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ABSTRACT 

It has been of major interest in recent research to produce faster optical processing for 

many telecommunications applications, as well as other applications of high 

performance optoelectronics. The combination of one-dimensional photonic crystal 

structures (PhC) and narrow photonic wire (PhW) waveguides in high refractive-

index contrast materials such as silicon-on-insulator (SOI) is one of the main 

contenders for provision of various compact devices on a single chip. This 

development is due to the ability of silicon technology to support monolithic 

integration of optical interconnects and form fully functional photonic devices 

incorporated into CMOS chips. The high index contrast of the combination of a 

silicon core with a surrounding cladding of silica and/or air provides strong optical 

confinement, leading to the realization of more compact structures and small device 

volumes. In order to obtain a wide range of device functionality, the reduction of 

propagation losses in narrow wires is equally important, although there are still 

performance limitations determined by fabrication processes. Compact single-row 

PhC structures embedded in PhW waveguide micro-cavities could become essential 

components for wavelength selective devices, especially for possible application in 

WDM systems. The high quality factor, Q, and confinement of light in a small 

volume, V, are important for optical signal processing and filtering purposes, 

implying large Purcell factor values. 

In this thesis, one-dimensional photonic crystal/photonic wire micro-cavities 

have been designed and modeled using both 2D and 3D versions of the finite-

difference time-domain (FDTD) approach. These devices were fabricated using 

electron beam lithography (EBL) and reactive ion etching (RIE) for patterning of the 

silicon layer. The device structures were characterized with TE polarized light, using 

a tunable laser covering the range from 1480 nm to 1585 nm. Single-row periodic 

hole-type PhC mirrors consisting of identical and equally spaced holes were 

embedded in 500 nm wire waveguides. Two PhC hole mirrors were separated with a 

cavity spacer varying from 400 nm to 500 nm in length to form a micro-cavity. In 

contrast, several different cavity arrangements were also successfully investigated, - 

i.e. extended cavity and coupled micro-cavity structures.  

 The experimental results on photonic crystal/photonic wire micro-cavity 

structures  have demonstrated that further enhancement of the quality-factor (Q-
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factor) - up to approximately 149,000 at wavelengths in the fibre telecommunications 

range is possible. The Q-factor values and the useful transmission levels achieved are 

due, in particular, to the combination of both tapering within and outside the micro-

cavity, with carefully designed hole diameters and non-periodic hole placement 

within the tapered sections. On the other hand, a large resonance quality factor of 

approximately 18,500, together with high normalized transmission of 85% through 

the use of tapering on both sides of the hole-type PhC mirrors that formed the micro-

cavity, has been obtained. For the extended cavity case, the multiple resonances 

excited within the stop band, together with substantial tuning capability of the 

resonances obtained by varying the cavity length has been demonstrated, together 

with a Q-factor value of approximately 74,000 at the selected resonance frequency 

with a normalised transmission of 40%.                                                                                                                                                                                

In addition, the coupled micro-cavity structures considered in this thesis have 

formed the basic building block for designing multiple cavity structures where the 

combination of several cavities splits the selected single cavity resonance frequency 

into a number of resonances that depends directly on the number of cavities used in 

the design. The coupling strength between the resonators and the Free Spectral Range 

(FSR) between the split resonance frequencies of the coupled cavity combination 

were controlled via the use of different numbers of periodic hole structures – and 

through the use of different aperiodic hole taper arrangements between the two 

cavities in the middle section of the mirrors.  
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CHAPTER 1: Introduction 

1.1  Introduction  

The potential importance of integrated optics was not fully realized until 1968. Light 

propagation in thin films has been proposed and developed extensively since then [1]. 

The term integrated optics relates to a wide variety of structures where the 

propagation of light is controlled by a thin dielectric film or by strips of dielectric. 

The range of laser frequencies available and the types of material used have their 

limitations.  Initially, gas laser and solid state lasers were used as the light sources in 

early experiments. There is a possible need for much smaller sources that can be used 

to achieve the requirement of integrated optics in order to integrate with other 

applications. For shorter wavelength regions, overcoming large absorption and 

scattering losses becomes a priority since the smaller wavelength range imposes 

limitations on the practical use of wave-guiding. In addition, waveguide integrated 

optics is based on electromagnetic wave-guiding at optical frequencies using thin film 

optics. In recent years, semiconductor devices have played a major role in the 

evolution of integrated optics, due to their significant properties relevant to the goal of 

monolithic integrated optical circuits. In the early 60s, research on thin film 

phenomena became the key route towards developing more complex waveguide 

properties. The guiding action of planar layers in p-n junctions was observed and 

reported in 1963 by Yariv and Leite [2] and Bond et al [3]. Their results have been 

subsequently used by Nelson and Reinhardt [4] in providing light modulation via the 

electro-optic effect. Although, there was no concern with the optical waveguide 

circuitry, this work was just the beginning of the new era of planar thin film 

waveguides. Light propagation in thin films has been proposed and developed since 

then [5]. The subject of dielectric periodic microstructures has become a priority ever 

since the evolution of lasers and integrated optics generally in the early 1960s [5-11]. 

This great evolution was just the beginning of the new era of development of photonic 
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microstructures on single compact chips. Much research has been carried out with the 

aim of providing faster optical communication and data processing - whether for 

entertainment, route switching or computational purposes. In recent years, the 

motivation towards producing compact and faster communication has become a 

platform for much research, including switching purposes.  

In addition, the advance in photonics technology for many applications has 

emerged on a large scale, whether using active devices such as III-V semiconductor 

materials or even silicon and silica passive devices. But the latter two materials still 

work as a separate system, although the main aim is still to achieve a monolithic 

photonic integration that is capable of handling any application in a single chip. 

Developments based on the concepts formulated by Purcell [31, 32] regarding the 

effect of radiation properties due to the presence of mirrors have been discussed 

extensively. These ideas led to the new concept of photonic crystals (PhCs) [15, 16]. 

Instead of manipulating the electrons that are involved in the use of the conventional 

electronic properties of solids, where they can produce an electronic band-gap, 

photons are manipulated in periodic structures (photonic crystals) – and can exhibit 

stop-band and photonic band-gap (PBG) behaviour. In other words, photons are not 

allowed to propagate through the ‘crystal’ structures at all - and there can be a 

forbidden gap or band-gap.  

Much of the attraction in the research areas of the micro and nano-photonics 

structures comes from the use of high refractive index contrast materials such as 

silicon-on-insulator (SOI) that have been increasingly used in recent years. This 

development is due to the ability of silicon technology to support monolithic 

integration of optical interconnects and form fully functional photonic devices that 

can be incorporated into CMOS chips. Soref et.al [12] have demonstrated the 

possibilities of passive and active silicon waveguides as long ago as 1985, with 

single-crystal silicon grown epitaxially on a heavily doped silicon substrate. The 

advances of silicon based and silicon-on-insulator optoelectronics have also been 

noted by Jalali et al in 1998 and Masini et al in 2002 [13-14].  
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1.2   Photonic Crystal and Photonic Wire Waveguides 

The concept of photonic band-gap structures was independently proposed by 

Yablonovitch and by John in 1987 [15, 16]. PBG structures create the condition 

where, over a certain photon energy range, light can travel through the periodic 

structure - and is reflected back when impinging onto the crystal and is not allowed to 

propagate - thus creating a so-called forbidden zone. In 1991, the first experimental 

demonstrations have shown that by using an array of holes drilled into the high 

refractive index material, a stop-band is produced where no transmission is allowed 

over this frequency range [17]. Full PBG structures consist of three-dimensionally 

periodic structures that inhibit spontaneous emission within the electromagnetic band-

gap. New designs have been developed and innovated based on this concept ever 

since, although improving the overall performance of the devices is still a major 

concern for full device functionality - and there is also performance limitations 

determined by the various fabrication processes [17-18]. 3D Photonic crystal 

structures (PhCs) are one of the possible contenders for the provision of highly 

compact devices on a single chip that will allow the realization of complex sub-

systems. Due to the inherent difficulties of realising and controllably modifying 3D 

structures, work on 2D and 1D structures has emerged tremendously - which is partly 

due to the lesser design complexity and the reduction in size. But they can produce 

some interesting results that have contributed significantly towards the realisation of 

Photonic Integrated Circuits (PICs). The motivation towards miniaturising PIC 

devices has expanded the need to put more effort into designing compact photonic-

crystal based devices. The massive development of telecommunication infrastructures 

has created a large demand for multiple applications realised on a single chip by using 

a combination of several optical sub-systems. 

In general, photonic crystal device structures exhibit a strong optical 

confinement covering a fairly large frequency spectrum. Strong optical confinement is 

needed in a small volume to provide a suitable building block in the optical emission 

properties - thus creating enhancement of the luminescent ‘atoms’ through 

spontaneous emission. By creating a ‘defect’ or a small region surrounded by the 

photonic crystal arrangement, the basic properties of that photonic crystal lattice are 

significantly changed. In other words, the photonic crystal has the capability to 
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localise light when a ‘defect’ is introduced within the periodicity of the crystal 

arrangement - thus forming a micro-cavity that is surrounded by a highly reflective 

mirror region. For example, in 2D photonic crystal structures, a ‘defect’ or micro-

cavity can be formed by simply removing one or more holes [34-36] - or by changing 

the surrounding hole sizes. [37-39]. Light that is strongly confined within the channel 

waveguide formed by the photonic crystal arrangement (square [40] or hexagonal 

lattice [41-42]) is directly coupled into the micro-cavity region. In this design 

arrangement, light may be guided through the structure by removing a single row of 

holes to form a channel waveguide - and in this way light can propagate at the 

characteristic frequency of the cavity, within the band-gap. Channel waveguides may 

be designed to have different widths, W, such as W1 [43] - where a single row of 

holes is removed to provide a channel waveguide. In other examples, W3 [44] 

consists of three hole removed and W0.7 [45] – i.e. a situation where the spacing 

between two blocks of photonic crystal is additionally increased by 0.7 of a lattice 

spacing. Recently, low propagation losses, 4.1 dB/cm, have been obtained in a single 

line defect W1 PhC channel waveguide [27] which shows that PhCs can provide a 

suitable platform for designing low loss devices. In 1D photonic crystal structures, the 

micro-cavity has great potential for producing a high quality factor in a small volume 

– thus providing a suitable platform to design a wavelength selective device for 

example for WDM applications using passive components such as multiplexers/de-

multiplexers, optical switching, sensors and optical filters. On the other hand, in 1D 

photonic crystals, micro-cavities may be formed by creating a defect and using a 

smaller hole in the middle of a single row crystal, as shown in Fig 1.1. 

In photonic crystal (PhC) micro-cavity structures, the optical properties may 

be characterised by the Q/V ratio (often called the Purcell factor [31-32, 46]), where 

Q is the Quality factor and V is the modal volume corresponding to the particular 

micro-cavity and its characteristic electromagnetic resonant modes. Thus designing 

high Q-factor optical micro-cavities confined in a small volume, V, may be useful for 

high speed optical processing- where light is confined within a small volume on the 

order of (λ/2n)
3
  - and λ is the emission wavelength and n is the refractive index of the 

given material. Different design configurations for achieving large quality-factor 

values have been considered - such as micro-pillars [48-50] - with Q-factor values in 

excess of 150,00 for 4 µm diameter pillars and a Q-factor value of 1500 for a 600 nm 
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diameter pillar, silica toroids [47,51], PhC cavities [28, 51, 52, 60, and 61], , in 

photonic wire waveguides or 2D PhC membrane [53-55] and slot waveguide [64] 

where the calculated quality factor is still as high as 2 x 10
5
 with the mode volume, V 

as small as 0.14 of a cubic wavelength in a vacuum. For example, in 2D PhC 

structures, a Q-factor of 9 x 10
5
 [60-61] and 1 x 10

6
 [62] or greater [63] has been 

achieved by Notomi and co-workers, with modal volume, V of approximately 1.7 

(λ/n)
3. 

On the other hand, Q-factor values as large as 10
8
 have also been obtained in 

silica toroids [51], but this design configuration has a relatively large modal volume, 

which gave Q/V of approximately 5.10
4
 (λ/n)

3
. The interest in manufacturing ultra-

small micro-cavity device structures has been boosted by the capability of achieving 

modal volumes close to a theoretical minimum value of V=(λ/2n)
3
.  

 

Fig.1.0: An example of different cavity configuration which 

have been demonstrated with significantly high-Q with low 

modal volume, V (a) micro-pillar [50] (b) micro-pillar [49] 

(c) L3 cavity [54] (d) toroids [51] (e) 2D PhC heterostructure 

cavity [58] (f) PhC nano-cavity [61] (g) Initial work on 1D 

PhC/PhW [28] (h) Optimised 1D PhC/PhW [56] 
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Based on the motivation towards large Purcell-factors, Q-factor values as large as 10
6
 

have been achieved [58] and other configurations such as 1D PhCs [56-57], L3 

cavities where three holes in line were removed to provide a micro-cavity section [54] 

and hetero-structure cavities [58-59].  

This design has shown a great enhancement in the Q-factor, together with 

strong confinement within a small volume - and close to the theoretical value - 

through the use of the mode-matching mechanism. But in most cases, the footprints 

that the design covers are large, especially for 2D PhCs. Therefore, in order to design 

a compact device that requires a small foot-print and to satisfy the requirement for 

integration with other optical devices, 1D PhC/PhW device were proposed by Foresi 

et al [28] in 1997. The foot print of this particular device covers an area of 

approximately 1 µm by 3 µm. Using this design configuration, ultra-high Q-factor 

micro-cavities with resonant modes that can occupy small mode volume have already 

been demonstrated in [56,57]. The Q-value of these resonant structures is in excess of 

50,000, with a modal volume of approximately 0.6 (λ/n)
3
. This record value of Q/V 

ratio of approximately 10
6
 was obtained without the need to use membrane type 

structures. Fig.1.0 shows examples of several different cavity arrangements that have 

produced high Q-factor values and low modal volumes close to the theoretical 

limiting value. 

Therefore, in most optical telecommunication applications, there is a need to 

have 1D PhC/PhW device structures that offer the possibility for manipulation of light 

at infra-red wavelengths (around 1550 nm) – ruled by its capability of confined light 

within a small volume, V. Due to the fabrication challenges and the capability of 

designing structures that occupy very small areas, one-dimensional PhC structures 

have been preferred, although there are practical performance limitations. The devices 

typically consist of a single row of holes embedded in a narrow single-mode 

photonic-wire waveguide. On the other hand, photonic wire (PhW) device structures 

based on total internal reflection (TIR) concepts have shown a capability for reduced 

loss, together with less complexity. They can also provide strong optical confinement 

due to the large refractive index contrast between the waveguide core and its 

surrounding cladding, leading also to small device volumes and compact structures 

[19]. In addition the photonic wire approach also gives great flexibility for the design 

of structures such as sharp bends, abrupt Y-junctions, small device volumes, micro-
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cavities and Mach Zehnder (MZ) structures [20- 26]. In other words, this concept is 

based on high refractive index contrast where light is confined in such a narrow ridge 

waveguide. The combination of one-dimensional photonic crystal (PhC) structures 

and photonic wire (PhW) waveguides in high refractive index materials such as 

silicon–on-insulator (SOI) became increasingly important in a number of research 

areas. In order to obtain a wide range of device functionality, the reduction of 

propagation losses in narrow photonic wires is equally as important as enhancing the 

performance of the device structures.  

On the other hand, 1D PhC/PhW device structures have increasingly become a 

topic of interest - and use a mirror design that is based on a single periodic row of 

holes embedded in a narrow ridge waveguide, as shown in Fig.1.1. This approach was 

first introduced by Foresi et.al [28]. The periodic hole mirror characteristics can be 

varied by changing several parameters - such as hole diameter, cavity spacing and 

hole spacing - as will be described in detail in Chapter 4. In the present work, light 

confined within a PhC/PhW structure is directly coupled into the micro-cavity by 

using a tapered hole arrangement, as shown in Fig.1.1. 

 

 

Fig.1.1: 1D PhC/PhW waveguide structures with a series of 

PhC hole of periodic spacing,a and ,hole  diameter, d 

embedded in 500 nm wire. The tapered hole introduced has a 

number of hole tapered outside cavity, NTO and the number of 

tapered hole within cavity, NTI with cavity length, c. A 

periodic mirror has N number of equally spaced hole. 
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These kinds of device structure also have the capability of providing compact 

structures in small device volumes, as compared to other more complex structures 

such as ring resonators - which occupy larger device volumes. Furthermore, 1D 

PhC/PhW structures may also be preferred, since they can exhibit large band gaps as 

compared to what 3D photonic crystal structures can offer - thus making the 

PhC/PhW approach a contender for filter devices that can be integrated with other 

photonic devices. The fact that they share similar concepts with grating filters helps in 

understanding how these devices operate. With the material properties of SOI, an 

extremely small waveguide working in single mode operation can be realised, with a 

reduction in propagation losses from 50 dB in 1996 [29] to 1.7 dB/cm in late 2006 

[30] - and more recently a propagation loss value of 0.91 dB/cm [33] has been 

achieved. The other features that have led to increasing attention to this area of 

research are the ability to provide a platform for the confinement of light within a 

small volume - for example when a defect or a spacer is introduced between periodic 

mirrors. With this condition, light can be trapped within a small cavity, thus 

producing resonances that occur at certain frequencies within the stop-band. These 

structures have been characterised by their high Q-factor value, adequate normalised 

optical transmission and small modal volume.  

1.3   Aims and Objectives: 

The main aims and objectives of the present work are to design, fabricate and 

characterize 1D single-row Photonic Crystal cavities embedded in 500 nm wire 

waveguides. These device structures were designed to work with TE polarised light at 

a wavelength of around 1550 nm. Different cavity arrangement were explored, 

including micro-cavities with cavity spacer sections ranging in length from 390 to 

500 nm, extended cavities with several micrometre lengths and two coupled micro-

cavities consisting of two spacer sections inserted between periodic mirrors. Tapering 

effects using several aperiodic holes with different diameters and aperiodic spacing 

have been used to reduce modal mismatch between un-patterned wires and periodic 

mirrors regions – thus enhancing both the resonance quality factor and optical 

transmission of the device structures. In general, the aims and objectives of the 

present work can be divided into several areas as follows: 
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• To study sub-micrometre scale 1D photonic crystal/photonic wire device 

structures that are based on high index contrast material, in particular silicon-

on-insulator (SOI). 

• To use and understand the basic concepts of current state-of-the-art fabrication 

tools available within the James Watt Nano-fabrication Centre (JWNC). These 

tools are expected to produce high quality device structures on a nanometre 

scale. Optimizing the standard process used became one of the priorities, in 

order to achieve good device fabrication tolerances and reproducibility. Most 

of the patterning process of the PhC/PhW device structure used electron beam 

lithography (EBL). 

• To exploit the properties of  single row 1D Photonic Crystal/Photonic Wire 

cavity structures - which can be characterised using several parameters such as 

the length of the cavity spacer section, hole diameter and hole spacing. 

• To design and study the effects of using mode-matching hole tapers consisting 

of aperiodically located holes with different diameters and aperiodic spacing 

situated outside and within the cavity – for different cavity conditions: such as 

micro-cavities, extended cavities and two coupled micro-cavities. 

• To design, fabricate and characterize 1D PhC/PhW structure micro-cavities 

that exhibit high quality factor values of greater than 10,000, together with 

large optical transmission in small volumes – that are suitable for some 

telecom applications, such as Dense Wavelength Division Multiplexing 

(DWDM). 

• Ability to tune the resonance wavelength through small differences in cavity 

lengths. 

• To enhance the optical confinement of the light propagating through the 

waveguides by removing the buffer layer below the silicon guiding layer - thus 

improve the quality factor values, together with the optical transmission. 
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1.4   Thesis Outline: 

This thesis will present an up-date on progress in device miniaturization based on 

silicon photonics technology. 

Chapter 2 describes the Finite Difference Time Domain (FDTD) method used to 

model the device structures where various simulation tools have been used for 

comparison. Both 2D and 3D FDTD approaches have been considered. 

 

Chapter 3 describes the fabrication techniques used to produce 1D PhC/PhW device 

structures. This process includes pattern writing processes using a Vistec VB6 state-

of-the art electron beam lithography (EBL) tool. Comparison has been made in term 

of the quality of fabrication outcomes between EBPBG5 and VB6 tools, showing 

great improvement with the latter. The patterns were dry-etched using reactive ion 

etching (RIE) techniques. On the other hand, silica wet chemical etching using 

Hydrofluoric acid (HF) is further demonstrated to produce membrane types of 

Photonic wire waveguides. This chapter will also describe the techniques used for 

characterizing the device structures. 

 

Chapter 4 demonstrates experimentally the effect of tapering within and outside the 

cavity of 1D PhC/PhW device structures that exhibit high quality factor values 

approaching 150,000 with reasonably large optical transmission. Issues related to 

enhancement of the Q-factor are discussed in this chapter. This chapter also 

underlines the need to achieve high Q values together with sufficiently large optical 

transmission for such devices to be useful for telecom applications such as Dense 

Wavelength Division Multiplexing (DWDM), all optical switching and non-linear 

optics. It also investigates further enhancement of optical confinement via removal of 

the silica cladding/buffer layer in order to improve the symmetrical condition of the 

mode propagating through the hole mirrors within the wire waveguides. Due to time 

constraints, investigations concentrated on the tapered micro-cavity structures. 

 

Chapter 5 describe the effect of the hole and mirror tapering used in chapter four on 

different cavity arrangements such as extended cavities having a cavity length of 

between 2 and 9 µm  -and structures based on two coupled micro-cavities inserted 
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between periodic hole mirrors. Different hole tapering arrangements were also 

described in this chapter. 

 

Chapter 6 concludes the present work on high quality factor tapered mirror PhC/ 

PhW waveguide micro- cavities based on Silicon-on-Insulator (SOI) and follows with 

suggestions for future work that should be explored, especially the use of device 

structures demonstrated in Chapters three, four and five for achieving monolithic 

integration into Photonic Integrated Circuits (PICs). 
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CHAPTER 2: Simulation 

Techniques 

 Maxwell’s equations are important for an understanding of light propagation 

in photonic crystals. They are central for the solution of electro-magnetic problems in 

dielectric media – for a variety of different length and dielectric scales, which are 

related to each other. 

2.1   Photonic Crystals: The Theory 

In photonic crystals, the famous Maxwell’s equations are used to study light 

propagation in photonic crystal structure. The propagation of light in a medium is 

governed by the four well-known Maxwell’s equations, written here in c.g.s units [1, 

19-20]. The forms of the Maxwell equation are given by; 
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or in mks/SI unit they can be written as; 
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Based on Joannopolous and Jackson [1, 19], equations 1.1 to 1.4 are given in cgs units 

whereas equation 1.1a to 1.4a are given in mks/SI units, where the physical quantities 

are given as: 

B - Magnetic flux density in Tesla, T 

D - Electric flux density in Coulombs per square m, C/m
2 

E - Electric field strength in Volt per meter, V/m 

H - Magnetic field strength in Ampere per meter, A/m 

ρ - Electric charge density in Coulombs per cubic meter, C/m
3
 

J - Electric current density in Ampere per square meter, A/m
2 

The detailed derivation of each counterpart of Maxwell’s equations, is given by 

Jackson (1962) in the reference [19]. For propagation in mixed dielectric medium, ρ 

and J are set to zero, since there are no free charges or currents in the homogeneous 

dielectric material. By assuming that the applied field strength is small and behave 

linearly, the dielectric flux density, D can be related to the electric field density by the 

power series of; 

    ∑∑ ++=
j

kjijk

j

jiji EOEEkED )( 3χε  (1.5) 

Since the electric field strength E (r,ω) and displacement field, D (r,ω) are related to 

the scalar dielectric constant of the microscopic and isotropic material ε (r,ω)- χ and 

the higher order term can be neglected. In low loss dielectric materials, ε (r) can be 

treated as purely real, thus producing the electric field density written as  

D(r)= ε (r) E (r)   (1.6) 

In addition, for most dielectric material, the magnetic permeability, µr is 

approximately equal to 1, giving the magnetic flux density, B equal to the magnetic 

field strength, H. The flux density of the dielectric material can be written as D = ε.E 

where the permittivity, ε is real. Therefore the Maxwell equation can be re-written as 

already illustrated in [1, 19] as; 
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Then the harmonic mode of the E and H fields components propagating in the 

dielectric medium are considered as; 

   H(r,t)  = H(r)e
iωt

 = 0   (1.11)
 

 

And   E(r,t) = E(r)e 
iωt 

= 0   (1.12) 

By substituting Eq. (1.11 and 1.12) into the Maxwell equations (1.7 to 1.10), the 

equation for the mode profiles of a given frequency is reduced to a simple condition 

(two divergences) as shown below-; 

   0)(.)(. =∇=∇ rDrH     (1.13) 

Where H(r) and E(r) and the field components at t=0. By deriving equation 1.11 and 

1.12 and substituting it into equation 1.9 and 1.10, the Maxwell equation will 

become; 
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Thus equation 1.14 derived, only has H components which become a master equation 

for dielectric medium, in particular photonic crystal with only magnetic field, H(r) 

component. This can also be used to recover an electric field component, E(r) of the 

Maxwell equation given by; 
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The final equations given above (1.14 and 1.15) are only used primarily to understand 

the basic concepts of photonic crystal (PhC) structures. These concepts can also be 

used for more complex structures such as 2D and 3D PhCs. In this present work, only 

1D photonic crystal structures consisting of a single row of holes embedded in a 

narrow photonic wire will be explored in depth, as will be described in Chapter 3.  

2.2   PhC/PhW micro-cavities  

PhC micro-cavities embedded in narrow photonic wire have been widely studied. A 

small shift in the periodic mirrors - in particular one situated in the middle of the 

periodic mirror - will produce a sharp resonance peak in the middle of stop band. This 

resonant condition oscillates naturally at certain frequencies with greater amplitudes 

than others within the system. The Q-factor is particularly useful in determining the 

qualitative behaviour of a system. For some telecoms applications, such as dense 
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wavelength division multiplexing (DWDM), the performance of those resonances is 

determined by their Quality factors and optical transmission at a certain resonance 

frequency. The Quality factor of a system is a dimensionless parameter that defines 

the first order behaviour, for the decay, of an oscillating frequency within a micro-

cavity. It is characterised by the ratio of the resonant frequency to the bandwidth of 

the resonance or by the decrease in the amplitude of the wave propagating through a 

system, within an oscillation period. Equivalently, it compares the frequency at which 

the system oscillates to the rate of energy dissipated by the system. A higher Q-factor 

value indicates a lower rate of energy dissipation relative to the oscillation frequency, 

so the oscillations die out more slowly. For example, a pendulum suspended from a 

high-quality bearing, oscillating in air, would have a high Q, while a pendulum 

immersed in oil would have a low one. In optics, the Q-factor is generally given 

by [2-3]: 

P

Ef
Q 02π

=  

Where E is the stored energy in the cavity and P is the power dissipated within the 

cavity, given by; 

dt

dE
P −=  

The Q-factor is equal to the ratio of the resonant frequency to the bandwidth of the 

cavity resonance shown in Fig.2.1.  

