Evaluating clinical variation in traumatic brain injury data

Stell, Anthony James (2019) Evaluating clinical variation in traumatic brain injury data. PhD thesis, University of Glasgow.

Full text available as:
Download (5MB) | Preview
Printed Thesis Information: https://eleanor.lib.gla.ac.uk/record=b3369294


Current methods of clinical guideline development have two large challenges: 1) there is often a long time-lag between the key results and publication into recommended best practice and 2) the measurement of adherence to those guidelines is often qualitative and difficult to standardise into measurable impact. In an age of ever-increasing volumes of accurate data captured at the bedside in specialist intensive care units, this thesis explores the possibility of constructing a technology that can interpret that data and present the results as a quantitative and immediate measure of guideline adherence.

Applied to the Traumatic Brain Injury (TBI) domain, and specifically to the management of ICP and CPP, a framework is developed that makes use of process models to measure the adherence of clinicians to three specific TBI guidelines. By combining models constructed from physiological and treatment ICU data, and those constructed from guideline text, a distance is calculated between the two, and patterns of guideline adherence are inferred from this distance.

The framework has been developed into an online application capable of producing adherence output on most standardised ICU datasets. This application has been applied to the Brain-IT and MIMIC III repositories and evaluated on the Philips ICCA bedside monitoring system. Patterns of guideline adherence are presented in a variety of ways including minute-by-minute windowing, tables of non-adherence instances, statistical distribution of instances, and a severity chart summarising the impact of non-adherence in a single number.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Subjects: Q Science > QP Physiology
Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4450 Databases
Colleges/Schools: College of Medical Veterinary and Life Sciences
Supervisor's Name: Piper, Dr. Ian and Moss, Dr. Laura
Date of Award: 2019
Depositing User: Mr Anthony J. Stell
Unique ID: glathesis:2019-74263
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 25 Jun 2019 08:47
Last Modified: 10 Dec 2019 12:19
Thesis DOI: 10.5525/gla.thesis.74263
URI: http://theses.gla.ac.uk/id/eprint/74263
Related URLs:

Actions (login required)

View Item View Item


Downloads per month over past year