A Method of Rendering CSG-Type Solids Using a Hybrid of Conventional Rendering Methods and Ray Tracing Techniques

Cottingham, Marion Scott (1988) A Method of Rendering CSG-Type Solids Using a Hybrid of Conventional Rendering Methods and Ray Tracing Techniques. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 10998216.pdf] PDF
Download (5MB)


This thesis describes a fast, efficient and innovative algorithm for producing shaded, still images of complex objects, built using constructive solid geometry ( CSG ) techniques. The algorithm uses a hybrid of conventional rendering methods and ray tracing techniques. A description of existing modelling and rendering methods is given in chapters 1, 2 and 3, with emphasis on the data structures and rendering techniques selected for incorporation in the hybrid method. Chapter 4 gives a general description of the hybrid method. This method processes data in the screen coordinate system and generates images in scan-line order. Scan lines are divided into spans (or segments) using the bounding rectangles of primitives calculated in screen coordinates. Conventional rendering methods and ray tracing techniques are used interchangeably along each scan-line. The method used is detennined by the number of primitives associated with a particular span. Conventional rendering methods are used when only one primitive is associated with a span, ray tracing techniques are used for hidden surface removal when two or more primitives are involved. In the latter case each pixel in the span is evaluated by accessing the polygon that is visible within each primitive associated with the span. The depth values (i. e. z-coordinates derived from the 3-dimensional definition) of the polygons involved are deduced for the pixel's position using linear interpolation. These values are used to determine the visible polygon. The CSG tree is accessed from the bottom upwards via an ordered index that enables the 'visible' primitives on any particular scan-line to be efficiently located. Within each primitive an ordered path through the data structure provides the polygons potentially visible on a particular scan-line. Lists of the active primitives and paths to potentially visible polygons are maintained throughout the rendering step and enable span coherence and scan-line coherence to be fully utilised. The results of tests with a range of typical objects and scenes are provided in chapter 5. These results show that the hybrid algorithm is significantly faster than full ray tracing algorithms.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Keywords: Computer science
Date of Award: 1988
Depositing User: Enlighten Team
Unique ID: glathesis:1988-77745
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 14 Jan 2020 11:53
Last Modified: 14 Jan 2020 11:53
URI: https://theses.gla.ac.uk/id/eprint/77745

Actions (login required)

View Item View Item


Downloads per month over past year