 

 

Fig.2.1: A typical resonance frequency resulted from micro-

cavity structures defined by the central resonance frequency, 

f0 and the bandwidth of the frequency at 3 dB points (energy 

at the steady state condition)  



Chapter 2: Simulation Techniques 

 

 

 
- 22 - 

 

Ideally, the average lifetime of a resonant photon in the cavity is proportional to the 

cavity's Q. Resonant systems respond to frequencies close to their natural frequency 

much more strongly than they respond to other frequencies. A system with a high Q 

resonates with greater amplitude (at the resonant frequency) than one with a low Q 

factor, and its response falls off more rapidly as the frequency moves away from 

resonance. Therefore the physical interpretation of resonance is given by its general 

equation; 

f

f
Q

∆
= 0  

Where f0 is the central frequency of the resonance and ∆f is the frequency difference 

within at 3 dB points or ½ of the total energy stored in the micro-cavity system. In 

this present work, several different types of resonator have been studied, namely 

waveguide Bragg gratings and 1D PhC/PhW waveguides – as shown in Fig.2.2. 

Unlike the Bragg grating waveguide [4], which has a rectangular recess embedded on 

a photonic wire waveguide, a single row of holes is used as a set of mirrors.  

 This structure consists of a single row of holes drilled in the 500 nm width of 

wire waveguides. Those holes acted as a periodic mirror where light impinging on the 

PhC bounced back provide a band gap where light is forbidden to propagate at certain 

frequency. A spacer was introduced symmetrically between the periodic mirrors - thus 

producing a narrow resonance in the transmission. The concepts for this kind of 

structure were proposed by Krauss and Foresi [5,18]. But the Q-factor at this [5] 

resonance condition obtained was small (~500). The PhC hole mirrors resulted in a 

wide stop band (approximately 182 nm), using eight PhC mirrors holes, whereas 32 

period waveguide Bragg gratings were used and showed a narrower stop band of 

approximately 88 nm. This difference is due to the fact that the light was coupled 

more strongly in the periodic hole mirrors – where 95% of the light was reflected with 

the periodic hole arrangement, as compared to the waveguide Bragg gratings where 

~ 82% light was reflected back. Hole gratings show more pronounce stop bands 

compared to their counterpart. As mentioned before, stronger reflection was observed 

for the hole grating. The hole gratings have a bigger stop-band of approximately 

180 nm, which is useful for some filter designs and some optical communications 

applications. This wide stop-band may be compared with the limited bandwidth of the 



Chapter 2: Simulation Techniques 

 

 

 
- 23 - 

 

stop band of the may be contrasted with the significantly smaller stop-band of the 

rectangular recess grating.  

 

Fig.2.2: Different types of PhW waveguides micro-cavity (a) 1D 

PhC/PhW waveguides with cavity length (distance between two hole 

edges of the hole spacer) c, hole periodic spacing (distance between 

centre-to-centre hole), a and Number of periodic holes, N (b) PhW 

Bragg Gratings waveguides with cavity length, c, period, Λ and 

Number of recess period, N - and (c) Transmission spectra of Bragg 

Grating waveguides and 1D PhC/PhW 

 

 



Chapter 2: Simulation Techniques 

 

 

 
- 24 - 

 

In addition, for this grating condition, the total length, L of the waveguide Bragg 

grating of ~11 µm is longer by a factor of four in order to achieve a practical stop-

band spectrum, as compared with the hole gratings structures (~3 µm). The present 

work will demonstrate the design, fabrication and characterisation of the 1D PhC 

based micro-cavity, which is potentially useful for wavelength division multiplexing 

(WDM) in PhC devices. A single row of PhC holes is embedded in a narrow photonic 

wire waveguide to allow sufficient optical coupling for integration with other 

photonic devices. This thesis will address the importance of using a combination of 

hole tapering with a different hole diameter at the interface between the un-patterned 

wire and the cavity mirror, as well into the micro-cavity region - in order to achieve 

large optical transmission together with a high resonance Q-factor value. Achieving 

high Q-factor together with large optical transmission remains asignificant challenge. 

The key points towards designing an ultra high Q-factor device that confines light in 

such a small volume lie in reducing the modal mismatch between the un-patterned 

wire and the PhC or grating sections. Therefore, designing a tapered structure to 

reduce the modal mismatch at the interfaces between the mirror region and the PhW 

waveguide sections is necessary. One of the approaches used to overcoming this 

situations is the use of a taper structure consisting of holes with different sizes through 

progressive increase of the hole size into the mirror region [6].  On the other hand, the 

same model has also been used with short taper sections incorporated into a 1D 

micro-cavity based system [7]. Using these concepts, the impact of progressive 

tapering using different hole diameters has shown a huge improvement in enhancing 

the quality-factor of the micro-cavity [8, 9].  

 Therefore, 1D PhC/PhW micro-cavities can provide higher optical 

confinement in smaller volumes that are closer to the theoretical value of 0.055 (λ/n)
3 

[8] - which has a great potential in high index contrast materials such as silicon-on-

insulator (SOI) to be used in some telecommunication applications such as DWDM, 

add-drop filter switching experiments, slow light  and non-linear optics.  

2.3   The Finite-Difference Time-Domain (FDTD) approach 

There have been several methods used for computational purposes, especially for 

modelling photonic crystal structures and photonic wire waveguides. The Finite 
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Difference Time Domain (FDTD) approach is a commonly used technique because it 

provides both the spatial and temporal properties of the structure with a single 

calculation, making it suitable for the analysis of many structures. However it requires 

a lot of time to compute a single run. This technique uses the famous Maxwell’s 

equations based on the Yee mesh [10], published in 1966. Yee has proposed this 

technique in order to derive a numerical scattering problem and electromagnetic 

absorption on the basis of Maxwell’s equations. The computational domain was first 

established, in order to determine the physical region within which the calculation 

will be performed. The Electric field, E, and the magnetic field, H, are distinguished 

at every point within the domain by specifying the material used at each domain point 

(in xyz directions). The materials involved could be free space (air), metal or 

dielectric material. A light source in the form of a plane wave is then impinging on 

the chosen material. Later in 1994, the technique called the Perfectly Matched Layer 

(PML) boundary condition was introduced [11]. It was used as an absorption 

mechanism for electromagnetic waves incident on the edge of the computational 

domain in space. The FDTD method can be implemented in either 2D or 3D 

computations - but it requires a lot of memory and power consumption for a single 

computational run, especially for a large device in 3-D. 2D FDTD reduce time and 

memory requirement significantly. It employs a refractive index approximation or 

average refractive index of the slab- called effective index method (EIM). By using 

this method, the cross sectional index profile is usually transformed to the one 

dimensional index profile by using EIM [12, 13]. In the EIM approach, the eigenvalue 

of the equivalent slab waveguide is an approximate index value of the original 

waveguide. Although the EIM approach provides a good approximation, it still suffers 

from errors in the vicinity of the cut-off [14-17]. At the beginning of this present 

work, this method is used to investigate the preliminary behaviour of the device with 

the assumption that losses are negligible. In order to reduce simulation time and 

power consumption 2D FDTD approach was initially used throughout the course to 

analyse the general optical behaviour of the device structures- implementing EIM. 

Since EIM is only an approximation of the actual refractive index obtained by taking 

into account the whole ridge waveguide structures – at least a small discrepancy 

between the simulations measured results is very much to be expected. On the other 
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hand, the 3D FDTD method can give a better estimate of the properties, although it is 

time and power consuming, which is still a major concern. 

During this present work, different types of commercial software have been 

used. The Fullwave RSoft computational software has been used at the beginning of 

this work, where only 2D computation was deeply explored due to the longer time 

and high power consumption for 3D FDTD. Based on the concept proposed by Yee 

[10], several key pieces of information are needed to solve the basic propagation 

problem in optical waveguide which comprised of: 

• The refractive index distribution, n(x,y,z) 

• Electromagnetic field excitation (Plane wave or Gaussian) 

• Finite Computational domain in x,y and z direction) 

• The boundary of PML layer  

• Spatial grid size, ∆x and ∆y 

• Time step, ∆t ad the total length of the simulation time. 

For 2D FDTD computation, the average refractive index, n or effective index, neff of 

the slab waveguide of a material is used rather than the actual refractive of that 

particular material. This can be obtained using mode-matching method available in 

the Fimm-wave® commercial software by Photon Design®. This method includes the 

approximation of refractive index in both propagation direction of vertical and 

horizontal confinement of the slab waveguide. The transverse section of the device is 

first simulated using Fimm-wave® simulation tools. It shows the intensity of light in 

guiding mode, confinement of light inside the slab and the effective index, neff. It also 

shows the leaky region where light is not confined inside the slab.  Fig.2.3 shows the 

contour plot of the TE fundamental mode of the waveguide. It shows the intensity of 

light confinement along the core at 1.52 µm wavelength at different etching depth. 
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Fig.2.3: Contour plot of the TE fundamental mode intensity 

(a) fully etched (b) shallow etched (c) deep etched 

 

It is suggested that the different etching depth will give rise to the abrupt change of 

the effective index, neff at the boundary of silicon core and silica cladding (lower 

cladding) where some of the light are reflected back into the cladding (back 

scattering). This can be improved by etching slightly deeper into the lower cladding 

by around 20 nm-40 nm, thus reducing scattering losses. 
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Fig.2.4: The effective index, neff at different etching depth for 

symmetric(silica deposition on top) and asymmetric 

waveguide(no silica deposition)- (a) shallow etched (b) deep 

etched 

 

The effective index calculated using the Fimm-wave™ simulation tool for 500 nm 

wide ridge waveguides at different etching depth is given in Fig.2.4 (a) and (b). More 

profound field intensity is obtained for fully etched silicon where symmetric field 

distribution is obtained (see Fig.2.3 (a)) as compared to shallow and deep etched 

Silicon. Depositing Silica on top of the photonic wire can also improves the 

confinement of TE fundamental mode of the photonic wire significantly. From 
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Fig.2.4, 100 nm, 200 nm and 400 nm SiO2 has been deposited on the photonic wire.  

But to reduce the device preparation complexity and process development, the slab 

waveguide design based on fully etched silicon is considered through out this work. 

By using Fimm-wave simulation tools, the calculated effective index neff based on the 

design used for this present work is 2.97- which will be used for 2D FDTD 

computation. The value of neff is fed into the Full-wave simulation tool by using either 

pulsed or continuous Gaussian source for slab waveguide. The finite computational 

domain is optimized in space which covering the area between 10 to 20 µm in length 

and 2 µm in width since large computational area will contribute to a longer 

simulation time and also consume more memory and power. The space must be 

exactly proportional to the size of the optical waveguide. The thickness of PML 

required for the device operating at around 1.52 µm wavelength is 0.5 µm to provide 

better electromagnetic wave absorption at the boundary. Other parameters that 

contribute to the accuracy of the simulation are determined by the choice of the spatial 

grid or mesh size, where smaller grid spacing gave more accurate computation. In 

other word, the closer the resolution in simulation to the actual device more accurate 

simulation will be established. In this present work, the grid size of 0.01 µm was used. 

 

 

Fig.2.5: An example showing a comparison between 2D 

FDTD computed using different simulations tools (R-soft and 

Crystal-wave) with the measured result 

 

During the second half of the computational process, the author has used Crystal 

Wave by Photon Design to compute all the device structures. This software is found 
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to be more accurate as compared to the Full-wave simulation tool. On the other hand, 

by using the same parameters in the Crystal Wave tool as previously used in Full-

wave, the simulation time has been reduced by a factor of five and the result obtained 

is closer to the measured result as shown in one of the example in Fig.2.5. The 

comparison is made by using 12 period 1D PhC mirrors with diameters of 350 nm and 

periodic spacing of 360 nm. By looking at the band edge location of the measured 

result in figure 6, the 2D FDTD crystal wave shows closer result (band edge) as 

compared to the one computed using R-soft tools where the deviation of 83 nm is 

observed between the simulation and the measured result. But this is understood to be 

due to small deviation in the dimension of the structures produced after fabrication 

process as real devices. No further investigation is made in reference to the 

discrepancy between the different examples of commercial software, but the problem 

has been addressed to the relevant personnel. As a result, based on further tests carried 

out using different measurement run to compare the results with the simulation, the 

Crystal Wave software have been chosen as the relevance tools that are well-suited to 

the design structures used throughout this present work. 

 

 

Fig.2.6: An example showing a comparison between 2D and 

3D FDTD simulation using the Crystal Wave simulation tool 

and compared also with the measured result. 
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On the other hand, the 3D FDTD approach has been used occasionally to simulate the 

devices using the Crystal-Wave simulation tool. It produces a spectrum that is closer 

to the measurement result, as compared to estimation based on the 2D FDTD 

approach. Fig.2.6 shows an example that compares the 2D and 3D FDTD approach 

based on the Crystal-Wave software, as well as with measurement results. A smaller 

deviation, of approximately 30 nm, in the location of the band-edge between the 3D 

FDTD and measured results is observed, as compared to the 83 nm difference found 

using the 2D FDTD approach. The difference between the 3D FDTD and the 

measurement results is partly due to the difference between the dimensions of the 

device structures (hole diameters, wire width and hole periodic spacing) simulated 

and the dimensions of the actual device fabricated. This problem will be discussed 

further in the next subsequent Chapters (Chapter 4 and 5).  

 

 

Fig.2.7: Another example showing a comparison between 2D 

and 3D FDTD simulation using the Crystal Wave simulation 

tool with the measured result for PhC/PhW micro-cavities. 

 

Another comparison has been made for the case with the micro-cavity spacer inserted 

between periodic mirrors. A sharp resonance was excited at around the middle of the 
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stop band. Fig.2.7 shows an example of a resonance excited within the stop band. 3D 

FDTD approach shows closer location of the stop band at the resonance central 

wavelength (λ02) of 1557.9 nm to the measured result which is at λ01 of 1531.5 nm. 

Whereas 2D FDTD has a resonance which lies further at the higher wavelength region 

of λ03=1597.21 nm. But the time taken to simulate this device structures using 3D 

FDTD approach is several time longer than that of 2D FDTD approach. 

In summary, the 2D simulation approach is used to produce preliminary 

designs for the device, together with the employment of an effective index 

approximation based on the waveguide properties of the base material structure 

discussed earlier. 2D simulation helps with obtaining a better understanding of the 

general behavior of the device - but 3D simulation gives more accurate prediction of 

the results, at the expense of much greater time and energy consumption. Throughout 

the present work, both 2D and 3D FDTD simulations were carried out using the 

commercial software called Crystal-Wave ® from Photon Design.  
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CHAPTER 3:  

Fabrication Processes 

Introduction 

This chapter will emphasize one of the most important parts of the thesis, which is 

silicon fabrication processes. Almost a quarter of the time has been dedicated to 

optimizing the fabrication processes, in order to improve the performance of the 

devices. Most of the optimization has been carried out based on previous work 

[14-16]. This chapter contains a description of the material used - silicon-on-insulator 

(SOI), the pattern transfer process (including electron beam lithography and 

photolithography techniques) and characterization of the device structures. It also 

underlines the etching processes used - i.e. dry etching techniques, mainly reactive ion 

etching (RIE), and wet chemical etching for SOI. 

3.1   Silicon Technology 

The silicon industry has evolved rapidly ever since it’s beginning. Silicon is the base 

material used for many electronics applications, such as microprocessors and 

integrated circuits (IC). It is also the commonly used material for research and 

development in many CMOS technologies [1-5]. The use of silicon in photonics has 

evolved into a mature device technology for many applications - such as optical 

sensors, modulators, optical switching and non-linear optics. Silicon-on-insulator 

based material has became the choice for many integrated circuits (IC), due to its low 

losses and higher speed operation, leading to lower power consumption and increased 

overall chip performance. The silicon-on-insulator (SOI) wafer material is formed by 

a silicon layer with a silica cladding underneath the silicon core. The silica cladding 
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acts as a buffer layer to separate the mono-crystalline silicon device layer from the 

sub-micron silicon substrate. The fabrication process for silicon based photonic 

devices is relatively easy and straightforward, as compared to active devices such as 

those typically realized in complex III-V semiconductor hetero-epitaxial structure. For 

example, the III-V hetero-structure semiconductor material typically has several 

different layers with different compositions, which make it less easy to control in 

fabrication processes. Each layer requires a high precision pattern transfer process in 

order to define the correct pattern in the material. In other words, in some cases the 

III-V semiconductor device structure requires multi-level etching, which makes it 

more difficult to obtain a precise fabrication outcome. In addition, the different 

compositions of each layer of III-V semiconductor also imply different etch rates, 

resulting in irregular etching, which in turn affects verticality and the aspect ratio of 

the features patterned into the material. In contrast, Silicon on-Insulator is a passive 

material that consists of a silicon guiding layer with a silica cladding layer as a buffer 

underneath it. This arrangement gives freedom in term of fabrication processes, where 

one can control the etching process easily due to the basically simple nature of the 

silicon. The silicon guiding layer normally requires single-step etching, resulting in 

good controllability of the etching rate - using the correct choice of the mask resists to 

define the guiding layer. The high potential of silicon-on-insulator based material has 

been recognized some time ago in the worlds of optoelectronics and photonics. Its 

capability for giving reduced propagation losses has become a benchmark in the 

progress towards developing a single device with more functionality, due to the high 

index contrast and large wavelength windows, extending over wide range of optical 

frequency. In addition, SOI also enables the use of the mature metal-oxide 

semiconductor processing technology that gives large scale and monolithic 

optoelectronic integration. In other words, there are possibilities for SOI to be a 

platform for integrating multifunctional devices such as optical switches and sensors 

into a single chip. Reduction towards sub-micrometer size in the waveguide 

dimensions also provides a new platform for other optical functions, such as optical 

amplification and wavelength conversion. Development of the tight optical 

confinement also leads to easier access to the non-linear properties of the material at 

low pump power levels. On the other hand, for advanced SOI technology, integration 

of many optoelectronics devices on single chips must demonstrate a capability for 
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delivering full device functionality. In addition, the high index contrast of SOI, which 

is given by the refractive index of the silicon guiding layer of 3.45 and the 1.45 index 

value of the silica cladding of 1.45, provides strong confinement for the optical 

propagation through the guiding layer. Photonic wires beat photonic crystal channel 

guides mainly because they are intrinsically simpler and more regular. The strong 

optical confinement makes photonic wire waveguides suitable for more complex 

designs, such as sharp bends [6,7] and Mach Zehnder (MZ) structures [8]. The 

emergence of state-of-the-art fabrication tools, especially for SOI based material at 

the sub-nano-metre scale, has also motivated much research toward improving the 

fabrication process - thus producing low propagation loss device structures. 

3.2 Silicon-On-Insulator (SOI) material 

The Silicon-on-Insulator (SOI) material used for this projectwas provided by 

SOITEC- one of the leading commercial Silicon manufacturing companies. There are 

several types of Silicon technology available in the current market - such as 

UNIBOND ® [9, 10] and SIMOX ® [11]. The Silicon used for this project was 

UNIBOND® type material prepared using the ‘SMART-CUT’ technology developed 

by SOITEC [52].  

 

Fig.3.1: SOI produced using smart cut (a) technique 

This technology is based on the wafer bonding techniques created through hydrogen 

implantation via protons. The SMART CUT process is divided into several steps, as 
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shown in Fig.3.1. Detailed descriptions of the process can be found in [12, 13] and 

references therein. The steps to produce SOI material using this method can be 

divided into several phases. 

Step 1: Sample preparation and thermal oxidation process  

The initial process of SOI sample preparation starts by growing SiO2 (silicon 

dioxide) on the bulk silicon wafer. The SiO2 buried layer  (sometimes called 

the Bulk Oxide (BOX) layer) is used, in optical waveguides, to provide optical 

isolation between the Silicon core and bulk silicon underneath it. 

Step 2: Hydrogen Implantation  

This step includes the fracturing process that determines the thickness of the 

silicon layer in SOI. This process involves hydrogen implantation through the 

silica layer and silicon layer.  

Step 3: Cleaning and Bonding process  

Through the bonding process, the wafer is flipped over to be bonded onto a 

cleaned silicon wafer (the handle wafer). This process will form an SiO2 layer 

sandwiched between two bulk silicon sections that will determine the 

thickness of the silicon guiding layer at a later stage. 

Step 4: Splitting the Bonding with the ‘handle’ wafer 

The process is initially carried out by fracturing the bonding wafer at 400-

600
o
C. At this point, a thin layer of mono-crystalline silicon remains bonded 

to the bulk silicon wafer, thus forming the SOI structure. Finally, in order to 

strengthen the chemical bonding of the SOI wafer, it is raised to a temperature 

of 1100
o
C. The remainder of the silicon that has been split off can be used 

again for the next SMART-CUT process.  

 

Fig.3.2: Cross sectional SOI wafer used in this present work 
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The silicon-on-insulator (SOI) used for this present work consists of a silicon guiding 

layer with a nominal thickness of 260 nm and a silica buffer layer/cladding of 1 µm 

thickness - which are sandwiched between the silicon guiding layer and 

approximately 250 µm thick bulk silicon substrate, after undergoing thinning process 

on the bulk silicon as shown in the schematic drawing of Fig.3.2. The initial thickness 

of the bulk silicon layer when first delivered by the manufacturer, i.e. SOITEC was 

700 µm. The final thinning process was carried out ‘in-house’ on the SOI substrates 

by mechanically polishing the ‘bottom’ bulk silicon substrate, in order to reduce the 

wafer thickness from 700 µm to a nominal thickness of between 250 and 300 nm. 

This thinning process is important for the subsequent precision cleaving process – 

producing the ‘flat’ end-facets on the sample that are required for efficient coupling in 

device characterization.  

3.3 Fabrication Sequences 

The development of the fabrication process for the photonic wires and photonic 

crystal device structures plays an important role towards the accomplishment of 

fabricated device structures that can be translated into a substantial agreement 

between the simulation and measurement outcomes. Different process cycles have 

been developed in line with the most current technology that became available during 

the project time-scale.  

 

 

Fig.3.3: General device fabrication cycles 
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These cycles were optimized on the basis of previous work carried out by co-

workers [14-16] - resulting in improvements towards near-perfect device structures, 

especially for the PhW/PhC waveguide devices used for this present work. The 

optimization of the SOI fabrication method was motivated by the need for producing 

low-loss silicon waveguides with reduced sidewall roughness. The first fabrication 

cycles were carried out by using PECVD (Plasma Enhanced Chemical Vapour 

Deposition) silica as a mask, before defining the silicon guiding layer - which 

involved a two-step silicon etching process. Further improvements on the end 

fabrication results of the device structures have been made by reducing the whole 

fabrication process to just a single-step silicon etching process, using stronger and 

more robust resist as a mask – i.e. HSQ (hydrogen silsesquoiaxane). The patterned 

and developed HSQ layer has been used as a mask layer in the etching of the silicon 

layer directly, without the need for an additional mask layer - thus reducing overall 

fabrication time and complexity. The reduction in the number of steps used for the 

silicon etching has been shown to improve the overall optical performance of the 

device, with reduced propagation losses that corresponded to a high quality 

fabrication outcome. These issues will be discussed in detail in a later section. A 

comparison will be made here between the two fabrications cycles used towards 

optimizing the devices during this present work.  

 

 

Fig.3.4: L-Edit layout for the design of PhC/PhW device structures 

(not in scale) using (a) positive tone resist (b) negative tone resist 
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A complete process cycle - including modelling, fabrication and characterization of 

PhW/PhC device structures is illustrated in Fig.3.3. The structures were first designed 

using a user-friendly Computer Aided Design (CAD) system tool – L-Edit version 

12.3. The design file is then fractured in Computer Aided Transcription System 

(CATS) software that processes the GDSII (Graphite Data System II) file format. The 

GDSII is a binary file format representing planar geometric shapes, text labels, and 

some other information – which are arranged in hierarchical form. The objects are 

grouped by numeric attributes assigned to them, including the layer number or data 

type. While these attributes are designed to correspond to the "layers of material" used 

in manufacturing an integrated circuit, their meaning rapidly becomes more abstract, 

to reflect the way that the physical layout is designed. Afterwards, clean-room 

preparatory work was carried out – which concerned cleaning and defining the mask 

layer on the SOI samples for pattern transfer using electron-beam lithography (EBL). 

After the pattern writing process, the patterned resist was developed using active 

developers that react to any particular resists used, before the silicon waveguide was 

finally defined using dry-etch processing. The etched waveguides were then cleaved 

for device characterization using a tuneable laser operating at around band C 

(1550 µm) in the infra-red regime. Before the characterization process, it is useful to 

check the final etched waveguide using a scanning electron microscope (SEM) that is 

capable of capturing images of very small features - for further analysis of the 

sidewall roughness. The total size of the pattern size is partly determined by the field 

size of the VB6 EBL tool, in order to reduce the impact of stitching errors where the 

writing field boundaries will be placed over a wide waveguide. On the other hand, the 

length of the feeder waveguide must be longer than 1.2 mm, in order to allow 

moderate precision cleaving of the samples. Normally, such patterns were designed to 

be around 5 mm to 8 mm in length, in order to give extra freedom during cleaving. 

The combination of a taper section and a waveguide section was designed to be 

1.2 mm long, which is sufficient for extinction of higher order modes coming from 

the feeder waveguide. 

