Characterisation and secretion mechanism of Bordetella pertussis autotransporter proteins

Bokhari, Syed Habib (2002) Characterisation and secretion mechanism of Bordetella pertussis autotransporter proteins. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 2002bokhariphd.pdf] PDF
Download (23MB)
Printed Thesis Information: https://eleanor.lib.gla.ac.uk/record=b2121044

Abstract

The identification and characterisation of new virulence determinants of 5. pertussis is providing important information for understanding the colonisation and survival strategies of the microorganism. B. pertussis deploys a range of surface-associated components to enable its successful colonisation of the host. Bap-5 has been identified as a new member of the B. pertussis autotransporter family of proteins that includes PRN, BrkA, TCF and Vag-8, largely due to its homology at the C-terminus and some other similar regions such as the RGD (integrin-binding) and SGXG (glycosaminoglycan-binding) motifs. The bap-5 gene also exists in B. bronchiseptica and B. parapertussis. Characteristic upstream regulatory sequences such as a ribosome-binding site were not seen in bap-5, but a potential heptameric BvgA-binding motif was identified. The expression of Bap-5 was confirmed by RT-PCR and Western blotting and was shown to be bvg dependent. Although Bap-5 does not possess a typical signal sequence like pertactin (PRN), its surface localisation was confirmed by agglutination and immunofluorescence assays.

A potential role for Bap-5 in infection was studied by generating Bap-5 deficient mutants in two strains of B. pertussis. An allelic exchange procedure with the suicide vector pSS1129 carrying the bap-5 gene disrupted with a kanamycin-resistance cassette was used. PCR and Southern blotting confirmed the replacement of the wild-type bap-5 gene with the mutated version. Moreover, SDS-PAGE and Western blotting of outer-membrane preparations of B. pertussis Taberman wild-type and its Bap-5-deficient mutant showed a clear difference in their outer-membrane profile at ~79.9kDa presumably representing the unprocessed form and bands at ~65 kDa and ~16 kDa may represent the processed forms of the protein.

The Bap-5 characterisation studies showed that the Taberman Bap-5-deficient strain was less able than the parent strain to colonise the lower respiratory tract of mice and adhesion studies (in vitro) showed that the Taberman parent was better in adhering to certain cell types than the Bap-5-deficient mutant.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Subjects: Q Science > QR Microbiology
Colleges/Schools: College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Supervisor's Name: Parton, Dr. Roger and Coote, Dr. John
Date of Award: 2002
Depositing User: Elaine Ballantyne
Unique ID: glathesis:2002-1507
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 08 Feb 2010
Last Modified: 10 Dec 2012 13:41
URI: https://theses.gla.ac.uk/id/eprint/1507

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year