Development of electronics for microultrasound capsule endoscopy

Abaravičius, Bartas (2023) Development of electronics for microultrasound capsule endoscopy. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 2022AbaraviciusPhD.pdf] PDF
Download (17MB)

Abstract

Development of intracorporeal devices has surged in the last decade due to advancements in the semiconductor industry, energy storage and low-power sensing systems. This work aims to present a thorough systematic overview and exploration of the microultrasound (µUS) capsule endoscopy (CE) field as the development of electronic components will be key to a successful applicable µUSCE device. The research focused on investigating and designing high-voltage (HV, < 36 V) generating and driving circuits as well as a low-noise amplifier (LNA) for battery-powered and volume-limited systems.

In implantable applications, HV generation with maximum efficiency is required to improve the operational lifetime whilst reducing the cost of the device. A fully integrated hybrid (H) charge pump (CP) comprising a serial-parallel (SP) stage was designed and manufactured for > 20 V and 0 - 100 µA output capabilities. The results were compared to a Dickson (DKCP) occupying the same chip area; further improvements in the SPCP topology were explored and a new switching scheme for SPCPs was introduced. A second regulated CP version was excogitated and manufactured to use with an integrated µUS pulse generator. The CP was manufactured and tested at different output currents and capacitive loads; its operation with an US pulser was evaluated and a novel self-oscillating CP mechanism to eliminate the need of an auxiliary clock generator with a minimum area overhead was devised.

A single-output universal US pulser was designed, manufactured and tested with 1.5 MHz, 3 MHz, and 28 MHz arrays to achieve a means of fully-integrated, low-power transducer driving. The circuit was evaluated for power consumption and pulse generation capabilities with different loads. Pulse-echo measurements were carried out and compared with those from a commercial US research system to characterise and understand the quality of the generated pulse. A second pulser version for a 28 MHz array was derived to allow control of individual elements. The work involved its optimisation methodology and design of a novel HV feedback-based level-shifter.

A low-noise amplifier (LNA) was designed for a wide bandwidth µUS array with a centre frequency of 28 MHz. The LNA was based on an energy-efficient inverter architecture. The circuit encompassed a full power-down functionality and was investigated for a self-biased operation to achieve lower chip area. The explored concepts enable realisation of low power and high performance LNAs for µUS frequencies.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Subjects: T Technology > T Technology (General)
Colleges/Schools: College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Supervisor's Name: Cochran, Professor Sandy, Mitra, Dr. Srinjoy and Cumming, Professor David
Date of Award: 2023
Depositing User: Theses Team
Unique ID: glathesis:2023-83446
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 22 Feb 2023 10:39
Last Modified: 22 Feb 2023 11:21
Thesis DOI: 10.5525/gla.thesis.83446
URI: https://theses.gla.ac.uk/id/eprint/83446
Related URLs:

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year