3.3.1 CATS design 

The pattern layouts of the photonic wire/photonic crystal devices were designed using 

the commercial software L-Edit v.12 by Tanner EDA. This is a user-friendly PC-
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based CAD design package. It has the capability of designing a PhW/PhC device 

structure, which can be divided into different cells in a hierarchical manner - thus 

making it easier to design a complex structure with the ability to amend any small 

changes in the design without the need to make big changes in the design of the whole 

structure. The designed pattern is subsequently converted into the GDSII file 

mentioned in the previous section (section 3.3). The GDSII file is fractured in the 

CATS environment before the file is then transferred to the BELLE (Beam-writer 

Exposure Layout for Lithographic Engineers) software system which was developed 

specifically to be used for EBL – and which is used to lay out the pattern on the 

substrates. During this stage, various parameters will be determined by the user - for 

example the base-dose, spot-size, the location of the pattern on the sample, beam 

energy and a calculation of the total job running time. The design for a complete PhW 

and PhC waveguide combination is shown in Fig. 3.4. Each design corresponds to the 

different resist tones used, which will be discussed in a later section. These resists can 

be either positive (for examples ZEP 520A and PMMA) - see Fig.3.4 (a) - or negative 

tone resists (HSQ and polymer resist such as SU8) - see Fig.3.4 (b). These resists are 

the radiation sensitive material that defines a pattern after being exposed to radiation, 

which is usually a polymer, sensitized resin or a spin-on glass like HSQ. The 

waveguide sections are divided into several sections. The first section comprises a 

feeder waveguide with a dimension of 2 µm width and 1.2 mm in length - to couple 

light from a tuneable laser into the 500 nm wide wire waveguides located in the 

middle section. The feeder waveguide is subsequently tapered adiabatically at an 

angle of ~7° for approximately 600 µm in length, in order to attain single mode 

operation for the 500 nm wide waveguides situated in the middle section.  

 

Fig.3.5: The scales (resolutions) of difference lithography 

These patterns are defined using direct-write electron beam lithography. Throughout 

the course of the present work, two different types of resist have been used 
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progressively to form the primary pattern layer. Both resists are radiation sensitive 

agents that act as a medium for transferring the pattern using EBL. The first version of 

the fabrication process was carried out using a positive tone resist, ZEP520A, diluted 

at 40% with anisol agents. This resist is known to have low molecular length as 

compared to other resist such as PMMA (poly-methyl methacrylate) - thus this resist 

is more sensitive and requires low EBL dosage [53] - which in turn reduces overall 

writing time and retains the high resolution for a very fine feature. The pattern area 

defined using this resist will become soluble - and can then be removed after the 

development process by using a suitable developer. During the second half of the 

fabrication sequence, a negative tone resist, HSQ, has been extensively used - 

showing a substantial improvement through reduced sidewall roughness because of a 

reduced number of fabrication steps. The negative tone resist reacts to the electron 

bombardment by becoming insoluble, which means that the exposed area remains 

after development using a suitable active solvent. 

3.3.2 Electron beam Lithography Patterning 

The word lithography in the perspective of optoelectronics signifies the definition of a 

pattern on a material structure that can possibly be made up of many different layers. 

The word lithography itself means ‘writing on a stone’ in Greek - and has come to 

mean writing a transferable pattern on a sample substrate or a mask plate.  The 

patterning process plays an important role in the fabrication sequence, where several 

technologies have been developed, whether for research purposes or for mass-

production.  These technologies are based on either parallel writing 

(photolithography) or sequential writing (electron-beam or focused ion beam (FIB) 

lithography) [17-19]. The race towards reducing the propagation losses in compact 

photonic wire and photonic crystal (PhC/PhW) structures has relied substantially on 

the lithography used for such highly compact devices as optical lithography [20] and 

electron beam lithography [21, 22]. For instance, there are several methods provide a 

means for pattern transfer of a desired design such as photolithography, electron-beam 

lithography and ion beam lithography.  A pattern transfer has been known to be a 

crucial step in the degradation of the original pattern created – thus in some method 

used, there is also a need for subsequent smoothing process cycle (carried out several 

times, possibly) - for example through silicon oxidation process. 
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In addition, Deep UV lithography (DUV) has been widely used for many 

years to produce complex structures for mass production [23, 24], due to its very 

much shorter pattern transfer time and ability to replicate the same process several 

times as compared to direct-write EBL. But a limitation exists in the ability of DUV 

to generate patterns at the highest resolutions required, hence limiting the capability 

of patterning sub-nanometre scale patterns. On the other hand, electron-beam 

lithography (EBL) requires long writing times, because it involves the writing, 

sequentially, of small features with ultimately high resolution. The differences 

between these technologies very much depend on the resolution used and the writing 

time that they can offer, as illustrated in Fig.3.5. For example, EBL can be used to 

design structures with minimum features down to ~10 nm or below.  In contrast, for 

bigger feature sizes, i.e. 1-2 µm, photolithography is the desired tool - and requires 

the use of a mask for contact printing. Device miniaturization and a highly compact 

design that can offer full device functionality have pushed lithography to its limits.  

 

 EBPG5-HR VB6-UHR-EWF 

Year  1990 2006 

e
-
 source LaB6 filament Thermal field emission 

e
-
 acceleration 20-50-100 keV 50-100 keV 

Resolution 5 nm 0.5 nm 

Spot size 12 nm 4 nm 

Writing field 0.8 by 0.8 mm @ 50 keV 1.2 by 1.2 mm @ 100 keV 

Stage accuracy 80 nm 20 nm 

 

Table 3.1: Details descriptions of different EBL used in this 

present work 

These technologies have different capabilities, depending on the minimum features 

used and the design complexity. For research purposes, EBL gives more flexibility, 

implying that most designs require changes from time-to-time – and implying that 

production of a new mask will cause further delay and be very costly- thus giving 

justification for the use of EBL in preference to other technologies, e.g. 

photolithography. For research purposes, electron beam lithography has become a 
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commonly used technique for writing a pattern on the device substrate - due to its 

higher resolution, greater layout design flexibility and alignment accuracy. During the 

present work, electron beam lithography (EBL) was used as a method for creating the 

pattern on the sample. It is the process of scanning the surface of the sample, 

consisting of either positive or negative resist, using a beam of electrons from an 

electron gun. The electron gun generates a beam of electrons at a suitable current 

density and the sharply focused beam is scanned over the sample, depositing electrons 

in the pattern. The amount of the electron flux required depends on the resist used, 

which can be either positive or negative. There have been two EBL machines 

available within the James Watt Nanofabrication Centre (JWNC) at Glasgow 

University during the course of the work for this thesis. The EBPBG5 machine had 

the capability of writing  30 nm size features with 125 mm square field - whereas the 

Vistec VB6 UHR EWF, with ultra high resolution and a capability for writing a 4 nm 

spot with 1.2 mm square fields, superseded the old EBPBG5 during the second half of 

the research. The detailed specification of these EBL machines can be found in 

references [25] and [26]. The basic specification of both EBL tools is shown in Table 

3.1. During the second half of the work for this thesis, 90% of the patterning 

processes were performed using the newly installed Vistec VB6 tool. The migration 

from the EBPBG5 machine to the Vistec VB6 machine has proven to be smooth, due 

to the substantial similarities in the software used in the two machines. 

3.3.3  Stitching Error  

Stitching errors commonly occur in the writing process when using electron beam 

lithography. This occurrence is recognizable through a discontinuity or gap in either 

the horizontal or vertical directions of the pattern shown in Fig.3.6. Usually a small 

gap of between 10 nm and 100 nm magnitude can be seen after the pattern 

development process. This effect can have a significant impact on the overall 

performance of the device structures, in particular the 500 nm wide photonic wires, 

due to perturbation of the mode travelling within the photonic wire waveguides. This 

effect will contribute to higher propagation losses via scattering into the surrounding 

air, as the mode propagates through the gap or discontinuity area. This problematic 

issue can arise from the sample not being uniform because resist residues still remain 

on the under side of the sample, leading to the sample being placed at a significant tilt 
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angle on the sample holder in the EBL tool. This sample tilt will increase the 

probability of misalignment during the pattern writing process. On the other hand, 

writing patterns at different resolution has also been shown to increase the stitching 

errors. 

 

Fig.3.6: Examples of stitching errors that occur 

during the pattern writing process using an EBL 

tool - showing stitching problems in (a) vertical 

direction (b) horizontal direction. 

For example, in order to reduce the pattern writing time when using the EBPBG5 tool, 

the photonic wire waveguides have been written in two different layers with different 

resolutions. The smaller features, i.e. the photonic wire waveguides and PhC/PhW 

waveguide sections, were written at 5 nm resolution, whereas larger feature sections 

(with 2 µm feeder waveguides) were written at the much coarser 100 nm resolution. 

The stitching errors occurred at the interface between these layers. But the stitching 

errors were reduced to 10 nm by writing using the same layer, but with single 

resolution. Moreover, the nominal dimension of the substrate used for patterning in 

EBL must also be sufficiently large to give extra space for precision clamping of the 
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substrate in the EBL tool. At least two clamps were needed to attach the substrate to 

the substrate holder - to prevent it from being placed at a significant tilt angle. In the 

present work, the typical dimensions of SOI substrate used were 20 mm x 20 mm, in a 

rectangular shape – and they were used with about a 2 mm distance from the sample 

edges - for clamping purposes. 

3.3.4  Exposure Testing 

In order to obtain the correct exposure dose on the pattern, an exposure dose test is 

carried out using the EBL tool. The exposed areas are then developed using a suitable 

developer (Oxylene) for positive tone resist (ZEP 502A) and TMAH (tetra-methyl-

ammonium hydroxide) for negative tone resist (HSQ) - before defining the silicon 

guiding layer. The design and the fabrication processes for the photonic wires and 

photonic crystal waveguides require fine features that sometimes push the electron 

beam resolution to its limit. During the writing process, the electron beam is scattered 

by the resist and underlying area with the low density region underneath the resist 

causing under exposure – while the pattern in high density exposure regions of the 

resist will be over-exposed. In other words, the electrons are scattered and spread out 

as they travel far beyond the resist into the underlying substrate. The non-uniformity 

in the scattering dose is called the proximity effect [27-29]. It was found to be 

necessary to use the correction proximity effect installed in the electron beam 

software when executing this design, resulting in an equal dose per unit area [30, 31] 

for the pattern - by fracturing the shapes, especially in the highest resolution area. The 

details on the base dose used for each EBL machine in the present work will be 

discussed in section 2.4 and 2.5 - and are very much dependent on the type of resist 

used  - and its condition. The rate of energy loss is inversely proportional to energy - 

and therefore 100 kV electrons lose half the energy per micrometer that 50 kV 

electrons do, so pattern transfer requires twice the dose at 100 kV as for 50 kV 

electrons, as illustrated by the equation 2.1.  

    
E

E
k

ds

dE ln
−=   (2.1) 

Where k is a constant, E is beam energy and dE/ds is the rate of energy loss. This 

means that at 100 kV EBL voltage, the electron lose half the energy per micron as 
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compare to 50 kV electron – thus the pattern requires twice the electron dosage in 

100 kV compared to 50 kV. By re-writing equation 2.1 gave; 

    sE ∝2   (2.2) 

Where the depth of penetration of the electron, s varies as the square of the energy- 

therefore 100 kV electrons penetrates four times as far as 50 kV electrons. In other 

word, 100 kV electrons are desirable for designing a fine feature at high resolution as 

compared to 50 kV. 

3.3.5 Dry-Etching 

After carrying out the patterning process using EBL on the resist layer, the sample is 

transferred into the silicon waveguide core layer by reactive ion-etching (RIE) [32-33] 

- a technique that involves both chemical and physical interactions - to remove 

selected areas of material on the wafer. The moderately high energy ions generated by 

the chemically reactive plasma under low pressure (vacuum) conditions are used to 

attack the surface of the material and react with it - thus removing the area patterned 

by the EBL in the deposited resist. Dry-etching has the advantage over the commonly 

used wet-etching approach, that it can produce a strongly anisotropic profile, together 

with good selectivity between the mask layer and the silicon core or other material 

layer to be etched. The etching processes can be divided into several steps, as 

mentioned in [34].  A typical RIE system consists of a cylindrical vacuum chamber 

with the sample placed in the lower part of the chamber. There are several different 

types of RIE machine available, depending on how the plasma is created within the 

chamber. Principles of operation used include CCP (Capacitive Coupled plasma) RIE 

and ICP (Inductively Coupled plasma) RIE. In general, two electrodes are used to 

produce an electric field between the top and bottom parts of the chamber – and used 

to accelerate the ions towards the surface of the sample. Strong radio-frequency (RF) 

electromagnetic fields are initiated in the plasma at certain frequencies. The 

accelerating electric field will ionize the gas molecules, creating plasma. Due to use 

of a large voltage difference, the ions will collide with the sample, hence etching 

away some of the sample surface. The etching process occurs where the ions react 

with material at the surface of the sample. Any excess electrons are pumped out into 

the ground without changing any electronic state of the system [54-55]. The etching 
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conditions in an RIE system depend strongly on process parameters such as pressure, 

gas flow-rates - and the rf drive power level. Throughout the course of the present 

work, two different types of RIE machine have been used - a BP80 from Oxford 

Instruments [35] - and an STS-ICP machine from Surface Technology Systems (STS) 

[36]. During the first fabrication sequence, ZEP520A positive tone resist has been 

used to etch a silica layer before defining the silicon guiding layer. The second 

fabrication sequence was conducted by using negative tone HSQ resist as a mask for 

silicon etching, leading to a large improvement in the quality of the edges of the 

patterned features. 

3.4  Fabrication Process sequence using ZEP520A 

3.4.1  First Stage: Silica Etching 

ZEP520A resist is a positive tone resist that was used during the first cycle of the 

work, acting as a mask for the silica layer of 200 nm in thickness – and was used by 

previous co-workers [14]. It is highly sensitive and highly dry-etching resistant [37]. 

During the first cycle of the pattern transfer process, it was used in conjunction with a 

Leica EBPBG5 EBL machine.  

 

Fig.3.7: First fabrication sequence using ZEP520A 
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By referring to the standard process used in [14], the SOI material was initially 

covered with a 200 nm thick deposit of silicon dioxide (SiO2), using Plasma Enhanced 

Chemical Vapor Deposition (PECVD) to provide intermediate masking of the pattern 

transfer process into the silicon layer. A complete fabrication sequence using 

ZEP520A resist and silica to etch the PECVD silica and then the silicon layer is 

shown in Fig.3.7. ZEP520A is a relatively soft resist, which makes it appropriate to 

use it as a mask layer for etching a deposited silica layer - and then using the 

patterned silica layer as a pattern transfer layer for defining the required pattern into 

the silicon waveguide layer. The need to use an intermediate mask layer, which in this 

case is a silica layer, protects the silicon waveguide core layer before carrying out the 

subsequent RIE etching process. But the ZEP resist layer degrades significantly 

during etch-processing - thus resulting in damage to the sidewall of the waveguide, as 

well as losing or distorting the smallest features of the waveguide device pattern. On 

the other hand, the quality of the PECVD silica layer deposited for the present work 

was also found to be poor, resulting in waveguides with significant sidewall 

roughness.  

 

Parameter Low 

Resolution 

(2 mm ridge) 

High resolution (adiabatic 

taper and wire waveguides) 

e
-
 acceleration 50 keV 

Resolution 5 nm 100 nm 

e
-
 acceleration 15 nm 160 nm 

Dose 

Resolution 

130 µC/cm
2 

130 µC/cm
2
 

Table 3.2: Parameters used for SOI patterning using ZEP 

resist in EBPG5 EBL. 

 

In particular, in the pattern of a single row PhC/PhW waveguide micro-cavity 

considered for this present work, there is also found to be difficulty in controlling the 

hole dimensions in that particular design, due to variations in the deposited silica film 

thickness by +15 nm, thus affecting the etch rate of the silica film. In the first stage of 

the pattern transfer process, the silica layer was initially defined using ZEP520A 

resist.  The resist was spun at 2000 rpm for 60 seconds, giving the thickness of 

between 120 and 140 nm. The samples were baked at 180 
o
C for approximately 
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40 minutes. Due to its longer-molecular length than other resists such as PMMA 

(poly-methyl methacrylate), this resist is known to be highly sensitive to the EBL 

exposure dose, which requires a lower EBL dose of ~130 µC/cm
2 

with 50 kV 

electrons. In return, it effectively reduces the overall writing time, as compared to 

other positive tone resists such as PMMA.  

In order to reduce stitching errors and writing time, the patterns were designed 

in two different layers having different resolutions and spot sizes, as illustrated in 

Table 3.2 (refer to Fig.3.4).  

 

Parameter Value 

Machine BP80 

Gas CHF3 

Flow 20 SCCM 

Pressure 17  mTorr 

Forward RF power 10 Watt 

Time 8 minutes 

Table 3.3: Standard process used for silica etching 

 

The patterns were then exposed at 50 kV in the EBPBG 5 EBL tool. The exposed 

samples were finally developed using O-xylene at 23°C for 1 minutes and rinsed with 

IPA for 30 seconds. The silica layer was etched using CHF3 gas in the BP80 RIE 

machine for 8 minutes. This process required no attempt at optimization, since it had 

already been used by other co-workers [14, 16]. The process details are illustrated in 

Table 3.3. A typical silica etching result using ZEP as the resist layer is shown in 

Fig.3.8.  

 

 

Fig.3.8: SEM images showing the result after silica etching using RIE 

BP80 tools (a) bird eye view (b) top view 
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It shows that, the patterns were transferred successfully with the verticality of the 

sidewall calculated to be of approximately 80° - 86° - see Fig.3.8 (a). On the other 

hand, the roughness of the sidewall appears to be poor and imperfect shaped holes 

resulted from this process. The hole diameters and spacing vary by as much as 50 to 

100 nm from the actual design dimensions – giving a ratio of 1:3 between the actual 

design and the fabricated device structures measured using SEM 4700 tools. This 

condition will certainly reduce the overall fabrication efficiency and reproducibility 

where the need to generate 1:1 pattern transfer from CATS design towards fabrication 

outcomes is critical- for having better comparison and device analysis between the 

measurement and the simulation results. On the other hand, a difference in the silica 

deposition rate and the quality of the PECVD film deposited has contributed to the 

poor repeatability and reproducibility of this process - where the waveguide and hole 

dimensions within the photonic wire waveguide changed in every fabrication cycle. 

Several attempts has been made to reduce the side-wall roughness of the waveguide -  

e.g. by removing the resist residues at the waveguide edges by performing oxygen 

ashing – but no significant improvement was obtained. This failure is believed to be 

due to the poor quality of PECVD silica deposited, which had grainy textures, which 

left grass-like features produced in the silica etching process. 

3.4.2  Second Stage: Silicon Etching 

During the second stage process, the silicon layer is etched using RIE ICP tools with 

the combination of SF6/C4F8, as previously used by co-workers [16]. The silicon layer 

was defined using a silica mask layer.  

Parameter Value 

Machine STS-ICP 

Gas SF6/C4F8 

Flow 40/90  SCCM 

Pressure 12  mTorr 

Coil power 600 W 

Platen power 10 W 

Time 49 seconds 

Table 3.4: Etching process for defining silicon guiding layer 

using STS ICP tools 
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The silicon layer is etched for 49 seconds with a silicon etching rate of 5 nm/s and 

Si/SiO2 selectivity of ~ 10. Table 3.4 shows the detailed process parameters in the 

early stages of silicon etching using SF6/C4F8 chemistry. Fig.3.9 shows the hole 

pattern after this process. The roughness of the sidewall is still poor, resulting from 

the previous pattern transfer at the silica level using ZEP520A resist. But the cross-

sectional view of the waveguide still shows a good vertical profile (see Fig.3.9 (a)) at 

an angle of ~80°, with a silicon layer of approximately 30 nm still left un-etched on 

each side of the ridge waveguide, which obviously will have some effect on the 

optical confinement of the silicon waveguides, due to the effective index difference at 

the boundary between the silicon guiding layer and silica buffer layer underneath it. 

Further improvement can be made in reducing the roughness of the sidewall by means 

of thermal oxidation with reduced propagation losses [38- 40]. But this process 

requires more time and needs to be investigated carefully, since the thermal oxidation 

process will change the basic properties of the waveguide, i.e. the effective refractive 

index of the waveguide - thus changing the modal distribution within that particular 

waveguide. 

 

 

Fig.3.9: SEM image of silicon after etching process using the 

STS-ICP tool (a) Cross sectional view (b) top view 

A near-perfect fabrication process with reduced sidewall roughness is needed, 

especially in the patterning of the silicon layer - and therefore there is need for a 

single cycle silicon patterning process, which is why the new process using HSQ 

resist to provide the mask layer for a single level silicon pattern transfer process has 

been developed.  
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3.5  Fabrication process: Hydrogen Silses-Quioxane (HSQ) 

3.5.1  RIE STS-ICP: Silicon Etching 

A stronger and more robust resist, such as HSQ (a negative tone resist), which is 

capable of supporting writing with very high resolution using EBL [41], is useful for 

pattern transfer into the silicon core layer. HSQ is a spin-on-glass material that 

consists of silicon, oxygen and hydrogen atoms bonded together. When high energy is 

applied thermally or through electron bombardment, the hydrogen atoms will be 

displaced, leading to the formation of a silica-like network structure [42-44]. The 

deposited HSQ can be developed after electron-beam exposure by using basic 

reagents such as KOH (Potassium Hydroxide) and TMAH (Tetra-Methyl-Ammonium 

Hydroxide) [42]. The fabrication process using HSQ has also proven to result in 

smooth sidewalls with a very low propagation loss of 0.92 dB/cm being reported in 

[45], which is the lowest reported propagation loss for photonic wire waveguide 

structures of this type. A relatively thick HSQ layer was used to provide a pattern 

transfer and mask layer for silicon etching. This process involves a single step 

reactive ion-etching process. The silicon layer is directly etched using the STS-ICP 

machine.  

 

 

Fig.3.10: Single steps process: Fabrication sequence using 

HSQ resist 
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Most of the optimization work on the patterning process using this resist has been 

carried out by co-workers, with more detailed literature concerned with HSQ 

appearing in the references cited in [16]. During the course of this work, further 

optimization of the silicon etching process was needed, especially when dealing with 

photonic crystal structures where different hole dimensions gave different etching 

rates - because smaller hole sizes have lower etching rates, as compared with bigger 

hole sizes. This effect is due to the etching gas being trapped inside the hole longer in 

a smaller hole, contributing to a lower etching rate as compared to that for a bigger 

hole size. Therefore longer etching times, with suitable etching parameters, are 

necessary. The HSQ layer acts as a mask for etching of the silicon guiding layer. The 

HSQ used in this work had a 1:1 dilution in MIBK (Methyl-Isobuthyl-Ketone) that 

gave a nominal thickness of approximately 200 nm when spun at 3000 r.p.m. The 

fabrication process steps using HSQ to define the silicon guiding layer are shown in 

Fig.3.10.  

Parameters EBPBG 5 VB 6 

 Res High Res.      Low Res. 

e
-
 acceleration 50 keV 100  keV 

Resolution   5 nm              100 nm     2.5 nm             10 nm 

Spot size  15 nm             300 nm        6 nm             20 nm 

Base dose 600 µC/cm
2
 1500 µC/cm

2
 

Writing field 0.8 x 0.8 mm 1.2 x 1.2 mm 

   

 

Table 3.5: Important parameters used for different EBL tools. 

 

The resist is spun at 3000 rpm for 60 seconds to obtain an HSQ layer with a nominal 

thickness of approximately 200 nm, sitting on a silicon layer. The sample is then 

baked at 90° C, as described in [44]. After the spinning and baking process, the 

patterns were exposed using an EBL tool. Initial optimization was carried out for the 

EBPBG5 tool - and further optimization has been carried out for the newly installed 

VB6 tool at a later stage. The VB6 electron-beam tool, which is capable of writing at 

100 keV with a resolution of 2.5 nm has a substantially larger writing field of 1.2 mm
2
 

– and a spot size of approximately 6 nm, as compared to the previously used EBPBG5 

tool. Detailed descriptions of both electron-beam tools are shown in Table 3.5. Dose 

calibration has been carried out to identify the optimum dose required for both 
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electron-beam tools by applying test doses ranging from 200 to 1000 µC/cm
2
 and 

1000 to 2500 µC/cm
2 

for the EBPBG5 and VB6 tools respectively. The optimum dose 

was found to be 600 µC/cm
2
 for the EBPBG5 tool and 1500 µC/cm

2
 for VB6 tool. 

The difference in the dose between the EBPBG5 and VB6 tools depends very much 

on the resist thickness spun on the sample and the number of electron that can 

penetrate into the resist. For instance, the sample was written at 100 keV using the 

VB6 tool, whereas 50 keV was used for the EBPBG5 - which justifies the difference 

in the optimum base dose used.  

The exposed patterns were developed using TMAH at 25% concentration in 

water - which has been reported to give a  higher aspect ratio and reproducibility for 

thicker resists, as compared to other developers such as CD26 (TMAH at 2.38% 

concentration in water) [44, 46]. 

 

 

Fig.3.11: SEM images of the top view and birds eye view of 

the waveguide structures at the optimum dose using HSQ 

resist patterned by (a) EBPBG5 tools (Dose =600 µC/cm
2
) (b) 

VB6 tools (Dose=1500 µC/cm
2
) 

 

The samples were typically developed for 30 s in TMAH, with no post exposure bake 

being required. It is also necessary to agitate the sample well during the process since 

bubbles are produced during development process. The sample is then rinsed 

thoroughly in water for 60 s or more; but using two beakers (30 s in each) is 

suggested, since any remaining developer leaves a scum on the surface of the wafer.  
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Parameter Value 

Machine STS-ICP 

Gas SF6/C4F8 

Flow 30/90  SCCM 

Pressure 10  mTorr 

Coil power 600 W 

Platen power 12 W 

Time 3 minutes 

 

Table 3.6: Etching conditions for defining Si layer using STS-

ICP  

A final rinse with IPA is useful, giving high aspect ratio features, since IPA has a 

lower surface tension than water. Careful attention has to be given during the 

development process, where the sample must not self-dry when transferring from 

beaker to beaker. Fig.3.11 shows SEM images of the etched silicon layer with the 

optimum dose used for each case. It shows a great improvement, in comparison with 

EBBPG 5 tool, in the pattern transfer, as the 1:1 final pattern was obtained with the 

VB6 tool. The etching conditions used for this process sequence are shown in Table 

3.6. 

 

 

Fig.3.12: Cross- sectional view of the optimized silicon etched 

using STS-ICP tools at one of the end cleaved facet. 

