The dynamics and control of large space structures with distributed actuation

Robb, Bonar (2023) The dynamics and control of large space structures with distributed actuation. PhD thesis, University of Glasgow.

Full text available as:
[thumbnail of 2022RobbPhD.pdf] PDF
Download (50MB)

Abstract

Future large space structures are likely to be constructed at much greater length-scales, and lower areal mass densities than has been achieved to-date. This could be enabled by ongoing developments in on-orbit manufacturing, whereby large structures are 3D-printed in space from raw feedstock materials. This thesis proposes and analyses a number of attitude control strategies which could be adopted for this next generation of ultra-lightweight, large space structures. Each of the strategies proposed makes use of distributed actuation, which is demonstrated early in the thesis to reduce structural deformations during attitude manoeuvres. All of the proposed strategies are considered to be particularly suitable for structures which are 3d-printed on-orbit, due to the relative simplicity of the actuators and ease with which the actuator placement or construction could be integrated with the on-orbit fabrication of the structure itself.

The first strategy proposed is the use of distributed arrays of magnetorquer rods. First, distributed torques are shown to effectively rotate highly flexible structures. This is compared with torques applied to the centre-of-mass of the structure, which cause large surface deformations and can fail to enact a rotation. This is demonstrated using a spring-mass model of a planar structure with embedded actuators. A torque distribution algorithm is then developed to control an individually addressable array of actuators. Attitude control simulations are performed, using the array to control a large space structure, again modelled as a spring-mass system. The attitude control system is demonstrated to effectively detumble a representative 75×75m flexible structure, and perform slew manoeuvres, in the presence of both gravity-gradient torques and a realistic magnetic field model.

The development of a Distributed Magnetorquer Demonstration Platform is then presented, a laboratory-scale implementation of the distributed magnetorquer array concept. The platform consists of 48 addressable magnetorquers, arranged with two perpendicular torquers at the nodes of a 5×5 grid. The control algorithms proposed previously in the thesis are implemented and tested on this hardware, demonstrating the practical feasibility of the concept. Results of experiments using a spherical air bearing and Helmholtz cage are presented, demonstrating rest-to-rest slew manoeuvres and detumbling around a single axis using the developed algorithms.

The next attitude control strategy presented is the use of embedded current loops, conductive pathways which can be integrated with a spacecraft support structure and used to generate control torques through interaction with the Earth’s magnetic field. Length-scaling laws are derived by determining what fraction of a planar spacecraft’s mass would need to be allocated to the conductive current loops in order to produce a torque at least as large as the gravity gradient torque. Simulations are then performed of a flexible truss structure, modelled as a spring-mass system, for a range of structural flexibilities and a variety of current loop geometries. Simulations demonstrate rotation of the structure via the electromagnetic force on the current carrying elements, and are also used to characterise the structural deformations caused by the various current loop geometries. An attitude control simulation is then performed, demonstrating a 90◦ slew manoeuvre of a 250×250 m flexible structure through the use of three orthogonal sets of current loops embedded within the spacecraft.

The final concept investigated in this thesis is a self-reconfiguring OrigamiSat, where reconfiguration of the proposed OrigamiSat is triggered by changes in the local surface optical properties of an origami structure to harness the solar radiation pressure induced acceleration. OrigamiSats are origami spacecraft with reflective panels which, when flat, operate as a conventional solar sail. Shape reconfiguration, i.e. “folding” of the origami design, allows the OrigamiSat to change operational modes, performing different functions as per mission requirements. For example, a flat OrigamiSat could be reconfigured into the shape of a parabolic reflector, before returning to the flat configuration when required to again operate as a solar sail, providing propellant-free propulsion. Shape reconfiguration or folding of OrigamiSats through the use of surface reflectivity modulation is investigated in this thesis. First, a simplified, folding facet model is used to perform a length-scaling analysis, and then a 2d multibody dynamics simulation is used to demonstrate the principle of solar radiation presure induced folding. A 3d multibody dynamics simulation is then developed and used to demonstrate shape reconfiguration for different origami folding patterns. Here, the attitude dynamics and shape reconfiguration of OrigamiSats are found to be highly coupled, and thus present a challenge from a control perspective. The problem of integrating attitude and shape control of a Miura-fold pattern OrigamiSat through the use of variable reflectivity is then investigated, and a control algorithm developed which uses surface reflectivity modulation of the OrigamiSat facets to enact shape reconfiguration and attitude manoeuvres simultaneously.

Item Type: Thesis (PhD)
Qualification Level: Doctoral
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Colleges/Schools: College of Science and Engineering > School of Engineering
Supervisor's Name: Mcinnes, Professor Colin
Date of Award: 2023
Depositing User: Theses Team
Unique ID: glathesis:2023-83464
Copyright: Copyright of this thesis is held by the author.
Date Deposited: 02 Mar 2023 11:40
Last Modified: 02 Mar 2023 12:21
Thesis DOI: 10.5525/gla.thesis.83464
URI: https://theses.gla.ac.uk/id/eprint/83464
Related URLs:

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year