Distributed Simulation of High-Level Algebraic Petri Nets

Djemame, Karim (1999) Distributed Simulation of High-Level Algebraic Petri Nets. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 13833979.pdf] PDF
Download (8MB)

Abstract

In the field of Petri nets, simulation is an essential tool to validate and evaluate models. Conventional simulation techniques, designed for their use in sequential computers, are too slow if the system to simulate is large or complex. The aim of this work is to search for techniques to accelerate simulations exploiting the parallelism available in current, commercial multicomputers, and to use these techniques to study a class of Petri nets called high-level algebraic nets. These nets exploit the rich theory of algebraic specifications for high-level Petri nets: Petri nets gain a great deal of modelling power by representing dynamically changing items as structured tokens whereas algebraic specifications turned out to be an adequate and flexible instrument for handling structured items. In this work we focus on ECATNets (Extended Concurrent Algebraic Term Nets) whose most distinctive feature is their semantics which is defined in terms of rewriting logic. Nevertheless, ECATNets have two drawbacks: the occultation of the aspect of time and a bad exploitation of the parallelism inherent in the models. Three distributed simulation techniques have been considered: asynchronous conservative, asynchronous optimistic and synchronous. These algorithms have been implemented in a multicomputer environment: a network of workstations. The influence that factors such as the characteristics of the simulated models, the organisation of the simulators and the characteristics of the target multicomputer have in the performance of the simulations have been measured and characterised. It is concluded that synchronous distributed simulation techniques are not suitable for the considered kind of models, although they may provide good performance in other environments. Conservative and optimistic distributed simulation techniques perform well, specially if the model to simulate is complex or large - precisely the worst case for traditional, sequential simulators. This way, studies previously considered as unrealisable, due to their exceedingly high computational cost, can be performed in reasonable times. Additionally, the spectrum of possibilities of using multicomputers can be broadened to execute more than numeric applications.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Additional Information: Adviser: Dennis Gilles
Keywords: Computer science
Date of Award: 1999
Depositing User: Enlighten Team
Unique ID: glathesis:1999-76248
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 19 Dec 2019 09:15
Last Modified: 19 Dec 2019 09:15
URI: https://theses.gla.ac.uk/id/eprint/76248

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year