The motivation towards optimizing the sidewall verticality is the need to avoid any 

polarization mixing [47] that may eventually ‘damage’ the modal distribution of the 

optical waveguides. By reducing the chamber pressure during dry-etching, it is 

possible to reduce the undercutting of the profile at the interface between the silicon 

core and the silica buffer layer. By referring to Table 3.4 and Table 3.6, the reduction 

in SF6 flow from 40 to 30 SCCM has resulted in a slower etching rate and selectivity, 
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since SF6 is the dominant ‘active’ gas in the chamber. This has resulted in an 

approximately 86° angle, with respect to the wafer plane, in terms of sidewall 

verticality, as shown in Fig.3.12. In conclusion, the newly developed process using 

the STS-ICP machine - with a mixture of SF6/C4F8 and a state-of-the-art VB6 EBL 

tool for the patterning process - has shown great improvement, especially in terms of 

the reproducibility of the devices fabricated. On the other hand, the reduction in the 

fabrication steps from two etching steps, using PECVD silica, into just a single step 

etching using HSQ resist has also shown a reduction in the fabrication time. This 

process has shown a high degree of repeatability and high reproducibility in the 

device structures characterized for this present work. 

3.6  Photolithography - silica ‘buffer’ layer etching  

In this section, a brief description of the methods used to remove the silica buffer 

layer will be given. The removal of the silica buffer layer underneath the silicon core 

layer provides air bridge structures of silicon photonic wire waveguides - which have 

been used to increase the optical confinement of the silicon waveguides.  

 

 

Fig.3.13: Process step for etching silica buffer layer 

underneath the Silicon waveguides layer showing cross-

sectional side view of the silicon waveguides. 
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Photolithographic techniques are extensively used for patterning larger feature 

structures with bigger dimensions, such as waveguide structures with micrometer 

scale dimensions - and therefore it is suitable for opening the etch windows for 

removing the silica layer beneath the silicon. The optical mask was prepared by first 

writing, using the EBPBG5 tool, onto a chrome mask plate with alignment markers on 

the samples. The initial process began with deposition of S1818 photo-resist on the 

etched silicon waveguide pattern, using the standard process mentioned in the 

previous section (see section 2.5). The complete process for etching the silica layer is 

illustrated in Fig.3.13.  

The etched silicon waveguide sample is spun at 4000 r.p.m., resulting in an 

S1818 resist thickness of ~1.8 µm. The sample is baked at 90°C for 30 minutes and 

exposed with a standard process in the MA6 mask aligner, for 4 seconds under a UV 

source. The samples were developed using a specific composition of micro-posit 

developer and RO water (1: 1) for 75 seconds. Before the etching process, the samples 

were post-baked at 120°C for 10 – 15 minutes, to harden the resist. 
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Fig.3.14: SEM image with bird’s eye view (angle ~30°) of the 

etched silica buffer layer with silicon waveguide hanging in 

the air showing : (a) 6 µm long  suspended PhC/PhW 

waveguides (b) Close up of tapered hole PhC embedded in 

PhC/PhW waveguides, with smooth sidewall, (c) one of the 

end waveguides,  with S1818 photo-resist still exist before 

removal. 

Finally the silica buffer layer was etched using dilute hydrofluoric acid (5:1) for 20-25 

seconds. The etching rate of the silica was found to be around 10-13 nm/s. This 

process will remove approximately 300-350 nm of the silica buffer layer, leaving the 

silicon waveguide layer hanging in the air and supported by the two waveguide ends. 

Fig.3.14 shows SEM images of the ‘hanging’ silicon waveguide, without a silica 

cladding/buffer layer underneath it. Even though the silica cladding has not been 

removed completely (only approximately 300 - 350 nm), but the results obtained have 
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shown a significant improvement in its performance. In addition, the thin layer of 

HSQ resist on top of the silicon has also been removed, leaving a suspended silicon-

only wire suspended from its two ends. 

3.7   Characterization and Loss Measurement Techniques 

The devices were characterized using a tunable laser source covering the wavelength 

range from 1455 nm to 1580 nm. TE polarized light was end-fire coupled into and out 

of the device waveguides using x40 magnification objective lenses - and the optical 

signal was then detected using a germanium photodiode.  

 

 

Fig.3.15: Schematic drawing of the measurement set up used 

for device characterizations. 

 

The transmission response was further analyzed - and the propagation losses of the 

2 µm width ridge reference waveguide were initially measured by considering the 

Fabry-Perot (FP) effects due to both end facets. The measurement set up is shown in 

Fig.3.15. This set-up has been used for characterizing the transmission response of the 

one-dimensional PhC/PhW devices. The propagation losses of this particular device 

originate predominantly from out-of-plane scattering due to the sidewall roughness. 

Initial loss measurements on the reference500 nm wide waveguide  were carried out 

using the Fabry-Perot (FP) resonance technique - by first making the assumption that 

the end facets has reasonably high quality mirror surfaces after the cleaving process, 
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with the reflectivity given by equation 2.4. The maxima and minima of the FP fringes 

and the total length of the cavity, without taking the input and output coupling into 

account, were estimated [48]. Thus the loss expression can be written as [49]; 

α = −
1

L
ln

1

R
•

CR −1

CR +1

 

 
 

 

 
   (2.2) 

L – Total length of the cavity (distance of end-to-end facets forming cavity) 

CR- contrast ratio of the maxima and minima in the transmission response, given by 

ima

ima

R
T

T
C

min

max=    (2.3) 

T is the transmission response that corresponds to the maxima or minima values due 

to FP fringe effects. 

R- Reflectivity of the end facets, given by;  

R~ 31 % where 
( )
( ) 











+

−
=

2

2

1

1

si

si

n

n
R   (2.4) 

where nsi = 3.45 

This equation implies that, for single mode waveguide operation, a larger difference 

between the maxima and the minima gives lower propagation losses through the 

waveguides. A combination of an optimum fabrication recipe, used together with a 

reduction in sidewall roughness, has contributed to the low propagation losses. As 

shown in Fig.3.16, the free spectral range (FSR) of ~1 nm for each resonance 

corresponds to a combined length in the waveguides of ~ 5 mm - which includes the 

2 µm wide feeder waveguides, adiabatic taper sections and 500 nm PhC/PhW 

waveguides sections. In some cases, the incoherent characteristics of the transmission 

maxima and minima suggest the existence of multimode propagation conditions [50] - 

due, for example, to fabrication inaccuracy. So determination of the propagation 

losses using this method becomes increasingly difficult. Based on Eq. 2.4, the 

estimated propagation losses for 500 nm un-patterned photonic wire waveguides 

using the cut-back approach [51] was measured to be 0.91 + 0.15 dB/cm at 

λ~1520 nm, as shown in Fig.3.17 as already been measured by [45]. The propagation 

losses obtained in the present work are relatively close to the current state-of–the art 

propagation losses achieved in some work [56-58] - although recently propagation 

losses of 0.9 dB/cm have been reported by others in [45] - as also shown in Fig.3.17. 
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Fig.3.16: Characterization of the transmission response for 

2 µm un- patterned wire waveguides.  

Reduction of the propagation losses through the use of the newly developed HSQ 

process represents a substantial improvement, as compared with the previously used 

process based on ZEP resist - which gave typical propagation losses of 15 dB/cm.  

 

Fig.3.17: Loss attenuation for different wire length 

In addition, I shall not discuss the causes of the propagation losses in detail here, since 

the main target of the fabrication processes developed in the present work is to 

improve the reproducibility and repeatability of the fabricated devices. 
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3.8  Summary 

The use of standard fabrication processes for device pattern writing via different types 

of EBL tool has been accomplished. The RIE dry-etching methods used have shown 

great improvements in defining the PhW/PhC waveguide structures. Different 

fabrication cycles have shown great improvements in the form of reductions in the 

sidewall roughness - where the initial results using ZEP resist have improved through 

use of the newly developed HSQ fabrication cycle. On the other hand, the newly 

installed state-of-the-art Vistec VB6 EBL tool - with its greater capabilities, e.g. of 

writing larger fields (1.2 x 1.2 mm) with a high resolution of 1.25 nm, has enabled 

high quality pattern transfer. A combination of these technologies, together with well 

developed processes used by previous workers [14-16], has proven to reduce sidewall 

roughness without the need for extra process such as thermal oxidation/etching 

cycling. Further attempts at optimizing the process have not been made, since the 

current process used shows great consistency in performance. In addition, standard 

processes used for wet chemical etching - in particular silica etching for membrane 

structures - have shown good controllability of the etching rate.  
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CHAPTER 4:  

 

Photonic Crystal (PhC) / Photonic 

Wire (PhW) Micro-cavities 

4.1    Introduction 

It has been of major interest in recent research to produce faster optical processing for 

a variety of telecommunications applications and for other applications of high 

performance optoelectronics. The combination of one-dimensional photonic crystal 

structures (PhC) in narrow photonic wire (PhW) waveguides- realized in high 

refractive-index contrast materials such as silicon-on-insulator (SOI), is one of the 

main contenders for provision of many compact devices on a single chip. This 

development is due to the ability of silicon technology to support monolithic 

integration of optical interconnects - and thereby to form fully functional photonic 

devices incorporated into CMOS chips. The high index contrast of the combination of 

a silicon core with a surrounding cladding of silica and/or air provides strong optical 

confinement, leading to the realization of more compact structures, small device 

volumes, sharp bends, abrupt Y-junctions and Mach Zehnder structures [1-6, 19]. On 

the other hand, the manipulation of the refractive index of silicon by means of the 

thermo-optic effect and electro-optic effects for compact modulators has also been 

demonstrated in both PhW- and PhC-silicon based devices [7, 8, 20-21]. The large 

thermo-optic coefficient of silicon is a key point for the design of optical modulators 

that exploit the thermo-optic effect. In order to obtain a wide range of device 

functionality, the reduction of propagation losses in narrow wires is equally 

important, although there are still performance limitations determined by fabrication 

processes [9, 18].  Recently losses as low as 0.92 dB/cm for a very narrow wire have 
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been reported [10]- through the use of hydrogen silsesquioxane (HSQ) resist and a 

reduction, through stage-tilt compensation techniques, of stitching errors produced 

during the electron-beam lithographic patterning process [11]. Compact single-row 

PhC structures embedded in PhW waveguide micro-cavities could become essential 

components for wavelength selective devices, especially for possible applications in 

WDM systems [22-24] and also in non-linear and slow light experiments [35-38].  

Compact micro-cavity optical filters can be produced by inserting a short spacer 

section between photonic crystal mirrors. Moderately high resonance Q-factor values 

are needed for possible applications such as wavelength de-multiplexing, non-linear 

behavior [25] and all-optical switching [26]. The very high Q-factor values achieved 

in some recent work [27] are not necessarily useful in practical situations such as 

DWDM telecommunications where the channel separation (e.g. 50 GHz) is typically 

much larger than the full-width half-maximum (FWHM) of approximately- 200 MHz 

that corresponds to a Q-factor of 1 million. Recently Q-factor values as high as 8,900 

have been obtained for the type of device structure considered in the present Chapter - 

by tapering the photonic crystal mirrors inside the cavity, as reported in reference 

[28]. The high quality factor and confinement of light in a small volume, V, are 

important for optical signal processing and filtering purposes, implying large Purcell 

factor values. Early work by Foresi et.al [12] demonstrated micro-cavity operation 

with two identical periodic hole mirrors embedded in a suspended photonic wire type 

waveguide - and a quality-factor (Q-factor) value of 500 was obtained. Since then, 

large increases in Q-factor have been obtained by tapering carefully within the cavity, 

thereby reducing modal mis-match effects at the interfaces between the PhC mirrors 

and the cavity spacer section [13-14, 31-34, 44]. At the same time, it was shown that 

the length of the cavity spacer section must be adjusted precisely to obtain the best 

results. A growing interest in designing high-Q, photonic-wire embedded in photonic 

crystal micro-cavities has therefore emerged [15,16], although only moderately high 

Q-factor values, such as ~18,700, together with sufficiently large transmission, 

approximately 85% in our case [17], are sufficient for possible applications such as 

Dense Wavelength Division Multiplexing (DWDM) - and non-linear optical 

functionality such as all-optical switching. Although, in some work, a Q-factor as 

large as 10
8
 has already been achieved in different configurations, such as micro-

toroids [40], micro-discs [41], Photonic Crystal Cavities [42-43], but the much larger 
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modal volumes of some device [40] gives Q/V values of approximately 5.10
4
(λ/n)

3
. 

On the other hand, Q-factor values as high as 10
6
 were also achieved [42-43] in 

micro-cavities that were fabricated on membranes Thus there has been a race toward 

designing ultra small micro-cavities structure with extremely high Q-factor value that 

can offer small modal volume, close to a theoretical limit of V= (λ/2n)
3
. In some 

recent work [16], a Q of 58,000 with the modal volume of approximately 0.6(λ/n)
3
 has 

been achieved but the optical transmission at this resonance condition was rather 

small. Therefore, this chapter will describe the detailed design and characterization of  

ultra-small PhC/PhW device structures that exhibit high quality-factors with large 

optical transmission fators - which will be practical for some telecoms applications, as 

already mentioned. They are realized through the introduction of tapering both within 

and outside cavity, with several holes of different sizes and spacing. 

4.2   1D Photonic Crystal/Photonic Wire Devices 

 4.2.1  The Initial Design of Mirrors 

Photonic crystal (PhC) mirror structures consisting of several periods of identical and 

periodically spaced holes with various diameters, d, and periodicity, a, were 

embedded in photonic wire waveguides.   

 

Fig. 4.1: (a) The schematic drawing of the PhC embedded on the wire 

using standard conventions/parameters (b) The dimension of the 

device used for 3D-FDTD PhC simulation  
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The structure modelled had N holes embedded in a 500 nm wide silicon core with a 

thickness of 260 nm. Silica of thickness 1 µm was used as a buffer layer below the 

silicon core as shown in Fig.4.1 (b).  The description of the mirrors and micro-cavity 

is defined by the standard convention/parameters: hole radius (r), hole diameter (d), 

periodic (a), grating period (Λ), wire width (w), cavity inside spacer dimension (c) 

and number of periodic mirror holes inserted (N), as illustrated in  Fig.4.1 (a). 

The basic structure forming the mirrors shown in Fig. 4.1 was simulated using 

both 2D and 3D versions of the finite-difference time-domain (FDTD) approach. For 

2D FDTD, the effective index method was used to calculate the average refractive 

index of the simulated device. The value of effective index, neff of 2.97 is constantly 

used throughout this work- which was calculated using Fimm-wave ® simulation 

tool. On the other hand, for 3D FDTD simulations, the values used for the refractive 

indices of the silicon core and the silica buffer layer were 3.45 and 1.45 respectively - 

where the actual dimensions of the device considered for the 3D FDTD modeling are 

shown in Fig.4.1 (b). This device was designed for operation at around 1520 nm.    

An Initial investigation of the basic properties of the mirror consisting of 

several periodic structures, without any spacer/micro-cavity section placed between 

the mirror sections was conducted. This investigation was crucial for optimization of 

the performance of the device by varying parameters such as the hole diameters, 

periodic spacing and the number of hole used in the mirrors before introducing the 

spacer in the latter to form a micro-cavity. Those parameters are very importance in 

order to couple and trap light strongly and efficiently within the cavity region.  

Based on the initial design shown in Fig.4.1, 2D and 3D FDTD simulation has 

been carried out for the design, without and with a micro-cavity present. For the case 

where no cavity was introduced, the investigation has concentrated on the 

characteristics at the band edge and the way that it behaves - as some parameters such 

as hole diameter and periodic spacing between the hole, are varied. The total length, L 

of the device required to produce reflectivity is much shorter than that of comparable 

Bragg grating structures [47]. In other word, a much smaller number of holes is 

required to produce strong mirror reflectivity, as compared to the external ‘teeth’ 

grating as already discussed in Chapter two.  
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Fig. 4.2:2D and 3D FDTD computed spectra for device (a) without 

micro-cavity and N=12 (b) with micro-cavity and N=6 (periodic 

mirrors at each side of the micro-cavity) where c=400 nm.  

Fig.4.2 (a) shows a comparison of 2D and 3D simulations for a 12-hole periodic 

structure that does not have the spacer section required for micro-cavity behavior. 

This structure has been produced using periodic hole (centre-to-centre) spacing of 

310 nm and 320 nm, selectively. The stop band width obtained in the simulation was 

280 nm for 3D computation and 300 nm for 2D computation. This difference is to be 

expected, since 2D FDTD calculation were based purely on estimation of the 

refractive index by taking an average refractive index of the SOI, whereas 3D FDTD 

results were calculated on the basis of actual device structures - where the actual 

refractive index values of the material and of its surroundings were used, rather than 

just estimation. In addition, 10 nm variation of the periodic spacing of the hole 

produces a shift of 30 nm and 40 nm in the stop band edges in the case of 2D and 3D 

FDTD respectively. Based on the results, the middle of the stop band lies around the 
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wavelength of 1400 and 1440 nm, respectively. From this simulation result, the stop 

band can obviously be tuned by varying the hole periodic spacing. Therefore, in order 

to tune the stop band to the wavelength of interest, which in this case is around 

1550 nm, bigger estimated hole spacing of around 350 nm is required. Thus the 

middle of the stop band is shifted the middle of the stop band to be around the 

wavelength of 1550 nm. The correct choice of hole periodic spacing is important for 

the next stage of the design work, when the spacer is introduced symmetrically in the 

middle section of the periodic mirror - thus producing a sharp resonance peak that lies 

in the middle of the stop-band around the wavelength of interest of 1550 nm. 

Fig.4.2 (b) shows a comparison of 2D and 3D computational results for a structure 

when the spacer is introduced in that particular device with c=400 nm. The cavity is 

inserted between two periodic mirrors with N=6 for the case of hole periodic spacing 

of 340 and 350 nm. A sharp resonance transmission peak appears around the middle 

of the stop-band at a wavelength of around 1535 nm and 1565 nm, based on 3D 

FDTD in respect to the hole periodic spacing of 340 and 350 nm- with a shift of 

approximately 30 nm in the resonance wavelength for a 10 nm increase in the periodic 

hole spacing. The Quality factor values for that particular resonance peak are 

calculated to be 300 and 451. On the other hand, with reduced time and power 

consumption, 2D FDTD shows higher transmission, with Q-factor values of around 

140 and 180 for periodic spacing of 340 and 350 nm, respectively. In this section, it is 

shown that 3D computational result shows a more pronounce and predictable trend, 

with transmission less than 50% and a Q-factor of around 400. A correct choice of 

hole diameters and periodic spacing also plays an important part in calibrating the 

resonance peak to the wavelength of interest of around 1550 nm. This performance 

can be further enhanced by means of tapering within and outside the cavity, which 

will be discussed in the later section. 

4.2.2  Early results 

The devices were fabricated using standard direct-write electron-beam lithography 

and dry-etching processes – and the process parameters were adjusted to reduce 

sidewall roughness. Fig.4.3 shows a scanning electron micrograph (SEM) of the 

device after etching, with nominal dimensions of r = 75 nm, d = 150 nm and 

a = 320 nm. The device was measured using a tuneable laser covering the range from 
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1457 nm to 1583 nm. TE polarised light was end-fired coupled in and out the 

waveguide. The signal is detected using Germanium photodiode. The laser source 

used for this experiment had a limited wavelength scanning range of 1450 nm to 

1580 nm. Since the predicted stop-band is bigger than the available range of the laser 

source, it is only possible to see the band edge of the stop band for filtering analysis 

purposes.  

 

 

Fig.4.3: Scanning electron micrograph (SEM) of the photonic crystal 

consisting of N hole mirror embedded in the 500 nm wire waveguide 

with cavity length, c. (inset is the “bird’s-eye” view of the device with 

smooth sidewall). In this particular example, N=5 and a=370 nm. 

 

This band-edge shows that stop-band filters can be controlled at by using different 

hole periodic spacing. Fig.4.4 (a) shows experimental transmission measurements of 

the stop-band for rows of 12 periodic holes, with slightly different periodicity values. 

A shift of 30 nm in the band-edge transmission is observed for 10 nm variation in the 

periodicity. Furthermore, 3D FDTD computation (see Fig 4.2(a)), shows good 

agreement of the band-edge position with the measured transmission as shown in 

Chapter 2 (section 2.2). For instance, it also shows a small deviation of the 

wavelength at the stop-band edge by approximately 5-10 nm. In contrast, 2D 

simulation shows much bigger deviation, more than 50%, in comparison with the 

measured transmission. Furthermore, increasing the periodicity of the row of holes by 
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10 nm, resulted in a small shift of the entire stop-band as well as resonance by 

approximately 20 nm. This shift of the stop band in particular is due to the increase in 

the total length of the periodic mirror. As the period of the hole structure increases to 

390 nm, the band edge moves to a higher frequency. Fig.4.4 (b) shows the 

experimental transmission of a PhC micro-cavity inserted between mirrors with N = 6 

periods. The same characteristics at the band-edge are observed for this case, where 

different periodicity causes a shift in the resonance peak, as predicted by both 2D and 

3D computation.  

 
 

Fig.4.4: (a) Measurement for N=12, d=150 nm with different 

periodicity, a (b) Measurement of a single cavity with N=6, d=150 nm, 

c=550 nm at different periodicity, a 

 

As the periodicity is varied in 10 nm steps, the resonance peak also shifts by 30nm 

towards longer wavelengths – and with an increased in Q-factor value.  In other 
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words, varying the cavity size will shift the resonance and change the Q-factor of that 

particular cavity.  As predicted by 3D computation, increasing the size of the cavity 

between the mirrors produces a resonance peak with reduced Q-factor. A Q-factor of 

990 has been observed for a = 360 nm. This value is slightly higher than that 

predicted by 3D computation, which is probably due to running the simulation at low 

resolution in order to reduce the computational time taken for a single run.  The 

measured transmission also shows shifts in the resonance towards the band-edge by 

30nm, for a 10 nm variation in the hole periodicity. In practice, although the 3D 

simulation give a better idea of the required device dimensions for the device,  but the 

fabrication runs typically show a variation of 30-60 nm in the structure dimensions 

(measured using Scanning Electron Micrograph- SEM) including the hole diameters, 

periodic spacing and  cavity length from the actual design.  It is therefore essential to 

bracket the hole diameter, the hole periodic spacing, a, hole diameters, d and cavity 

length, c for each fabrication run. 

4.3   Mode Mismatch in 1D PhC/PhW Devices 

The mode mismatch at the interface between the PhC waveguide region and the 

unstructured photonic wire waveguide is known to contribute to the problem of 

obtaining high Q-factor values of PhC micro-cavities. This problem is mainly due to 

the significant reflection and scattering losses that occur at the abrupt transition for 

the mode when going from the unstructured wire guide into the PhC hole mirror 

regions. Therefore gradual modal conversion is needed via the use of rows of holes of 

different diameters and spacing at the transition between the unstructured wire 

waveguide and the PhC hole mirrors (taper outside cavity), as well as at the transition 

between the PhC mirrors and the micro-cavity spacer region (taper within cavity). 

Lalanne and co-workers [13] have proposed a model where losses originate from the 

modal mismatch with the existence of genuine non-leaky guided modes. In addition, 

the leaky mode also contributes towards losses, as light travels from the un-patterned 

wire into the mirror sections. In the case of 1D PhC hole structures, the vertical and 

lateral size are optimized in order to obtain as smooth as possible modal transition. 

The Lalanne model assumes that the field in the PhC waveguide is a linear 

combination of a propagating PhC mode in each of two contra-directions.  
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According to this model, the losses due to the incident wave travelling from the wire 

waveguide into the PhC hole structure has experienced triple scattering process 

where: 

� The incident wave is first scattered into the PhC mode propagating in the 

positive z-direction with efficiency, η 

� This PhC mode is coupled back into the counter-propagating PhC mode 

without any loss 

� This counter propagating PhC mode is scattered back into the wire waveguide 

with efficiency, η (reciprocity theorem and symmetry of the structure) 

 

 

Fig.4.5: SEM image and a schematic drawing of 1D PhC/PhW device 

structures showing  tapering both within and outside cavity to enhance 

both transmission and Quality factors with inset (a) SEM image of a 

taper structures with a change in a hole diameter and a shift of the 

initial  PhC hole mirror and inset  

 

The model of Lalanne and co-workers [13] has shown that by using only tapering 

within the cavity, a significant increase in the Q-factor value, approaching 60 000 can 

be obtained, but the normalised optical transmission reported for cavities with this Q-

value is very low [16, 28]- approximately less than 20% transmission. This concept 

has been used in the design of the 1D PhC micro-cavity structures with the convention 
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used throughout the present work being based on the definitions superimposed on the 

SEM image shown in Fig.4.5. The tapering using different hole sizes helps in 

reducing the modal mismatch at the entrance of the un-patterned wire, since the 

effective index at that particular interface changes gradually, as it enters through 

smaller holes into the mirror region. This gradual interchange reduces losses 

significantly, so as to preserve the optical transmission as well as Q-value. The 

requirement of using tapered PhC hole structures with hole diameters smaller than 

those used in the PhC mirrors is obligatory. The smaller holes provide an equivalent 

of a dielectric layers with progressive changes in the effective indices of the 

fundamental mode of the impinging wave travelling from the conventional wire 

waveguide into the PhC mirror. On the other hand, the mode matching approach will 

match the fundamental mode of the ridge waveguide to the evanescent mode of the 

mirrors and also will match the evanescent mode of the mirror to the cavity mode in 

the spacer section. The evanescent mode is laterally confined within the waveguide, 

due to the high index contrast between the silicon and its surrounding cladding.  

Using gradual graded hole tapers both outside and within the cavity help to 

retain the fundamental mode travelling from the ridge waveguide into cavity section 

and finally the output section. Tapering within the cavity section used in the present 

work consists of several holes of different diameters and spacing between them. In 

other work [16], the use of a tapered hole arrangement within the cavity has shown an 

enhancement of Q-factor approaching 60,000 – but the transmission at this resonance 

condition is rather small, i.e. less than 20%. In the work of reference [16], variation of 

the number of periodic mirror holes has significantly contributed to this result – where 

the Q-value increased, together with a reduction in the optical transmission. Therefore 

to maintaining the optical transmission, while at the same time enhancing the Q-

factor, is necessary, or at least desirable, for use in telecommunication applications 

such as WDM, switching and non-linear optics. This is where the design of tapering 

outside cavity plays an important role in maintaining the optical transmission. In the 

present work, a combination of tapered arrangements will show further effective 

enhancement in both the Q-factor and the optical transmission.  
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4.3.1   Device Optimisation- Tapering Within and Outside the Cavity 

Optimization of the actual hole dimensions used in the tapered section is the most 

crucial part of obtaining high performance in terms of high optical transmission and 

large resonance Q-factor. Tapering of the holes used within the cavity effectively 

enhances the Q-factor of the resonance.  Initial 2D and 3D FDTD simulations used to 

investigate the effect of inserting such taper structures into the mirrors have shown 

further enhancement in optical transmission and Q-factor value – although at this 

point the Q-factor calculated was still low.  

