Near-field baseband communication system for use in biomedical implants

Manjunath, Sandeep (2009) Near-field baseband communication system for use in biomedical implants. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 2009manjunathphd.pdf] PDF
Download (21MB)
Printed Thesis Information: https://eleanor.lib.gla.ac.uk/record=b2696021

Abstract

This thesis introduces the reader to the near-field baseband pulse radio communication for biomedical implants. It details the design and implementation of the complete communication system with a particular emphasis on the antenna structure and waveform coding that is compatible with this particular technology. The wireless communication system has great employability in small pill-sized biomedical diagnostic devices offering the advantages of low power consumption and easy integration with SoC and lab-in-a-pill technologies.

The greatest challenge was the choice of antenna that had to be made to effectively transmit the pulses. A systematic approach has been carried out in arriving at the most suitable antenna for efficient emanation of pulses and the fields around it are analysed electromagnetically using a commercially available software. A magnetic antenna can be used to transmit the information from inside a human body to the outside world. The performance of the above antenna was evaluated in a salt solution of different concentrations which is similar to a highly conductive lossy medium like a human body.

Near-field baseband pulse transmission is a waveform transmission scheme wherein the pulse shape is crucial for decoding information at the receiver. This
demands a new approach to the antenna design, both at the transmitter and the receiver. The antenna had to be analysed in the time-domain to know its effects on the pulse and an expression for the antenna bandwidth has been proposed in this thesis. The receiving antenna should be able to detect very short pulses and while doing so has to also maintain the pulse shape with minimal distortion. Different loading congurations were explored to determine the most feasible one for receiving very short pulses.

Return-to-zero (RZ), Non-return-zero (NRZ) and Manchester coded pulse waveforms were tested for their compatibility and performance with the near-field baseband pulse radio communication. It was concluded that Manchester
coded waveform are perfectly suited for this particular near-field communication technology. Pulse interval modulation was also investigated and the findings suggested
that it was easier to implement and had a high throughput rate too. A simple receiver algorithm has been suggested and practically tested on a digital signal processor. There is further scope for research to develop complex signal
processing algorithms at the receiver.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Keywords: Near-Field, Baseband, Pulse Radio Communication, Biomedical Implants.
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Colleges/Schools: College of Science and Engineering > School of Engineering
Supervisor's Name: Cumming, Prof. David R.S.
Date of Award: 2009
Depositing User: Mr Sandeep Manjunath
Unique ID: glathesis:2009-1128
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 05 Nov 2009
Last Modified: 10 Dec 2012 13:34
URI: https://theses.gla.ac.uk/id/eprint/1128

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year