Structural and functional characterisation of conventional kinesin and mitotic kinesin Eg5 — a validated target for cancer chemotherapy

Kaan, Hung Yi Kristal (2012) Structural and functional characterisation of conventional kinesin and mitotic kinesin Eg5 — a validated target for cancer chemotherapy. PhD thesis, University of Glasgow.

Full text available as:
[img]
Preview
PDF
Download (31MB) | Preview

Abstract

Kinesins are molecular motors that use energy from ATP hydrolysis to transport
cargoes along microtubule tracks. There are at least 14 families of kinesins with
different structural organisations but all kinesins have a motor domain that is
the catalytic core for ATP hydrolysis and the binding site for microtubules. Most
kinesins have a stalk domain, which facilitates oligomerisation, and a tail domain
that is implicated in cargo binding and regulation. Depending on their structural
organisation, each kinesin is suited for different functions. Some are involved in
transporting vesicles and organelles in cells, while others are essential for axonal
transport in neurons. Still others are involved in intraflagellar transport in cilia.
Lastly, a group of kinesins participate in different steps of mitosis.
One such kinesin is the human mitotic kinesin Eg5. It is a homotetrameric kinesin
that is made up of a dimer of anti-parallel dimers. By cross-linking anti-parallel
microtubules and moving towards their plus ends, Eg5 slides them apart and
establishes the bipolar spindle. When Eg5 is inhibited by antibodies or siRNA,
cells arrest in mitosis with non-separated centrosomes and monoastral spindles.
Prolonged mitotic arrest eventually leads to apoptotic cell death. For that
reason, Eg5 is a potential target for drug development in cancer chemotherapy
with seven inhibitors in Phase I and II clinical trials. The first inhibitor of Eg5 was
discovered in a phenotype-based screen and is called monastrol. Since then,
several classes of inhibitors, such as ispinesib (a clinical trial candidate) and Strityl-
L-cysteine (STLC), have been discovered.
To develop more potent inhibitors, we employed a structure-based drug design
approach. By determining crystal structures of the Eg5 motor domain in complex
with various inhibitors, we can understand the interactions between the
inhibitor and Eg5; thus, analysis of the structure-activity relationship (SAR) can
help us to improve their potency. Consequently, these inhibitors could
complement or act as alternatives to taxanes and vinca alkaloids, which are
successful cancer chemotherapeutics currently used in the clinic, but have the
tendency to cause neurotoxicities and develop resistance in patients.
Here, I report the crystal structures of Eg5 in complex with three monastrol
analogues, STLC, and four STLC analogues separately. Based on the crystal
structures with monastrol analogues, I identified the preferential binding mode
of each inhibitor and the main reasons for increased potency: namely the better
fit of the ligand and the addition of two fluorine atoms. Next, the crystal
structure of Eg5-STLC indicates that the three phenyl rings in STLC are buried in
a mainly hydrophobic region, while the cysteine moiety of STLC is solventexposed.
In addition, structures of Eg5 in complex with STLC analogues, which
have meta- or para-substituents on one or more of the phenyl rings, reveal the
positions of the substituents and provide valuable information for the SAR study.
In short, these structures reveal important interactions in the inhibitor-binding
pocket that will aid development of more potent inhibitors.
To understand the molecular mechanism of inhibition, I examined the structure
of the Eg5-STLC complex, which revealed an unprecedented intermediate state,
whereby local changes at the inhibitor-binding pocket have not propagated to
structural changes at the switch II cluster and neck linker. This provides
structural evidence for the sequence of drug-induced conformational changes. In
addition, I performed isothermal titration calorimetry to determine the
thermodynamic parameters of the interaction between Eg5 and its inhibitors.
The structural information and the thermodynamic parameters obtained help us
to gain a better understanding of the molecular mechanism of inhibition by an
Eg5 inhibitor.
While there is a large amount of information about the motor domain of Eg5,
less is known about the stalk domain, which facilitates oligomerisation. A
prediction program showed that the first ~100 residues of the stalk domain have
a high probability of forming a coiled-coil structure, while the middle ~150
residues have a low probability. Using analytical ultracentrifugation, I showed
that the Eg5 stalk364-520 domain exists predominantly as a dimer with a
sedimentation coefficient of 1.76 S. The purported coiled-coil quaternary
structure is backed-up by circular dichroism data, which showed that Eg5
stalk364-520 domain contains about 52 % helical content. Finally, the low resolution
solution structure of Eg5 stalk364-520 domain was determined by small angle X-ray
scattering, which revealed an elongated structure that is ~165 Å in length.
Together, these data give us a glimpse into the structural characteristics of the
Eg5 stalk364-520 domain.
Besides gaining a better understanding of Eg5, I decided to investigate the
molecular mechanism of autoinhibition in conventional kinesin (later known as
kinesin-1). As the founding member of kinesins, it was first discovered to be
involved in axonal transport. When not transporting cargo, kinesin-1 is
autoinhibited to prevent squandering of ATP. Although it is widely accepted that
the tail binds to the motor domain to keep it in a folded autoinhibited state, the
molecular mechanism remains unclear and several mechanisms have been
proposed. Here, I report the crystal structures of the Drosophila melanogaster
kinesin-1 motor domain dimer and the dimer-tail complex. The dimer, which
exhibits ~180° rotational symmetry between the monomers, provides valuable
structural information for modeling the motility of kinesins on microtubules.
By comparing the free dimer with the dimer-tail complex, we observe that the
motor domains have considerable freedom of movement in the absence of tail
binding. However, in the dimer-tail complex, a ‘double lockdown’ at both the
neck coil and the tail interface freezes out major movements. This could
prevent conformational changes, such as neck linker undocking. Data from our
collaborator (David Hackney) showed that a covalent cross-link, which mimics
double lockdown of the dimer, prevents ADP release. Together, we propose a
‘double lockdown’ mechanism, in which cross-linking at both the coiled-coil and
tail interface prevents the movement of the motor domains that is needed to
undock the neck linker and release ADP. In short, the structures shed light on
the autoinhibition mechanism, reveal important residues at the dimer-tail
interface, invalidate other proposed mechanisms, and open up the possibility
that other kinesins may be regulated by the same mechanism.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Keywords: Kinesin, molecular motor, cancer, autoinhibition, structural biology
Subjects: Q Science > Q Science (General)
Colleges/Schools: College of Medical Veterinary and Life Sciences > Institute of Cancer Sciences
Supervisor's Name: Kozielski, Prof. Frank
Date of Award: 2012
Depositing User: Ms Hung Yi Kristal Kaan
Unique ID: glathesis:2012-3093
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 12 Jan 2012
Last Modified: 10 Dec 2012 14:03
URI: http://theses.gla.ac.uk/id/eprint/3093

Actions (login required)

View Item View Item