 

 

Fig.4.6: (a) SEM image of a taper outside the cavity (b) SEM image of 

taper within the cavity (c) 3D computed transmission of single cavity 

with different taper structures (inset is the close up of the resonance 

peak for each taper arrangement) 

In comparison, a 3D FDTD computation can provide more accurate results than 2D 

FDTD, when compared with the measured results.  But due to the power and time 

consumption issues discussed in Chapter 2 (section 2.2), 2D computation is the 

preferred approach for obtaining a preliminary assessment of the behaviour of the 

device structures before the 3D approach is implemented.  Fig.4.6 (a) and (b) show 

SEM micrographs of a typical device with taper structures embedded outside and 

within the cavity.  From 3D FDTD computational results, tapering outside the cavity- 
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as shown in Fig.4.6 (b) has increased the computed transmission by a factor of two. 

The computed transmission is further increased, by another 25%, as the taper within 

the cavity is introduced – as also shown in Fig.4.6 (b). Furthermore, the Q-factor of a 

particular resonance has increase significantly to 530 as compared with a value of 405 

for the structure without tapering effects.  

Therefore, at this point, 3D FDTD computation has shown that either form of 

tapered structure used provide a suitable platform for designing device structures that 

exhibit large resonance Q-factor, together with high optical transmission. By using 

tapered holes within and outside the cavity separately it has been shown that a 

significant increase in the Q-factor value, by 95, can be observed for the case of 

tapering within the cavity. Whereas tapering outside the cavity has produced a small 

increase in the Q-value, of approximately 30. Therefore tapering outside cavity does 

not have much impact on the Q value. But the combination of both tapering 

arrangements has the capability of improving the optical transmission by as much as 

50%. Therefore a combination of both tapering within and outside cavity can have a 

high impact on both improving Q-value as well as optical transmission by using a 

correct combination of hole diameters, aperiodic spacing and cavity length of the 

tapered hole. The detailed of design is discussed in the next section. Computation has 

shown convincingly that enhancing the transmission and resonance via tapered hole 

structures is very important. At this point, the measured device has shown a good 

controllability of resonance and small enhancement of transmission at the resonance 

peak by means of different hole tapered arrangement.  

Moreover, improvement can be obtained, in terms of increased light 

throughput and the Q-factor of the resonance peak by tapering within the cavity and 

also between the cavity mirrors and the exterior waveguide sections, as predicted by 

3D computation. For instance, the Q-factor and transmission of the device are mostly 

determined by the cavity length, the arrangement and hole diameters in the tapered 

sections. Therefore, it is very important to find the correct parameters for the design, 

in order to enhance the Q-factor and transmission spectrum. The number of periodic 

mirror holes outside the taper regions – and the deliberate variation of the hole 

diameter within the taper regions also play an important role in determining the 

behaviour of the transmission and the Q-factor. Longer cavities and multiple cavity 
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arrangements with taper structures are expected to play a significant role in increasing 

the optical throughput as well as the Q-factor.  

On the other hand, 2D and 3D computational simulation give a predictable 

trend for the actual device behaviour. 3D computational results gave closer with the 

results for measured devices compared to 2D computational method. Improvement 

can be made, in terms of increased light throughput and of enhancement of the Q-

factor of the resonance peak, by tapering within the cavity – as predicted by 3D 

computation. For instance, the Q-factor and transmission of the device are mostly 

determined by the size of the cavity, hole diameter and the arrangement of the taper. 

Therefore, it is very important to find the correct parameters for the design, in order to 

enhance the Q-factor and transmission spectra. The number of periodic mirror holes 

outside the taper region and the different hole diameters within the taper region also 

play an important role in determining the transmission and the Q-factor. Use of a 

longer cavity and multiple cavity arrangements with the tapered structures previously 

mentioned are expected to play a significant role in increasing the light throughput, as 

well as the Q-factor. 

4.3.2   Taper: The Final Design 

The tapered hole sections used in the present work are based on developing a design 

for a variable PhC structure with holes of different size and centre-to-centre distance, 

in order to minimize the propagation losses at the interface between a narrow 

photonic wire waveguide, in particular one that is 500 nm wide and the PhC mirror 

sections - thus enhancing both the Q-factor and the optical transmission. An 

appropriate choice of aperiodic hole dimensions is necessary at the transition regions 

to provide a gradual effective index change into the mirror region. To minimise the 

losses, this design uses holes of different diameters, with progressive hole size 

variation. The smaller holes effectively generate artificial dielectric layers with 

progressively varying effective indices. The smaller holes used at the entrance to the 

mirror will effectively reduce the modal mismatch - thus enhancing the optical 

transmission as well as, possibly the Q-factor value. The tapered hole structure design 

considered in the present work is shown in Fig.4.7. This taper is used at the entrance 

of the conventional 500 nm un-patterned wire waveguides into the periodic mirror 
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sections, which have hole diameters of d=182 nm and periodic spacing a, of 350 nm. 

 

Fig.4.7: The proposed design for the tapered hole of different 

diameters and aperiodic spacing used in this present work with (a) 

four hole taper (b) three hole taper (c) two hole taper (d) one hole 

tapered 

 

The choice of that particular hole arrangement in the periodic mirror regions is due to 

the appearance of the middle of the stop band, together with the resonance peak 

produced - which fall within the optical wavelength range of around 1520 nm (see 

Fig.4.4 (b)). This choice is important since the characterisation tool – a tuneable laser 
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- used throughout the present work has a limited range, of between 1457 nm and 

1583 nm. The tapered hole structure used in this work will provide an insight for the 

analysis of the behaviour of the resonance peak produced, especially in terms of the 

optical transmission and Q-factor value.  

 

Fig.4.8: 2D FDTD calculation for different hole size used for t3 (third 

hole) for c=400 nm, N=4 and NTI=3 without tapering outside cavity, 

NTO and N with Q-factor of approximately 3000 in all cases. 

If the number of holes used in the aperiodic tapered section is three or four, then the 

optimisation is concentrated on the third hole, namely t3 , since the bigger holes used 

will have a significant effect on the Optical transmission, i.e. where an increase in the 

transmission of approximately 10% is calculated, as shown in Fig.4.8.  But no 

significant effect on the Q-factor value is estimated from having bigger holes in t3   

4.3.3     Effect of Tapering Within and Outside Cavity: 

Tapering within the cavity has been convincingly shown to have a significant impact 

on the Q-factor value. By using only hole tapering within the cavity- and with no hole 

tapering outside the cavity - it was possible to use  2D FDTD simulation to look at the 

impact of having different numbers of holes in the periodic mirror sections. The 

results of this investigation are shown in Fig.4.9 (a) where, as the number of periodic 

mirror holes, N, increased from three to eight, an enhancement of the Q-value was 
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obtained. The drawback is that a rapid reduction in optical transmission is also 

observed, whereas the highest optical transmission was calculated at N=4. The optical 

transmission was reduced to approximately 11% - but with a high Q-factor value of 

approximately 15,000. Enhancement of the optical transmission is obtained for N=4 

with NTO=2, where the optical transmission obtained is approximately 85%. 

 

Fig.4.9: 2D FDTD calculation for NTI=4, c=400 nm showing a 

variation of optical transmission and Q-factor value for (a) different 

number of periodic mirror holes without any tapering outside cavity 

(b) for N=4 with different number of aperiodic hole taper used outside 

cavity in conjunction with the taper design shown in  Fig.4.7 

This optical transmission is obtained together with the high Q-factor value of 

approximately 17,500, as shown in Fig.4.9 (b). It is also shown that, integration of 

tapering outside the cavity helps in preserving an optical transmission factor of more 

than 50%. Therefore, it is important that touse the correct choice of hole dimensions 

in the periodic mirror sections - and both tapering within and outside cavity helps with 

retaining the high performance of this particular type of device structure. 
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4.4  High-Q and Large Transmission PhC/PhW Micro-cavities 

4.4.1     Results and Discussions of using one hole tapered outside cavity 

Achieving high Q-factor values, together with large transmission, depends very much 

on the choice of the correct hole parameters including hole diameters, the periodic 

spacing of the hole mirrors, aperiodic spacing and holes of different size in the 

tapering section - and cavity length. Optimization has been carried out – in which 

different combinations of periodic sections hole and aperiodic taper arrangements 

have been investigated. In order to reduce the modal mismatch within the cavity, the 

number of aperiodic tapered holes within the cavity is optimized to four, while 

reducing to just one hole in the tapers outside cavity. This structure, consisting of a 

single hole for tapering outside the cavity gave a significantly larger value for the Q-

factor at certain cavity lengths as compared to the result with medium Q-factor 

reported in [39]. The tapered hole sections, outside and within the cavity, have two 

and four aperiodic holes of various diameters and centre-to-centre hole distance 

respectively, A 3D Finite-Difference Time-Domain (FDTD) modeling approach has 

been used to simulate the device.  

 

Fig.4.10: SEM image of the device with one hole tapered outside 

cavity embedded in a 500 nm PhW waveguide with period, a (centre-

to-centre hole distance), cavity length, c (inside length between the two 

holes in the middle of the periodic mirrors) - and taper regions with a 

number of  aperiodically located holes 

A photonic crystal mirror structures consisting of four periods of holes with 

diameters, d, of 182 nm and periodicity, a, of 350 nm were embedded in a 500 nm 



Chapter 4: PhC/PhW Micro-cavities 

 

 

 
- 88 - 

 

wide, rectangular cross-section, silicon photonic wire with a thickness of 260 nm as 

previously mentioned briefly in section 3.1.1. In Fig. 4.10, two sections, each using 

four aperiodically-located and tapering holes within the cavity have been used, with 

respective hole diameters of 170 nm, 180 nm, 166 nm and 131 nm – with centre-to-

centre hole distances of 342 nm, 304 nm, 310 nm and 290 nm, respectively. Whereas 

one-hole aperiodic tapered sections outside the cavity have-  hole diameters of 

130 nm, with centre-to-centre hole distances of 290 nm have been used. This 

arrangement will later on be used as the basic parameters for the aperiodic holes used 

in the tapering sections (within and outside the cavity) of the devices.  

 

Fig.4.11: (a) Measured result for tapering arrangement shown in 

Fig.4.10 with cavity length=440 nm (inset: the expanded horizontal 

scales of the resonance) (b) Variation of Q values and normalized 

optical transmission at various cavity lengths,c for this device 

structure with A (c=415 nm), B (c=440 nm), C (c=465 nm) and D 

(c=490 nm). 

Based on this design structure, a variation in cavity length and number of holes in the 

taper will be investigated further, which corresponds to the change in Q-factor and 

optical transmission. In this particular design where N=4, NTO=1 and NTI=4 – see 
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Fig.4.10, the measured results for the one-hole exterior taper arrangement are shown 

in Fig.4.11 with a significant improvement on the Q-value at cavity length, c= of 

440 nm.An estimated value of a Q factor of 16,800 has been measured for this device 

at a cavity length of 440 nm. A normalized transmission of around 60% at the 

resonance wavelength of 1511.88 nm and FWHM~0.09 nm have also been obtained 

with this particular cavity length. The Q-factor values measured at cavity lengths of 

415 nm, 465 nm and 490 nm respectively were 3400, 3000 and 2400 - at resonance 

wavelengths of 1498.31 nm, 1528.36 nm and 1549.62 nm respectively. The 

normalized transmissions at this particular wavelength were measured to be 

approximately 30%, 35% and 50% respectively-see Fig-4.11(b). The trend of the 

resonance is different, when compared to the previous design arrangement. In this 

design, the high Q-factor value was only obtained at the cavity length, c, of 440 nm. 

Therefore, carrying out a formal optimization on the device could be a good approach 

in order to investigate the characteristics of different tapered hole arrangement to 

maximize the Q-values and optical transmission for this particular design.  

4.4.2    Results and Discussion for two hole tapered outside cavity 

On the other hand, as one more hole is added at the tapering section outside cavity, 

further enhancement is obtained.  The performance enhancement obtained is partly 

due to further reductions in modal mis-match effects at the interfaces between the un-

patterned photonic wire and the PhC cavity region, as mentioned in references. 

1um1um

 

Fig.4.12: SEM image of the tapered PhC micro-cavity embedded in a 

PhW waveguide with period, a (centre-to-centre hole distance) of 

370 nm, cavity length, c=400 nm - and taper regions with a number of  

aperiodically located holes where NTI=4 and NTO=2 and N=4. 
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In certain limited ranges of cavity length, a combination of these parameters with the 

hole transition section designed for maximum transmission for light entering or 

leaving the periodic section - i.e. with transitions both outside and within the cavity, 

high transmission on-resonance and high resonance Q-factor can be obtained. In this 

section, the tapered hole sections, outside and within the cavity, have two (taper 

outside cavity, NTO) and four aperiodic holes (taper within cavity, NTI) of various 

diameters and centre-to-centre hole distance respectively, as shown in Fig. 4.12.  

 

Fig.4.13: Transmission spectra of the tapered periodic mirrors with 

cavity length, c=390 nm (continuous line-FWHM~0.08 nm) and 

c=415 nm (dash line-FWHM~0.1 nm) using 3D FDTD method. 

 

A 3D Finite-Difference Time-Domain (FDTD) modeling approach has been used to 

simulate the device. A periodic photonic crystal mirror structures consisting of 4 

periods of holes with diameters, d, of 182 nm and periodicity, a, of 350 nm were 

embedded in a 500 nm wide, rectangular cross-section, silicon photonic wire with a 

thickness of 260 nm as shown in Fig. 4.12. Two sections, each using four 

aperiodically-located and tapering holes within the cavity have been used, with 

respective hole diameters of 170 nm, 180 nm, 166 nm and 131 nm – with centre-to-
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centre hole distances of 342 nm, 304 nm, 310 nm and 290 nm, respectively. This 

arrangement is the same as initially introduced in section 4.3. Although somewhat 

surprising, our limited observations and simulation have indicated that upwards and 

downwards variation in hole size , i.e. the use of 180 nm second hole diameter instead 

of, for example, 168 nm has given slightly larger Q-factor and transmission values. 

Whereas the two-hole aperiodic tapered sections outside the cavity have  hole 

diameters of 160 nm and 130 nm respectively, with centre-to-centre hole distances of 

310 nm and 290 nm, respectively. Fig. 4.13 shows the transmission spectra for this 

design arrangement computed using the 3D FDTD approach, together with cavity 

lengths, respectively, of c = 390 nm and c = 415 nm.  A Q-factor of approximately 

15,000 was calculated, with the impressive transmission value of nearly 90%, at a 

resonance peak wavelength of 1517 nm, for the c = 415 nm cavity. On the other hand, 

a Q-factor of nearly 17,500, with transmission of around 80% was observed for the 

c = 390 nm case at resonance wavelength of 1476.2 nm. A shift in the resonance 

frequency by approximately 40 nm was thus obtained for a 25 nm difference in cavity 

length.  
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Fig.4.14: Measurement result for (a) resonance frequency at 

λ=1483.4 nm for c=390 nm (b) resonance frequency at λ=1499.13 nm 

for c=415 nm 
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The experimental results were normalized with respect to an identical, but 

unstructured, nominally 500 nm wide PhW waveguide without any holes embedded in 

it. Fig. 4.14 shows the measured transmission spectrum for a tapered PhC micro-

cavity embedded in a PhW waveguide, with cavity lengths of 390 nm and 415 nm - 

corresponding to the simulation results given in Fig. 4.13. The estimated experimental 

Q-factor values were 18,500 and 16,600, with a measured transmission of around 

85% - and these values were obtained at resonance central wavelengths of 1483.4 nm 

and 1499.13 nm, with FWHM values of ~0.08 nm and ~0.09 nm respectively – see 

the insets in Fig. 4.14 (a) and (b), which have expanded horizontal scales.  

 

 

Fig.4.15: Examples of transmittance of a micro-cavity calculated as 

“isolated” (dashed curves) and embedded in a full length waveguide 

that matches the experimental dimensions (continuous curves), 

obtained using a TMM model. The micro-cavity has the cavity length 

of c=415 nm corresponding to the experimental result of Fig.4.14 (b). 
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The distance between the points of the arrows has been used to obtain, in a reasonably 

conservative manner, the estimates of the resonance quality factors, via the 3 dB 

points. The ambiguity in extracting the Q-factors from direct experimental 

measurements is due to the presence of fine structure superimposed on the resonance 

of the isolated micro-cavity. This fine structure is due to the Fabry-Perot cavity 

produced by the cleaved end-facets of the waveguides. In order to retrieve the Q-

factor of the micro-cavity, a model based on the Transfer Matrix Method (TMM) was 

also investigated [29, 30]. We have found that a TMM model that matches the 

experimental dimensions yields a transmission spectrum that remains “enveloped” by 

the Lorentzian resonance of the micro-cavity-, considered as an isolated device, over a 

range of plausible Q-factor values as shown in Fig.4.15. Therefore the determination 

of the Q-factor by the approach shown in Fig.4.14 can be considered as an appropriate 

procedure.  

In addition, optimizing the fabrication process plays an important part in 

reduced propagation losses due to the sidewall roughness. Furthermore, obtaining 

accurate patter transfer between the initial design and the fabricated device is also 

crucial. Even a slight difference in the device dimension will affect the whole 

performance of the fabricated device.  

 

 

Fig.4.16: Measured transmission of the tapered 1D PhC micro-cavity 

at different cavity length, for NTI=4 and NTO=2 (a) c=440 nm 

(Q~7000) (b) c=465 nm (Q~5000) (c) c=490 nm (Q ~ 3000), the 

dotted circle one is the previous results shown in Fig.4.14 corresponds 

to c=390 nm and c=415 nm with Q values of 18,500 and 16,600. 
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Fig.4.16 shows the measured transmission spectra for different cavity lengths, c. 

Variation of the cavity length by 25 nm give rise to the uniform shift in the resonance 

transmission towards a longer wavelength.  The resonance, appear approximately at 

the central wavelength, λ0 of 1517 nm, 1535 nm and 1555 nm respectively. A shift of 

18 nm in the central wavelength of the resonance peak is observed. Q-factor values of 

7000, 5000 and 3000 were also measured for different cavity lengths, respectively, of 

440 nm, 465 nm and 490 nm respectively - with a transmission of more than 70% in 

all cases. The Q-factor value progressively decreases from 7000 to 3000 as the cavity 

length increases by 25 nm, in step with a shift of 18 nm in the spectral position of the 

resonance peak. It should also be noted that the shift in the resonance peak that 

corresponds to a 25 nm variation in the length of the cavity is larger in the simulation, 

at 30 nm, as compared with the measured shift of around 16 nm. This is due to the 

difference in the dimension of the fabricated device and the actual design by ~6 nm as 

measured conservatively using the Hitachi S4700 Scanning Electron 

Microscope (SEM). Therefore, tapering both within and outside the cavity has proven 

that obtaining high Q-factor values, together with large transmission, is possible with 

the correct choice of hole parameters in the periodic sections - as well as aperiodic 

hole arrangements in the tapered sections. 

4.5  Ultra High-Q: Advancing the performance of PhC/PhW Micro- 

cavities 

4.5.1     Design and FDTD simulations 

In order to obtain the required high performance in this device, the correct choice of 

cavity length, the hole diameters and the combination of periodic and aperiodic hole 

spacing is necessary. Tapering within and outside the cavity through the use of holes 

of different diameters and aperiodic spacing has been used to enhance the Q-factor, 

while simultaneously maintaining a useful optical transmission level – i.e. the tapered 

period and hole diameter transition sections, both outside and within the cavity, were 

designed to maximize the transmission for light entering or leaving the periodic 

mirror sections. In this section we report the use of mirrors having N periodically 
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1 µm

 

Fig.4.17: Scanning electron micrograph (SEM) image of the tapered 

PhC micro cavity embedded in a PhW waveguide with N=5, cavity 

length, c=400 nm, NTI=4 and NTO=3 

spaced holes,, with diameters of 182 nm and a periodic spacing of 350 nm between 

them. A scanning electron micrograph (SEM) image of a typical cavity is presented in 

Fig.4.17. The figure shows a 500 nm wide photonic wire micro-cavity formed by two 

mirrors, each of which includes five periodically spaced PhC holes that have the same 

diameter. Gradually tapered hole arrangements are used, with different diameters and 

aperiodic spacing designed to produce a significantly enhanced Q-factor value 

through reductions in propagation losses and scattering that occur locally at 

transitions within and outside the cavity.   

 

Fig.4.18: Calculated transmission spectrum for N = 5, with NTI = 4 

and NTO= 3, obtained using a 2D FDTD approach, giving a Q-factor 

value of approximately 177,000 at a resonance frequency of 

1483.54 nm and cavity length, c, of 425 nm.  
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Such tapered hole arrangements are made to reduce losses associated with abrupt 

changes in the modal distribution at the interfaces between the periodic mirror 

sections and the wire waveguide outside the micro-cavity region, as well as the spacer 

section within the cavity. Four-aperiodically located and tapered holes form the 

transition sections within the cavity – and have diameters of 170, 180, 166, and 

131 nm respectively — with centre-to-centre hole distances of 342, 304, 310, and 

290 nm respectively. – whereas the three-hole aperiodic tapered sections outside the 

cavity have hole diameters of 131, 166 and 185 nm respectively, with centre-to-centre 

distances of 275, 305 and 314 nm respectively. A 2D FDTD approach has been used 

to simulate the device. Fig.4.18 shows the transmission spectra for this design 

arrangement, computed using a 2D FDTD approach and assuming a cavity length of 

~425 nm.  A Q-factor of 177,000 was computed at a resonance wavelength of 

1483.54 nm, with a transmission level of approximately 48% at this particular cavity 

length. 

4.5.2    Optical Characterization of the High Performance PhC/PhW  

Micro-cavities 

The waveguide patterns were defined using an approximately 200 nm thick layer of 

hydrogen silsesquioxane (HSQ) negative-tone resist. The devices were fabricated 

using single-step direct-write electron beam lithography in a Vistec VB6 machine at 

100 keV electron energy, with proximity correction at a base dose of 1500 µC/cm
2
. 

This VB6 beam writer has the capability of writing a 1.2 mm by 1.2 mm field at 

1.25 nm resolution. In addition, extra care has to be taken to reduce the potentially 

significant impact of field stitching errors on the pattern produced – i.e. to ensure the 

flatness of the sample during the writing process. The patterns were finally transferred 

into the silicon guiding layer by using an inductively coupled plasma (ICP) reactive 

ion etching process. SF6/C4F8 combined chemistry was used to etch the silicon layer, 

contributing to obtaining silicon waveguides with smooth side-walls. The devices 

were characterized using a tunable laser that was capable of covering the wavelength 

range from 1.45 µm to 1.58 µm. 
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Fig.4.19: Transmission spectra for N = 4 and NTI = 4 with (a) NTO=1 

(b) NTO=2 (c) NTO=3 – with a cavity length, c = 450 nm. 

TE polarized light was end-fire coupled into and out of the device waveguide – and 

the optical signal was detected using a germanium photodiode. The experimental 

results were normalized with respect to an identical, but unstructured, 500 nm wide 

wire waveguide without any holes embedded in it. Fig.4.19 shows measured results 

for N=4, NTI=4 with a different number of holes used in the tapered section outside 

the cavity. NTO varies from one to three while retaining a cavity spacer length, c, of 

450 nm. The measured Q-factor values were 8000, 21,500 and 19,000 respectively, 

with normalized transmission values of 73%, 83% and 65% respectively. It shows that 

for N=4, the highest Q factor achieved was obtained with NTO=2. 

 

 

Fig.4.20. Measured transmission spectra for N = 5 with NTI = 4 and 

NTO= 3 corresponded to simulation result in fig. 2 with Q of 

approximately 147,000 at resonance wavelength of 1479.705 nm 

 

Further enhancement of the Q-factor value has been obtained through the use of N=5, 

together with three hole aperiodic tapering outside the cavity and NTO as shown in 

Fig. 4.17. Fig.4.20 shows the measured transmission spectrum of the device with a 
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cavity length of 425 nm – corresponding to the simulation result in Fig. 4.18, with 

NTO = 3.  

Table 4.1: Comparison of Simulated and Experimental value of 

different taper outside cavity, NTO for N=5 and NTI=4 

 Simulation  Experimental 

NTO Q Tx  Q T(N)) 

1 65,000 0.72  51,000 0.65 

2 95,000 0.69  79,000 0.52 

3 177,000 0.48  147,000 0.34 

4 74,000 0.35  62,000 0.25 

 

The estimated experimental quality factor value of ~147,000 was measured at the 

resonance wavelength of 1479.705 nm, with full width half maximum (FWHM) of ~ 

0.01 nm. A normalized transmission of approximately 34% has been measured for 

this particular resonance. Substantially higher normalized transmission coefficient 

values have been measured, in conjunction with the somewhat smaller Q-factor value 

of 79,000 for the particular device with NTO=2, as shown in Table 4.1. This table also 

shows a comparison of the simulation and measured results for N=5 and NTI=4, using 

different numbers of holes in the tapered sections outside the cavity, NTO. In this 

particular design, a reduction in optical transmission is observed with additional hole 

taper sections outside the micro-cavity, together with a significant enhancement in the 

Q-factor value. This result is probably due in part to the increase in the length of the 

device, including the aperiodic tapered hole sections that contribute to the increased 

propagation losses. Although we have also looked at more extended cavities that have 

longer spacer lengths, the present design retains the use of a short cavity that has a 

spacer section that is shorter than an optical wavelength in the medium. The Q-factor 

achievable is strongly dependent on the number of holes in the tapered sections 

outside the cavity, together with the length of the cavity spacer section. 
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4.5.3    Reproducibility of an Ultra High Performance PhC/PhW  

Micro-cavities 

Optimizing the fabrication process is one of the critical aspects for production of high 

performance device structures. The process of single step patterning using HSQ resist 

as a mask for Silicon etching has proven to be reliable as reduction in sidewall 

roughness has reduced propagation and out of plane scattering losses significantly. 

