Seamless coverage for the next generation wireless communication networks

Turkmen, Aysenur (2023) Seamless coverage for the next generation wireless communication networks. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 2022TurkmanPhD.pdf] PDF
Download (3MB)


Data demand has exponentially increased due to the rapid growth of wireless and mobile devices traffic in recent years. With the advent of the fifth generation, 5G, and beyond networks, users will be able to take advantage of additional services beyond the capability of current wireless networks while maintaining a highquality experience. The exploitation of millimeter-wave (mm-wave) frequency in 5G promises to meet the demands of future networks with the motto of providing high data rate coverage with low latency to its users, which will allow future networks to function more efficiently. However, while planning a network using mm-wave frequencies, it is important to consider their small coverage footprints and weak penetration resistance. Heterogeneous network planning with the dense deployment of the small cells is one way of overcoming these issues, yet, without proper planning of the integrated network within the same or different frequencies could lead to other problems such as coverage gaps and frequent handovers; due to the natural physics of mm-wave frequencies.

Therefore this thesis focuses on bringing ultra-reliable low-latency communication for mm-wave indoor users by increasing the indoor coverage and reducing the frequency of handovers. Towards achieving this thesis’s aim, a detailed literature review of mm-wave coverage is provided in Chapter 2. Moreover, a table that highlights the penetration loss of materials at various frequencies is provided as a result of thorough research in this field, which will be helpful to the researchers investigating this subject. According to our knowledge, this is the first table presenting the most studies that have been conducted in this field.

Chapter 3 examines the interference effect of the outdoor base station (BS) inside the building in the context of a heterogeneous network environment. A single building model scenario is created, and the interference analysis is performed to observe the effects of different building materials used as walls. The results reveal the importance of choosing the material type when outdoor BS is close to the building. Moreover, the interference effect of outdoor BS should be minimized when the frequency re-use technique is deployed over very short distances.

Chapter 4 presents two-fold contributions, in addition to providing a comprehensive handover study of mm-wave technology. The first study starts with addressing the problem of modelling users’ movement in the indoor environment. Therefore, a user-based indoor mobility prediction via Markov chain with an initial transition matrix is proposed, acquired from Q-learning algorithms. Based on the acquired knowledge of the user’s mobility in the indoor environment, the second contribution of this chapter provides a pre-emptive handover algorithm to provide seamless connection while the user moves within the heterogeneous network. The implementation and evaluation of the proposed algorithm show a reduction in the handover signalling costs by more than 50%, outperforming conventional handover algorithms.

Lastly, Chapter 5 contributes to providing robust signal coverage for coverage blind areas and implementing and evaluating the proposed handover algorithm with the intelligent reflective surface. The results show a reduction in the handover signalling costs by more than 33%, outperforming conventional handover algorithms with the pre-emptive handover initiation.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Colleges/Schools: College of Science and Engineering > School of Engineering
Supervisor's Name: Imran, Professor Muhammad
Date of Award: 2023
Depositing User: Theses Team
Unique ID: glathesis:2023-83671
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 22 Jun 2023 08:16
Last Modified: 22 Jun 2023 08:19
Related URLs:

Actions (login required)

View Item View Item


Downloads per month over past year