Aspects of electroweak symmetry breaking in physics beyond the standard model

Athron, Peter (2008) Aspects of electroweak symmetry breaking in physics beyond the standard model. PhD thesis, University of Glasgow.

Full text available as:
Download (2MB) | Preview


Fine tuning in the Standard Model (SM) is the basis for a widespread expectation that the minimal model for electroweak symmetry breaking, with a single Higgs boson, is
not realised in nature and that new physics, in addition to (or instead of) the Higgs, will be discovered at the Large Hadron Collider (LHC). However constraints on new physics indicate that many models which go beyond the SM (BSM) may also be fine tuned (although to a much lesser extent). To test this a reliable, quantitative measure of tuning is required. We review the measures of tuning used in the literature and propose an alternative measure. We apply this measure to several toy models and a constrained version of the Minimal Supersymmetric Standard Model.

The Exceptional Supersymmetric Standard Model (E6SSM) is another BSM motivated by naturalness. As a supersymmetric theory it solves the SM hierarchy problem and by breaking a new gauged U(1) symmetry it also solves the μ-problem of the
MSSM. We investigate the Renormalisation Group Evolution of the model and test for radiative electroweak symmetry breaking in two versions of the model with different high scale constraints. First we briefly look at scenarios with non-universal Higgs masses at the GUT scale and present a particle spectrum that could be observed at
the LHC. Secondly we study the constrained E6SSM (CE6SSM), with universal scalar (m0), trilinear (A0) and gaugino (M) masses. We reveal a large volume of CE6SSM
parameter space where the correct breakdown of the gauge symmetry can be achieved and all experimental constraints can be satisfied. We present benchmark points corresponding to different patterns of the particle spectrum. A general feature of the benchmark spectra is a light sector of SUSY particles consisting of a light gluino, two light neutralinos and a light chargino. Although the squarks, sleptons and Z′ boson are typically much heavier, the exotic color triplet charge 1/3 fermions as well as the
lightest stop can be also relatively light leading to spectacular new physics signals at the LHC.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Keywords: Electroweak Symmetry Breaking, Naturalness, Fine tuning, Supersymmetry, Beyond the Standard Model, Exceptional Supersymmetric Standard Model
Subjects: Q Science > QC Physics
Colleges/Schools: College of Science and Engineering > School of Physics and Astronomy
Supervisor's Name: Miller, Dr. David J.
Date of Award: 2008
Depositing User: Mr Peter Athron
Unique ID: glathesis:2008-513
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 03 Mar 2009
Last Modified: 10 Dec 2012 13:19

Actions (login required)

View Item View Item


Downloads per month over past year