Kaplan Meier based approach. In areas where the data was quite sparse, 

unusual observations occasionally had a large effect on the estimates of survival 

produced by the haza d based approach whereas the Kaplan Meier approach appeared 

more robust. Again, in the simulation study, the logistic based approach produced 

underestimates of the true survival. 

In summary, in each chapter/context suitable non-parametric methods have 

been found to model the relationship between the response of interest and a single 

continuous / interval scaled discrete explanatory variable. These methods have been 

used to examine the primary aim of this work; to suggest, in each context, data based 

methods which can be used to highlight potential categorisations; for explanatory 

variables. 
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Section 5.2 Future work 

Although suitable methods have been found in each of the three contexts there 

is still further work to be carried out. The non-parametric methods of analysis 

proposed for use in caselcontrol studies and survival analysis only deal with one 

explanatory. Future work is required to extend or adapt these methods to deal with 

more than one explanatory. 

Further, in each of the three contexts presented here the non-parametric 

methods rely heavily on the use of smoothing techniques; these involve the choice of 

a smoothing parameter. On each occasion the smoothing parameter has been chosen 

based on a subjective search method. A more automatic method for choosing the 

smoothing parameter is essential. Current work in this field tends to focus on the use 

of the plug-in methods for choice of smoothing parameter as mentioned in Chapter 1. 

These methods must be given due consideration here as an alternative to the 

subjective search method. 

Finally, in the analysis of both case/control studies and survival data, the 

choice of location of categorisation points was essentially based on a large degree of 

subjectivity. In the analysis of cohort studies more formal techniques based on 

function derivatives were used to highlight potential categorisation points. More 

formal methodology should be applied in order to highlight categorisation points in 
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both the analysis of case/control studies and survival data to remove the subjectivity 

involved in the choice of these categorisation points. 

In conclusion, within each chapter of this thesis, consideration has been given 

to the analysis of data from different medical frameworks. In each situation non- 

parametric methods have been proposed for modelling the relationship between the 

response of interest and the explanatory variable. These non-parametric methods have 

been used to highlight the locations of categorisation points for a single explanatory 

variable. Work still needs to be carried out in this area to extend the methods 

presented here to deal with more than one explanatory variable and to remove the 

degree of subjectivity involved in the choice of both the smoothing parameter and in 

the location of any categorisation points. 
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Appendix A: Calculation of Covariance Terms in V2 ýP) 

The covariance matrix is of the form given below 
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)*'' 
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Each of the terms in the matrix is produced in the same manner. As a simple example. consider 

calculation Ofc6v(6,6) when a first order neighbourhood of smoothing is present. In this 

situation the relevant neighbourhood counts are 

njo = njo + n20 + n2l no, =no, + n02 + n12 

n2o = njo + n20 + n2l + n30 r'02 = no, + n02 + n12 + n03 
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= A-B-C+D - (*) 

Consider each of the terms A, B, C and D separately 
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A: 

An application of a first order Taylor expansion provides 
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B. - 

An application of a first order Taylor expansion provides 
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A Similar argument to B provides 
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Appendix B: Derivation of the Variance of fi(t; 

Derinitions 

Let L 1, ..., Ln represent the lifetimes of the n items under study 

C I, ..., Cn represent the corresponding censored times 

Ti = min (Li, Ci) and 8i = ILI<Ci 

L 1, ..., Ln arc fid with cdf FL and dcnsity function fL 

Cl, ---, Cn are fid with cdf FC and density function fC 

Denote the cdf and density function of T 1, ..., Tn by F and f without any subscript. 

From Tanner and Wong (1983) let 

m(y) = fL(y)(I - FC(y)) / f(y) for f(y) >0- (i) 

E(S (i) / t(j) = Y) = M(Y) vi- (ii) 

E(B(, )S(, ) / t(, ) = y, t(, ) = x) = m(y)m(x) V r< sand V y<x - (iii) 

Also, by definition 
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82 (i) = 8(i) - 

Now, 
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(A) Calculation of E(fi(t; z)) 

E(fi(t; Z)) ]ý(j) E Ifi(t; z) / t(j) = yj by the law of iterated expectation 

=E 
J8(j)Kbl (t 

- tj) / t(j) =y Kh, z- z(, ) 

=E l(i) 
11 Kh, (t - y) m(y) Khz 

(Z- 
z(j) 

)] 
by (ii) 

j., n-j+l 

To complete the calculation, the density of t(j), ft(j) (y), is required. 

By standard calculation, this is 
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Hence, 
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where 
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= h(y) (I - F(y)) as before 
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