A semi-automated FAQ retrieval system for HIV/AIDS

Thuma, Edwin (2015) A semi-automated FAQ retrieval system for HIV/AIDS. PhD thesis, University of Glasgow.

Full text available as:
[img]
Preview
PDF
Download (15MB) | Preview

Abstract

This thesis describes a semi-automated FAQ retrieval system that can be queried by users through short text messages on low-end mobile phones to provide answers on HIV/AIDS related queries. First we address the issue of result presentation on low-end mobile phones by proposing an iterative interaction retrieval strategy where the user engages with the FAQ retrieval system in the question answering process. At each iteration, the system returns only one question-answer pair to the user and the iterative process terminates after the user's information need has been satisfied. Since the proposed system is iterative, this thesis attempts to reduce the number of iterations (search length) between the users and the system so that users do not abandon the search process before their information need has been satisfied. Moreover, we conducted a user study to determine the number of iterations that users are willing to tolerate before abandoning the iterative search process. We subsequently used the bad abandonment statistics from this study to develop an evaluation measure for estimating the probability that any random user will be satisfied when using our FAQ retrieval system. In addition, we used a query log and its click-through data to address three main FAQ document collection deficiency problems in order to improve the retrieval performance and the probability that any random user will be satisfied when using our FAQ retrieval system. Conclusions are derived concerning whether we can reduce the rate at which users abandon their search before their information need has been satisfied by using information from previous searches to: Address the term mismatch problem between the users' SMS queries and the relevant FAQ documents in the collection; to selectively rank the FAQ document according to how often they have been previously identified as relevant by users for a particular query term; and to identify those queries that do not have a relevant FAQ document in the collection. In particular, we proposed a novel template-based approach that uses queries from a query log for which the true relevant FAQ documents are known to enrich the FAQ documents with additional terms in order to alleviate the term mismatch problem. These terms are added as a separate field in a field-based model using two different proposed enrichment strategies, namely the Term Frequency and the Term Occurrence strategies. This thesis thoroughly investigates the effectiveness of the aforementioned FAQ document enrichment strategies using three different field-based models. Our findings suggest that we can improve the overall recall and the probability that any random user will be satisfied by enriching the FAQ documents with additional terms from queries in our query log. Moreover, our investigation suggests that it is important to use an FAQ document enrichment strategy that takes into consideration the number of times a term occurs in the query when enriching the FAQ documents. We subsequently show that our proposed enrichment approach for alleviating the term mismatch problem generalise well on other datasets. Through the evaluation of our proposed approach for selectively ranking the FAQ documents, we show that we can improve the retrieval performance and the probability that any random user will be satisfied when using our FAQ retrieval system by incorporating the click popularity score of a query term t on an FAQ document d into the scoring and ranking process. Our results generalised well on a new dataset. However, when we deploy the click popularity score of a query term t on an FAQ document d on an enriched FAQ document collection, we saw a decrease in the retrieval performance and the probability that any random user will be satisfied when using our FAQ retrieval system. Furthermore, we used our query log to build a binary classifier for detecting those queries that do not have a relevant FAQ document in the collection (Missing Content Queries (MCQs))). Before building such a classifier, we empirically evaluated several feature sets in order to determine the best combination of features for building a model that yields the best classification accuracy in identifying the MCQs and the non-MCQs. Using a different dataset, we show that we can improve the overall retrieval performance and the probability that any random user will be satisfied when using our FAQ retrieval system by deploying a MCQs detection subsystem in our FAQ retrieval system to filter out the MCQs. Finally, this thesis demonstrates that correcting spelling errors can help improve the retrieval performance and the probability that any random user will be satisfied when using our FAQ retrieval system. We tested our FAQ retrieval system with two different testing sets, one containing the original SMS queries and the other containing the SMS queries which were manually corrected for spelling errors. Our results show a significant improvement in the retrieval performance and the probability that any random user will be satisfied when using our FAQ retrieval system.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Keywords: Frequently asked question, missing content queries, term mismatch, query logs
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Colleges/Schools: College of Science and Engineering > School of Computing Science
Funder's Name: UNSPECIFIED
Supervisor's Name: Rogers, Dr. Simon and Ounis, Dr. Iadh
Date of Award: 2015
Depositing User: Edwin Thuma
Unique ID: glathesis:2015-6280
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 23 Apr 2015 12:19
Last Modified: 06 May 2015 15:39
URI: http://theses.gla.ac.uk/id/eprint/6280

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year