Helicopter inverse simulation for workload and handling qualities estimation

Leacock, Garry R. (2000) Helicopter inverse simulation for workload and handling qualities estimation. PhD thesis, University of Glasgow.

Full text available as:
[img]
Preview
PDF
Download (4MB) | Preview

Abstract

Helicopter handling qualities are investigated using inverse simulation as the method of providing state and control information for the appropriate quantitative metrics. The main aim of the work was to develop a more comprehensive and versatile method of quantifying handling qualities levels using the available inverse algorithm "Helin v". Subsequently, the assessment of the helicopter model inherent in Helinv, "Helicopter Generic Simulation", (HGS) for its suitability to handling qualities studies was paramount. Since the Helinv inverse algorithm operates by initially defining a mathematical flight test manoeuvre for the vehicle to "fly", considerable time was given to modelling suitable handling qualities assessment manoeuvres. So-called "attitude quickness" values were then calculated thus providing an initial objective insight into handling qualities level of the vehicle under test. Validation of the tasks formed an integral part of successfully fulfilling the flight test manoeuvre development objective. The influence of the human is captured by the inclusion of a pilot model and the development of a novel method of parameter estimation, supplements the overall objective of modifying Helinv results to achieve potentially more realistic responses and thus correspondingly more realistic handling qualities. A comparative study of two helicopters, one based on the Westland Lynx battlefield/utility type and the other, a hypothetically superior configuration effectively demonstrates the capability of inverse simulation to deliver results adequate for initial handling qualities studies. Several examples are used to illustrate the point. Helinv has been shown to be versatile and efficient and can be used in initial handling qualities studies. The advantages of such a technique are clear when it is seen that actual flight testing, ground based or airborne is extremely costly, as the flight test manoeuvres must be representative of real life, reproducible and of course, as risk free as possible. Many inverse simulation runs and handling qualities calculations have been carried out for different helicopter configurations and manoeuvres thus illustrating the advantages of the technique and fulfilling all the aims mentioned above.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Subjects: T Technology > TL Motor vehicles. Aeronautics. Astronautics
Colleges/Schools: College of Science and Engineering > School of Engineering > Aerospace Sciences
Funder's Name: UNSPECIFIED
Supervisor's Name: Thomson, Dr Dougie
Date of Award: 2000
Depositing User: Ms Dawn Pike
Unique ID: glathesis:2000-4947
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 11 Feb 2014 14:26
Last Modified: 22 May 2014 16:01
URI: http://theses.gla.ac.uk/id/eprint/4947

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year