This process has been shown to have a very high degree of repeatability, with an 

estimated average dimensional variation of 1.5 nm, as reported in Section 5.4.1. This 

result is due to the very high quality of the machines employed, such as the VB6 EBL 

tool. For instance the STS-ICP machine also features a sophisticated electronic 

control for the etching process. An important issue that needs to be taken into account 

towards producing ultra-high Q-factor value micro-cavity devices is their 

reproducibility and repeatability in term of device fabrication and characterization. 

Achieving an ultra-high Q-factor value of over 100,000 in the device structures 

discussed in the earlier section (section 4.5.2- Fig.4.20 and Table 4.10) based on 

different fabrication runs provides a better insight into the device performance. The 

precision of the fabrication processes needs to be analysed further to justify the 

achievement of high Q-factor values. For instance, the Q-factor value for this 

particular device has been measured to be approximately 90,000 using a different 

characterization set-up [48]. Therefore, several in-house fabrication and linear 

characterization processes have also been carried out for these device structures using 

the same procedure as discussed in Chapter 3. The fabrication run were carried out 

using different wafer of similar layer structures to provide consistency. For simplicity, 

the device considered is shown in Fig.4.17 with the NT0=3, NTI=4, N=5. The results 

of Fig.4.20 show a great improvement in the Q-factor value of approximately 

147,000, with reasonable optical transmission, as compared to previous results [48]. 

We have also achieved approximately the same Q-factor values for several different 

fabrication runs, as shown in Fig.4.20 [i].  
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Fig.4.20 [i]. Measured transmission spectra for N = 5 with NTI = 4 and 

NTO= 3 using different fabrication runs within 6 months periods in 

comparison with the results obtained in Fig.4.20 carried out on April 

January 2008 (a) March 2008 (b) May 2008 (c) July 2008 

The ultra Q-factor values obtained were within the range 120,000 to 150,000, based 

on the different fabrication and characterisation runs carried within the stipulated time 

periods. These devices were characterised further, as reported in [49] - with Q-values 

of approximately 90,000 for the same device structures being obtained using different 

experimental set-ups. Based on a Fabry Perot model [50, 51], the Q-factor associated 

with the cavity formed by two identical mirrors with reflectivity, R, is given by: 
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where ng is the group index of the ridge guide mode and L is the defect cavity length 

between the two smallest holes in the micro-cavity region. By introducing the 

penetration length into the distributed mirrors (equation 4.2): 
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equation 4.1 can be re-written as: 
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where Leff=L+2Lp is the effective cavity length. Detailed description and analysis of 

equation 4.1 to 4.3 can be found in reference 50. By using this equation, the measured 

reflectivity of this particular device is given as approximately 0.9998. This record 

reflectivity, R was achieved with a device having the small footprint of approximately 

10 µm x 0.5 µm. With this R value, one should expect that the optical transmission is 

almost null or zero at other frequencies than the resonance wavelength. But in the 

measured results shown in Fig.4.20 and 4.20 (i), resonance-‘like’ features were 

observed at wavelengths between 1520 nm and 1555 nm, which may be due to  

Fabry-Perot effects produced by the end-cleaved facets.  

Based on the Eq. 4.4, for the peak spacing of multiple FP resonances seen in 

Fig.4.20 [i] which will be referred to as resonances R1, R2 and R3, the cavity length 

for a particular uniform resonance spacing is given by [52, 53] - giving the famous 

equation used in analysis of FP effects in laser cavities ; 

gn
L

δλ
λ

2

2

0=      (4.4) 

Where:  

  L  - Cavity Length of the FP effect associated with multiple  

    resonances 

  λ  - Central wavelength of the associated resonances  

  δλ - Distance between two adjacent resonance peaks 

  ng - Group refractive index (note: in this case the Ng=Nsi=3.45-  

   this is based on the assumption of Ng is big enough which  

   approximately equal to actual Nsi – no further attempt is  

   made  at this stage to calculate the actual Ng) 

  Where neff is given by; 
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By fitting the value of the observed resonance spacing between R1 and R2 in each case 

(referring to Fig.4.20 [i]- (a to c) ) of approximately 22 nm, 17 nm and 24 nm into 

equation 4.4, the cavity lengths that correspond to this spacing are calculated to be 

approximately 15 µm, 19 µm and 16 µm respectively. The resonance-like features 

that are associated with this particular cavity length, based on Equation 4.4 above, are 

somewhat peculiar, since it is rather difficult to establish the origins of these features. 

One possibility might be due to the existence of the lateral stitching errors discussed 

in Chapter 3 (see section 3.3.3) that occur during the patterning process when using 

EBL. But the FDTD simulation approach used for these particular device structures as 

obtained in Fig. 4.18 does not show this feature within the stipulated stop band since 

it does not include the sample ends in the structure that is modelled. Therefore no FP 

effects are expected in the simulations results. Further tests to model this structure 

using the FDTD approach for several different lengths ranging from 5 to 30 µm still 

show results similar to those obtained in Fig.4.18. Therefore the existence of the 

resonance-like features (by referring to R1, R2 and R3 in Fig.4.20 [i] (a to c) may be 

due to the fabrication uncertainties.  

 
Fig.4.20 [ii]. One example (close up view) showing fine 

features associated with the FP effect due to the end cleaved 

facet. 

Furthermore, based on the Fig.4.20 (ii), when looking closely (zoom view) on the fine 

features within the system and using equation 4.4, these features that associated to the 

FP multiple resonance seen in Fig.4.20 (ii) which referred to as Resonance R1 and R2, 
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the cavity length, L for a particular uniform resonance spacing is calculated to be 

approximately 2.5 µm which matched the actual sample length.  

4.6   Suspended wire SOI PhC/PhW Micro-cavities 

The high-Q optical micro-cavities that confines light in small volume, V at optical 

wavelength scales are significantly importance for telecoms applications such as 

signal processing, slow light and modulators. Several High Q values have been 

reported for different designs consideration but requirement for achieving high Q 

value together with large optical transmission in small modal volume is increasingly 

importance. As previously discussed within this chapter, high Q-factor values have 

successfully been obtained. But for this kind of structures, most of the designs are 

based on the silicon waveguides sitting on a silica buffer layer. Although high optical 

confinement within the silicon photonic wire is desirable, the situation has not been 

optimized, since there is a large difference between the refractive index of the upper 

cladding (air) and the silica cladding underneath the silicon core - producing a 

vertically non-symmetrical type structure - and, reducing the optical confinement 

within the core waveguide. This reduced confinement is due to the fact that the 

evanescent field of the mode lies un-evenly between the upper and lower cladding. 

Therefore providing a symmetrical core waveguide with exterior identical media, with 

same refractive index, is required. Many attempts have been made to fabricate and 

measure the optical properties for different photonic crystal structures suspended in 

the air [43, 45-46], but there is still many issues surrounding its mechanical stability 

and fabrication complexity. Although in some cases, the air-bridge type of structures 

has also known to reduce propagation losses. The motivations towards designing 

membrane PhC/PhC waveguides are to increase optical confinement within the wire 

waveguides as well as to reduce the propagation losses that this structure can provide. 

In this presentation we will present our recent results on our design for high-Q 

photonic crystal/photonic wire waveguides suspended in the air- creating air bridge 

structures.  

4.6.1    Design Considerations and 2D FDTD approach 

Planar one dimensional photonic crystal micro-cavities embedded in 500 nm photonic 

wire waveguides have been realized recently with high Q-value of approximately 
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18 500 and large normalized transmission of nearly 85% - see section 4.4.2. This 

value achieved with silicon guiding layer sitting on a silica buffer layer. The details 

descriptions of this design can be found in that section.  Fig.4.21 shows SEM image 

of this particular device with silica cladding underneath it removed- creating air 

bridge type of structures (See inset Fig.4.21). The silica layer removed from 

underneath the silicon core was measured to be approximately 1 µm as specified by 

the manufacturer of the sample - SOITEC, which provide enough optical isolation 

within the core waveguide.  

 

Fig.4.21: SEM image of an air bridge type of a tapered single row 

PhW/PhW waveguides with cavity length, c, four hole tapered within 

cavity, NTI and two hole tapered outside cavity, NTO. Inset is the bird’s 

eye view (angle ~ 25°) of the suspended PhC/PhW micro-cavities. 

For comparison purposes, the design used for the suspended wire is the same as 

previously used in section 4.4.2 (see Fig.4.12). It consists of a four periodic hole 

mirror separated by a micro-cavities spacer between them. Four and two aperiodic 

hole tapers were inserted within cavity and outside cavity to reduce modal mismatch 

between an un-patterned wire and the periodic hole section. 3D FDTD simulations 

have been carried on one of the device structures similar to our devices in 

section 4.4.2 - but with the silica buffer layer having removed. This device has a 

periodic mirror, N= 4 with hole diameters of 182 nm and periodic spacing between 
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hole of 350 nm. The tapered within cavity and outside cavity have four and two 

aperiodically placed hole respectively. 

 

 

Fig.4.22: 3D FDTD computed for the tapered one dimensional PhC 

micro-cavities embedded in 500 nm wire waveguides with cavity 

length, c ~ 390 nm for suspended wire (black line) and  without 

removing silica buffer layer cladding (red line). 

Fig.4.22 shows a comparison of the tapered photonic crystal micro-cavities embedded 

in 500 nm photonic wire waveguides simulated using 3D Finite difference time 

domain (FDTD) approach for suspended wires and the one with silica buffer layer. 

The simulated result using 2D FDTD approach shows further enhancement in the Q-

factor value from 17 500 to 34 000 for the suspended wire in comparison with the one 

of silica buffer layer still exists underneath the silicon guiding layers. The shifts of the 

resonance by approximately 3 nm were also measured toward shorter wavelength for 

this design arrangement with the increased in optical transmission by almost 10%. 

The shift in particular is due to the reduction in the effective refractive index of the 

silicon- thus shifting the resonance towards longer wavelength as the silica layer 

removed. 
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4.6.2    Experimental results and Discussions 

The devices were fabricated using direct-write Vistec VB6 electron beam lithography 

and dry etching technology. They were characterized using tunable laser covering the 

range from 1457 nm to 1580 nm. The TE polarized was end-fire coupled into and out 

of the waveguides and was detected using germanium photo-detector.  

 

Fig.4.23:  Measurement result for suspended PhC/PhW micro-cavities 

in a suspended wires with NTI=4 and NTO=2 and cavity lengths, c 

(a) 390 nm (b) 415 nm (c) 440 nm (d) 465 nm 

An experimental results corresponding to the simulation result obtained using 3D 

FDTD approach used in Fig.4.22 are shown in Fig.4.23.The optimum Q-value of 

approximately 24 000 have been obtained at the cavity length, c of 390 nm – with 

normalized transmission of 65%. A uniform shift of approximately 16.7 nm towards 

longer wavelength is also obtained for a 25 nm increased in the cavity length, which 

has shown greater flexibility for the tuning capability of the device. The Q-value 

dropped rapidly as the optical transmission also dropped by approximately 25%. 

Therefore, by using a correct choice of cavity length, together with the use of 

optimised hole diameters and tapered hole parameters, high-Q value and large 

transmission are observed. 
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 In other word, as a cavity length increased from 390 nm to 465 nm, the Q-

value has reduced from 24 000 to 2000 together with the reduction in the normalized 

optical transmission. Table 4.2 shows a comparison of the structures shown in 

Fig.4.21 with our previous results – without removing the silica buffer layer (section 

4.2.2- see Fig 4.12). Table 4.2 shows a significant improvement in the Q-factor value, 

although a slight drop in the normalised optical transmission is also observed for the 

case of cavity length, c=390 nm. The experimental results – shows that the reduction 

in Q-value from 18,500 to approximately 24,000 with the suspended wire type of 

structures at the cavity length of 390 nm – but this value is not as high as we initially 

expected due to other issues relating to our design arrangement and the need of 

optimizing our fabrication processes. Somewhat surprisingly, at longer cavity lengths 

(440 and 465 nm), the Q-value obtained is much lower for the suspended wire, which 

shows that the Q-value drop more rapidly for this case as compared to the non-

suspended wire. 

 

 

With silica buffer 

cladding 

Suspended wire 

waveguides 

Cavity 

length, 

c/(nm) Q 

Normalized 

Transmission Q 

Normalized 

Transmission 

390 18 500 0.85 24 000 0.67 

415 16 600 0.82 16 700 0.71 

440   9 000 0.71   7 200 0.45 

465   5 900 0.83   2 000 0.58 

Table 4.2: Comparison of the measured results for the suspended wire 

waveguides and the one with silica cladding still exist underneath the 

wire waveguides. 

At some point the Q-value dropped from 9,000 to 7,200 for c=440 nm and 5,900 to 

2,000 for c=465 nm. Based on this result, it has been shown that it looks plausible that 

Q-factor values as high as 500,000 can be achieved with the correct combination of 

the number of periodic mirrors, cavity length and aperiodic hole tapered within and 

outside cavity for this kind of structure. The enhancement in the Q-value in this 

particular design- is due to the increase in the optical confinement – thus enhancing 
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the field intensity of the mode confined within the small micro-cavities. On the other 

hand, the effective refractive index changes due to the air gap underneath the silicon 

guiding layer have also shown a shift in the resonance frequency by approximately 

3 nm. In this case, 3D FDTD approach used to simulate those devices has shown 

sufficiently good agreement with the measured results. 

4.7   Summary 

This chapter in particular has placed an emphasize on the design of tapered holes, 

where a correct choice of hole parameters was used for both tapering outside and 

within the cavity, in order to achieve ultra high Q-factor values together with useful 

optical transmission. The initial designs using both tapering arrangements- which 

were designed separately - showed that tapering can enhance either the optical 

transmission or the quality factor value. With the correct choice of tapered hole 

structure, the Q-value and optical transmission have been significantly increased. Four 

hole tapers within the cavity have been used for Q-factor enhancement whereas 

variable number of holes in the tapers outside the cavity has been used to enhance the 

optical transmission. Initially, one hole tapers have been used with Q-factor values of 

approximately 16,000 – and with normalised transmission of 60% - were achieved 

experimentally. But this value was further increased to approximately 18,900, with 

nearly 85% normalised transmission. By adding the number of restricted mirrors to 

five (5) and three (3) hole tapers outside the cavity, the Q-value has been increased to 

approximately 147,000, together with normalised transmission of 35%.  

 In one example, removing the silica cladding underneath the silicon 

waveguide has also shown an improvement in the Q-factor value by almost 25%, 

which is particularly due to the increase in the optical confinement within the silicon 

waveguide – as provided by the symmetrical vertical design of the silicon with air as 

both the  upper and lower cladding.  
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CHAPTER 5: 

  

Photonic Crystal (PhC) / Photonic 

Wire Extended Cavities and 

Coupled Micro-cavities 

This Chapter will place its emphasize on the design of an extended Fabry-Perot 

(FP) cavity spacer and coupled micro-cavity combination, with two micro-cavities 

embedded so as to split two sets of mirrors. One of the main aims of the work 

described was to provide the basic building block for designing a possible temperature 

dependent filter, in which the spacer section between two cavities is capable of 

providing tuning capability - without the needs of heating the silicon waveguide. This 

design is possibly applicable for telecoms applications such as wavelength division 

multiplexing (WDM).  The freedom to choose a wavelength of interest is an important 

requirement. In addition, coupled cavities will provide a basic building block for 

designing more complex multiple cavity structures, where three or more micro-

cavities are embedded between periodic mirrors. Two or more resonances excited 

within the stop band can be selected at any particular wavelength of interest. For the 

extended cavity condition, tapering within and outside cavities is used to enhance the 

Q-factor together with obtaining greater optical transmission - whereas tapering in the 

coupled micro-cavities design arrangement is used to increase the coupling strength of 

the device. 

5.1   Introduction 

PhCs are periodic structures that are known to be capable of controlling the 

propagation of light through a medium [1-3]. Thus PhCs have become a promising 
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platform for realising Photonic Integrated Circuits (PIC) components, reducing the 

size and power requirements of the optical components. Among several applications 

such as Wavelength Division Multiplexing (WDM), micro-cavity laser and LED’s 

[4-7], one of the capabilities that PhC devices can provide is selective management of 

several wavelengths – hence making them potentially useful for telecommunications 

applications such as WDM and add-drop filtering. One of the challenges for PhC 

researchers is to develop structures that can minimise the losses due to the modal 

mismatch that occurs as light travels from un-patterned waveguides into PhC regions. 

To take into account the finite lateral size of the structure, several simulations have 

been carried out by using the2D FDTD method. This technique has been used to 

calculate the transmission and reflection spectra of single reflector and whole filter 

structures, both in free space and in finite width waveguide structures. In this way, the 

number of rows in each periodic reflector and the size of the reflector in the transverse 

direction have been optimised. To obtain a high level of accuracy, a very small 

discretization step is required and a very large number of time steps have to be 

calculated, requiring a long CPU time and large memory occupancy. Although 2-

Dimensional PhC device are commonly used for applications such as beam-splitters, 

couplers, lenses and power dividers [8-12], 1D PhC/PhW devices can provide extra 

freedom in the design of more complex devices with smaller size and higher Q-

factor – approaching 150,000 as demonstrated in Chapter Four. This Q-value have 

been achieved through the micro-cavity design arrangement, with a cavity length of 

around 400 to 500 nm. But designing devices with a longer spacer – such as an 

extended cavity and multiple micro-cavities – is desirable for having extra freedom to 

choose a resonance at a wavelength of interest through the multiple resonances 

excited within the stop-band. This performance can be achieved through the use of 1D 

PhC/PhW extended cavity structures where the micro-cavities that have been 

described in the previous chapter are further extended by several micrometres in 

cavity length – covering, in this work, the range from 2 µm to 9 µm. Multiple 

resonances were excited within the band-gap. These multiple resonances can be 

controlled through variation of the parameters such as the cavity length and hole 

dimensions.  This design has considerable potential for practical applications such as 

wavelength division multiplexing (WDM) in telecom applications. A waveguide with 

a Fabry-Perot (FP) cavity formed by a several micrometres long spacer section 



Chapter 5: PhC/PhW Extended Cavities and Coupled Micro-cavities 

 

 

 
- 117 - 

 

between two mirrors has been realised based on 2D photonic crystal structures 

[13-14]. By using   the several different cavity spacer lengths investigated in this 

Chapter, one of several longitudinal (axial) modes of the cavity can be selected to 

match the operating wavelength required, i.e. to fall within the range of 1520 nm to 

1580 nm required for typical WDM applications, switching purposes and non-linear 

optics. The large free spectral range (FSR) between the resonances excited means that 

such structures have the capability of tuning the resonances through thermo-optical 

effects where, for example, heating the silicon waveguide to approximately 300°C 

should be sufficient to scan the resonance across the whole wavelength available 

within that range. In addition, through the use of the correct choice of tapering both 

within and outside cavity, it can be expected that enhancement the Q-factor value – 

together with obtaining large optical transmission – will be possible, implying that 

viable scanning channel-drop filter devices could be produced.  

On the other hand, the resonance excited by a short micro-cavity can also be 

manipulated by splitting the single resonance into two or more resonances by using 

coupled multiple cavity arrangements [15-16]. In addition, coupled micro-cavity 

structures can provide a useful platform for DWDM applications – where two or more 

micro-cavities can be coupled together and used to split the single-cavity resonance 

into a number of resonances that depends directly on the number of micro-cavities 

used. This type of device is also potentially useful for filter function synthesis in 

telecommunication applications, sensing, non-linear optical functionality and in 

obtaining slow-light propagation [16-19, 22]. Such structures consist of two or more 

cavities coupled through periodically spaced hole mirrors. The multiple coupled-

cavity combinations produced split the selected single cavity resonance frequency into 

a number of resonances that depends on the number of cavities used in the design 

[18]. Tapering of the PhC hole structures within and outside photonic crystal/photonic 

wire micro-cavities has also been shown to yield a substantial improvement in the 

quality factor and optical transmission at the resonance frequencies. For applications 

that require a filter response with a nearly level pass-band and steeper skirts at the 

edges of the pass-band, the coupling strength between cavities must be carefully 

controlled – and additional cavities may be required to optimize the response [20, 29]. 
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5.2   Device Descriptions for PhC/PhW Extended Cavities 

In this present work, the extended cavity structures proposed have cavity lengths 

ranging from 2 µm to 9 µm. In order to obtain the high performance required, the 

appropriate choices of cavity length, hole diameter and periodic or aperiodic spacing 

between holes are required. On the other hand, the use of tapering within and outside 

the cavity, as discussed in Chapter Four (see section 4.3), still plays an important 

role. At a particular extended cavity length, a combination of parameters with 

appropriate hole transition sections for light either entering or leaving the periodic 

sections, high transmission and high Q-values of the resonances can be obtained. In 

this Chapter, extended cavities will be described that have spacer sections with spacer 

lengths in the range from 2 µm to 9 µm and photonic crystal mirrors consisting of 4 

periods of holes with diameters, d, of 182 nm and periodicity, a, of 350 nm. The 

photonic crystal mirrors are embedded in the 500 nm wide silicon photonic wire core.  

In Fig.5.1., two sections, each using four aperiodically-located and tapering holes 

within the cavity, have been used, with hole diameters of 170 nm, 180 nm, 166 nm 

and 131 nm – and centre-to-centre hole distances of 342 nm, 304 nm, 310 nm and 

290 nm, respectively.  

 

Fig.5.1: SEM images of a single row PhC extended cavity with 

tapering effects both within and outside the cavity. 

 

This configuration has been used as a taper hole arrangement within the cavity, which 

has been shown to enhance the resonance quality factor – as discussed in Chapter 4 

(section 4.4). For instance, the number of aperiodically spaced holes used in the 

tapering outside cavity section is also a crucial parameter that determines the behavior 

of the transmission spectrum at resonance. The number of holes used in the aperiodic 
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taper sections may vary between one and four holes with different diameters, 

modifying the guided light distribution at the entrance to the periodic mirror sections. 

The device structure considered is shown in Fig.5.1, where cavity spacer section, CE, 

was extended further, resulting in multiple reflections within the cavity region and 

producing multiple resonance effect. In this particular design, the same hole 

configuration as previously discussed in Chapter 4 is used, where one-hole aperiodic 

tapered sections outside the cavity have an additional hole diameter of 130 nm, with 

centre-to-centre hole distances of 290 nm. This carefully chosen aperiodic hole 

arrangement has produced a significant impact on the Q-factor value and optical 

transmission. Fig.5.1 also shows an SEM image of the device with tapered 

arrangements of aperiodic holes within and outside the cavity, with reasonably 

smooth sidewalls. Initially, a 2D Finite Difference Time Domain (FDTD) 

computation, together with an effective index approach was used to produce 

preliminary designs. A fully 3D FDTD approach was used subsequently, at high 

resolution, to simulate the device. This approach gives considerably more accurate 

predictions, but with much larger computational time and power requirements. The 

extensive memory requirement of several tens of gigabytes and time consumption are 

still a major concern when using the 3D-FDTD approach – and parallel or cluster 

computing is clearly very desirable. Comparisons of 2D and 3D computational results 

have been made where the spectral differences were analyzed further.  

 

5.3   2D and/or 3D FDTD Approach 

5.3.1    Short Extended Cavity Arrangement 

For easier discussion and analysis, the extended cavities considered will be divided 

into three distinct configurations, namely the short extended cavity, the medium 

extended cavity and the long extended cavity. The short extended cavity has a spacer 

section that ranges from 2 µm to 4 µm, whereas the medium and long extended 

cavities range from 5 µm to 6.5 µm and 7 µm to 9 µm in length respectively. Starting 

with the short extended cavity design, 2D FDTD has been used to simulate the device 

structures over a wide range of wavelengths, covering the range from 0.5 µm to 3 µm. 

Fig.5.2 shows the transmission spectra of the particular device shown in Fig.5.1, but 

with two hole tapered sections outside the cavity – with the wavelength spectrum 
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ranging from 1200 nm to 1700 nm. As expected, for a short extended cavity length, 

the number of resonances excited within the stop band very much dependent on the 

cavity length, as is shown when the cavity length is progressively increased from 

2 µm to 3.5 µm in the 500 nm in steps as shown in Fig.5.2. (2D FDTD simulation 

results), the number of resonances excited increases from three to four; with 

approximately equal separation between the resonances in each case. 

 

Fig.5.2: The optical transmission spectra computed using 2D FDTD 

approach for short extended cavity ranging from 2 µm to 3.5 µm over 

wide wavelength/frequency range. 

 

The average free spectral range (FSR) value for the resonance decreases from 

approximately 120 nm to 101 nm, 86 nm and 75 nm with respect to the cavity length, 

CE of 2 µm, 2.5 µm, 3 µm and 3.5 µm shown in Fig.5.2 and Fig.5.3 (zoom-in). 

Fig.5.3 shows a ‘zoom-in’ of the optical transmission spectra of the resonance falling 

within that limited range (related to the capabilities of the tunable laser used in this 

present work) for discussion and comparison with the experimental results in later 

section. It is also shown that, for each cavity resonance condition, the Q-factor 

calculated is highest for the resonance wavelength that falls within this range – which 

related to the capabilities of the tunable laser used in this present work as compared to 
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other neighboring resonances. The Q-values of 2200 (at λ0-1540.79), 7500 (at 

λ0 1504.25 nm), 7200 (at λ0-1455.05 nm) and 11,000 (at λ0 -1475.62 nm) were 

calculated  using 2D FDTD approach  respectively for cavity lengths of 2 µm, 2.5 µm, 

3 µm and 3.5 µm. 

 

 

Fig.5.3: A ‘zoom-in’ of the optical transmission spectra deduced from 

Fig.5.2 for comparison with measurement result in later section 

(Pb- resonance for blue line and Pg-resonance for green line) 

The optical transmission coefficients calculated at that resonance wavelength were 

56.2%, 58.3%, 45.2% and 41.6% respectively for the same set of cavity spacer length. 

But due to the limitation on the characterization set-up used throughout the present 

work shown in Chapter3 in which the tunable laser used had a limited range which 

ranging from 1457 nm to 1583 nm, the analysis and detailed discussion will only be 

restricted within or around that range for comparison with the measured results.  

