A Generic Feedback Mechanism for Component-Based Systems

Renaud, Karen Vera (2000) A Generic Feedback Mechanism for Component-Based Systems. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 13818553.pdf] PDF
Download (11MB)


Computers have been integrated into all spheres and occupations and the need for users to easily understand how to use each computer application has become paramount. The end-user should not be expected to decipher cryptic messages or to understand the inner functioning of the computer itself. With computer-users spanning all walks of life, there is a need for a change in the mind-set of software developers in making their product more user-friendly. In addition, software systems of the future will increasingly be built from independent encapsulated software components and will often be distributed over various sites. This new paradigm brings a new realm of complexity for the end-user, especially with respect to the increased possibility of failure, so that in addition to the nontrivial task of interpreting the general functioning of an application, the user will be expected to deal with the results of perplexing errors too. The nature of component- based systems makes the provision of support for handling errors far more difficult due to the independent and diffuse nature of the creators of the individual parts making up these systems. Other factors with respect to application use also need to be addressed. For example, it is a rare user who is able to spend 100% of his or her time concentrating on interaction with the computer, without distractions of some sort interrupting. It is even rarer to find an application which is not prone to occasionally unintelligible error messages or breakdowns. Few applications are designed with these realities in mind and when problems do occur, or users are interrupted, they often find it difficult to recover and to resume their primary task. It is also difficult for applications to tailor the provided feedback according to the specific needs of different end-users or the differing roles within which they function. This dissertation will highlight the role of feedback in increasing the interpretability of an application and in alleviating the effects of interruptions, errors and breakdowns. Rather than expecting feedback to be provided by programmers, this dissertation will argue that feedback can be enhanced in a distributed component-based system by separating the feedback concern from the basic functional concern of the application and executing the application within a generic feedback enhancing framework. The feedback concept is examined in depth and the role of feedback in enhancing understanding of applications, and in alleviating the effects of disturbances in our working day, is explored. The concept of a generic framework for enhancing feedback has been developed and a prototype implemented. The design and implementation of this prototype are described, as is the evaluation of the feedback thus produced.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Additional Information: Adviser: Richard Cooper
Keywords: Computer science
Date of Award: 2000
Depositing User: Enlighten Team
Unique ID: glathesis:2000-75817
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 19 Dec 2019 09:15
Last Modified: 19 Dec 2019 09:15
URI: https://theses.gla.ac.uk/id/eprint/75817

Actions (login required)

View Item View Item


Downloads per month over past year