Cremins, Casey Timothy (1997) Fixed point indices and existence theorems for semilinear equations in cones. PhD thesis, University of Glasgow.
Full text available as:
PDF
Download (4MB) |
Abstract
The purpose of this thesis is to develop fixed point indices for A-proper semilinear operators defined on cones in Banach spaces and use the results to obtain existence theorems to semilinear equations. We consider semilinear equations of the form Lx = Nx where L is a linear Fredholm operation of index zero, N a nonlinear operator such that L - N is A-proper at zero relative to a projection scheme L.
Chapter 1 is an introduction to basic concepts used throughout the thesis, including; Banach spaces, linear operators, A-proper maps, Fredholm operators of index zero, and the definition and properties of the generalised degree for A-proper maps.
In Chapter 2, we define a fixed point index for A-proper maps on cones in terms of the generalised degree and derive the basic properties of this index. We then extend the definition to include unbounded sets.
A more general fixed point index than that of Chapter 2 is developed in Chapter 3 for A-proper maps based on limits of a finite dimensionally defined index. Properties of the index are given and a definition for unbounded sets is provided.
Chapter 4 extends the Lan-Webb fixed point index for weakly inward A-proper at 0 maps to semilinear operators. This index is also extended to include unbounded sets.
Existence theorems of positive and non-negative solutions to semilinear equations on cones are established in Chapter 5 using the fixed point indices of Chapters 2, 3, and 4.
Finally, in Chapter 6, we apply some of the existence theorems of Chapter 5 to several differential and integral equations. We prove the existence of: a positive solution to a Picard boundary value problem; a non-negative solution to a periodic boundary value problem; and, a non-negative solution to a Volterra integral equation.
Item Type: | Thesis (PhD) |
---|---|
Qualification Level: | Doctoral |
Subjects: | Q Science > QA Mathematics |
Colleges/Schools: | College of Science and Engineering > School of Mathematics and Statistics > Mathematics |
Supervisor's Name: | Webb, Prof. J.R.L. |
Date of Award: | 1997 |
Depositing User: | Angi Shields |
Unique ID: | glathesis:1997-3520 |
Copyright: | Copyright of this thesis is held by the author. |
Date Deposited: | 17 Jul 2012 |
Last Modified: | 10 Dec 2012 14:08 |
URI: | https://theses.gla.ac.uk/id/eprint/3520 |
Actions (login required)
View Item |
Downloads
Downloads per month over past year