5.3.2    Medium Extended Cavity Arrangement 

As the cavity length increases towards the medium extended cavity range 

(i.e. between 5 µm to 6.5 µm), the number of resonances excited within the stop band 

have increases, implying more FP reflectivity within the cavity, as shown in Fig.5.4. 

This behavior is partly due to the increase in the Fabry-Perot (reflectivity) excited 

within the longer spacer region as the cavity length increases – so that more 

resonances will be excited within that specific stop-band. For this type of device, a 

comparison will be made on the impact of incorporating tapering both within and 

outside the cavity. 
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 Fig.5.4: 2D FDTD simulation approach for 5 µm long extended cavity with  

tapering within the cavity and (a) with tapering outside the cavity (b) without  

tapering outside the cavity. 

 

Fig. 5.4 (a) shows the results of a 2D FDTD simulation of a 5 µm long extended 

cavity, with tapering used both within and outside the cavity – and using specifically 

two hole tapering outside the cavity, while Fig. 5.4 (b) shows the results for the cavity 

without the use of tapering effects outside the cavity.  

 

Table 5.1: A comparison of 2D FDTD approach showing the effect of 

tapering within and outside cavity in the Q-value and optical 

transmission for CE=5 µm 

 Q-factor 

w/o | both | w/TI 

Optical Transmission (%) 

w/o | both | w/TI 

P1 800 | 97,000 | 51,000 35.1 | 72.9 | 46.3 

P2 760 | 25,300 | 8,600 38.3 |  91.1 | 67.5 

P3 320 | 8,000 | 3,900 43.8 |  92.7 | 90.5 

 

Note: w/o – without hole tapering, w/TI – with tapering within cavity, 

both – using both tapering within and outside cavity 
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Table 5.1 shows a comparison of the optical transmission and Q-factor values for the 

cases with and without tapering outside the cavity. As the tapering section was 

introduced into the design with a medium cavity length of 5 µm, the optical 

transmission increased by almost 20% - and the Q-value at the resonance frequency 

also increased to the value of 97,000 for P1, as shown in Table 1 – simulated using 

2D FDTD approach. The transmission and Q-factor enhancements were attributed to 

the introduction of both tapering within and outside cavity for this kind of structure. 

On the other hand, in Fig.5.4 (b), a resonance Q-factor of nearly 51,000 was 

calculated at the resonance wavelength of 1471 nm, using the 2D FDTD approach. As 

mentioned earlier, further enhancement of the transmission and Q-factor was achieved 

through the use of tapering outside the cavity – where a calculated Q-factor value of 

approximately 97,000 was obtained at a resonance wavelength of 1472 nm, as shown 

in Fig.5.4 (a) – for resonance P1. By referring to P1 in that figure, the optical 

transmission of the PhC micro-cavity using tapering both within and outside the 

cavity shows a significant increase, by almost 27%, together with approximately 50% 

increase in the Q-factor value. It shows an increase in the optical transmission and Q-

factor value from 46.3% to 72.9% and 51,000 to 97,000 respectively. Tapering both 

within and outside the cavity has greatly enhanced both the optical transmission and 

Q-factor values. 

 5.3.3    Long Extended Cavity Arrangement 

Simulation of a somewhat longer cavity, with spacer section lengths is further 

expended between 7 µm to 8 µm – and with the introduction of  tapering within the 

cavity also shows multiple Fabry-Perot resonances, with the number of resonances 

excited increasing to seven – with medium Q-factor values and large transmission. 

Medium Q-factor values of between 5000 and 10,000 have been calculated using the 

2D FDTD approach, as shown in Fig.5.5. The highest Q-factor values calculated were 

at resonance wavelengths ranging from 1480 nm to 1500 nm, with transmission 

values of less than 50% for all cases. A constant shift, by approximately 6 nm, in the 

whole set of resonances for each cavity length case towards a shorter wavelength was 

observed, as the cavity length increased by 250 nm from 7.25 µm to 7.5 µm. 
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Fig.5.5:2D FDTD calculations for a difference in cavity length with 

tapering both within and outside cavity with- (a) whole spectrum 

between the two band edges, (b)The resonances simulatedfor the 

limited range over which the optical characterization was carried out. 

 

The reduced FSR value of approximately 42 nm is also observed, in comparison with 

the previously calculated FSR for the short and medium extended cavity situations. 

But for small increases in the cavity length, where the extended cavity is expanded in 

steps of 1.25 nm from a 7 µm spacer length – the overall shift in the resonance 

wavelength is somewhat larger.  
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Fig.5.6:2D FDTD calculations for (a) A shift of different steps in 

cavity length, CE at each resonance location as compared to the 

resonances excited by 7 µm long spacer. (b)The resonance Q-factor 

and optical transmission for each set of resonances excited for 

different cavity spacers for the case with tapering both within and 

outside cavity. 

 

Fig5.6 (a) shows that, for the condition where the size of the 7 µm spacer is increased 

by 125 nm (CE=7.125 µm), a large resonance wavelength shift is obtained, with the 

average shift of the resonances from the central resonance wavelength for CE = 7 µm 

(shown in Table 5.2) being approximately 16 nm for each resonance condition. The 
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larger shift became obvious for the resonance wavelengths in the shorter wavelength 

region of P1 to P4. Whereas a 250 nm shift in the spacer length (i.e. CE=7.250 µm), 

gives rise to a smaller shift for P1 in the shorter wavelength regions. But rapid linear 

increase in the shift of the resonance wavelength towards the longer wavelength 

region is also obtained, in which the largest shift in resonance was observed at P7, 

with a resonance wavelength shift of 17.3 nm.  

As the cavity spacer increased in larger steps of 500 nm (i.e. CE=7.5 µm), the 

resonance wavelength shift for each resonance condition increased at a slower rate 

than linear, where the largest shift was obtained at P7 , with a shift of approximately 

9.2 nm.  

 

Table 5.2: Resonance central wavelength for resonances excited 

within stop band for CE=7 µm  

 P1 P2 P3 P4 P5 P6 P7 

λ0(7µm) 1349.12 1387.26 1427.19 1468.85 1511.79 1555.33 1597.81 

 

The introduction of tapering within and outside cavity has been shown to enhance 

the Q-factor value, as well as the optical transmission with the calculated Q of more 

than 1000 and optical transmission of more than 50% at any resonance wavelength 

(between P1 to P7) for large extended cavity between 7 to 7.5 µm. The highest Q-

factor value of approximately 41,900 was calculated at P5, with CE = 7.125 µm and an 

optical transmission coefficient of approximately 55%. Fig.5.6 (b) shows the behavior 

of the Q-value and optical transmission coefficient for each resonance wavelength 

excited within the stop band – for the long extended cavity with space lengths 

between 7 µm to 7.5 µm, for the case of integration of the tapering effect both outside 

and within cavity. The optimum numbers of aperiodic holes used in this configuration 

were two and four, with respect to the use of tapering outside and within cavity.  In 

general the Q-factor value changes for each cavity condition, where the highest Q-

factor values were obtained in or around the middle of the stop-band (by referring to 

P3, P4 and P5) – and with reduced optical transmission, as compared to the one which 

is closer to each band edge (P1, P2 ,P6 and P7). It can be deduced that although the 

increase in Q-factor resulted in a slight reduction in the optical transmission 
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coefficient, but when hole tapering is used outside the cavity, the optical transmission 

coefficient decreases at a slower rate, which implies that tapering outside the cavity 

also helps to maintain the optical transmission. 

5.4  Experimental Results and Discussion for Extended Cavity  

Arrangement 

The devices were measured using a tunable laser operating at wavelengths around 

1.55 µm. The light was end-fire coupled into the waveguide via a 2 µm wide ridge 

waveguide. The waveguide was then tapered adiabatically from a width of 2 µm into 

the 500 nm wide photonic wire waveguide. The waveguide was then tapered back out 

using exactly the same arrangement for device characterization. The patterns were 

transferred into the silicon substrate using the VB6 Vistec electron-beam lithography 

(EBL) machine with the patterned negative tone HSQ resist also acting as the etch 

mask layer. The PhW waveguides were etched using Inductively Coupled Plasma 

(ICP) dry etching to remove the unwanted silicon areas. Fig.5.7. shows an SEM 

image of a device structure with a pattern of periodically and aperiodically located 

(and diameter tapered) holes embedded in it. The sidewall roughness of the 

waveguide has been reduced considerably because of the use of HSQ resist, thus 

reducing the intrinsic photonic wire propagation losses to values as small as 

0.91dB/cm [21]. 

 

Fig.5.7: SEM image of the PhC mirror embedded in a PhW waveguide, 

with smooth sidewalls –after dry etch processing where CE is the 

extended cavity length. 
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The reduction in propagation losses is important for enhancing the optical 

transmission, as well as the Q-factor value at a chosen resonance frequency.  

 

Fig.5.8: Measured results for an extended cavity with tapering within 

cavity (NTI=4) for (a) 2 µm (b) 2.5 µm (c) 3 µm (d) 3.5 µm (e) 4.0 µm 
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All the devices were then measured using a tunable laser covering the wavelength 

range from 1.45 µm to 1.58 µm. TE polarized light was end-fire coupled into and out 

of the device waveguides – and the optical signal was then detected using a 

germanium photodiode. The experimental results were normalized with respect to an 

identical, but unstructured, nominally 500 nm wide PhW waveguide without any 

holes embedded in it. Fig.5.8 shows the measured results for extended cavities with 

lengths in the range 2 µm to 4 µm, obtained with the use of aperiodic hole tapering 

within and outside cavity with NTO=2 and NTI=4 . The highest Q-value of 

approximately 12,400 was obtained with a cavity length of 3.5 µm situated at a 

resonance wavelength of 1485.62 nm with normalized transmission of approximately 

35%- see P1 in Fig-5.8 (d). 

By referring to Fig 5.2, (2D FDTD simulation result) for the case with spacer 

lengths of between 2 µm and 3 µm, the resonances excited within the limited 

measurement range may be for the second resonance, P2, with the  resonance P1 lying 

at around 1421 nm (which is outside the measurement range). Given by the limited 

range of the tunable laser used for this present work (1457 nm to 1583 nm), the 

multiple resonance effect can only be seen at the cavity length greater than 3 µm or 

longer .Although, in the 2D FDTD simulation with shorter cavity length, i.e. 2 µm, 

the multiple resonances (three sharp peak) can clearly be seen (refer to Fig.5.2). 

At this cavity length (3 µm), the free spectral range (FSR) of the resonances 

was measured to be approximately 65 nm – whereas, at the cavity length of 3.5 µm, 

the FSR decreased to approximately 61 nm. The FSR value is further reduced to 

approximately 55 nm for the case of CE=4 µm where, at this cavity length, the Q-

factor for each resonance condition was measured to be approximately 1400, 7200 

and 2700 with respect to P1, P2 and P3. The Q-value was somewhat smaller than for 

other cavity conditions – which is partly due to the imperfections in the fabrication 

process. This is obvious at P1, where the optical transmission is very low 

(approximately 8%) and there is some distortion around the resonance at P1 which 

probably comes from fabrication imperfections. From our observations based on the 

simulation results shown in Fig.5.2 to Fig.5.5, the number of Fabry-Perot resonances 

excited within the mirror stop-band wavelength range, due to the extended cavity, 

increased as the cavity length increased from 2 µm to 8 µm . This behavior is due to 
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the increase in the number of FP modes within the extended cavity region – 

corresponding to the number of half-wavelengths related to the cavity length, CE. 

 

Fig.5.9: The Variation of the optical transmission and Q-factor for 

tapering within cavity: ■-Without tapering outside the cavity, ▲-with  

one-hole tapering outside the cavity and □-with two-hole tapering 

outside the cavity 

 

The enhancement of the Q-factor value, together with the optical transmission, 

obtained via tapering both within and outside cavity- is shown in Fig.5.9 – in 

structures that match the measurement results for the device shown in Fig. 5.8. A Q-

factor value of approximately 25,400 has been measured at a cavity length of 4.0 µm, 
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with a normalized transmission of around 62% (see Fig.5.9 (b))- corresponds to P2, 

with two hole taper structures outside the cavity (see also Fig 5.8 (e) for comparison).  

 

Fig.5.10: Measured results for an extended cavity with tapering both 

within and outside cavity for NTI=4 and (a) NTO=1 (one hole taper 

outside cavity) (b) NTO=2 (two hole taper outside cavity) 

 

For the medium extended cavity configuration, the highest Q-facto value achieved by 

using two hole tapering for the case of CE=4 µm, with the normalized transmission at 

this cavity length being approximately 62%. Fig.5.10. shows the result for spacer 

length of 4 µm using NTI=4 and different tapering outside cavity, NTO, of one and two 

holes respectively. This result shows further enhancement by comparison the 

structures not using of hole taper outside cavity shown in Fig.5.8 (e). As the number 

of holes in the aperiodic hole tapering outside the cavity (one or two holes), together 

with four hole taper within the cavity, NTI, , the improvement of the Q-factor was 

measured for both cases but the normalized transmission was reduced by 

approximately 4% and 60% with respect to the resonances at P2 and P3. The 

inconsistencies in preserving the optical transmission in this case are rather difficult- 
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as somewhat surprisingly, at some point the Q has the opposite trend to the optical 

transmission. As the number NTO is increased to three and four aperiodic holes, the 

optical transmission is further reduced by an average of around 25% for each 

resonance. On the other hand, the Q-value started to reduce dramatically by almost 

half of the highest Q achieved for NTO=2 , for P2 shown in Fig.5.10 (b). 

 

 

Fig.5.11: Measured results for 250 nm differences in the extended 

cavity length, without tapering effect. (a) 7.5 µm (b) 7.75 µm (c) 8 µm 

(d) 8.25 µm 

 

On the other hand, using a longer cavity, of more than 7 µm in length, shows multiple 

Fabry-Perot resonances excited within the stop-band. It also shows a significant shift 

of the resonances, with a 250 nm variation in cavity length, by approximately 10 nm. 

This variation is essentially an arbitrary choice since this value is approximately a half 

wavelength at the effective index of the guided light propagation in the silicon 

photonic wire.  But if a smaller variation applies, i.e. 125 nm, a larger shift is 

expected, as already described in discussion the 2D FDTD simulation in the section 

5.3.3. As the cavity length is extended further to around 7 to 8 µm, multiple FP 

resonance are excited with smaller FSR values, as compared to previously measured 

device structures with short or medium extended cavities. Fig.5.11 shows the trend of 
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the resonances obtained using long extended cavities ranging in length from 7.5 µm to 

8.25 µm, with progressive increases of 250 nm in cavity length – see Fig-5.11 (a)-(d). 

These results represent the initial stage of investigations into the characteristics of 

multiple Fabry-Perot-like resonances at longer cavity lengths. The results in Fig. 5.11 

are based on designs without any tapering effects yet imposed on the periodic-hole 

mirrors. The highest Q-value of 3500 obtained was measured at a resonance 

wavelength of 1512 nm, with a cavity length of 8 µm – see Fig. 5.11 (c).  On the other 

hand, a shift of 10 nm in the resonance frequencies was also observed for a 250 nm 

variation in cavity length for those cavity conditions. In addition, a consistent trend of 

the distance between resonances (FSR values) of approximately 33 nm, 32 nm, 31 nm 

and 30 nm for each case is measured. This is due to the shift of the resonance for 

different spacer length, CE for resonance at shorter wavelength region towards the 

longer wavelength region which has been measured for the successive extended 

cavity conditions. 

5.5  Achieving Ultra-high Quality Factor Extended Cavity 1D  

PhC/PhW Structures 

The introduction of tapering both within and outside the cavity in longer cavities 

using aperiodic tapers with different hole diameters, as mentioned earlier (in Chapter 

4, section 4.3), has led to a significant increase in the Q-factor values obtained, as 

well as increased optical transmission at the resonance frequencies.  The high Q 

values achieved are mostly due to the reduction of the modal mismatch between un-

patterned wires and the periodic mirror sections through correct arrangements of 

aperiodic tapered holes together with the correct parameters for the periodic hole 

mirror structures. Fig 5.13 shows a zoom-in of the resonances (P1, P2, P3 and P4) 

excited corresponds to the measurement result shown in Fig.5.12 (b) – with the 

existence of fine feature next to the actual resonance. The presence of this fine feature 

is associated to the Fabry-Perot (FP) effect due to the end cleaved facets. Therefore, 

the existence of this feature has resulted in ambiguities for the estimation of the Q-

factor values. 
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Fig.5.12: Comparison of high Q Tapered extended cavity with cavity 

length=7.25 µm, NTI=4, NTO=2 showing (a) 3D FDTD simulation 

result (b) Measurement result with Q-value of 37,700 at λ~1509 nm for 

P2 

 

Throughout this presence work, the distance between the points of the arrows has 

been used to obtain, in a reasonably conservative manner, the estimates of the 

resonance quality factors, via the 3 dB points – as already discussed in the section 

4.4.2. But the Q-factor values obtained using this approach shows a significant 

agreement between the measurement and the simulated results. The 3D FDTD 

simulation of Fig. 5.12 (a) yields a Q-factor value of approximately 45,000, in good 

agreement with the measured value of approximately 37,700 at the resonance 

wavelength of 1509 nm. The difference in the optical transmission between the 3D 

FDTD and the measured result is likely to be due, at least in part, to imperfections in 

the fabrication of the tapered hole sections used for this device – and such fabrication 
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imperfections will also contribute to the reduction in the Q-factor value of the 

simulated results. 

 

 

Fig.5.13: Close-up of the measurement result for high Q Tapered 

extended cavity with cavity length=7.25 µm for (a) P1 (b) P2 (c) P3 (d) 

P4 corresponds to Fig.5.12 (b). 

 

By using the correct cavity length, the Q-value and optical transmission can be further 

enhanced – e.g. the Q-factor value of approximately 74,000 was obtained by using a 

cavity length of 5 µm in a medium extension cavity device structure. Fig.5.14 shows 

the measured results for a 5 µm medium extended cavity with a Q-factor value of 

approximately 74,000 at a resonance wavelength of 1482.56 nm, which corresponds 

to the simulation result discussed in Fig. 5.4 (a) – where the resonance Q-factor value 

calculated using 2D FDTD computation for this design arrangement was 

approximately 97,000 –and the resonance was located at the central wavelength of 

1472 nm.  
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Fig.5.14: Measurement result for ultra high Q extended cavity of 

c=5.0 µm with resonance (a) P1 (b) P2 and (c) P3 

 

This experimental result also shows a significant difference, of 10.56 nm, in the 

resonance wavelength of the measured result for this particular design at λ0-1482.56, 

in comparison with the simulated results. As discussed in Chapter 2, the variation of 

the location of the resonance wavelength is expected to be due, in part, to the 

approximation implied in using the effective index of the waveguide for 2D FDTD 

calculations. This problem can be overcome if 3D FDTD computation is used – in 

which the actual refractive index of the materials is used for the whole structure – and 
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there is a need for parallel cluster computing, which was not readily available during 

the period of this present work 

 

Fig.5.15: The behavior of Q-factor value for each resonance condition 

in particular for medium extended cavity spacer of 4.5 µm, 5 µm, 

5.5 µm and 6 µm. 

 

The FSR values measured for this particular caseare approximately 43.6 nm and 

38 nm, between the three resonances excited within this optical wavelength range. 

These results have shown further that the use of tapering both within and outside 

cavity enhances the quality factor, as well as the optical transmission, which could be 

useful for telecoms applications such as switching, non-linear optics, slow light 

experiment and WDM. Fig.5.15 shows a comparison of the Q-factor and optical 

transmission of a medium extended cavity for other spacer lengths around the medium 

spacer length – which are 4.5 µm, 5.5 µm and 6 µm. For each different cavity length, 

the highest Q-factor value was obtained at P1, with estimated Q-values of 37,400, 

74,000, 29,000 and 36,500, respectively- and mostly located near the centre of the 

stop band. The Q-factor values decreased dramatically for P2 and P3 , as the resonance 

moved towards the band edges. 

 The combination of tapering within and outside the micro-cavities, with a 

correct choice of hole diameters and spacing, has proven to have great influence on 

the challenge of achieving large Q-factor values together with high optical 

transmission for the extended cavity arrangement. For easier understanding of the 
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device, the overall performance of this device is illustrated in Fig.5.16 (a) – which is 

based on the highest value obtained at the resonance for each cavity condition. This 

resonance condition is located within the limited range of the characterization 

capability that was available throughout this present work (a tunable laser operating 

between 1457 to 1583 nm for 0.005 nm steps).  

 

 

Fig.5.16: (a) A comparison of Q-factor against normalized 

transmission of an extended cavity length, CE ranging from 3 µm to 

9 µm for different hole tapered arrangement for NTI=4. (b) A Graph 

showing the average FSR value at each cavity conditions. 
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Most of the Q-factor and transmission values measured were located at around 

1475 nm to 1510 nm, which correspond to the resonances of P1 or P2. For simplicity, 

only the highest resonance Q-Factor and normalized transmission value are 

considered for each cavity condition. From Fig.5.16 (a), it can be deduced that the 

highest Q-value of approximately 74,000 was obtained at a cavity length of 5 µm. 

This value was achieved with the use of both tapering within and outside cavity. On 

the other hand, the largest normalized transmission of more than 60% was measured 

at a cavity length of 4 µm, but the Q-factor at this resonance condition was smaller, at 

45,000 for the case of using both tapering within and outside cavity (NTI=4, NTO=2). 

Above all, the use of both tapering outside and within cavity has shown great 

improvements, as compared to the results obtained without any hole tapering outside 

the cavity. In addition, the FSR value between resonances for each cavity condition 

reduced as the cavity length increases. This value changed exponentially with respect 

to the 500 nm change in cavity length, as illustrated in Fig.5.16 (b). 

5.6  Suspended Silicon waveguide extended cavity 

In this section some of the results obtained through removing silica cladding directly 

beneath the silicon waveguide will be discussed. Further enhancement of the Q-factor 

and the normalized transmission is potentially achievable through the removal of the 

silica cladding underneath the silicon core, as described in the fabrication chapter 

earlier (Chapter 3- section 3.6). On one occasion, at a cavity length of 4 µm, an 

extended cavity based on a suspended photonic wire has been successfully fabricated 

and measured. The Q-factor values achieved for  this cavity condition are 3900, 

16,900 and 14,700 with respect to the resonance wavelengths of approximately 

1470.3 nm, 1525 nm and 1574.5 nm- as shown in Fig.5.17 (b). Although somewhat 

surprisingly, we have found that the normalized transmission for the resonance at P1 

is very small as compared to the resonances at position P2 and P3. The measured 

normalized optical transmission for resonances P1, P2 and P3 were 3.5%, 29% and 

48% respectively. These resonances were normalized with respect to an un-patterned 

suspended wire without photonic crystal embedded in it. The resonances were 

measured to have a free spectral range (FSR) of 52 nm. In comparison, Fig.5.17 (a) 

shows the resonance excited for the case of unsuspended extended cavity structures at 

CE=4 µm. A significant improvement has been made for this particular case, where 
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the Q-factor values increased considerably from 1400, 7200 and 2700 to 3900, 16,900 

and 14,700 with respect to each resonance condition of P1, P2 and P3. A shift of 

resonance by approximately 4 nm towards the shorter wavelength region is also 

observed- indicating that the removal of silica underneath the silicon waveguide has 

reduced the average refractive index of the silicon – thus shifting it to a shorter 

wavelength region. 

 

 

Fig.5.17: Comparison of the measurement result of an extended cavity 

of CE=4 µm for (a) with silica cladding (non-suspended wire) (b) 

suspended wire extended cavity 
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The difficulties in achieving high transmission and high Q-factor values for the 

suspended wires of this particular device may be attributed to the abrupt change of the 

modal distribution when traveling from the feeder waveguide on a silica cladding into 

the suspended wire region, where the silica has been removed. But no attempt has 

been made so far to measure the loss at that interface, which we believe is a key factor 

for enhancing the optical transmission. No attempt has yet been made to normalize 

between suspended wires without the photonic crystal micro-cavity in them and the 

suspended wires with micro-cavity included. More work on the fabrication process for 

a suspended wire is desirable. The reproducibility of the suspended wire type of 

structure is low- with different outcomes from the fabrication process in each 

fabrication cycle. The most frequent problem obtained was the wire collapsing. The 

measurement needed to be taken less than two weeks after fabrication, since 

otherwise the suspended wire was found to have collapsed, probably due to the 

combination of environmental effects such as humidity and sample stress. This 

problem could potentially be overcome by a suitable encapsulation approach and 

sample annealing processes, where the suspended wire can be placed securely. 

5.7  PhC/PhW Coupled Micro-Cavities 

This section proposes that the coupling strength of the two micro-cavities separated 

by several holes with different diameters and hole spacing can be substantially 

influenced by the actual tapered hole combination used in the separation region 

between the micro-cavities. In this section, the design is described of PhC coupled 

micro-cavities consisting of a combination of mirrors formed by N periodic hole PhCs 

with diameters of 182 nm and periodic spacing of 350 nm. Two such micro-cavities 

with spacer sections, c1 and c2, both 450 nm long were coupled to form a double-

cavity structure - as illustrated in Fig.5.18. The existence of the two spacers or 

coupled micro-cavities has resulted in the splitting of the individual resonance into 

two resonances. The coupling strength of the two resonances very much depends on 

the arrangement of tapered hole structures within the cavity. In this section, the design 

of this particular device is divided into three different sections, as shown in Fig.5.18. 

For this case, no effort has been made to explore more on how the parameters such as 

small variation of cavity spacer length affect the resonance, since it has been shown 
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earlier that it does shifting the resonance to the required wavelength - and more 

importantly the high Q-values only appear at certain cavity lengths. 

 

Fig.5.18: SEM image of  two micro-cavities between three periodic 

mirror with cavity length, c1 and c2 (edge-to-edge distance between two 

hole at micro-cavity), Number of hole at each side of the micro-

cavities, N0 and the number of hole between two micro-cavities, Nm 

But in this section the main intention is to look at how the coupling strength varies 

with the tapered hole arrangement- although high optical transmission is desirable.  

