Toeplitz products and two-weight inequalities on spaces of vector-valued functions

Kerr, Robert (2011) Toeplitz products and two-weight inequalities on spaces of vector-valued functions. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 2011kerrphd.pdf] PDF
Download (863kB)
Printed Thesis Information:


This thesis is concerned with operators on certain vector-valued function spaces. Namely, Bergman spaces of \mathbb{C}^n$-valued functions and L^2(\mathbb{R},\mathbb{C}^n,V)$, where $V$ is a matrix weight. We will study products of Toeplitz operators on the vector Bergman space $L^2_a(\mathbb{C}^n)$. We also study various operators, including the dyadic shift and the Hilbert transform, between $L^2(\mathbb{R},\mathbb{C}^n,V)$ and $L^2(\mathbb{R},\mathbb{C}^n,U)$. These function spaces are generalizations of normed vector spaces of functions which take values in $\mathbb{C}$.

The thesis is split into two distinct areas of function space theory: analytic function spaces and harmonic analysis. There is, however, a common theme of matrix weights, particularly the reverse Hölder condition on matrix weights and a generalization of the $A_p$ conditions on matrix weights for $p=2$ and $p=\infty$.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Keywords: Toeplitz Operators, Hilbert Transform, Bergman Space, Vector-Valued Function Spaces
Subjects: Q Science > QA Mathematics
Colleges/Schools: College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Supervisor's Name: Pott, Dr. Sandra
Date of Award: 2011
Depositing User: Mr Robert Kerr
Unique ID: glathesis:2011-2469
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 15 Apr 2011
Last Modified: 10 Dec 2012 13:55

Actions (login required)

View Item View Item


Downloads per month over past year