Fig.5.18 shows an SEM image of a structure formed by two coupled micro-cavities, 

with a cavity spacer length of c1 =c2 = 450 nm. This structure was divided into three 

sections, consisting of two end sections, N0 and a middle section, Nm. In order to 

reduce the modal mismatch for light entering from un-patterned wire waveguides into 

the mirror region, a tapered structure consisting of a combination of several 

aperiodically located holes and different diameters was used. The use of tapering both 

outside and within the cavity has produced a significant improvement in the optical 

transmission level, as well as much higher quality-factor for the selected resonances 

of the cavity. The four hole tapered structures used in our design have diameters of 

170, 180, 166 and 131 nm sequentially, together with centre-to-centre hole distances 

of 342, 304, 310 and 290 nm, respectively.  On the other hand, the two hole tapered 

structures used outside the cavity had diameters of 166 and 131 nm - with centre-to-

centre hole distances of 310 and 290 nm. Both end sections, N0, have two identical 

PhC hole arrangements - forming periodic mirrors, together with four aperiodically 

located holes forming tapers within the cavity. The tapered hole structures within the 

cavity have the same dimensions as were used previously in the micro-cavity 

structure - for both end sections. Control of the hole parameters has been shown to 

reduce the modal mismatch between un-patterned wire sections and mirror sections - 

thus enhancing optical transmission as well as the Q-factor value. 
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5.7.1   2D and 3D FDTD approach for Coupled Cavity Arrangement 

The 2D FDTD approach has been used to simulate the device. Although 3D FDTD 

computation is obviously the desired method, the 2D FDTD approach is sufficient to 

provide a basic understanding of this kind of structure. A comparison has been made 

between 2D and 3D FDTD computation, as shown in Fig.5.19. It shows that the 3D 

FDTD approach gave a closer approximation to the measured result, with a calculated 

Q-factor of 1,200 - which agreed with the Q-value measured - approximately 1,100 

for this particular design arrangement. The normalised transmission of approximately 

60% also shows good agreement with the value computed using the 3D FDTD 

approach. A 2D computation gave a useful approximate description of the device 

behaviour, without giving much specific information on the device performance, 

when run at the low resolution required to reduce the simulation time. 

 

Fig.5.19: A comparison between 2D and 3D FDTD approach with the 

measurement result for two coupled micro-cavities with N0-Nm-N0 (6-

6-6) arrangement,  c=450 nm, and 1 hole taper in the middle section 

(Nm). 

Although 3D FDTD computation at reasonably high resolution is preferable, running 

a single simulation on a stand-alone PC, will normally take on the order of two to 

three weeks - which is not practical at  research level. Therefore, throughout this 
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section, 2D FDTD computation has been preferred for investigation of the general 

behaviour of the devices considered.  

 

Fig.5.20: 2D FDTD simulation for 6-6-6 (N0-Nm-N0) hole arrangement 

with different hole taper arrangements in the middle section, Nm. 

At this point, a different number of holes was used in the tapered part of the middle 

section, Nm, by keeping the total number of periodic and aperiodic holes to six, for 

device simplicity - and to facilitate a consistent analysis. Fig.5.20 shows the 

transmission spectra for a 6-6-6 (N0-Nm-N0) hole arrangement using different 

numbers of holes in the tapered part of the middle section, computed using a 2D-

FDTD numerical approach. As the number of holes in the tapered part of the middle 

section is increased from one to three holes, a clear resonance splitting is predicted, 

implying stronger optical coupling between the two cavities. The split of the two 

resonances calculated in the successive cases are 9.90, 7.65 and 26.74 nm, 

respectively. In addition, the resonance obtained with a greater number of tapered 

holes used in the middle section also showed more pronounced resonance splitting as 

compared to the multiple resonance for the situation without any hole tapering 

imposed- thus implying that stronger coupling was observed for the three hole taper 

case. But the shift of the resonance is noticeable, whereas the number of holes in the 

taper is increased while keeping the total number of holes in the a combination of 

periodic and aperiodic holes the same. The shift of the two resonances was calculated 

to be 9.53 nm - which makes it difficult to reproduce, as shown in the simulation 

results obtained in Fig.5.20. 
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Fig.5.21: 2D FDTD simulation for different hole arrangements in the 

middle section, Nm, without any hole taper, i.e. using just a periodic 

hole mirror. 

Therefore varying the number of holes in the middle section without the need of hole 

tapering- i.e. using only a certain number of periodic holes in the separation mirror - 

was investigated, for example by using a different number of periodic mirror holes in 

the middle section- but without any tapering effect in those sections as shown in the 

inset of Fig 5.21 (SEM image of the device structures). Using this arrangement, non-

symmetric tapering within the cavity in the middle section was introduced. Fig.5.21 

also shows 2D FDTD simulation for different hole arrangements in the middle 

section, without any hole tapering being used. In this case, the centre position of the 

split resonance for different structure lies around 1584 nm. Clearer resonance splitting 

is seen as the number of periodic mirror holes in the middle section is reduced from 

six to four- with the separation of the resonances being increased from approximately 

10 nm to 32 nm- implying stronger coupling of the cavities as the number of periodic 

mirror holes in the middle section, Nm is reduced. 

5.7.3   Measurement of Coupled Micro-cavities and Discussions 

The characterization for this set of device structures was carried out using the same 

set-up as previously used (see details in Chapter 3, section 3.7). This device will work 

at the telecommunications wavelengths of 1457 nm to 1583 nm - being the limited 
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range covered by the tunable laser set-up used for the present work. Fig. 5.22 shows 

the measurement results for the 6-6-6 (No-Nm-No) configurations, with variations in 

the taper hole arrangement in the middle section, Nm - corresponding to the simulation 

results produced in Fig. 5.20, with a normalized transmission of around 60% at 

resonance. In this configuration, the number of tapered hole in the arrangement varies, 

while keeping the same number of hole in the middle sections, including both periodic 

and aperiodic holes. For example if two hole tapers of smaller size were used on each 

side of four periodic hole mirrors – the result was that the total number of holes 

(inclusive of periodic and aperiodic hole taper) remained at six. The introduction of 

two micro-cavities coupled together, has split the nominal identical cavity resonance 

frequencies into two, namely λ0(1) and λ0(2) in each case.   A Clear resonance splitting 

is observed with a three hole tapered middle section. A significant shift in the position 

of the two resonances is obtained, as initially expected due to the progressive effective 

index change in the tapered hole part of the middle section. The calculated values for 

the resonance splitting measured for the successive cases are 2.74, 5.05, 13.82 and 

17.85 nm respectively. As the number of periodically arranged holes in the middle 

section is reduced - and they are replaced by tapered hole sections with different 

diameters and aperiodic spacing, the optical coupling through the middle section 

becomes stronger - and therefore the resonance split between the two resonances 

increases. But multiple resonances with low transmission, of less than 5%, are also 

observed between the two clear resonances - in the latter two cases – and correspond 

to longer partial cavity structures formed between the middle mirror section and the 

outer ends of the outer cavity mirrors. The existence of the extra fine feature is 

discussed later in this chapter. 
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Fig.5.22: Measurement result for 6-6-6 (NO-Nm-NO) hole arrangement 

corresponding to the 2D FDTD simulation results in fig-5.20 where 

λ0(1 and 2) is the central wavelength of each resonances (a) without hole 

taper (b) with one hole taper (c) two hole taper and (d) with three hole 

taper in the middle section 

 

Clearly, the addition of suitable tapered hole structures at the input and output of the 

double cavity structure, as we have already demonstrated to be beneficial in the single 

cavity case, could well suppress such undesired features. As the number of periodic 

mirror holes in the middle section, Nm, is reduced to four (thereby becoming a 6-4-6 

arrangement) for the situation with no tapered holes inserted in the middle section – a 

larger coupling strength is observed, with a clear resonance splitting.  By Comparing 

the measurement results shown in Fig. 5.22 (a) with those in Fig. 5.23 (b), the value 

of the separation between the two resonances has increased by 7 nm, from 2.74 to 

9.74 nm, based on the measured results for this particular cavity condition. By 

inserting one reduced diameter hole into this particular design arrangement 

(maintaining four periodic holes in the middle section) - the coupling strength 

between the two cavities is further reduced - and accompanied by a reduction in the 

measured transmission by approximately 20%.  
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Fig.5.23: Measurement result for Nm with the periodic hole mirrors 

remains four at c=450 nm and (a) without hole taper (b) with one hole 

taper in the middle section. 

A reduction in the resonance splitting from 9.74 nm to 5.94 nm was obtained for this 

coupling condition - but a significant improvement in the Q-factor value from 400 to 

1100 was also obtained.  
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Fig.5.24: Measurement results for different hole arrangements in the 

middle section, Nm without any hole taper with a number of periodic 

mirror N= Nm for (a) Nm=4 (b) Nm=5 and (c) Nm=6 - corresponds to 

2D FDTD simulation results shown in Fig.5.20 

 

In previous measurements, (see Fig.5.22 and 5.23), it was shown that a several tens of 

nanometer shift in the resonances could be obtained by using the same number of 

holes in the tapered middle section of the structures. The other way to keep the centre 

of the resonance around the same wavelength region while varying other parameters 

is through a change only in the number of periodic mirror holes in the middle section. 

Fig.5.24 shows that the measured results for that particular case correspond to the 

simulation results obtained in Fig.5.21. As the number of  periodic mirror holes is 
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reduced from five to four, more clear resonance splitting is observed, with the central 

wavelength between the two resonances in this particular case being measured to be 

around 1533 nm and 1535 nm respectively- with only approximately 2 nm separating 

those resonances.  

 

Fig.5.25: One example showing a close look at the spurious resonance 

like features in one of the result shown in Fig.5.24 (c) - inset is the 

finest FP resonances feature. 

The resonance splitting for either design arrangement of having different numbers of 

periodic mirror holes in the middle section (Nm) of four and five respectively  was 

measured to be 8 and 2 nm respectively. Therefore clear resonance splitting has 

occurred, implying that a reduced number of periodic hole mirrors in the middle 

section (Nm) has resulted in an increase in the coupling strength of the resonance - 

with clearly larger resonance splitting. The normalized transmission coefficients for 

these resonance conditions were reasonably high, with the value measured being 

approximately 60% and 65%, respectively, showing the effect of tapering with 

smaller hole sizes in the cavity sections. 
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Fig.5.26: Another example showing a close look at the spurious 

resonance like features in one of the result shown in Fig.5.22 (d) 

 

Fig.5.27 (a) shows a schematic drawing of the structures with a possible origin of fine 

features associated with the FP effect and Fig 5.27 (b) indicate the actual micro-cavity 

anticipated for this particular design (SEM image)- and the red arrows line indicate 

the other cavity created by the FP effect due to interface at the intersections to the 

adiabatic taper and the patterned wire waveguides which has quite a significant 

influence. The existence of fine features is seemingly obvious in the coupled micro-

cavities, as compared with the basic features of the micro-cavities structures. This 

phenomenon is directly related to the ‘double’ Fabry-Perot (FP) effect produced by 

the coupled micro-cavities superimposed on the existing FP effect produced by the 

cleaved end facets, FP1 and at the adiabatic taper section, FP2 and FP3, as shown in 

Fig 5.27 (a). By referring to Fig.5.25, the resonance like feature presented by the blue 

line has an FSR of approximately 3.34 nm between the estimated central wavelengths 

of the ‘envelope’ measured in a rather conventional way, whereas the finer features 

shown by the red line has an FSR value of approximately 0.32 nm.  
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Based on the equation for the peak spacing of multiple FP resonances, the cavity 

length for any particular uniform resonance is given by [27-28]- where this famous 

equation are used in analysis of FP effect in laser cavities ; 

gn
L

δλ
λ

2

2

0=     (5.1) 

Where:  

  L  - Cavity Length of the FP effect associated with multiple  

    resonances 

  λ  - Central wavelength of the associated resonances  

  δλ - Distance between two adjacent resonance peaks 

  ng - Group refractive index (note: in this case the Ng=Nsi=3.45-  

   this is based on the assumption of Ng is big enough which  

   approximately equal to actual Nsi – no further attempt is  

   made  at this stage to calculate the actual Ng) 

  Where neff is given by; 
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By referring to Fig.5.25 and on the basis of equation 5.1, for the resonant FSR value, 

corresponds to the each fine FP resonance feature, the cavity length associated with 

that particular resonance condition is given by; 
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3. inset: 
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Therefore, based on the schematic drawing of the whole structure shown in 

Fig.5.27 (a), the fine features of the resonances for the cavities L1, L2 and L3 may be 

calculated using equation 5.2, 5.3 - and 5.4 and most probably originated from the FP 

effects of FP3, FP2 and FP1 respectively.  

 

 

Fig.5.27: (a) Schematic drawing of a design for PhC/PhW 

characterization showing the possible origin of multiple FP effect, 

FP1, FP2 and FP3 (b) ‘Zoom in’ of the section showing te effect of FP 

fine feature between the start of patterned wire waveguides with the 

intersection with the adiabatic taper, FP3 (Note: The schematic 

drawing are not in scale) 

In addition, the existence of ‘extra’ small features like resonance were also seen in 

other measurement result for example, as shown in Fig.5.26 (see also Fig. 5.22) in 

particular are mostly due to the Fabry-Perot effect of the systems shown in 

Fig.5.27 (b). The FSR value for the multiple resonance features in this case is 
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approximately 3 nm- thus the cavity associated with this resonances are around 

100 µm. Therefore this resonance feature appears in conjunction with the FP3 shown 

in Fig.5.27. It becomes apparent that the FP effect is much more strongly present in 

the coupled cavity arrangement, as compared with single micro-cavity device 

structures - which implies that characterization of a two or more micro-cavity 

arrangement becomes more complex as spurious resonance features strongly appear 

due the FP associated with the end facets and adiabatic tapers arrangement at the 

entrance of the 500 nm PhC/PhW sections. The coarse structures resulted by the 

design arrangement can be overcome by reducing the multiple FP effect of whole 

system within the waveguides- and need to be re-design using inverse taper at the 

sample ends [23]- as initially proposed for coupling laser diodes into optical fiber 

[24-26]. Observation of the 2D and 3D FDTD simulation results obtained in one case 

(refer to Fig.5.19) shows that there are no spurious resonance-like features with the 

measured result for the coupled micro-cavity situation. This has confirmed that the 

‘extra spurious features’ are isolated from the FP effect in the cavity regions formed 

by the coupled micro-cavity proposed - or FP effects due to the total length of the 

device structures. The 2D and 3D FDTD approach did not take the cleaved end facets 

and adiabatic taper into consideration, in order to run the device simulation 

effectively. It is also suggested that more work is needed on studies of the behavior of 

two or more micro-cavity arrangements - but general understanding has been 

developed sufficiently on the device structures of the present work. 
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5.8  Summary 

In this chapter, the characterization of high-Q Photonic Crystal extended cavities 

embedded in 500 nm Photonic Wire waveguides have been demonstrated. Q-factor 

values as high as 74,000 for 5 µm long extended cavities have been obtained at a 

resonance wavelength of 1482.52 nm. This enhancement is due to the introduction of 

tapering both within and outside the cavity, together with a combination of aperiodic 

hole spacing and the correct choice of the periodic hole dimensions used in previous 

chapter. The resonance frequency can be tuned via small differences in the cavity 

length, although significant decreases in the Q-value were observed for the particular 

resonance of interest. A shift of approximately 10 nm in cavity length was also 

measured for a 250 nm difference in cavity length. Use of 2D FDTD computational 

approaches gives reasonably good agreement with the measured Q-value - with a 

calculated Q-factor value of nearly 100,000 corresponding to the measured Q-factor 

value of 74,000. This type of device could be useful for applications in 

communications such as DWDM and optical filtering. The initial investigation of an 

extended cavity longer than 7 µm shows a highest Q-factor value of nearly 3,400 for 

the case where no tapering was introduced. The resonances of this cavity were 

separated by approximately 30 nm in wavelength. In addition, further enhancement 

has been obtained where, with a measured Q-factor value of 37,700 for a cavity length 

of 7 µm. This resonance was at a wavelength of 1509 nm, with normalized 

transmission at this resonance frequency measured to be 40%. A 3D FDTD 

computational approach has been used to obtain a calculated Q-factor value of 

approximately 40,000, which is in a good agreement with the measured Q. Our 

measured results have shown a significant enhancement of the Q-value, as well as 

transmission, at chosen resonance frequencies due to the introduction of tapering 

effects. Experimental results have shown good agreement with both 2D and 3D 

FDTD computational approaches run at high resolution.  

The experimental results for 1D PhC/PhW devices that use two coupled 

micro-cavities to split the cavity resonance in two have also been demonstrated - 

while retaining high optical transmission (of around 60%), which could also be useful 

for WDM applications. Control of the FSR of the combined resonance structures, 

through the use of different numbers of holes in periodic mirror holes and different 
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numbers of holes in the aperiodic middle section between the cavities has also been 

demonstrated. For the case where a constant combination of tapered holes and 

periodic mirror holes was used, it was shown that, as the number of tapered holes in 

the middle section increases, there is an increase in the coupling strength - thus 

splitting the resonance more clearly, with an FSR of approximately 17.85 nm. In 

contrast, for the same number of mirror holes in the middle section, increasing the 

number of holes in the tapered section produces a reduction in the FSR between the 

two resonances. 2D FDTD simulations have shown reasonably close agreement with 

the measured results. In conclusion, the coupled cavity design in a two-cavity 

arrangement is potentially useful as a basic building block for designing multiple-

cavity structures - with a series of cavities providing the required spectral response for 

WDM de-multiplexing applications. We have also observed some discrepancy 

between the simulated and the measured results, presumably arising from fabrication 

inaccuracy and the limitation of a 2D approach to simulation.  
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Conclusions and Future Work 

This thesis has demonstrated the detailed design, fabrication and characterization of 

single row PhC cavities embedded in narrow (typically 500 nm wide) photonic wire 

waveguides based on Silicon-on-Insulator (SOI). Three main design arrangement 

were analyzed and demonstrated, consisting of micro-cavities with spacer section 

lengths of between 400 nm and 500 nm, extended cavities where the cavity extends 

from between 2 µm and 9 µm and coupled micro-cavity structures.  The device 

structures have been designed to operate in TE polarization at wavelengths around 

1550 nm. The compactness, together with high reflectivity and possibilities for an 

active tuning capability make the device suitable as a basic building block for 

incorporation into integrated circuits where several functions are realized on a single 

chip – i.e. what are commonly known as high-density Photonic Integrated Circuits 

(PICs). On the other hand, it may also be useful in providing one of the solutions for 

the design of compact filters for either coarse or dense wavelength-division 

multiplexing situations, for high-speed switching and non-linear optics. 

 The development of high-resolution fabrication techniques plays an important 

role in achieving high performance in this device. The use of state-of-the-art 

lithography tools and processes has shown a significant enhancement of the device 

capability. Considerable improvement has been made in terms of work on fabrication 

techniques, where all aspects of critical stages in the fabrication process have been 

thoroughly investigated. The use of a newly installed electron-beam lithography tool 

namely the Vistec-VB6 tool has produced a significant improvement by comparison 

with the previously available Leica-EBPBG5 tool. The development of HSQ resist as 

a writable etch-mask layer for pattern transfer, rather than using ZEP-520A together 

with a deposited silica transfer layer, has also played an important role in reducing 

sidewall roughness, which in turn has reduced the propagation losses. Substantial 
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improvement has been achieved through a reduction in the number of fabrication 

process steps, provides excellent controllability in the fabrication of small feature 

sizes. Inductively Coupled Plasma (ICP), RIE tools was used to etch the silicon core 

with a limited amount of sidewall roughness. The device was finally characterized 

using tunable laser covering the range from 1457 nm to 1583 nm where the light was 

end-fired into the waveguide input end and detected using a germanium-photodiode 

detector at the other end. The result is subsequently normalized against the optical 

transmission of an un-patterned photonic wire without any holes embedded in it.  

 The fabricated device structures typically consist of a single row of holes 

embedded in a narrow ridge waveguide with a spacer section introduced in the 

middle, which has led to the achievement of usefully high quality factors, together 

with high optical transmission. The main source of light scattering was identified as 

the mismatch between the un-patterned photonic wire and the Bloch mode of the 

periodic mirror - and therefore the engineering of tapered hole structures at the input 

and output interfaces is necessary. This thesis will emphasize the design of  hole 

tapers in order to obtain high quality factor values, together with usefully large optical 

transmission sufficient for telecommunications applications. Tapered hole regions 

consisting of several holes, between one and four, having different diameters and 

aperiodic spacing have been used. The main aim of such an arrangement is to provide 

a smoother and graded route for the light to travel into periodic hole mirrors. The 

tapered hole section at the interface between the un-patterned ridge waveguide and the 

periodic hole mirror-structure of the micro-cavity region led to an enhancement of 

both the optical transmission and the resonance Q-factor. The correct choice of the 

number of holes used - and the dimensions of the hole is the most important 

parameter in order to get the highest performance of the device. The device structures 

were initially modeled and simulated using both 2D and 3D FDTD. Although 3D 

FDTD computation is ultimately more useful, since it uses  exact refractive index 

values rather than the effective index method used in the 2D FDTD approach, the 

massive memory requirements and high power consumption needed for 3D FDTD 

give difficulties. The use of parallel computing is required to produce substantially 

reduced simulation time.  

The introduction of tapered hole structures consisting of several holes with 

different diameters and spacing at the entrance and the exit of the periodic hole 
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mirrors has produced a considerable improvement in both the optical transmission 

level and the quality factor values obtained, together with substantially reduced 

radiation losses. This reduction in the radiation losses is partly due to the reduction in 

the modal mismatch as the light travels from the un-patterned ridge waveguide into 

the periodic mirror region and on into the spacer region, where multiple transits occur. 

Using this design arrangement a Q value of approximately 147,000 has been 

achieved, together with a useful value of the normalized optical transmission. The 

expected increase in the quality factor and the enhancement of the optical 

transmission is due to the tapered hole mirror section, which increases the photon 

confinement lifetime within the cavity and reduces the modal mismatch. Furthermore, 

the tapered hole arrangement was also successfully introduced into the extended 

cavity and coupled cavity structures. A significant improvement in quality factor 

values and optical transmission has also been demonstrated in this particular case.  

The extended cavity device structures with Q-values of approximately 74,000 

with normalised optical transmission of 30% for 5 µm long extended cavity have also 

been successfully obtained. This enhancement is partly due to the introduction of 

tapering both within and outside the cavity, with a correct combination of aperiodic 

hole tapering and the correct choice of the periodic mirror hole dimension. This 

resonance frequency can be tuned via small differences in cavity length, although a 

significant decrease in thee Q-factor value was observed in some cases. Good control 

of the FSR is also demonstrated while varying the extended cavity length from 2 µm 

to 9 µm, which might be useful for some telecomm wavelength selection applications. 

Finally, coupling of two micro-cavities has been used to split the cavity 

resonance into two - while retaining high optical transmission values (of around 

60%), which could also be useful for WDM applications. Control of the FSR of the 

combined resonance structures, through the use of different numbers of holes in 

periodic mirror sections and different numbers of holes in the aperiodic middle 

section between the cavities has also been demonstrated. For the case where a 

constant total number of tapered holes and periodic mirror holes was used, it was 

shown that, as the number of tapered holes in the middle section increases, there is an 

increase in the coupling strength - thus splitting the resonance more clearly, with an 

FSR of approximately 17.85 nm. In contrast, for the same number of mirror holes in 

the middle section, increasing the number of holes in the tapered section produces a 
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reduction in the FSR between the two resonances. My 2D FDTD simulations have 

shown reasonably close agreement with the measured results. In conclusion, the 

coupled cavity design in a two-cavity arrangement is potentially useful as a basic 

building block for designing multiple-cavity structures - with a series of cavities 

possibly providing the required spectral response for WDM de-multiplexing 

applications.  

In addition, the capabilities of the silicon core need to be explored more fully. 

For instance, tuning of this particular device can be implemented by means of either 

small variations of the cavity length or the thermo-optic effect. For the thermo-optic 

case, the current could be passed through the silicon photonic wire in which the cavity 

is formed, in order to deliver the desired refractive index change - which in turn will 

shift the resonance frequency, depending on the amount of current delivered [1]. 

Furthermore, the large positive thermo-optic coefficient of silicon (1.83 x 10
-4

K
-1

)  

[2,3] can be exploited to produce a significant change of the refractive index in 

reference to the temperature (dn/dT).  It is reported that a small amount of power of 

9.2mW is needed to drive the resonance to shift by 5nm in wavelength without a 

change ion Q-factor [4] 

In contrast to the use of heavily doped silicon – which can exploit either n-

type or p-type dopant, as used typically in CMOS, the cavity region would be heated 

using a carefully designed micro-heater in which the refractive index change, in 

conjunction with the temperature change, will produce a shift in the resonance peak. 

An investigation of how large a current is needed to drive a useful shift in resonance 

will be carried out. On the other hand passing current directly into silicon that has 

been doped p-type will also be carried out. In this case, a silicon core will be doped 

with p-type (boron) to provide the path for the current flow through it. This current 

will heat up the silicon where change in temperature will result in refractive index 

change-thus a shift in resonance peak will be expected- although there are issues 

regarding the absorption losses.  

 Further enhancement of the Q-factor can also be achieved by removing the 

silica cladding underneath the silicon core layer, in order to provide better isolation of 

the light traveling within the silicon. Thus better light confinement inside the silicon 

can be achieved. Improvements in the Q-value, with useful optical transmission have 

been demonstrated via this method in one of the device structures - and I believe that 
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a Q-factor value greater than currently demonstrated can be achieved by completely 

removing the silica cladding to provide a symmetrical device with air surrounding the 

silicon core. But this demonstration of higher Q-factor values lies in the future work 

on optimizing the fabrication process of the membrane SOI, where the development 

of complete ‘hanging’ silicon is required. More attention to reducing the losses at the 

interface between the silicon sitting on the platform and the suspended silicon needs 

to be addresses carefully, in order to achieve the full capability of this device. 

 In conclusion, a Compact PhC/PhW device structure with ultrahigh quality-

factor together with large optical transmission has been successfully demonstrated. 

This performance was achieved via the use of tapering both within and outside cavity. 

Further optimization of the fabrication process in the suspended wire configuration is 

necessary in order to enhance the performance of the PhC/PhW device structures still 

further. There is also possibility of embedding the silicon PhC/PhW micro-cavity 

structures with silica surrounding them - i.e. a complete silica environment. This can 

be achieved through a controlled silica deposition on the silicon waveguide. One of 

the advantages of using this approach is to provide an alternative to increase the 

optical confinement through the design of symmetrical ridge structure. For instance, 

the modal distribution through the silicon waveguide will be symmetrical especially 

in relation to the mode ‘tails’. 
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